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ABSTRACT: The use of satellite systems and manned aircraft surveys for remote data collection
has been shown to be transformative for sea turtle conservation and research by enabling the col-
lection of data on turtles and their habitats over larger areas than can be achieved by surveys on
foot or by boat. Unmanned aerial vehicles (UAVs) or drones are increasingly being adopted to
gather data, at previously unprecedented spatial and temporal resolutions in diverse geographic
locations. This easily accessible, low-cost tool is improving existing research methods and enabling
novel approaches in marine turtle ecology and conservation. Here we review the diverse ways in
which incorporating inexpensive UAVs may reduce costs and field time while improving safety
and data quality and quantity over existing methods for studies on turtle nesting, at-sea distribu-
tion and behaviour surveys, as well as expanding into new avenues such as surveillance against
illegal take. Furthermore, we highlight the impact that high-quality aerial imagery captured by
UAVs can have for public outreach and engagement. This technology does not come without chal-
lenges. We discuss the potential constraints of these systems within the ethical and legal frame-
works which researchers must operate and the difficulties that can result with regard to storage
and analysis of large amounts of imagery. We then suggest areas where technological develop-
ment could further expand the utility of UAVs as data-gathering tools; for example, functioning as
downloading nodes for data collected by sensors placed on turtles. Development of methods for
the use of UAVs in sea turtle research will serve as case studies for use with other marine and ter-
restrial taxa.
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INTRODUCTION

Remote sensing data are becoming increasingly
important for understanding the spatial ecology of
marine systems and, when used in tandem with
tracking data, can provide important insights into the
specific environmental niches and spatial distribu-
tion of target species (fish: Druon et al. 2016; sea tur-
tles: Thums et al. 2017; sea birds: Afán et al. 2014;
seals: Nachtsheim et al. 2017; cetaceans: do Amaral
et al. 2015). These data have traditionally been ob -
tained from Earth observation satellites that report
data on global scales but at coarse resolutions (Kuen-
zer et al. 2014) and are subject to atmospheric inter-
ference from clouds and humidity. For over a decade,
unmanned aerial vehicles (UAVs, also known as
drones) have been identified as tools for wildlife
research (Jones et al. 2006). Furthermore, with the
continued improvement of flight and control techno -
logies as well as sensor capabilities, their use is be -
coming in creasingly common for ecological studies.
UAVs are helping revolu tionise the field of spatial
ecology (Anderson & Gaston 2013), and are proving
particularly useful for studying biodiversity and habi-
tats that are difficult or dangerous to access from the
ground (Chabot & Bird 2015).

UAV use for wildlife monitoring has been adopted
for a variety of taxa and to answer a range of ecolog-
ical questions. Wildlife surveying has included size
and abundance estimates of nesting bird colonies
and seal haul-outs (Goebel et al. 2015), dugong
counts (Hodgson et al. 2013), orangutan nest identifi-
cation (Koh & Wich 2012), nesting behaviour of croc-
odiles (Evans et al. 2015) and assessing spatial varia-
tion in abundance of reef sharks (Kiszka et al. 2016).
Furthermore, UAV data have been used to assess the
effects that wildlife may have on their surroundings,
such as changes to local landscapes post-beaver
introduction (Puttock et al. 2015) and crop damage
by wild boar (Michez et al. 2016).

The design of UAVs falls into 2 main categories,
fixed-wing and multi-rotor aircraft, both having ad-
vantages and limitations. Flight characteristics of
fixed-wing UAVs are more complex than those of
multi-rotor UAVs, requiring constant forward motion
to remain airborne and a larger area for take-off
and landing. Fixed-wings have longer flight times
(≥45 min) and have less dramatic landings following
power failure compared to multi-rotor types that may
remain stationary in the air, have shorter flight times
(~20 min) but crash vertically upon power failure.
Multi-rotor UAVs with 6 or more rotors can sometimes
withstand failure of one of the motors, but the more

common 4-rotor ‘quad copters’ do not have this capa-
bility. However, battery failure is more common than
motor failure and fixed-wing UAVs have better crash
characteristics in these circumstances. For re views of
typical, readily available UAV systems see Anderson
& Gaston (2013), Linchant et al. (2015) and DeBell et
al. (2016). It should be noted that there is growing in-
vestment in developing aircraft that blur the lines be-
tween multi-rotor and fixed-wing UAVs. These air-
craft, often referred to as transitional vertical take-off
and landing (transitional VTOL) platforms, combine
the flexibility of multi-rotors with the en durance of
fixed-wings. These platforms may be especially at-
tractive to marine turtle researchers be cause they can
be launched and recovered from a small boat, yet
sample large areas efficiently. Kites (Bryson et al.
2013, Duffy & Anderson 2016) and balloons (Miya -
moto et al. 2004) are other simple and inexpensive
modes of obtaining aerial data but are more limited
than remotely controlled UAVs (e.g. short range and
only capable of flying in limited weather conditions)
and will not be covered further here.

UAVs consist of airframes with sensors for data
collec tion appropriate to the mission objectives. For
example, standard RGB (red, green, blue) images and
video are used in behavioural sampling and habitat
assessments (Puttock et al. 2015) including 3-dimen-
sional (3D) topographical reconstruction through the
structure from motion (SfM) approach (Mancini et al.
2013); multispectral images (near-infrared and RGB)
are used in vegetation assessments (Strecha et al.
2012, Knoth et al. 2013); and thermal images can be
used for animal enumeration (Seymour et al. 2017)
and aquatic environment assessments (Jensen et al.
2012). Light de tection and ranging (LiDAR) sensors
are also used to generate 3D models that can define
topography and contribute towards determining veg-
etation structure (Dandois & Ellis 2010).

