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1. INTRODUCTION

Synoptic climatology has a rich methodological her-
itage of techniques designed to relate synoptic-scale
atmospheric circulation to a local climate or environ-
mental response. While its historic development can be
traced back to the late 19th century (e.g. Köppen 1874,
Abercromby 1883, 1887), synoptic climatology was
established as a distinctive climatological sub-field
with the publication of ‘Synoptic climatology: methods
and applications’ by Barry & Perry (1973). Here it was
defined as ‘obtaining insight into local or regional
climates by examining the relationship of weather
elements, individually or collectively, to atmospheric
circulation processes.’

The most common approach to synoptic climatology
is to partition the atmospheric state into broad cate-
gories (either in terms of spatial pattern or the multi-

variate characteristics of an airmass), and to relate
these synoptic categories or ‘types’ to some dependent
variable such as local temperature, acid deposition,
etc. Synoptic classification has often been used as a
data reduction technique in process studies that exam-
ine interactions or relationships between the circula-
tion and local environmental parameters (e.g. Crane
1978, Yarnal 1984, Wigley & Jones 1987). Synoptic
classification has also been used to extend data
records: where the circulation record is much longer
than the record for the environmental parameter of
interest; a transfer function is developed between the
environmental parameter and the synoptic types, and
the circulation record is used to extend the local envi-
ronmental data back in time (e.g. Barry et al. 1981).

Early approaches used manual classification to
define synoptic types (e.g. Lamb 1950); although effec-
tive, these manual techniques are extremely labor
intensive. Subsequent automated approaches based
on quantitative algorithms gave rise to a plethora of
techniques based on a few core procedures involving
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some form of correlation, cluster, and/or eigenfunction
analysis. In all cases, the approach of generalizing the
circulation into characteristic modes or synoptic types
required a fine balance between producing a small
enough number of types to easily visualize and con-
ceptualize the circulation, while avoiding so much
generalization that the strength of any relationship to
a local climate variable was lost. The major problems
with this approach are due to the degree of within
group variability produced. It is also common that days
in the same synoptic type can often be associated with
a very different local response, or that the same
response can be obtained from different synoptic
types. The fundamental characteristics of synoptic
classification techniques are effectively summarized in
Yarnal (1993).

Underlying this traditional approach to synoptic clas-
sification is the premise that the continuum of weather
states may be effectively divided into a small number
of categories with clear discernable boundaries. This
premise clearly has limitations: while typing weather
systems gives a good first-order insight into the basic
characteristics of the climate system, much of the infor-
mation is inherently subsumed by the degree of gener-
alization imposed.

In response to this, Hewitson & Crane (1992a,b) pro-
posed that the system can be treated as a continuum with
a continuous function, and that quantitative relationships
between the atmosphere and local surface variables can
be developed in the form of a downscaling transfer func-
tion. This procedure is diametrically opposed to the clas-
sic synoptic climatology approach. In this case there are
no synoptic types, but rather a transfer function approx-
imating the continuum of the cross-scale relationship.
However, while this approach effectively re-captures
much of the relationship information lost in the general-
ized typing schemes, it has its own shortcomings in that
it is often difficult to interpret physical processes from the
relationship represented by the cross-scale function. For
example, local precipitation may be derived as some
weighted function of atmospheric circulation and
humidity measures on a larger spatial grid.

Nonetheless, such empirical downscaling, as it has
become termed, is now in widespread use and, as with
synoptic typing schemes, has promoted numerous
methodologies ranging from simple linear regression
(e.g. Sailor & Li 1999), to non-linear artificial neural
nets (ANNs) (e.g. Hewitson & Crane 1996) and sto-
chastic weather generators (e.g. Bellone et al. 2000). 

Both of these techniques—synoptic typing and em-
pirical downscaling—effectively accomplish the prin-
ciple objectives of synoptic climatology, yet they repre-
sent widely divergent approaches; thus, a middle ground
that treats the atmosphere as a continuum yet retains in-
terpretability, would represent a significant advantage.

