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ABSTRACT: Many empirical models have been developed in order to obtain phytoplankton production 
estimates from other variables that are easier to measure. These empirical models are usually based on 
regression of phytoplankton production against biomass and other variables. They are particularly use- 
ful to fully exploit data sets acquired by both in situ instrumental measurements and remote sensing. 
Two conventional empirical models were compared with a new approach, based on artificial neural 
networks. Although very simple neural networks were used, they provided a much better fit to 
observed data than conventional models do and they seem a very promising tool for phytoplankton pro- 
duction modeling. 
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INTRODUCTION 

Empirical models of phytoplankton production are  
an  important tool in biological oceanography. They 
provide reasonably accurate production estimates on 
the basis of widely available variables, whereas direct 
measurements are expensive and difficult to carry out 
on a routine basis. 

Even though many empirical models share common 
features, such as mathematical formulation or inde- 
pendent variables, each of them has been optimized 
with respect to a particular data set or environment. In 
other words, empirical models usually trade generality 
for simplicity. 

Most empirical models are linear, since they assume 
that primary production is a linear function either of a 
few independent variables or of a single composite 
variable. Phytoplankton biomass is of course always 
taken into account, whereas other variables are not 
(irradiance, photic depth or water transparency, tem- 
perature, photoperiod, etc.). 

The first empirical model was probably the one that 
Ryther & Yentsch (1957) applied to their own data as 
well as to data from Riley (1939, 1956) and Conover 

(1956). They described photosynthetic rate at  light sat- 
uration, p(sat.), a s  a function of chlorophyll concentra- 
tion [3.7 g C fixed h-' (g  ch1)-'l and found a good agree- 
ment between predicted and observed production. 
They also took into account relative photosynthesis (R, 
computed as a function of surface irradiance) and light 
extinction (k). In the simplest case, i.e. when phyto- 
plankton was homogeneously distributed with depth, 
the model had the following formulation: 

where PP is phytoplankton primary production. 
More recent empirical models that focus on ocean 

data range from very simple formulations, based on 
chlorophyll concentrations only (e .g .  Smith et al. 1982), 
to more complex, multiple regression approaches (e.g.  
Eppley et  al. 1985). Most of these models are  specifi- 
cally aimed at  the exploitation of phytoplankton bio- 
mass data estimated from satellite images (e.g. Loren- 
Zen 1970). 

In estuarine and coastal systems the relationships 
between phytoplankton production and environmental 
factors are probably simpler. Primary production, for 
instance, is usually independent of inorganic nutrient 
concentrations, which are seldom growth-limiting. 
Moreover, the water column 1s often well mixed and 
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the phytoplankton biomass is homogeneously distrib- 
uted with depth. 

In these situations mean biomass and light availabil- 
ity are the most relevant factors that control phyto- 
plankton production and they can be easily used to 
build up empirical models. 

An example of this kind of empirical model, both 
simple and effective, is the one proposed by Cole & 
Cloern (1984), which is based on the assumption that 
phytoplankton primary production is directly propor- 
tional to phytoplankton biomass, surface irradiance 
and photic zone depth. 

where PP is the phytoplankton primary production, B 
is the phytoplankton biomass, Z, is the photic zone 
depth, I. is the surface irradiance and a and b are the 
linear regression intercept and slope. This model was 
applied to different estuaries (Cole & Cloern 1987) and 
to mesocosms (Keller 1988). In other cases the model 
formulation was formally different, as the inverse of 
the light extinction coefficient, k-l,  was used instead of 
Z, (Pennock & Sharp 1986). 

Some attempts have been made to improve the per- 
formances of empirical models by adding more detail 
to their formulation (e.g. Balch et al. 1989). However, 
these semi-analytical models did not show a significant 
improvement with respect to much simpler empirical 
models. 

Empirical models of phytoplankton production are 
not only a postprocessing tool. In fact, they are also 
essential for instrumental estimates of primary produc- 
tion (e.g,  by pump and probe fluorometers), as these 
usually rely on algorithms that are based on empirical 
models. 

Therefore, effective empirical models could signifi- 
cantly improve the quality of data sets acquired by 
both in situ instrumental measurements and remote 
sensing. 