Control of UAVs is achieved through 2 main mech-
anisms, often employed in tandem: (1) remote control
by a ground-based pilot and (2) autonomous flight of
predetermined routes generated in ground control
(GC) software from a personal computer or tablet
device, in total known as an unmanned aerial system
(UAS). Many UAVs are capable of relaying live video
feeds from the UAV’s camera back to the pilot’s con-
troller, creating a first-person view (FPV) of the flight.
This functionality depends on the specifications of
the telemetry system incorporated on the UAV, and
FPV range may vary from <1 to 10s of km (see
https:// youtu.be/aqMm_gzuRYI for an example of
100 km range FPV, but note that such a long-range
flight would be illegal in many jurisdictions, and the
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authors do not condone flights breaking applicable
local/ national legislation). Sea turtles often reside in
re mote marine habitats (Bolten 2003) and nest over
large areas (Miller 1997), making thorough survey-
ing for turtle presence using traditional methods time
consuming (ground-based nesting beach studies),
costly (aerial surveys employing piloted aircraft) and
potentially dangerous (e.g. crocodiles or illicit turtle
hunters on beaches). Hence, there are clear benefits
in terms of time, effort, cost and risk, for using UAVs
as data collection platforms across a range of sea tur-
tle habitats. Furthermore, traditional aerial surveys
present challenges in terms of logistics and incur sig-
nificant risks to researchers (Sasse 2003), especially
in situations where flights are conducted over water.
Surveys conducted via UAVs can reduce these risks.
They allow researchers to avoid the logistical prob-
lems associated with data acquisition from occupied
aircraft or satellites and result in ‘on-demand’ remote
sensing for marine turtle research.

These new methods and opportunities for research
mean that vast, novel datasets are generated and re -
quire analysis. Still images and high-resolution video
from a single flight may generate files total ling sev-
eral gigabytes; thus, high-powered, well-re sourced
IT infrastructure and software are re quired to store
and process UAS data. Additionally, manual record-
ing observations from captured data is laborious,
time-consuming work that contributes to the overall
complexity of exploiting these novel data sets.

Despite the great potential for UAVs to benefit sea
turtle research, only 6 articles featuring their use have
been published in the scientific literature (Be van et al.
2015, 2016, Brooke et al. 2015, Schofield et al. 2017a,b,
Sykora-Bodie et al. 2017). Furthermore, these articles
only cover identification and monitoring of sea turtles
in nearshore habitats, and represent a limited range
of the potential scope of UAVs as ecological tools.

We expect that the incorporation of UASs into the
sea turtle researcher’s toolbox will revolutionise tra-
ditional data collection methods and facilitate acqui-
sition of a suite of previously unobtainable data sets
to be used for monitoring and conservation that will
help advance priority sea turtle conservation fields
(Rees et al. 2016). Here, we review the potential
advances that the use of small, low-cost UAVs may
provide over existing sea turtle research methods
(see the video in Supplement 2 at www.int-res. com/
articles/suppl/n035p081_supp/). We also note the
use of UAVs for raising awareness and highlighting
future directions for methodological and technologi-
cal advances to improve data collection for both sea
turtle and multi-taxon studies.

REVIEW OF CURRENT POTENTIAL

Suitable UAV configurations for conducting
 surveys at various geographic ranges

The functionality and logistics of basic surveying
methods using UAVs can be categorised, somewhat
arbitrarily, by survey distance. The resulting UAV
configurations, for short-, mid- and long-range sur-
veys, listed below, should be accepted as guidelines
that are likely to change as UAV en durance and
capabilities improve.

For each of the distance categories below, it is im -
portant that videos or images are recorded through -
out the flight so that the data gathered can be re-
viewed by more than one researcher to obtain
consensus of observed findings, and can be archived
for future reanalysis and possible repurposing. Detail
recorded by the UAV is constrained by image resolu-
tion. Images of 8.3 megapixels can be extracted from
‘4K’ resolution video footage, whereas most sensors
are capable of capturing at least 12 megapixel still im-
ages. The usefulness of UAV-acquired data de pends
on the subject being visible. Therefore, areas where
turtle nesting occurs within vegetation or where tur-
tles are camouflaged over large seagrass beds (or
other dark substrate), or masked in deep or very
turbid waters are less suited for this type of work.

‘Short range’ surveys (<1.5 km). Multi-rotor UAVs.
These may be flown remotely or autonomously. An
FPV-enabled system can provide the ground patrol
team with a live stream from the UAV’s camera.
Shorter surveys within this range may keep the
UAV in line-of-sight, which simplifies remote flight
options.

‘Mid-range’ surveys (between 1.5 and 10 km).
Multi-rotor or fixed-wing UAVs. Under certain condi-
tions, FPV remote piloting of the UAV may be feasi-
ble, but most survey missions likely require auto -
nomous flights to cover more logistically difficult to
access, and/or dangerous areas.

‘Long range’ surveys (>10 km). Fixed wing. Very
unlikely to require FPV capabilities, therefore auto -
nomous pre-planned flights are the norm. These sur-
veys would be applicable for data gathering and
archiving from large stretches of inaccessible coast-
line, offshore islands and open sea.