2. SELF-ORGANIZING MAPS

Self-organizing maps (SOMs) (Kohonen 1989, 1990,
1991, 1995) offer an alternative approach to synoptic
climatology that provides a mechanism for visualizing
the complex distribution of synoptic states, yet treats
the data as a continuum. SOMs are in widespread use
across a number of disciplines (e.g. Joutsiniemi et al.
1995, Palakal et al. 1995, Chen & Gasteiger 1997), but
have little exposure to date in the climatological litera-
ture. SOMs were introduced to the physical geography
community as part of a broader discussion on neural
nets (Hewitson & Crane 1994), but only the ANN com-
ponent has become widely adopted. Hewitson (1999,
2001) and Crane & Hewitson (1998) include SOMs as
part of an ANN-based downscaling procedure; Main
(1997) used SOMs to investigate seasonal cycles in
general circulation models (GCMs); Hudson (1998)
uses SOMs to evaluate frequency changes of synoptic
events in a GCM perturbation experiment. SOMs have
also been used as a mechanism for climate classifica-
tion by Malmgren (1999) and Cavazos (1999, 2000),
and for cloud classification by Ambroise et al. (2000).

In many respects SOMs are analogous to more tradi-
tional forms of cluster analysis. Given an N-dimen-
sional cloud of data points, the SOM will seek to place
an arbitrary number of nodes within the data space
such that the distribution of nodes is representative of
the multi-dimensional distribution function, with the
nodes being more closely spaced in regions of high
data densities. Most cluster algorithms are designed to
identify groups that minimize the within-group
differences while maximizing the between-group
differences. There are numerous ways in which these
differences can be defined, including, for example,
cluster algorithms that define group centroids and
measure the distance between the centroid and each
group member and the distance from the group cen-
troid to all other centroids. Alternatively, the algorithm
may measure the distance between all points in the
group and between each point in the group and each
point in a neighboring group. Some algorithms will
allow observations to belong to more than 1 group,
although in many cases this results, in effect, from a
post-processing step in which, once the groups are
defined, a probability of group membership is calcu-
lated for each point in all of the groups. A comparison
of several clustering algorithms (Ward’s minimum vari-
ance, average linkage and centroid) used in a synoptic
classification procedure is described by Kalkstein et al.
(1987).

SOMs differ from traditional cluster algorithms in 2
significant characteristics, the first being the way in
which groups are defined. While the end result of the
SOM analysis is some form of data clustering, unlike a
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clustering algorithm the basic SOM methodology is not
primarily concerned with grouping data or identifying
clusters. As noted above, SOMs attempt to find nodes
or points in the measurement space that are represen-
tative of the nearby cloud of observations and, when
taken together, describe the multi-dimensional distrib-
ution function of the data set.

The initial step in the SOM routine is to define a ran-
dom distribution of nodes within the data space. The
nodes are defined by a reference vector of weighting
coefficients, where each coefficient is associated with a
particular input variable. If, for example, the initial
data set comprises a time series of sea level pressure
observations on a 10 × 20 spatial grid, each node in the
SOM will have a reference vector of 200 coefficients.
For every node, the n th coefficient in the reference
vector will be associated with the n th input variable.
Thus, each node has an associated reference vector
equal in dimension to the input data. As each data
record is presented to the SOM, the similarity between
the data record and each of the node reference vectors
is calculated, usually as a measure of Euclidean dis-
tance. The reference vector of the ‘best match’ node is
then modified such as to reduce the difference with the
input vector by some user-defined factor, or learning
rate. The data record does not become part of a group
at this time; it is simply used to adjust the location of
the SOM node in the data space.

A major difference with most cluster algorithms is
that it is not only the closest node that is updated dur-
ing this process, but all surrounding nodes are also
incrementally adjusted toward the input vector in
inverse proportion to their distance from the ‘winning’
node. The user determines the size and shape of this
update kernel. In this application we actually train the
SOM twice. The first set of training iterations use ran-
dom starting points for the node vectors and a rela-
tively large update kernel that is close to the size of the
smaller SOM dimension. This produces a first broad
distribution of nodes. The second set uses the final
node vectors of the first run as the starting points and a
smaller update kernel to refine the mapping.

This iterative process continues during several
cycles through the data set until there are no more
changes in the node locations. The net result is that the
SOM will cluster nodes in regions of the data space
that have high data densities (where there is more
information). The SOM reference vectors are itera-
tively adjusted such that they span the data space, and
each node represents a position approximating the
mean of the nearby samples in data space. This proce-
dure effectively identifies ‘archetypal’ points that span
the continuum of the data. The node to which each
sample maps with the lowest error at the end of the
training is recorded, and new data can be assigned to

one of the nodes, assuming they are from the same
population as the training data. If we think of the SOM
nodes as defining eventual group or sub-group cen-
troids, this technique explicitly recognizes that groups
are not discrete, non-overlapping entities and allows
individual observations to contribute to the definition
of more than 1 node or group.