In this paper the application of artificial neural net- 
works (a brief introduction to error back-propagation 
neural networks and their terminology is presented in 
Appendix 1) to empirical modeling is compared with a 
conventional approach. Neural networks are a very 
promising tool for empirical modeling of complex sys- 
tems: networks with at least 1 hidden layer can accu- 
rately model non-linear systems even though the 
underlying causal links are unknown or not fully 
understood. 

The use of neural networks has been hindered by 
computational problems for many years, because no 
learning rule was available to adjust the weights of 
the hidden layer connections before Rumelhart 
et al. (1986) developed the error back-propagation 
algorithm 

Even though their seminal paper was issued in a 
very interdisciplinary journal (Nature), it had vir- 
tually no impact outside the artificial intelligence 
and computer science field. In the last few years, 
however, neural networks have spread in many dif- 
ferent fields, as their computational requirements 
have been matched by the capability of the latest 
generation of personal computers and their applica- 
tion has become feasible even for non-specialist sci- 
entists. 

Neural networks seem to be a very promising tool for 
the empirical modeling of phytoplankton production. 
The most important conceptual advantage over con- 
ventional empirical (and semi-analytical) models is 
probably the possibility of collating heterogeneous 
information in a single computational framework, even 
though no theoretical guidelines are provided. 

METHODS 

In order to compare the performance of artificial 
neural networks with that of other empirical models, 
an  estuarine data set was chosen. 

The main reason for this choice was that estuaries 
are characterized by a very broad range of environ- 
mental conditions. Estimating phytoplankton produc- 
tivity in estuaries is therefore a challenging test for 
both empirical and analytical models. Moreover. 
several recent papers have dealt with empirical 
models of phytoplankton productivity in estuaries and 
they could provide effective benchmarks for eval- 
uating the performances of neural-network-based 
models. 

The test data set (Table 1) was taken from Harding et 
al. (1986). It included 27 samples from Chesapeake 
Bay and Delaware Bay (USA) and was collected during 
6 cruises that were carried out in 1982 and 1983. This 
particular data set was selected because the authors 
also provided extensive data analysis, discussed the 
relationships between phytoplankton production and 
other variables and presented an empirical model of 
phytoplankton production. 

Values for the following variables were extracted 
from different tables of the cited paper: 

Phytoplankton production (PP, g C m-2 d-'1 
Surface irradiance (Io, E m-* d-l) 
Mean chlorophyll concentration (B, mg 
Depth of photic zone (G, m) 
Light extinction coefficient (k,, m-') 
Station depth (H, m). 

A new binary variable, Bay, was added to this data 
set to indicate the sampling station location (1 for 
Chesapeake Bay and 0 for Delaware Bay). 
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Table 1 The data set from Harding et al. (1986)  includes primary product~on (PP), surface irradiance (Io), mean chlorophyll con- 
centratlon ( B ) ,  depth of photic zone (Z,), light extmction coefficient (k,) and statlon depth (H). The binary variable in the last col- 
umn (Bay) represents the location of each statlon [Chesapeake (CB) or Delaware Bay (DB)] and was added in order to improve 
the performance of the art~flcial neural network. In Harding et  al. (1986) the same result was achieved by calculating a different 

slope of the linear empirical model for each bay 

Cruise Stn PP 10 B =p k, H B ~ Y  
(g C m-' d-l) (E m-2 d-l) (mg chl m-3) (m)  (m-') (m) (1 = CB, 0 = DB) 

CB-1 
Mar 82 

CB-2 
Jul 82  

CB-3 
Oct 82  

CB-4 
Mar 83 

DB-l 
Nov 82  

DB-2 
Apr 83 

The empirical model proposed by Harding et al. 
(1986) is based on surface irradiance (Io) and the pro- 
portion of light attenuated by chlorophyll (Bk,/k,): 

where k, is a constant [0.015 m-' (mg chl a and 
k, is the light extinction coefficient, measured indepen- 
dently of Z,. 

Both this model and the one by Cole & Cloern (1984) 
were compared with models based on artificial neural 
networks. 

Since the main concern of this papel- is to point out a 
possible improvement in empirical models of phyto- 
plankton production rather than in artificial neural net- 
works, very basic networks and training algorithms 
were selected. 