Beach and coastline surveys

Surveying sea turtle nesting activity at index sites
or over more extensive coastlines is the most common
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method of monitoring population status and trends.
Beaches are typically traversed at predefined inter-
vals and evidence of sea turtle nesting is recorded
(Schroeder & Murphy 1999). The amount of detail
recorded depends on the frequency and purpose of
the survey, but at minimum consists of species identi-
fication and track and nest counts (Lauret-Stepler et
al. 2007, Witherington et al. 2009, Bourjea et al. 2015,
Metcalfe et al. 2015). These surveys are sensitive to
the completeness of beach coverage (Reina et al.
2002) and are most commonly performed on foot or
by vehicle or, due to expense and logistical complica-
tions, less commonly undertaken using manned air-
craft (e.g. Witt et al. 2009); see Schroeder & Murphy
(1999) for an overview of methods.

Incorporating UASs into coastal surveying for sea
turtle nesting activity (Fig. 1) or other occurrences
such as turtle strandings can reduce costs, simplify
methods, enhance data acquisition and create a per-
manent visual archive of actual and potential nesting
habitats. The ability to characterise stranding trends
is important for early identification of potential
sources of mortality. Many turtles strand alive, e.g.
from cold stunning (Milton & Lutz 2003), and UASs
could be instrumental in rapid identification of
stranding hotspots and recovery of these turtles for
rehabilitation, through scoping surveys flown over
potential stranding locations.

Benefits of UAV use for monitoring sea turtle nest-
ing activity in combination with or replacing estab-
lished methods include:

For short range surveys. Live view or rapid post-sur-
vey review of visual data would permit more efficient
ground patrol activities, thus enhancing such tasks as
transporting nest protection equipment and saving
staff time by not patrolling areas without nesting activ-
ity. Surveying beaches intersected by tidal rivers and
estuaries is also simplified. The data could also con-
tribute to an archive of contemporary environmental
conditions such as sea state and prevalence of marine
litter (Jang et al. 2015), or stranded Sargassum floats
that can also lead to entrapment of turtle hatchlings.

Medium and long range surveys. These surveys
would target more logistically difficult to access,
even dangerous, areas to record data that would oth-
erwise remain elusive.

Nocturnal surveys. Nesting turtles can be identified
on the beach at night using a UAV equipped with a
low-light optical or thermal camera (Fig. 2). This
method could be used to generate nesting turtle
counts on established nesting beaches where access
to the beach is logistically demanding or dangerous,
or where high nesting densities make ground surveys

difficult. Turtles identified by their heat signatures are
tallied manually by one or more re sear chers, either
during the UAV flight in near real-time, from video re-
play at a later date, or through machine learning tech-
niques, such as image and pattern recognition.

In-water surveys

Sea turtles generally spend the vast majority of
their lives in the marine realm, except for a short
period as hatchlings crawling from the nest to the
surf, and for adult females when they return to the
beach to deposit clutches of eggs. In-water sea turtle
surveys are therefore undertaken to gather data on
turtle behaviour, density and distribution in cryptic
and otherwise inaccessible habitats. Generally, when
turtle capture is a key part of research such as for
capture-mark-recapture studies (e.g. Rees et al.
2013) or relatively small areas are to be surveyed
(Bresette et al. 2010), these are carried out via boat-
based surveys. In other cases, turtle distribution as -
sessments are undertaken in manned aircraft (e.g.
Jean et al. 2010, Seminoff et al. 2014), but exceptions
using boats exist (see Eguchi et al. 2007). In-water
data collection is also less commonly accomplished
using SCUBA diving or snorkelling (Schofield et al.
2006, Bell et al. 2008, Ballorain et al. 2013, Chassag-
neux et al. 2013, Williams et al. 2015, Strindberg et al.
2016, Weber et al. 2017).

Given suitable conditions of good water clarity, low
wind and minimal sun glint, UASs can help transform
in-water turtle studies with hitherto unobtainable
data resolution and viewpoints at costs that undercut
alternative methods. 

Turtle densities and distribution in foraging areas.
Like established boat and aerial surveys, UAVs can fly
predefined transects, recording high-definition video
or taking images at regular intervals over marine
habitats (Ballorain et al. 2016). Moreover, some UAVs
can be launched from boats to combine the advan-
tages of both methods. A transect’s visual strip width
will depend on the field-of-view and angle of the UAV
sensor and altitude during flight and would need to be
confirmed for each surveying regime (Fig. 3). The vi-
sual data are reviewed post-flight by one or more in-
dividuals, and turtle observations can be georefer-
enced from the video and time-synced GPS survey
records from the UAV or from geotagged still images
(Sykora-Bodie et al. 2017). Abundance estimations
can then be carried out as per standard aerial survey
methods (Fuentes et al. 2015), ensuring that the effect
of dive behaviour on the visibility of turtles is properly
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Fig. 1. Sea turtle nesting activity recorded from an unmanned aerial vehicle (UAV). Upper image: Flatback turtle Natator de-
pressus tracks and research team on the Pilbara coast, Australia (Photo: R. Ryan, using a DJI Phantom 4 with an on-board
12.4 MP fixed-focus camera at 30 m). Lower image: Kemp’s ridley arribada occurring around the UAV controller at Rancho
Nuevo, Mexico (Photo: T. Wibbels, Binational Kemp’s Ridley Recovery Program, using a DJI Phantom 3 Pro with integral 

camera at 30 m altitude)
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factored in (e.g. Thomson et al. 2013, Seminoff et al.
2014). Nearshore turtle density estimations using
UAVs as observation tools have started to appear in
the literature (Sykora-Bodie et al. 2017)