There are many different forms of cluster analysis
and, at one level, we could regard SOMs as simply
another clustering option. However, most clustering
algorithms make some assumption about the data
structure or are based on underlying statistical model
that describes the data distribution. Where a large
group lies very close to a small group (in the data
space), for example, some algorithms would group
both together while others might split off part of the
larger group and join it to the smaller group, if that
maximizes the similarity measure being used. Simi-
larly, some algorithms are appropriate for distinguish-
ing between spheroidal or hyperspheroidal clusters,
but not linear clusters etc. One of the advantages of the
SOM approach is that it is much more versatile.
Because of its iterative nature, and because it locates
nodes that span the data space, the results of the SOM
are less dependent on the data conforming to a specific
distribution or underlying model. 

Fig. 1 demonstrates the principles of a SOM using a
simple artificial 2-dimensional data set. The data set
is constructed using a random number generator to
create a skewed distribution and to incorporate non-
linearity and a break in the data, with 2 values per
observation. The red points in Fig. 1 denote the data
samples. To develop the SOM mapping, the node
weight vectors are initialized with random numbers
prior to a training phase. The SOM is trained using
these data and the final SOM node locations are shown
as the blue points in Fig. 1. The example serves to illus-
trate 3 key aspects of the SOM behavior:
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Fig. 1. Distribution of data points and self-organizing map 
(SOM) nodes in simple 2-dimensional space
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• The SOM assumes the data are continuous. In Fig. 1,
the SOM locates a series of points or nodes that are
spread through the data cloud. The result is that the
SOM attempts to span the break in the data, which
may or may not be an advantage: if there are missing
data then the SOM provides a means to interpolate,
while if there are genuine discontinuities in the data,
the interpolation will place nodes within the discon-
tinuous region. However, when calculating frequen-
cies of occurrence on each node (the number of obser-
vations mapped to a particular node), as in Fig. 6, there
would be zero observations mapped to that node.

• Fewer SOM nodes are allocated where there is
sparse data, while more SOM nodes are allocated to
regions of the data space where there is greater
information in the data set. This behavior allows dis-
crimination between more subtle variations—where
the information to do so exists. By placing more
nodes where there are more data points, the SOM
attempts to represent the details of the data dis-
tribution at whatever level of generalization (SOM
dimension) is used.

• The SOM captures the non-linear characteristics of
the data. While the measure of similarity between
the data and the reference vector is linear, the itera-
tive training procedure allows the SOM to account
for non-linear data distributions such as the one
shown in Fig. 1.
The second major difference between SOMs and tra-

ditional clustering algorithms is that the SOM presents
an effective means of visualizing the relationships
between the nodes. If a time series of synoptic charts is
envisioned, the charts can be placed on a flat surface
such that similar synoptic states are piled together or
placed in adjacent piles. Synoptic states that are very
dissimilar are widely separated, and transitional states
are placed between the groups. In the same manner,
a SOM will arrange the distribution of nodes into a
2-dimensional array (the self-organizing ‘map’), where
similar nodes are located close together in the array
and dissimilar nodes are further apart, causing the
SOM to produce a mapping or projection of the multi-

dimensional data distribution function onto a 2-dimen-
sional plane. This property of the SOM stems from the
iterative nature of the process and the use of the spatial
update kernel described above.

The update kernel assures that similar nodes will be
located near each other in the SOM array. Even where
the initial random distribution of weight vectors causes
very different nodes to be located next to each other,
ultimately one node will begin to dominate that region
of the SOM and subsequent iterations will force the 2
very different nodes further apart in the SOM space.
The typical result is what we see in Fig. 2, where very
different synoptic states map to the corners and edges
of the SOM. For the present data set, a similar result is
always obtained regardless of the initial distribution of
weights. Any run of the SOM with different starting
points will always place the high-pressure mode cur-
rently in the bottom right of the SOM (node 1,7 in
Fig. 2) into one of the corners, and it will always map
the patterns with the low pressure in the north-east
(node 5,1) to the opposite corner.

The SOM mapping will always locate similar nodes
close to each other in the SOM space. However, the
regular array presented in Fig. 2 (and subsequent
figures) can be a little misleading. This arrangement
does not present a quantitative measure of similarity.
The 4 nodes in the lower right (1,6; 1,7; 2,6; 2,7) may
be much more similar to each other than are the nodes
in the top left (5,1; 5,2; 4,1; 4,2). Similarly the differ-
ence between nodes 1,7 and 2,7 may be much less
than the difference between nodes 2,7 and 3,7 or 3,7
and 4,7, etc. Knowing how similar or dissimilar nodes
are to each other could make a difference in sub-
sequent analyses and applications using the SOM. A
simple measure of similarity is obtained by computing
the Euclidean distance between nodes in the original
measurement space. As the nodes represent L-dimen-
sional vectors in the original data space and the object
is to show how these are related to each other in a
lower-dimensional space (2 dimensions in this case),
one approach could be to use a Sammon mapping
scheme (Sammon 1969). In the present case, we com-
pute the distance between each node and its adjacent
nodes and show this distance as a distortion surface
(Fig. 3). The distortion mapping shows that nodes 1,6,
1,7, 2,6 and 2,7 are indeed closer to each other than
are nodes 5,1, 5,2, 4,1 and 4,2.

