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INTRODUCTION

The categorisation or labelling of biological speci-
mens is carried out manually by marine ecologists and
expert taxonomists. Research to automate the task has
been on-going for many years (Jefferies et al. 1980,
1984, Rolke & Lenz 1984, Berman 1990, Berman et al.
1990, Hofstraat et al. 1994, Costas et al. 1995), relying
on developments in pattern analysis, image process-
ing, multi-spectral analysis and immunofluorescence.
Although many systems have been shown to work in
small-scale laboratory conditions with cultured popu-
lations, few have succeeded when applied to field-
collected specimens. The reasons are diverse, but are
principally due to severely degraded performance of
the chosen processing algorithms in the presence
of noise and natural morphological variability of the
organisms. Even recently developed flow-cytometer
systems (Dubelaar et al. 1989, Jonker et al. 1995) are
limited in their utility by virtue of their powers of dis-

crimination with multispectral laser probes and their
very limited sampling rates (2.5 ml h–1).

Recently, artificial neural networks (ANN), which
are essentially new methods of noise-resilient and
trainable pattern-matching algorithms, have offered in-
creased reliability and robustness. Several programmes
have shown the efficacy of systems based on these
methods (Simpson et al. 1991, Boddy & Morris 1993,
Culverhouse et al. 1996, Davis et al. 1996, Toth &
Culverhouse 1999, Solow et al. 2001). 

Statistical methods are also being developed by
marine taxonomists to assist their understanding of
species classification. These methods seek to cate-
gorise specimens according to morphological (Wil-
liams et al. 1994, McCall et al. 1996, Lassus et al. 1998,
Truquet et al. 1996) and genetic (Bucklin & Kann 1991,
Bucklin et al. 1996, Hill et al. 2001) classification. 

Progress in automatic categorisation is usually mea-
sured by percent correct label. Descriptions of confu-
sions, which highlight incorrect attributions of label,
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are also common. Machine learning systems have a
particular problem associated with their operation; that
of being trained with wrongly labelled data. This is
normally overcome by a validation process, whereby
specimens to be used in the training processes are
labelled by a committee of experts. Only specimens for
which a high consensus of agreement is obtained are
used for training, but this limits operational use of such
devices to non-expert discriminations of taxa, rather
than species. If we are to push the limits of machine
taxonomy, we need to operate in this ‘grey area’ where
high intraspecific morphological variance is the norm.

The validation process is made more complex by
morphological variation exhibited by the specimens
due to environmental and genetic pressure. Consensus
between experts is then difficult to obtain. It has been
presumed in the past that this validation process works
well where there are many experts and where there is
general agreement between experts on the taxonomy
of the species being sampled. 

Existing dogma in marine ecology maintains that
marine scientists engaged in routine labelling of
specimens in net and bottle samples are nearly 100%
accurate in their assays. Anecdotal evidence from
informal studies contradicts this perfect performance,
suggesting that they may suffer from systematic biases
that significantly degrade their performance.

The motivation for this study was to assess human
performance in a difficult categorisation task and to
compare their accuracy against the Dinoflagellate
Categorisation by Artificial Neural Network (DiCANN)
machine learning system, which was developed un-
der European Union MAST2 ct92-0015 and MAST3
ct98-0188 contracts.

Evidence is presented in this paper that confirms
this degraded performance, and that experts are more
error-prone in their judgements than assumed. 

METHODS

Human performance in identifying and sorting
organisms under microscopes is affected by several
psychological factors: (1) the human short-term mem-
ory limit of 5 to 9 items stored; (2) fatigue and boredom;
(3) recency effects whereby a new classification is
biased toward those in the set of most recently used
labels; (4) positivity bias, whereby labelling a speci-
men is biased by one’s expectations of the species pre-
sent in the sample (Evans 1987). Human experts also
make up their own rules for categorisation tasks (Sokal
1974). Humans are not good long-term visual categori-
sation instruments. These biases routinely affect the
quality of taxonomic surveys that underpin marine
ecology. There is also a tacit assumption that a ‘gold

standard’ of specimen-labelling exists (as used in
Solow et al. 2001 to simplify assessment of machine
methods). Taxonomists set the gold standards by
careful inspection of individual specimens. These
standards must always be interpreted for human or
machine routine HAB (harmful algal bloom) monitor-
ing and plankton surveys, in which a high throughput
of samples is an issue. In these circumstances 100%
accurate labelling is not possible, because of human
error which is compounded by morphological variation
in the target species adding confusing information to
the task.