Turtle behaviour. The utility of employing UAVs to
monitor sea turtles in nearshore waters has been pre-
viously discussed (Bevan et al. 2015). Examples of
their use have been to monitor courtship and mating
behaviour (achieved by filming in 1080p video qual-
ity, flying 2 km parallel-to-shore transects; Bevan et
al. 2016) and to record turtle behaviour around clean-
ing stations (Schofield et al. 2017b). By extension,
under suitable conditions (i.e. shallow, clear water)
other turtle behaviours such as post-nesting move-
ments from nesting beaches, non-breeding turtle−
turtle interactions, predator avoidance, foraging
behaviours and potential territorial behaviours can
be studied. Systematic surveys would fly predeter-
mined, repeatable transects with the capability to
make the UAV hover at certain locations where study

subjects were observed. UAVs are also useful in
monitoring and tracking behaviour of hatchlings as
they descend the beach immediately after hatching,
and survivorship in nearshore waters. Use of in-
water remotely operated vehicles (ROVs; Smolo witz
et al. 2015) could supply complementary information
to further enhance our understanding of sea turtle
behaviour. Key issues are (1) to appropriately design
sampling protocols with respect to the range of habi-
tats or areas so that potential biases in results are
understood; (2) to obtain adequate sample sizes; and
(3) to confirm that the presence of the UAV does not
alter the observed animals’ behaviour. 

Determination of operational sex ratios (OSR). Ap -
propriately timed UAV surveys flown over the near-
shore waters proximate to nesting beaches may be
used to determine the OSR of a population. Timing is
critical as turtles mate prior to the onset and during
the early part of a breeding season (Godley et al.
2002, Hays et al. 2010). Adult (vs. juvenile) male and
female turtles can be readily manually differentiated
in high-resolution UAV footage recorded at a suitable
altitude, as the tail of adult males extends well past
the rear of the carapace (Bevan et al. 2016) (Fig. 4).
This manual method has been successfully used to
determine OSR by calculating the sex ratio of individ-
uals from images recorded during transects (Schofield
et al. 2017a); however, this assumes that males and
females have an equal chance of being observed and
correctly identified, and this potential bias would
need to be addressed in the survey design.

Habitats (nesting beaches and shallow-water
foraging grounds)

Two important habitats in sea turtle life history are
nesting beaches, which are essential for all species to
reproduce, and nearshore/shallow water habitats, as
most sea turtle species forage on benthos. Habitat map-
ping, characterisation and modelling, often in corporated
into geographical information systems (GIS), are critical
for appropriate management of human activities which
may affect sea turtle populations and their habitats (Lal
et al. 2010), and in predicting likely changes to habitats
under different climate change scenarios (Fuentes et al.
2011). Traditional mapping methods for nesting beaches
include time-consuming ground-based surveys to pro-
duce standard mapping and elevation data, or rapid but
costly aerial sur veys that produce georeferenced photo-
graphic data (Mum by et al. 1999) and topography data
if incorporating LiDAR (Long et al. 2011, Yamamoto et
al. 2012) or SfM (Mancini et al. 2013). Likewise, shal-
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Fig. 2. Thermal images of a green turtle returning to the sea
after nesting at Rancho Nuevo, Mexico. Blue: colder temper-
atures; red: warmer temperatures; green: intermediate
 temperatures (Photo: T. Wibbels, Binational Kemp’s Ridley
Recovery Program, using a DJI Inspire 1 with Zenmuse XT 

thermal camera at 10 m altitude)
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low-water habitats can be mapped either from a boat
using labour-intensive surveys to produce standard
mapping data based on point or transect sampling (Hart
et al. 2010) or via rapid and expensive aerial surveying
that can produce georeferenced photographic data for
relatively large areas (Sheppard et al. 1995, Chauvaud
et al. 1998).

The rapid and cost-effective mapping and model-
ling capabilities of UAV-sourced data (see Ventura et
al. 2016, 2017) have obvious application in the study
of sea turtle habitats, but use processor-heavy soft-
ware and necessitate high-specification IT infrastruc-
ture for efficient analysis. 

Mapping habitats (terrestrial and shallow marine).
Although more challenging in shallow marine habi-
tats, detailed georectified orthomosaics (akin to maps
in Google Earth) can be compiled from the high-reso-
lution images and video captured by UAVs and in-
corporated into GIS. Orthomosaics from standard

UAV imagery may be produced with near cm accu-
racy (Fig. 5). These products far exceed the level of
detail typical of satellite-derived or manned-aircraft
imagery (Lathrop et al. 2006, Phinn et al. 2008, Wab-
nitz et al. 2008, Dekker et al. 2011). The low cost and
simple logistics of undertaking UAV flights mean
that these mapping exercises can be undertaken fre-
quently, and essentially on demand in response to
specific natural and anthropogenic en vironmental
events such as storms or oil spills. The process is most
effective when UAVs are flown repeatedly on prede-
termined autonomous missions. A single survey can
provide a snapshot of the environment with habitats
and plant species distribution characterised in GIS.
However, with development of suitable computer ap-
plications (see Ventura et al. 2016, 2017), time-series
imagery data resulting from repeated surveys can be
used to monitor habitat change such as spread or die-
back of certain types of marine plants, anthropogenic
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Fig. 3. Multiple sea turtles recorded within a single frame. High density green turtle foraging aggregation creates grazing
gaps in seagrass beds at Derawan, Indonesia. Water depth: 2 m. (Photo: M. J. A. Christianen, using a senseFly Swinglet with a 

Canon IXUS 220 HS at 20 m altitude)
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dune destruction, and coastal erosion. Such data
could play a key role in evidence-based habitat con-
servation and management. 