A practical software package for implementing
SOMs is freely available (http://www.cis.hut.fi/research/
som-research/) along with extensive references and
guidelines for practical implementation. This paper
does not seek to duplicate the extensive theoretical
discussion on SOMs, as these are well described in the
literature, beginning with Kohonen (1989, 1990, 1991,
1995). Rather, the remainder of the paper focuses on
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Fig. 3. SOM node distortion surface
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the application of a SOM to a synoptic climatology
application relating sea-level pressure (SLP) fields
over the north-eastern USA to station precipitation in
the center of the domain.

3. SOM MAPPING OF SEA-LEVEL PRESSURE

The atmospheric data used in this example are
NCEP reanalysis fields of SLP (Kalnay et al. 1996). The
data are 12 hourly 2.5° × 2.5° gridded data spanning
a domain centered on Pennsylvania (90–67.5° W,
30–60° N; Fig. 4). Data are for Januarys only, from
1958–1997, and provide a 40 yr climatology of 14 880
samples for the northeastern USA. No pre-processing
is undertaken on the data.

The size of the SOM array is defined by the user and
determines the degree of generalization that will be
produced by the SOM—the more nodes, the finer the
representation of detail, while the fewer nodes, the
broader the level of generalization. However, the same
broad patterns are revealed at each level of gen-
eralization. A 3 × 4 SOM or a 7 × 9 SOM would both
show the same broad pattern with nodes that represent
dominant high-pressure systems grouped in one cor-
ner of the SOM and nodes representing low-pressure
systems in the opposite corner, with mixed patterns in
between. The 5 × 7 array is analogous to using 35 clus-
ters in more traditional methodologies, although in the
case of SOMs the 35 ‘classes’ will represent synoptic

states spanning the continuum as represented by the
data samples. Other synoptic studies over this domain
have used a relatively small number of synoptic types
(e.g. Comrie 1992, Yarnal & Frakes 1997). While 35
SOM nodes is significantly more, with the ease of visu-
alization shown below it affords greater resolution of
the synoptic scale variability of the circulation over the
region.

Training of the SOM was accomplished by randomly
initializing the node vectors, and then training in 2 suc-
cessive passes of 50000 iterations each. During the first
pass the learning rate (the measure of how much a
node vector is adjusted to a data sample) was kept at
the default for the software, with an initial radius of
update around a best-matched node set at the smaller
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Fig. 5. (a) Total error (hPa) of all grid points in the SLP patterns
mapped to each SOM node. (b) Data as in (a), but from a 2nd
training of the SOM, displayed as a 3-dimensional error surface

Fig. 4. Spatial domain used for the SLP SOM analysis

a)

b)
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of the array dimensions (5). This relatively large
update radius is used in order to develop the broad
mapping across the array of nodes. During this training
pass the update radius is progressively reduced. In the
second training pass the initial update radius is set to 3
(again progressively reduced during training), with a
training rate half that of the first pass. This second set
of iterations develops the finer details of the mapping.

Each node’s vector now forms a reference vector for
a particular synoptic state. As such, the vector may be
represented as a spatial SLP map, generating a matrix
of SLP maps arrayed in relative position to the nodes in
the SOM array. These represent the continuum of syn-
optic states that would be obtained if the synoptic
charts were spread across a table as described earlier.
The final 5 × 7 array of reference vectors are shown in
Fig. 2. Similar synoptic states are located adjacent to
one another in the SOM mapping, while dissimilar
states are at opposite extremes of the SOM space. The
continuum of states is easily visualized in the variation
from the dominant high-pressure systems through
transition states to synoptic fields dominated by deep
low-pressure systems. 