In fact, feed-forward networks with 1 hidden layer 
were used, all hidden and output nodes had sigmoid 
activation functions, and training was performed by 
error back-propagation. The learning rate was not 

optimized (i .e .  a constant value, 11 = 1, was used) and 
no momentum term was considered. 

Five different networks were trained, all with only 1 
output node that returned the PP estimate and bias 
nodes both in input and hidden layers. 

The number of input nodes ranged from 3 to 5. 
Three input nodes were always fed with B, Zp and 1, 
data, whereas the fourth input node, when present, 
was associated to the Bay binary variable. A network 
with 5 input nodes was developed to show how addi- 
tional information, even though not directly rela- 
ted to PP, can improve the accuracy of a model: in 
this case the fifth input node was fed with station 
depth (H). 

The number of hidden layer nodes was determined 
by comparing the performances of different net- 
works, with 1 to 12 nodes in the hidden layer The 
lowest mean squared errors were obtained by net- 
works with 5 to 8 nodes in the hidden layer, depend- 
ing on the input variables and on the number of input 
nodes. 
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In this paper the networks will be cited according 
to their structure, i.e. as X-y-z  (input-hidden-output 
nodes). In other words, a 3-5-1 network is a network 
with 3 input nodes, 5 hidden nodes and 1 output 
node. 

In order to be used as training patterns for the neural 
networks, all non-binary raw data were scaled into a 
[0,1] interval. As the neural networks have sigmoid 
activation functions, their training becomes easier if 
the training patterns do not contain values that are too 
close to the limits of this interval: therefore, data were 
scaled by dividing them by arbitrary maximum values 
somewhat larger than the maximum observed values 
(Table 2), rather than by their range. A small positive 
offset (0.15 g C m-2 d-l) was added to raw PP data to 
avoid scaled values too close to 0. 

The neural network training was carried out accord- 
ing to the following scheme: 

14 patterns were randomly selected out of the 27 
samples in the data set (the same sample could be 
selected more than once); 
White noise (i.e. a small random value, i5% of the 
input value) was added to each input (Gyorgyi 
1990); 
After each 14 pattern training cycle ('epoch', in 
neural network jargon) the network was validated 
on the whole data set and a mean squared error 
was computed; 
After 50000 epochs, training was stopped and the 
weights corresponding to the lowest mean squared 
error were saved. 

This training procedure avoided overfitting, i.e. 
undesired reproduction of data set peculiarities and 
loss of the 'regularity' that is needed for good model 
generalization. This is particularly relevant when data 
sets include only a relatively small number of patterns 
(i.e. samples). 

Finally, it should be stressed that the performan- 
ces of the neural networks that are presented in 
this paper are to be considered as minimal estim- 
ates. In fact, network training was intentionally lim- 
ited and further improvement is certainly possible 
(e.g more epochs, different network initialization, 
etc.). 

RESULTS 

The empirical model presented by Harding et al. 
(1986) provided a fairly good fit to the observed data 
set, even though they had to sacrifice its simplicity to 
achieve this result. In fact, instead of a single linear 
model (Fig. l a . l ) ,  2 different linear models were 
defined for Chesapeake and Delaware Bays and 2 out- 
liers were excluded from the Chesapeake Bay data 
subset (Fig. 1b.l). 

Each linear component of the model accounted for 
about 70% of the PP variance (Chesapeake Bay. r2 = 
0.69; Delaware Bay r2 = 0.77) and the overall fitting of 
the composite model was much better than in the case 
of a single linear model without outliers (r2 = 0.745 
instead of r2 = 0.271; Fig. lb.2,  a.2). 

However, it is interesting to note that both models 
tended to overestimate small PP values and to under- 
estimate large PP values. Of course, this depends on 
the fact that the assumption of linearity was valid only 
for intermediate values of the independent composite 
variable Bkc/k,Io and of PP. This is also the reason why 
the non-zero intercept of the linear model is biologi- 
cally meaningless. 

Finally, although the composite model had a 
more symmetrical error distribution than the single 
linear model (Fig. la.3, b.3), the maximum error, 
excluding outliers, was still very large (1.034 g C 
m-2 d-l 1. 