Beach profiling. Similar to the creation of 2D out-
puts from UAV data, accurate, georeferenced, 3D dig-
ital elevation models (DEMs) can be compiled from
the high-resolution images. Sub-decimetre horizontal
and vertical accuracy is possible with the ap propriate

use of ground control points and a real-time kinema tic
(RTK) or post-processing kinematic (PPK) system in
tandem with high-overlap of rec orded imagery (Long
et al. 2016). The resultant DEMs can then be imported
into GIS software for 3D analysis (Fig. 6). DEMs can
also be used to model the visibility of light pollution on
nesting beaches (Ve rutes et al. 2014) or to predict the
effects of sea level rise on coastal (nesting) habitats

88

Fig. 4. Identification of sex of mature sea turtles from unmanned aerial vehicle (UAV) imagery possible through observation of
the presence or absence of a longer, prehensile tail that extends past the rear of the carapace in adult and near-adult males.
Upper image: Kemp’s ridley sea turtle (Photo [from 1080p video]: T. Wibbels, Binational Kemp’s Ridley Recovery Program).
Lower left image: loggerhead turtle (Photo: L. Avens, using a senseFly eBee with a Canon IXUS camera at 65 m altitude; image
was taken under authorization of NMFS ESA permit 16733 and US NPS permit CALO-2016-SCI-0002). Lower right image: 

green turtle (Photo [cropped]: R. D. Reina, using DJI Phantom 3 Pro with an integral 4K camera at 25 m altitude)
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Fig. 5. Photogrammetric reconstruction of a section of tidal creek in the Bight of Old Robinson, Abaco, The Bahamas, with a
2 cm pixel resolution. Main images compare resolution between satellite (Google Earth; upper) and unmanned aerial vehicle
(UAV; lower) derived imagery. Lower image inset displays the extreme detail that is readily possible using UAV data and 

photogrammetry (Image: E. R. Whitman, using a DJI Phantom 3 Advanced with a 2.7K HD camera at 30 m altitude)
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Fig. 6. Three-dimensional (3D) models, such as this one, can be used to predict the impact of sea level rise and potential light
pollution problems on sea turtle nesting habitats (Image: K. Pendoley and R. Ryan). Upper image: 3D model of beach (strand
line at the bottom) with texture mesh. Middle image: same model with height data colour ramp overlay. Lower image: same 

model showing only height data. Colour ramp runs from reds at highest elevation to blue for lowest elevation
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(e.g. Baker et al. 2006). UAVs have also been used
successfully to assess wave run-up on beaches
(Casella et al. 2014), which may be another valuable
approach to understand how existing nests may be af-
fected by storms or short-term sea level anomalies
(e.g. Theuerkauf et al. 2014).

Surveillance for anthropogenic influence

Other, more applied uses of UASs in turtle conser-
vation are possible. Rather than simply becoming an
extension or improvement of established research
tools, they can be used in direct-action conservation
monitoring and enforcement measures, as in other
terrestrial situations. In the management context,
UAV surveys may be useful in at least 3 ways (see
Mulero-Pázmány et al. 2014): (1) as surveillance plat-
forms where UAVs patrol areas to detect illegal or
unpermitted activities; (2) as enforcement tools that
can loiter over potential violators and guide enforce-
ment efforts and (3) as a behaviour modification tool,
where consistent but unpredictable aerial surveil-
lance reduces illegal activities. It should be noted
here that there are outstanding questions of privacy
and ethics associated with using UAVs in the surveil-
lance of human activities (Sandbrook 2015), which
we address briefly at the end of this paper.

Specifically, for marine turtle conservation, both
still and video imagery from UAVs can be used in
surveillance monitoring as follows:

Marine/fisheries monitoring. UAVs recording high-
definition video and images make powerful tools in
fisheries monitoring by enhancing the effectiveness
of alternative-platform observer programmes (e.g.
Byrd et al. 2016) and complement other methods of
electronic visual monitoring (Bicknell et al. 2016).
UAVs flown over marine protected areas and over
and around vessels under surveillance could supply
live data on the fishing operations. They would be
capable of identifying whether a vessel is fishing, its
geographic coordinates, what gears are being used
and, depending on the vessel and the UAV’s sensor
capabilities, it could potentially identify the target
species, bycatch and treatment of bycaught pro-
tected species such as sea turtles (Fig. 7). Real-time
evidence thus remotely gathered could inform man-
agement agencies whether intervention is required
and could guide enforcement assets to the site. Geo-
referenced and time-stamped images and video
obtained during the monitoring would act as a per-
manent record of infractions such as illegal take and
violation of protected area boundaries.