The size of the data space represented by each node,
or the variance of synoptic states related to each node,
is evaluated by determining the error with which the
sample values map to a given node. The sum-of-
squared differences between each sample and the
node reference vector provide a measure of whether
the node represents a broad region of the data space or
a clearly defined synoptic state. In traditional cluster
analysis this would be analogous to the measure of
within group variance. The magnitude of the error at
each node is shown in Fig. 5a. Training a new SOM
produces nearly identical results, as shown in Fig. 5b
which displays the error as a 3-dimensional error sur-
face in Fig. 5b. Each shaded box in Fig. 5a represents

one of the nodes in the 5 × 7 array. With reference to
Fig. 2 (the node reference vectors) it can be seen that
the highest variability of synoptic states on a node
(shown by higher errors) is associated with the tran-
sient low-pressure systems, while the lowest errors
are, not surprisingly, associated with the relatively sta-
tionary dominant high-pressure systems. If the errors
are summed across the SOM array, the mean absolute
error can be used as a measure for determining opti-
mum SOM size. The circulation can be mapped to
SOMs with several different dimensions and the
change in error used to select the SOM to be retained
for further climatological analysis. However, as noted
above, the same broad groupings appear at all dimen-
sions and the dimensions simply determine the degree
of generalization that will be obtained. A subjective
decision on SOM size, based on the particular applica-
tion of interest, can be just as valid a criterion for
selecting SOM dimensions. In this case we chose a 5 ×
7 array in order to illustrate the detail that can be
obtained, while keeping the SOM small enough to dis-
play the results in a single diagram (i.e. Fig. 2). The
SOM procedure, at this point, has achieved what
would be equivalent to the typing phase in a tradi-
tional synoptic climatological analysis. Each ‘type’
(node) represents a range of states within the contin-
uum described by the original data space. In this case,
however, the relative relationship between the ‘types’
is clearly visualized, and these ‘types’ do not represent
discrete classes. At this stage, a number of simple yet
powerful analyses are possible that provide insight
into the nature of the SLP fields and their relationship
to, in this example, station precipitation data.

4. FREQUENCY ANALYSES OF SYNOPTIC SYSTEMS

One of the simplest investigations that can be under-
taken with the trained SOM is to look at the frequency
of occurrence of synoptic systems. After training, the
data were presented to the SOM to determine which
node exemplified that particular synoptic state. A
grey-scale map showing the frequency of occurrence
of synoptic states across the SOM space is constructed
by accumulating the number of days mapped to each
node.

Fig. 6 shows the frequency of days mapped to each
node over the 40 yr of January SLP. Note that Fig. 6
and subsequent figures plot data on the same SOM
array to facilitate comparison with Fig. 2. However,
they should be interpreted with consideration given to
the similarity and error mappings shown in Figs. 3 & 5.
Each shaded square in Fig. 6 represents 1 node in the
SOM array, while the numbers are the percentage fre-
quency of occurrence. The figure indicates that fre-
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Fig. 6. Climatological 40 yr mean frequency (%) of days in 
a month mapping to each SOM node
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quencies are distributed fairly evenly over the nodes,
with relative minima in the left and central portions of
the array. Relative maxima are found in the bottom-
right and the top- and bottom-central portions of the
SOM array. The minima are associated with indetermi-
nate patterns in the center of the array, or nodes in the
left part of the array that represent strong low-pressure
systems dominating much of the region (Fig. 2). The

higher frequencies in the bottom-right quadrant repre-
sent strong central high-pressure systems, while the
relative maxima in the top- and bottom-central parts of
the array are associated with transitional patterns.
While a traditional synoptic typing approach would
identify the central high and low-pressure systems as
independent synoptic types, it would also attempt to
assign the remaining days to classes with high- or
low-pressure systems located in different parts of the
region. Conversely, the SOM clearly indicates that the
region is dominated by transitional states rather than
discrete synoptic types.

Plotting the frequency of occurrence (number of
days mapping to each node) through time presents
information on the temporal behavior of the synoptic
states. For example, the time series of the average
monthly frequency of occurrence for the 3 nodes in the
bottom-right corner of the SOM map (nodes 5,1, 6,1
and 7,1; the dominant high-pressure patterns), are
shown in Fig. 7. For this general synoptic state there
appears to be multi-year periods of preferential modes,
with particularly low frequencies in the early 1970s
and mid 1980s, and peak occurrences in 1968, 1988,
and 1994. A Fourier analysis of the same frequency
time series reveals a strong spectral peak in the 6 to
8 d period. Fig. 8 shows the spectral density plot of the
Fourier analysis, along with the histogram of the perio-
diogram with the white noise curve overlain. The peak
in this case is likely representative of the normal mid-
latitude cyclic nature of the synoptic systems.