A 3-6-1 and a 4-6-1 neural network were also trained 
on this data set (Fig. lc.1, d.1). Chlorophyll concentra- 
tion (B), light extinction coefficient (k,) and surface irra- 
diance (Io) were used as inputs of both networks, 
whereas station location (Bay) was added as an input to 
the second network. The network output, of course, 
was always PP. 

PP values predicted by neural network are plotted 
against observed PP values in Fig. lc.2, d.2. The per- 
formances of these networks should be compared, 
respectively, with the single linear model and with the 
composite linear model. 

The 3-6-1 neural network provided a better fit than 
the best linear model (r2 = 0.900), whereas the 4-6-1 
network, which takes station location into account as 
does the composite linear model, achieved a further 

Table 2 Arb~trary maxunum values were used to scale the data set into the [O ,  l ]  ~nterval Scaled data were obtained by dvldlng raw 
data by the arbitrary maxlmum A small offset (0 15 g C m-2d-'] was added to raw PPdata to avoid scaled values too close to Inter- 

val limits 

PP !U B =p k, 
( g  C rn-'d-') (E m-2 d-' 1 (mg chl m-3) (m) (m-') 

Arbitrary maximum 3 70 30 15 5 
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fitting improvement (r2 = 0.954), although no outliers 
were excluded from the data set. 

It should be stressed, however, that the meaning of 
r2 as a measure of goodness of fit is not the same 
when deallng with linear models or neural networks. 
In fact, In the former case ~t has a unique, exact 
value, whereas in the latter case it is affected by the 
random (e.g. noise summed to input values) and arbi- 
trary factors (e.g. maximum number of epochs) 
involved in the network training procedure. There- 
fore, some Improvement IS probably still possible, 
even whlle preserving the same level of model gener- 
ality. 

The error distributions of the neural-network-based 
models were satisfactory (Fig. lc.3, d.3), as they were 
almost symmetrical and more leptokurtic than those of 
the linear models. Moreover, the neural network PP  
estimates were not systematically biased, as error 
means were negligible: -0 016 g C m-' d-' for the 
3-6-1 network and -0.010 g C m-2 d-' for the 4-6-1 net- 
work. The maximum errors with respect to the training 
set were also much smaller than those of linear models 
(0.424 and 0.403 g C m-' d-l). 

The empirical model proposed by Cole & Cloern 
(1984, 1987), which had been selected, as an exam- 
ple of a more generalized formulation, was also 
applied to the same data set. In order to preserve this 
generalized nature, no outliers were excluded from 
computations (Fig. 2a.l) .  This model accounted for 
almost 60 % of the PP  variance (r2 = 0.574). A compar- 
ison between observed and predicted PP is shown in 
Fig. 2a.2. It is Interesting to note tha.t, as in the previous 
linear models, almost all the predicted values were 
overestimated when the observed PP values were 
smaller than 0.5 g C m-* d-' and underestimated when 
they were larger than 1.5 g C m-' d-l 

The error distribution was nearly symmetrical 
(Fig. 2a.3), but the maximum error of the PP estimate 
exceeded 1 g C m-' d-l (1.071 g C m-' d-l). 

A 3-5-1 neural network was tralned on the same data 
set (Fig. 2b.l) .  The network outputs matched the 
observed PP data much better than the linear model 
(r2 = 0.940), with no systematic error for low and high 
PPvalues (Fig 2b.2). 

The error distribution was much more leptokurtic 
than that of the linear model (Fig. 2b.3), with a smaller 
maximum error 10.362 g C m-2 d-l). The PP estimates 
were not systematically biased, as the error mean was 
very close to 0 (-0.009 g C m-2 d-l) 

When the station location was added as a fourth 
input, a 4-8-1 neural network (Fig. 2c . l )  achieved a 
further performance improvement. 

The predicted PP values matched very closely the 
observed ones (r2 = 0.975; Fig. 2c.2), with no evidence 
of systematic estimate errors. 

The error distribution was symmetrical (Fig 2c.3) 
and its mean was negligible (0.008 g C m-2 d-l). More- 
over, the maximum error of the PP estimate for this 
model was 0.203 g C m-' d-', i.e. 1/5 of the largest error 
of a comparable linear model. 

An example of the calculations that are needed to 
obtain PPestimates from input variables using the 3-5- 
1 network is presented in Appendix 2. 