Terrestrial enforcement. Using UASs to auto no -
mous ly identify and track illegal hunting activity is
already being explored for endangered wildlife; the
rhinoceros is a notable example (Olivares-Mendez et
al. 2015). This approach can be adapted to localisa-
tion and tracking of egg and turtle harvesters at loca-
tions where these activities are restricted or illegal. In
this instance, UAVs could be flown along prepro-
grammed routes with FPV enabled so that manual
control can be gained if suspicious activity is ob -
served. Standard visual imagery for diurnal surveil-
lance should be supplemented with thermal imagery
for nocturnal surveillance where the heat signature
of the human subject would clearly stand out from
the background, which may be dense forest or
bushes, thus simplifying tracking and apprehension
of the subject (Fig. 7; https://youtu.be/biHmI-YvwlI)

Effects of tourism on behaviour. Often drawn to
similar coastal habitats, humans use sandy beaches
and coastal waters for recreation, while turtles use
these areas during multiple life stages for nesting,
mating and grazing. Turtles themselves often be come
an attraction, drawing tourists to visit their coastal
habitats (Wilson & Tisdell 2001). Tourism activities
such as boating can produce noise affecting turtle be-
haviour in coastal mating, nesting and foraging habi-
tats (Samuel et al. 2005, Eckert 2012), and activities
such as diving, snorkelling and use of non-motorized
vessels can affect activity budgets, at least on a short
timescale (Hayes 2016). UASs have the potential to
monitor these activities and their effects on sea turtle
behaviour. While ethical concerns exist regarding the
privacy of tourists, data from UAVs on human in-
 water use, turtle behaviours (at least surfacing) and
also turtle distributions would provide insight for
management agencies as eco-tourism increases.

Promoting awareness for conservation

A further use of UASs for sea turtle conservation
simply relies on the potential for UAVs to record
 visually impressive stills and video footage that can be
used to capture interest and raise conservation aware -
ness, and to support the mandated broader im pact
requirements of many research programmes. Aerial
viewpoints and sweeping scenes that UAVs can shoot
in high-definition video create impactful, cinematic
visuals to inspire, educate and instill the viewer with a
greater appreciation for the natural world.

Examples of circumstances where aerial imagery
of sea turtles are of tangible benefit to outreach and
engagement (viewing statistics as of 31 October,
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Fig. 7. Unmanned aerial vehicle (UAV) imagery used for remote observation and surveillance. Upper image: inspecting fishing
boats. The arms and propellers of the UAV are visible in the image as the UAV was in a banking manoeuvre (Photo: J. C. Man-
gel, using a DJI Phantom 2 with GoPro Hero3+ Black edition at 5 m altitude). Lower image: thermal image of 2 people (in this
case, project personnel) running past the main sea turtle egg hatchery in the centre of Rancho Nuevo, Mexico, demonstrating
the potential for nocturnal UAV surveillance operations (Photo: T. Wibbels, Binational Kemp’s Ridley Recovery Program, using 

a DJI Inspire 1 with Zenmuse XT thermal camera at 30 m altitude)
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2017) include (1) behaviour and movements of turtles
in clear, shallow water habitats (https://vimeo. com/
175689526; >16 000 views) or on a nesting beach
(https:// youtu.be/RPxPIxN2VpQ; >9800 views); (2) re -
lease of a turtle back to the sea after human interven-
tion, e.g. rescue after illegal capture, attachment of a
satellite transmitter, post-rehabilitation re lease etc.
(e.g. https://youtu.be/i3LQYV7_aD8 >10 000 views);
(3) field researchers working, either with turtles in
a boat or with a nest on a beach; (4) flights over
 daytime nesting events — especially arri badas (mass
nesting events where several hundred to several
thousand turtles come ashore to nest at once) (https://
youtu.be/mY29SNy0Y9Y >44000 views; note this is
footage from a microlight aircraft and similar UAV
footage should be of better quality); and (5) footage of
a turtle rescue/rehabilitation centre showing turtles
in pools (e.g. https://vimeo.com/ 204257624).

DISCUSSION

An eye to the future

Technological advances in hardware and software
capabilities will improve the efficacy of existing con-
servation methods that can be applied with current
equipment and at reduced cost. They may also lead
to novel, currently untenable applications.

Improved hardware capabilities: 
range extension for affordable UAVs

Coastal and marine environments present unique
operating challenges for UAVs, and the potential
for platform loss due to water landings or corrosion
is ever-present. Fortunately, an increasing number
of ‘waterproof drones’ are now reaching the con-
sumer market (e.g. www.dronesglobe.com/guide/
water proof/), and potential users may benefit from
the added operational flexibility and safety afforded
by these platforms.

Improvements in battery technology, hydrogen
fuel cells and solar energy generation will extend
flight times and distances for UAVs, thus bringing the
capabilities of larger, more expensive UAVs into the
reach of conservation scientists and practitioners.
The possibility of persistent flights could drastically
increase the effectiveness of monitoring and surveil-
lance programs where an immediate response to
insidious threats is required, such as the prevention
of illegal take.

Incorporating the use of cellular networks to trig-
ger autonomous UAV missions or remotely fly FPV is
already in development (https://blog.adafruit. com/
2013/08/23/sky-drone-fpv-uses-3g4g-cell-network-
to-provide-long-range-rc/). If successful, this will re -
duce the need to visit remote field sites in monitoring
programmes (with the caveat that there is cellular
network coverage), thus saving resources that can be
used on other initiatives.

Improved software capabilities: 
automation and intelligent systems

Development of automation of data interpretation,
such as shape and texture recognition algorithms
(often referred to collectively as computer vision
techniques), would obviate the need to manually re -
view hours of video and many still images, and could
revolutionise sea turtle monitoring. Such systems are
already in place for identifying large land animals in
surveys (Lhoest et al. 2015, van Gemert et al. 2015,
Gonzalez et al. 2016) and enumerating colonial ani-
mals (Seymour et al. 2017). Systems that seek to
 automatically detect sea turtle nesting activity such
as the MiSHELL Drones project (www.kashmir world
foun dation.org/mishell) or automatically identify and
map turtles and other taxa in shallow water habitats
such as the SEMMADRONE project (www. slide share
. net/GwnalDUCLOS/ists36-sea-turtles-semiautomatic-
mapping-technics) are under development, and could
lead to a step change in conservation practices. Fur-
ther, the capacity for on-board processing and identi-
fication of turtles would be further advanced if the
flight pattern of the UAV could be autonomously
altered to more closely investigate objects for which
identification is unclear. In these situations, the pres-
ence of targets of interest is established via on-board
computational systems, and only then are the details
of detections transmitted to the user. This approach
can reduce energy and bandwidth consumption and
analyst time, and provide for rapid communication of
important information to humans.