The frequency of occurrence of synoptic events can
also be analyzed with respect to other environmental
parameters. Figs. 9 & 10 show the frequency distribu-
tion for a dry and wet January as measured by the sta-
tion precipitation at State College, Pennsylvania, in the
center of the domain. Not surprisingly the wet year dis-
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Fig. 8. Fourier analysis of January annual frequencies (domi-
nant high-pressure system)

Fig. 9. Number of days mapping to each SOM node for 
January 1978 (low-precipitation month)

Fig. 7. January annual frequency (average of nodes 5,1, 6,1 
and 7,1)



Hewitson & Crane: Self-organizing maps

plays a significantly higher frequency of low-pressure
systems than does the dry year, and actually has zero
strong high-pressure events of the type analyzed
earlier.

Having considered the inter-annual variability and
frequency of occurrence in individual years, a logical
extension would be to examine the 40 yr long-term
trend in the frequency of synoptic systems. For demon-
stration purposes, this is calculated by determining the
trend in frequency at each node over the 40 yr. How-
ever, as adjacent nodes may be very similar to each
other, it is possible that very similar synoptic states
could map to either node. With only 40 samples in the
data set (1958–1997), marginal differences in intensity
of related synoptic patterns (adjacent nodes) from year
to year could potentially have a strong impact on the
fitted trend line. Determining the significance of the
trends would require a more sophisticated analysis
combining frequencies from related nodes to produce
the trend line. Several approaches to grouping nodes
are possible. For example, one could re-run the SOM
with fewer nodes to increase the level of generaliza-
tion—producing greater differences between individ-
ual nodes. Within the larger SOM, nodes could be
grouped according to a subjective grouping of adja-
cent and similar patterns, or by using some measure of
inter-node distance (as in Fig. 3). Alternatively, a PCA
of the node vectors could produce a linear combination
of related nodes—similar to the approach adopted by
Jones & Kelly (1982) in an analysis of the Lamb cata-
logue of daily weather maps of the British Isles. Here
we present the trends at each node and simply note the
cohesiveness of the trend pattern across the nodes as
an indication of the importance of the trend.

Fig. 11 displays the trends at each node as the per-
centage change in frequency over 40 yr. The figure
shows an apparent coherent pattern of trend focused

on the synoptic states mapping to the right-hand side
of the SOM array (see Fig. 2 for reference). In particu-
lar, there is a positive trend in the frequency of occur-
rence for days dominated by strong high-pressure
systems, compensated by a decrease in days with a
moderate continental high and low pressure to the
north-east.

Finally, in terms of frequency analyses, the synoptic
event frequencies can be related to other non-local
atmospheric processes, in particular indices of identi-
fied teleconnection features. By way of example, the
North Atlantic Oscillation is correlated to the fre-
quency of occurrence on each node and shown in
Fig. 12. The correlations on individual nodes are not
strong and, for the same reason as above, the signifi-
cance levels are not calculated. However, again the
patterns across the nodes display a strong cohesive-
ness that lends some strength to consideration that the
correlations are real.
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Fig. 10. Number of days mapping to each SOM node for 
January 1981 (high-precipitation month)

Fig. 11. Trend in the percentage change of number of days of 
occurrence in a month over 40 yr

Fig. 12. Correlation of monthly frequencies at each node with 
the North Atlantic Oscillation from 1958–1997
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5. RELATION TO SURFACE CLIMATE:
STATION PRECIPITATION

The next phase in any synoptic climatology is to
relate the atmospheric circulation to some dependent
variable, usually a local-scale climate or environmental
parameter. This example uses daily station precipita-
tion from State College. For the first step the mean and
variance of the rainfall related to each synoptic state is
determined. For a given SOM node this is accom-
plished by determining the rainfall for all days where
the circulation maps to the given node. 

Fig. 13 shows the average precipitation per node,
while Fig. 14 shows the standard deviation of the pre-
cipitation on each node. Not surprisingly, the distri-
bution closely follows the synoptic states represent-
ing large low-pressure systems. The precipitation is
strongest under synoptic states mapping to the upper-
left quadrant of the SOM space, extending to more
moderate precipitation values in the lower-left quad-
rant. The right-hand sector of the SOM space demon-
strates minimal precipitation.

The standard deviation associated with each node
closely matches the distribution of precipitation, with a
secondary peak in the more transitional synoptic states
in the upper-central region of the SOM space. In win-
ter the recording station region is subject primarily
to frontal precipitation, with secondary contributions
arising from its location at the margin of the lake effect
precipitation region under northwest flow regimes. As
such the higher standard deviation for the nodes in
the top central portion of the SOM space is physically
consistent with the northwest flow regimes repre-
sented by these synoptic states. 