DISCUSSION 

Neural-network-based empirical models of phyto- 
plankton production are far more effective than linear 
empirical models and the higher r2 values bear witness 
to their superiority. 

However, even though r2 is an important criterion, it 
is obvious that a non-linear model provides an 
improvement in data f~tting in comparison with a linear 
model. Other factors have to be taken into account 
when evaluating an empirical model of a complex 
process such as phytoplankton production. 

The distribution of the predicted value errors is prob- 
ably the most relevant, because a good model should 
not provide systematically biased estimates. In other 
words, the mean error should be close to 0 and the 
error distribution should be as symmetrical and lep- 
tokurtic as possible. 

Neural-network-based models achieved good re- 
sults even in this respect. In fact, their mean error was 
very small (k0.008 to 0.016 g C m-' d-l) if compared 
with the mean error of the composite linear model 
(-0.065 g C m-' d-l) and negligible if compared with 
the null mean error of single linear models. Moreover, 
neural networks always had a better error distribution 
than conventional models. 

The main processes that determine phytoplank- 
ton production can be approximated by llnear or 
simple non-linear (e.g.  logarithmic) functions only to 
a l im~ted extent. Therefore, such models are not 
able to reproduce the behaviour of real systems 
when very low or high values of the independent 
variables are considered. On the other hand, neural 
networks with at least 1 hidden layer can model 
non-linear systems independently of their comp1.e~- 
ity. Of course, complex systems need complex n.et- 
works, adequate training and a large data set to be 
modeled. 

The differences between a neural-network-based 
model and a conventional linear model of phyto- 
plankton production are summarized in Fig. 3. The 
surfaces correspond to estimated PP values for every 
combination of surface irradiance (Io)  and depth of 
photic zone values (Z,) at a 15 mg m-3 chlorophyll 
concentration. 
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3-5-1 neural network linear model (Cole & Cloern 1984) 

' Q 1  

Fig. 3. Estimated phytoplankton production (PP) as a function of surface irradiance (I,) and depth of photic zone (Z,) for a 15 mg 
m-3 chlorophyll concentration. Outputs from the 3-5-1 neural network (left) and the Cole & Cloern (1984) linear model (right) 

are compared 

The output of the neural network (see Fig. 2b) never 
exceeds likely PP values and shows interesting details 
of the relationships between PP and the independent 
variables. For example, it can be seen that there is little 
variation in PPvalues for different I. levels if Z, is very 
low or high. Moreover, the steepest gradient of the sur- 
face slope in the Z, direction (i.e. the maximum of the 
partial derivative with respect to G) is not the same for 
different I. values: when I. is high it corresponds to low 
Z, values, whereas when I. is low it corresponds to 
intermediate Z, values. On the other hand, none of the 
abovementioned details can be reproduced by the lin- 
ear model (see Fig. 2a), which always returns the same 
output provided that is constant. 

There are of course some inconsistent features even 
in the neural network output (e.g. significant PPvalues 
are predicted for very low I. levels, especially when Z,, 
is high), but they depend on the small number of pat- 
terns in the training data set rather than on intrinsic 
limitations, as in the case of linear models. 

Another advantage of neural networks over conven- 
tional empirical models 1s the possibility of adding 
new independent variables even though thelr rela- 
tionships with PP are not known or are difficult to be 
formally defined. In order to provide an example of 
this capability, a new network was trained by adding 
station depth (H) to the input variables that were used 
in the neural network shown in Fig. 2c.l  (i.e. Bay, Ion B 
and G). 

The rationale for this choice is that in shallow 
stations Zp has a particular meaning when it coincides 
with H, i.e. when water column transparency is high 
enough to make the photic zone depth limited by sta- 
tion depth (this typically happens when a Secchi disk 
is used to assess photic zone depth, so that it is not 
possible to extrapolate a theoretical value greater 
than station depth). Therefore, if Zp is equal to H then 
Z,, is certainly underestimated and the output of the 
model should take this fact into account. 

The resulting network worked optimally wlth 7 
nodes in the hidden layer, hence its final structure 
was 5-7-1. This neural network worked better than 
the 4-8-1 network. as r2 increased from 0.975 to 0.989 
(Fig. 4a). Moreover, the error distribution was im- 
proved (Fig. 4b) and the maximum error was only 
0.137 g C m-2 d-l, i.e. 2/3 of the 4-8-1 network maxi- 
mum error. 