The species used in the present study were members
of the dinoflagellates. The dinoflagellates are an inter-
esting group, in that many species have polymorphic
life cycles with motile vegetative stages, which in some
species exhibit considerable morphological variability,
as well as a resting or ‘cyst’ stage. This variability in
the vegetative stage can cause debate in their classifi-
cation (examples in Figs. 1 & 2). Therefore, categorisa-
tion of HAB dinoflagellates, acknowledged as difficult
taxa, provides a test for both automation tools and for
human taxonomists. 

Extreme morphological variation within species cre-
ates deep problems for a classification based on visual
descriptions. An example of such variation among the
species of interest is Dinophysis acuminata, which is
found frequently and extensively in European waters,
and is the main agent of diarrhetic shellfish poisoning
(DSP) episodes in the Galician riàs and waters of
other European Union countries (Bravo et al. 1995a). It
shows a high degree of morphological variability be-
tween geographical regions and seasons, and its taxo-
nomic position is in conflict with a close species, D. sac-
culus, which is of much lower toxicity (Bravo et al.
1995b, Reguera et al. 1997).

Images of fixed specimens (Lugol and formalin) used
in the study were digitised to a computer using mono-
chrome video or digital cameras connected to Zeiss
Axiovert microscopes with 1:1 aspect ratios for sam-
pling and digitising (see Figs. 1 & 2 for examples).
These were clipped to approximately 256 × 256 pixels,
ensuring only 1 specimen per image. The experiment
was designed to compare human and machine label-
ling performance in routine HAB monitoring and eco-
logical surveys, where visual inspection is the norm for
rapid inspection and identification of large numbers of
specimens in a sample. The specimens were drawn
from field-collected samples, which exhibited natu-
rally-occurring morphological variability.

Sixteen volunteer study subjects (marine ecologists
and HAB monitoring specialists), drawn from across
the European Union, were given access to the image
data set via the Internet. An image drawn from the
data set was displayed and the subjects were asked to
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give each specimen a label, selected from a drop-down
menu of labels. Their labels were recorded in a data-
base for performance analysis. Initial labelling of spec-
imens in the data set was carried out using the 2-expert
protocol established in an earlier ‘MAST’-funded pro-
gramme and reported in Culverhouse et al. (1996).
Specimens used in the study were given species labels
by one of the authors (S. Gonzales-Gil); these were
subsequently validated by an independent expert in
the taxonomy of these species and their morphotypes
(B. Reguera). The task was graded as ‘hard’ by this val-
idator for the following reasons: (1) Several images cor-
responded to Dinophysis skagii, which is a small form
of D. acuminata. These could be acceptably labelled
as either D. acuminata or ‘not any of these’. (2) There
were clearly several images of intermediate forms of D.
tripos (lacking the dorsal process) in the data set. A
specialist on small-intermediate cell formation would
not make a mistake, but probably all our experts would
call them D. caudata. (3) Uncertainty was created by
the fact that D. acuminata images were taken at higher

magnification (630×) than the others. There are certain
features (straight ventral margin, etc.) that distinguish
D. acuminata from D. fortii, but in a quick scan people
would base their choice largely on a combination of
these features, plus size. 

The machine learning system, DiCANN, was trained
on 128 of the 310-sample image data set and tested on
the remaining 182 samples. All images in the data set
were subjected to morphometric analysis to establish
species category for each.

DiCANN applies the coarse-coded channel method
for image analysis (Ellis et al. 1997) (Fig. 3). Specimen
images are processed at low resolution through several
complementary channels. The resulting numeric de-
scriptor is fed into an automatic categoriser for training
and testing.