Novel uses of UASs: 
non-visual information  acquisition and relay

Radio- or archival-tagged sea turtles in restric -
ted habitats could be located from on-board UAV-
mounted receivers. The movement of the UAV, mon-
itoring the direction of origin of a signal, would be
able to generate location hotspots for the tracked
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individuals. Turtles remain submerged for extended
periods and only surface intermittently; thus, the
chances of detecting signals from sea turtles would
be challenging but increasingly likely with lengthen-
ing flight times or where multiple turtles are tracked
within restricted areas such as coastal foraging areas.
This technique has proven useful for terrestrial ani-
mals in inaccessible terrain (dos Santos et al. 2014)
and consequently has immediate potential for the re -
peated location of study animals on nesting beaches
either within or among nesting seasons.

Taking the theme of UAVs automatically locating
subjects to the next logical step leads to the acquisi-
tion and exchange of data between turtle-mounted
data logging devices and the UAV, essentially using
the remote aircraft as a data mule. Archival tags with
2-way communication capabilities, deployed on a
variety of taxa, could send data to the UAVs that is
then downloaded at the end of the mission. Two-way
communication is beneficial as the archival tag
would track what data has been made available to
(and received by) the researcher, who could then
update the tag’s programming if required. The turtle
in effect acts as a mobile data-gathering and -sharing
node, relaying behaviour, environment and, poten-
tially, video data.

An extension of the above scenario would use
UAVs to visit distributed data-capture points (base
stations) on nesting beaches and buoys in marine
habitats to retrieve tracking data that have been col-
lected from tagged animals (Tavakoli et al. 2016).
Here, the flight limitations of the UAVs are less
restrictive as they only need to be deployed on mis-
sions to known locations for data retrieval as opposed
to covering a larger expanse of territory with no cer-
tainty of encountering a study animal. A number of
studies have explored the use of UAVs as data mules
to facilitate communication of data across networks
of sensors (e.g. Sayyed et al. 2015, Wang et al. 2015).

Legal and ethical implications

Technological advances are regularly increasing
the capabilities and safety of consumer-grade UAVs.
Most platforms now have altitude- (and for multi-
rotors, horizontal-) position stabilisation and ‘return-
to-home’ capabilities. Several new platforms employ
optical or ultrasonic sensors for obstacle sensing and
avoidance capabilities (e.g. Phantom 4 Pro; www. dji.
com). However, these developments are often neg -
ated through user misuse and unfettered access to
UAV purchasing, so that UAV use is outpacing the

development of adequate regulatory frameworks.
The low barriers to acquiring a UAV and their poten-
tial for negative impacts on privacy, security and
safety — especially for manned aviation — prescribe
that strict regulations be set for their operation. Reg-
ulations may differ with the status of the pilot (hobby-
ist, commercial, or non-hobbyist such as academic,
research use, etc.), the size of the UAV and the area
of operation (Cracknell 2017). Editorial comments in
the International Journal of Remote Sensing cited the
tendency of academics to merge their hobbies and
their work, and stressed that this will no longer be
possible under the liability, safety and accountability
standards of evolving UAV legislation (Anon 2017).
An important consideration for those using UAVs for
research and conservation is the outlet for their prod-
ucts, as institutions, agencies and journals may begin
to require the same due diligence be paid to UAV
legislation that is afforded to species permits and ani-
mal care and use compliance. Unfortunately, consci-
entious users are potentially being hindered by leg-
islative efforts to control UAV use (Linchant et al.
2015, Vincent et al. 2015).

National and state UAV regulations are not static
instruments, but are rapidly evolving and often
becoming more complex and restrictive. In the USA,
issues such as the requirement for registration of
UAVs are often disconnected, and many individual
states are implementing their own laws regarding
UAV use that may conflict with federal rules and
 regulations. The European Union issued ‘prototype’
regulations in August 2016 that call for registration
of all UAVs above 250 g and all UAV operators, and
restrict flights to visual-line-of-sight (VLOS; ‘the re -
mote pilot maintains continuous unobstructed and
unaided visual contact with the UA, allowing the
remote pilot to monitor the flight path of the UA in
relation to other aircraft, persons, and obstacles, for
the purpose of maintaining separation from them and
avoiding collisions.’ EASA 2016, p. 5), none of which
were previously in place in several European coun-
tries. Before initiating a UAS project, it is imperative
that the operator learns the current UAV regulations
of the country in which the fieldwork will take place
and subsequently flies within the relevant national
re gulations. Information is normally located on the
authority’s web page (e.g. EU: https:// www. easa.
europa .eu/easa-and-you/civil-drones-rpas# group- easa-
related-content; USA: https://www.faa.gov/ uas/; Aus-
tralia: https://www.casa.gov.au/ aircraft/ landing- page/
flying-drones-australia). Users considering tra veling
with or importing UAVs may also be impacted by
changing import/export regulations and tariffs, and
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multiple governing agencies may need to be notified
prior to travel (Watts et al. 2012, Cerna 2016, Depart-
ment of State 2017).