It is obvious that it would be almost impossible to 
obtain a similar result if a conventional approach was 
used. At least 3 linear models would be needed: 1 for 
Delaware Bay stations (always Zp < H) and 2 for 
Chesapeake Bay stations (Z, < H or Zp = H). However, 
each linear model would be less accurate than a com- 
parable neural network and their combination could 
never work better than an empirical model based on a 
single neural network. 

The only theoretical advantage of conventional 
empirical models over neural networks is that their 
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Fig 4 Station depth (H) was  added ds a new Input to the 
neural network based on B, Z. 1, and station location (Bay) 
The performance of the resul t~ng 5-7-1 neural network was 
Improved with respect to the 4-input network, as (a)  r' 
Increased from 0 975 to 0 989 and (b )  error dlstnbution was 
more leptokurtic, wlth a 33 " D  smaller maximum eiror (0 137 g 

C n 1 2  d 'l  

parameters provide information about the relative 
importance of the independent variables (although 
this is not true when composite variables are used). 
However, the same results can be obtained by per- 
forming a sensitivity analysis of the neural-network- 
based models. Moreover, in this case lt is possible to 
detect the strength of the actual link between each 
input variable and PP, rather than the  relative weight 
of independent variables given a simplified theoreti- 
cal model. 

Finally, it should be stressed that the error back- 
propagation neural networks that were presented in 
this paper are very basic and widely applied to differ- 
ent problems. As research in this field is coi~tinuously 
providing new types of both networks and trainlng 
algorithms, accurate and general empirical models of 
phytoplankton production are probably not out of 
reach. 

As Balch et al. (1989) pointed out, an  idealized 
algorithm for the prediction of PP should account for 
100% of its variance, providing a 1: 1 relationship 
between predicted and observed PP values. Provided 
that adequate data sets are available and that deter- 
ministic relationships exlst between some input vari- 
ables and PP, neural-network-based empirical models 
are as close as possible to thls definition. 

Appendix 1. An introduction to error back-propagation neural networks 

An elror back-propagation neural network consists of sev- 
eral layers of nodes somehow analogous to neurons an input 
lavel ( i ) ,  1 or more hidden la i~eis  (h) and an output layer ( 0 )  

Each node in a layer recclves its Input from the output of 
the prevlous layer nodes or from the network input The con- 
nectlons between nodes are associated with synaptic 
w e ~ g h t s  (W, Z) that are ~teratlvely adjusted dunng  the tram- 
ing process A simple examplc of such a network is shown in 
Fig A1 It corresponds to the network that was used with I, 
B and 7 as inputs (see Flg 2b 1) 

An aduitiondl node w ~ t h  a constant output (usually 1) is 
often added to thc ~ n p u t  dnd h ~ d d e n  ldyers These nodes are 
known as bias nodes Their lole in neural n ~ t \ i  orks is vcrv 
s i n ~ ~ l a r  to that of the constdnt term in multiplc rcgression, 1 e 
they permit shifting of the oilgin of the hypeispace dc f~ned  
by the input variables 

Each hidden and output node is associated \ \  ~ t h  an  activd- 
tion functlon I e a ditfeientiable funct~on of the node total 
input Several functions can be used as activation funct~ons 
but the most common choice 1% the slgmold functlon 

i (a1 = -I- 
l + e-" 

Provided thdt the activation function of the hidden layer 
nodes is non-llnear, dn error back-piopagation neural net- 
work with an  ddequate number of hldden nodes is able to 
approximate every n o n - h e a r  function 

A neural network works at its best ~f all ~ t s  synaptic weights 
have been properly adjusted The error back-propagation 

Fig A l .  A 3 -5 -1  error hack-propagat~on neural net\vork Thiwr 
Input nodes ( i ) ,  5 h~dden  layet- nodes ( h ]  and 1 output node ( 0 )  

are shown Connert~ons br twwn nodes are shown by sol~d 
llnes: they dre associated with syndptic ~ * ~ ~ i g h t s  (W, 2 )  that are 
adlusted during th? tt-almng Two bias nodes are also shown, 
labelled w~th  1 ( I  e their output). The sigmold activation func- 

tlons dre plotted within the nodes 

algoiithm is a way to compute these weights and lnvolves 4 
steps (1)  the network is ~nltlalized by assigning randoin val- 
ues to synaptlc weights; (2 )  a training pattern is fed and  