Taking these relationships into account some inter-
esting physical relationships may be inferred in the
context of the frequency trends shown earlier (Fig. 11).

The trends indicate a rise in the frequency of occur-
rence for nodes in the lower-right quadrant of the SOM
space- nodes associated with strong high-pressure sys-
tems dominating the domain. The rise in frequencies in
this region of the SOM space are compensated largely
by a decrease in frequency in the nodes associated
with north-westerly flow over the region—those syn-
optic states associated with lake effect precipitation.
The inference here is that the synoptic states that
reduce precipitation are increasing, while synoptic
states that enhance precipitation have been decreas-
ing over time. Because of this, a decreasing trend in
station precipitation over the 40 yr could be expected;
however, the station record (Fig. 15) shows a positive
trend in monthly mean precipitation; hence the
changes implied above must be compensated for else-
where.

The precipitation trends inferred from changes in
circulation must also be interpreted in the light of
trends in average precipitation for a given synoptic
state. To investigate this, the trend in precipitation
matching synoptic events mapped to each node is
calculated and shown in Fig. 16 as a percentage of the
mean monthly average. Fig. 16 shows that days that
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Fig. 15. Monthly mean precipitation at State College, Penn-
sylvania, with a linear trend line

Fig. 13. Average precipitation for days mapping to each 
SOM node

Fig. 14. Standard deviation of precipitation (mm) of days 
mapped to each SOM node
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map to nodes 4,6, 4,7 and 3,7, with a high-pressure
system to the north and west of Pennsylvania, have
increasing precipitation over the 40 yr record. The
same synoptic circulation results in more precipitation
at present than it did 40 yr ago. This indicates that the
changes in precipitation at the station are not simply
related to changes in the frequency of occurrence of
particular synoptic patterns, but also to changes in
the precipitation conditions and processes occurring
within a circulation type. While it is tempting to infer a
climate change signal (for example, increased bound-
ary layer moisture from global warming), this would
require further analysis beyond the intent of method-
ological examples in this paper.

6. EXTENSION TO TEMPORAL TRAJECTORIES

As adjacent nodes in the SOM are related to each
other (because similar days map to adjacent or nearby
nodes), the SOM array can also be used to examine the
temporal evolution of synoptic events. This is accom-
plished by tracking the trajectory in time across the
array of nodes. The assumption underlying this
approach is that the incremental change in synoptic
state from one time step to another is small enough that
the sequential movement across the SOM space may
be tracked. Thus, for each node, the frequency of tran-
sitions from one node to nearby nodes (either forward
or backward in time) is calculated.

In this analysis, the forward and backward trajecto-
ries across SOM space are determined in terms of the
number of times a change occurs from one node to
another in each of 12 directions, or sectors, toward or
away from the original node. Figs. 17 & 18 are equiva-
lent to transition matrices and show the preferential
trajectories forward and backward in SOM space. For

each node the length of the line in each sector displays
the relative frequency of transition in that direction
away from or toward the node. The frequencies are
normalized by the total frequency of occurrences on
the node in order to facilitate comparisons between
nodes. Reference to Fig. 6 shows the absolute total
frequency of occurrence from one node to another. 

Fig. 19 displays the percentage of time the circula-
tion is stationary at each node—when the synoptic sys-
tem maps to the same node on consecutive observa-
tions—and should be used in conjunction with Figs. 17
& 18 for interpreting synoptic sequences. The most
obvious aspect of the trajectories is the cyclic nature of
the weather systems, notably that there is a preferen-
tial clockwise evolution with time (in SOM space).
Comparing these figures with Fig. 2 shows that this
behavior represents a sequence of transitory high- and
low-pressure systems across the region. Beginning at
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Fig. 16. Percentage change per year in precipitation from 
synoptic systems on each SOM node

Fig. 17. Proportional frequencies of back trajectory directions
in SOM space (each node standardized by total frequency of 

days on the node)

Fig. 18. Proportional frequencies of forward trajectory direc-
tions in SOM space (each node standardized by total 

frequency of days on the node)
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the bottom-right corner of the array, we see a central
high-pressure system gradually being replaced by a
low-pressure system tracking in from the north-west,
moving across the northern part of the region, and
being replaced by high pressure moving in behind it.