In addition to legal issues and health and safety
concerns, the social implications of using UASs for re-
search need to be addressed (Clarke 2014). In an ex-
tensive review, Sandbrook (2015) highlighted the
ethical questions around data acquisition where im-
ages of identifiable people, or the resources they care
about, are collected and may be used against those
people. He also raises the need for transparency in
UAV operations to minimise pervasiveness of hearsay
and rumour that may negatively affect operations
through distrust, objections and potential hostile ac-
tions. Until we have empirical evidence of the impact
of UAVs on the social aspects of research and conser-
vation, site-specific self-regulation and outreach are
central to the success of projects employing UAVs for
data collection. In fact, while regulations and general
information on the social perception of UAVs can
guide their use, continued efforts to build positive re-
lationships between conservationists or researchers
and local communities may be the only way to ensure
project success at any specific site.

Ethical and welfare issues concerning possible
interactions between the study animals and other
wildlife and the UAV also need to be considered.
For populations under legal protection due to their
conservation status, permits are often required to
conduct research activities such as surveys that
have the potential to affect target animals, and
these effects must be minimised. While UAVs may
be deployed in lieu of techniques that cause signifi-
cant disturbance or harm to animals (e.g. walking
through colonies, approaching animals with boats
or flying over them in loud aircraft), we must con-
sider how these new technologies are perceived by
wildlife. As with most observational techniques,
there is ample opportunity for mis-application that
can cause unintended disturbance to target and
non-target species. These situations may have neg-
ative implications for the animals we study and also
for the quality of data collected. As such, for sea tur-
tles, there is a need to establish if and how they
react to UAVs when deployed in both terrestrial and
at-sea applications. At least 2 areas of concern are
initially apparent: (1) whether marine turtles are
disturbed by the sounds that UAVs produce and (2)
whether marine turtles perceive the shadow or sil-
houette of a UAV in flight as a threat. The hearing
capabilities of turtles are relatively well studied (see
Piniak et al. 2012) and there have been some efforts
to quantify sounds produced by UAVs to assess

their disturbance on marine wildlife. For example,
Christiansen et al. (2016) assessed the underwater
sounds of 2 small UAVs in relation to the hearing of
large whales. They concluded that UAV sounds may
be detectable by large whales, but that the under-
water noise effect is small, even for animals close to
the water surface. In addition, an ever-increasing
number of UAVs have been assessed for in-air sound
levels. Fig. 8, for example, displays in-air calibrated
equivalent sound levels of a Mikro kopter hexa-
copter (www.mikrokopter.de) during flights at 16
and 60 m altitude. In general, hard-shell turtle spe-
cies can detect frequencies of 100 to 1000 Hz, with
peak sensitivity between 100 and 500 Hz at received
sound pressure levels above 80 dB re 20 µPa (Piniak
et al. 2012). Fig. 8 illustrates that received levels did
not exceed 80 dB re 20 µPa at either altitude for this
aircraft, and these results suggest that marine turtles
are unlikely to hear them during regular operations.
Marine turtles may perceive UAVs visually, either
through shadows thrown onto the local benthos in
shallow waters or by direct observation of the sil-
houette of the aircraft as it flies over. This may be
especially true for delta-wing type aircraft, which
more closely resemble predatory birds that may
attack them (especially as hatchlings), than canard-
shaped aircraft or the more box-like shape of multi-
rotor aircraft (Fig. 9). Bevan et al. (2015) did not ob -
serve any response by adult and hatchling Kemp’s
ridley sea turtles to rotorcraft during overflights.
However, more research is required to understand if
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and how marine turtles perceive UAVs during flight,
and whether any adverse effects may result from
overflights.

CONCLUSIONS

Sea turtle researchers and managers need to en -
sure they are correctly equipped to maximise the
usefulness of results and draw benefits from new
data acquisition capabilities facilitated by use of
UAVs. Choice of UAV hardware and survey design
appropriate to the research needs will generate
data that can transform our understanding of sea
 turtle ecology and population dynamics. However,
despite great potential, UASs cannot fully replace all
ground-based fieldwork and surveys. As stipulated,
suitable environmental field conditions are required
for effective use of UAVs, and legislative restrictions
(e.g. line-of-sight flight distance limitations) may
mean ground-based beach surveys are more effec-
tive in certain areas. UAV use is obviously not appli-
cable to research programmes that require physical
sampling of the study site or organisms.

In April 2017, at the 37th Annual Symposium of Sea
Turtle Biology and Conservation, 53 researchers from
42 institutions in 12 countries (many co-authors here)
attended a workshop on the use of UAVs for sea turtle
conservation to gain a grounding in the field or share
their UAS research experiences. The workshop cov-
ered essential considerations for starting out with
UAS research, novel uses of UAVs as data-gathering
tools and key challenges facing practitioners in the
field. Partcipants concluded that successful research
programs using UAVs need careful planning, prepa-
ration and incremental development, and that flying
conditions and provision of sufficient computer stor-
age and processing capabilities are key challenges
that need to be addressed (Rees et al. 2017). The
 consensus, with which we concur, was that UAVs pro-
vide an ex citing opportunity to enhance our study
and protection of sea turtles, provided their benefits,
limitations and uses are well understood. There is an
ever-increasing cadre of research and management
groups using UAVs to study sea turtle ecology. It is
clearly a realm set to grow.
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