(Appendix continued on next page)  
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Appendix l (continued) 

propagated forward through the network to compute an Then, in the back-propagation step, all the synaptic weights 
output value for each output node; (3) computed outputs are are adjusted In order to follow a gradient descent on the 
compared wlth the expected outputs; ( 4 )  a backward, pass error surface. 
through the network is performed, changing the synaptic For the connections between hidden and output layers, zk~ 

weights on the basis of the observed output errors. Steps 2 are changed as: 
through 4 are iterated for each pattrrn In a training set, then zh, = zkl + v6;hk ( k  = l, ..., nh +l; 1 = 1, ..., no) 
the network performance IS checked (usually on the basis of 
a mean squared error) and a new set of training patterns is where q IS  a constant [learning rate) and: 
submitted to the network (i.e. a new epoch is started) if it 
needs further optimization. 

In the case of neural networks with a single hidden layer, The weights *v,k of the connections between hidden and 
like the ones that were used for phytoplankton production input layer are also adjusted: 
modeling, the forward propagation step is carried out as 
follows: wIk = ~ , k  +i18iil ( k = l ,  ..., I I ~  +l; j = l  , . . . ,  n, + l )  

".+l 

where il is the output of the input layer (i.e. the network 
inputs and 1 for the bias node) and wck is the weiqht of the 

where 6: is computed as: 

comections between input and hidden layers. TO-compute The network training is iterated until a given condition 
the Outputs the hi.dden layer, these weighted sums met, Minimization of the quadratic error is usually involved, 
passed to the activation function, but fur Lhe blas node, but  other criteria can also be used, 
which is forced to have an output equal to 1: It has to be stressed, however, that the weight adjustment 

hk = f ( h k )  process does not provide a unique optimized result, slnce 

= 1 many non-deterministic factors (e.g. different starting val- 
ues of the synaptic we~ghts) can affect the network training. 

Then' the network Outputs are in the same Moreover, the gradlent descent on the error surface mlght 
find a local minlmum. 

An up-to-date, more general and comprehensive introduc- .. . 

01 = f (01) 
tion to the fundamental neural network architectures can be 
found in Abdi (1994) 

After the forward propagation, estimated outputs 01 are Error back-propagation neural networks are available in 
compared with expected outputs YI and a mean quadratic many commercial, shareware and publ~c domain software 
error for the current pattern is computed as. packages. However, the FORTRAN source code of the very 

I n,, simple implementation that was used for PP modeling can 
E = - ~ ( Y I  -011' 

no l = ,  
be requested from the author. 

Appendix 2. A worked exam.ple of feed-forward calculation for the 3-5-1 neural network 

In the particular case of the trained 3-5-1 network (see 
Fig. 2b. l )  the W and Z rnatnces were: 

Network inputs were scaled In a [0,11 Interval, assuming a 
fixed arbitrary maximum value for each input variable. 
These values are: 

1701 

where the first element corresponds to surface irradiance, 
the second to chlorophyll concentration and the third to 
photic zone depth. For example, the input values: 

xtaw,  
I, = - ( ] = l  ...., n,) 

XIrld~, 

Hence, the input vector is: 
10.786 i 

where the last element is constant and corresponds to the 
bias node 

The network output (i.e. the predicted PP) is computed bl 
carrying out the forward propagation as described ir 
Appendix 1 

Since in the training patterns the output vanable (PP) was 
also scaled Into a [0, l ]  ~nterval, the network output has to be 
scaled back to the original units: 

With PP,,,,, = 3 and PP,,,,,, = 0.15, the predlcted PP value 1s 

2.479 q C m-' d-l. 
55.0 I", E m-2 d-' In this is the predicted value that corresponds tc 

X = [ 9 i . e . ( ~ & ~ c h l m " ' ]  
in the Fig. highest 2b.2) PPvalue in the data set (see the rightmost polnt 

Other predlcted values can be easily computed following 

are scaled and passed to the input nodes J, as: the same procedure with different X,,. input vectors. 
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