Secondly, it can be seen that the transitions to or
from synoptic states in the center of the SOM space are
more variable and have less clearly defined trajectory
pathways than the peripheral nodes. Furthermore,
while some nodes display a single mode of preference
others, such as 1,4, 2,4, 2,5 and 2,6 show systems
arriving from several directions, although all broadly
from the same quadrant. The trajectory analysis of the
mean evolution pathways offers a good overview of the
preferential development of weather systems over the
region; however, it is also possible to focus on particu-
lar events in order to understand special cases, such as
extreme precipitation events. For this, the top 1.5% of
rainfall days have been extracted, and the back
trajectory coordinates over 36 h determined. The
trajectories as defined by their node x,y coordinates
are then grouped with simple cluster analysis (using
Ward’s algorithm) to define 5 groups with an equal
number of trajectories in each. The mean trajectory for
each of these groupings is then calculated and plotted
as a representation of the typical evolution pathways
that may lead to heavy precipitation events. This
approach was adopted simply to illustrate some char-
acteristic trajectories. An alternative would be to
examine trajectories individually, or to examine excep-
tional trajectories that are significantly different from
those in these groups.

Fig. 20 shows these pathways. Two of the 5 mean
trajectories (1 and 2) are very similar when inter-
preted in the light of the synoptic states (see Fig. 2).
These 2 terminate in a synoptic state with a large low-

pressure system positioned to the northeast of the sta-
tion, and both are relatively slow moving, as evi-
denced by the short trajectory paths. Trajectory 3 is a
fast moving synoptic system, terminating in a similar
state to 1 and 2, but is a more intense version consis-
tent with the speed of transition. Trajectory 4 is again
relatively slow moving and associated with the central
nodes on the SOM space—largely weaker pressure
gradients and terminating in a state that favors flow
into the region from the south. Trajectory number 5 is
quite dissimilar to the others. It shows the fastest
development of all (traversing ~6 nodes in 36 h), start-
ing from a strong dominant high-pressure system that
transitions to a strong low-pressure system arriving
from the northwestern quadrant over Canada. Each
trajectory evolves into a precipitation event in the top
1.5% of events, and highlights the distinctly different
pathways that may give rise to similar magnitude
precipitation events.

7. CONCLUSIONS

Synoptic climatology is a sub-discipline with a rich
heritage in the methodology of typing weather
systems. Such an approach, while valuable in that it
allows broad generalizations of cross-scale relation-
ships, inherently obscures much of the detail through
the degree of generalization. The opposite method-
ological extreme of transfer function downscaling
circumvents this, but may reduce interpretability.
Where the precipitation is described as some linear
or non-linear function of local circulation and humid-
ity parameters, it may be harder to attribute the
precipitation characteristics to particular atmospheric
processes. 
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Fig. 20. Back trajectories of the mean of each cluster in SOM
space over 36 h for rain events in the top 0.15%. Solid circle
indicates starting position. Clusters determined with Ward’s 

clustering

Fig. 19. Frequencies (%) of days on each node where no 
transition is made to another node in the next time step
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An SOM-based approach, however, allows rapid and
powerful generalization of weather systems into an
easily visualized array of synoptic states spanning the
continuum of events. The method allows the user to
define the degree of generalization required (by defin-
ing the dimension of the SOM), without losing the
ability to visualize the results. In addition, the SOM
facilitates the investigation of the temporal aspects of
the synoptic systems, from long-term frequencies of
events through to the temporal evolution of individual
weather systems. 

This paper presents a range of analytical ap-
proaches that can be accomplished simply by apply-
ing an SOM to SLP data. Such an analysis is easily
extended to multivariate circulation data (for example,
coupling SLP with 500 hPa geopotential heights).
Once the SOM has been developed, the relationship
of the SOM modes to other environmental parameters
(such as precipitation) is easily determined. It would
also be possible to include other climate or environ-
mental data in the input data set that derives the
SOM mapping, producing a SOM that is analogous to
the airmass approach to synoptic climatology (e.g.
Kalkstein & Corrigan 1986).

The simplicity of evaluating the frequency charac-
teristics of daily resolution synoptic events offers one
particularly powerful application for the evaluation of
climate model performance and the investigation of
the underlying circulation changes projected under
global warming. At present much of the validation of
GCMs is undertaken with monthly or seasonal mean
fields. An SOM, however, provides a means for evalu-
ating the daily fields that make up the more commonly
used monthly means, and for investigating the poten-
tial changes of regional circulation. Given the present
difficulty of developing regional climate change sce-
narios, and the urgent need for such scenarios (see, for
example, the recommendation from the Intergovern-
mental Panel on Climate Change to ‘improve the
integrated hierarchy of global and regional climate
models with a focus on the simulation of climate vari-
ability, regional climate changes, and extreme events.’
Houghton et al. 2001), an SOM analysis presents a
valuable tool for the climate downscaling community. 
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