An early prototype has been trained on 100 speci-
mens per species drawn from an image database of
over 5000 field-collected dinoflagellates. Best perfor-
mance on test data drawn from the same database was
83% across 23 species of field-collected dinoflagellate
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Fig. 1. Dinophysis caudata. Images showing polymorphism
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(Culverhouse et al. 1996). The DiCANN processing is
invariant to specimen rotation and translation in the
field of view. It is also partially invariant to scale, allow-
ing up to 10% variation in specimen size. DiCANN
recognises 3D objects from different viewpoints
through training on a range of views which are then
interpolated by the training process (Toth & Culver-
house 1999). DiCANN may not succeed at recognising
an object from an unusual view angle if it is easily con-
fused with another object. In this manner DiCANN is
no different from a human taxonomist.

RESULTS AND DISCUSSION

The 16 experts reviewed and labelled the images
over a 2 wk period from computers connected to the
Internet in their work places. Analysis of their perfor-
mance is shown in Table 1. Their overall performance
in this difficult task was only 72%. A wide variation in
species recognition was noted, with Dinophysis cau-
data and D. rotundata proving easily discriminable
from other species at >90% performance. D. tripos fol-
lowed with 86% accuracy, being mostly confused with
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Fig. 2. Dinophysis acuminata. Images showing morphological changes in incubated cells
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D. caudata. D. sacculus images were only 65% cor-
rectly labelled, with many difficult specimens being
labelled as ‘no idea’ or D. acuta. Finally, D. fortii and D.
acuminata proved especially difficult for the subjects
to label, with 50 and 38% correct labels respectively
for these species.

The experts’ primary confusion accords with the ear-
lier comments of B. Reguera, i.e. that Dinophysis acu-
minata can be confused with D. sacculus, especially
when the normally observed differences in scale due
to specimen magnification are removed (D. acuminata
is normally resolved at 630×, the remaining species at
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Table 1. Dinophysis spp.  Confusion table for 6 species identified by human experts

D. fortii D. rotundata D. acuminata D. caudata D. tripos D. sacculus D. acuta

D. fortii 762 9 79 1 2 6
D. rotundata 916 29 1 1
D. acuminata 225 6 345 5 4 11
D. caudala 21 2 15 898 38
D. tripos 2 32 502 1
D. sacculus 316 2 166 1 4 186
D. acuta 162 7 226 2 2 25 None in sample
None of these 1 13 12 2 4 7
No idea 10 5 27 4 9 48
Response 1499 960 899 9446 566 284
% correct 50.83% 95.42% 38.38%, 94.93% 88.69% 65.49%

Overall accuracy of subjects (%) 72.29

Fig. 3. Schematic diagram of DiCANN
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400×). However, this magnification confusion is con-
stant for both human and DiCANN labelling and can
thus be discounted as a performance issue.

On the same test data set, DiCANN returned a per-
formance of 72% (Table 2). 

It should be noted that the identification task for
humans was limited, since normal viewing of these
species is through a microscope, whereby the analyst
controls the depth of field. This provides a greater level
of detail than that provided by the fixed planes of focus
monochrome images.

Human biases and prior expectations also influence
the outcome of a labelling task. If the population of
dinoflagellates in routine sea water samples does not
normally contain Dinophysis acuta, then the expert
ecologist will not be disposed to label rare occurrences
of D. acuta correctly, perhaps resulting in mis-cate-
gorisation as (for example) D. fortii. It is clear from the
human mistakes in this study, that biases influenced
the decision-making processes when labelling a speci-
men. For example there was no D. acuta in the data
set, yet a significant number of D. fortii were labelled
as D. acuta by mistake, the bias arising from the pres-
ence of a D. acuta label in the selection menu.

Table 3 summarises the performances of humans
and DiCANN across the species. It can be seen that
there is broad agreement in the performances; how-
ever 2 exceptions are apparent: firstly Dinophysis
caudata, which humans were able to identify with
94% accuracy but for which DiCANN could only
achieve 56% accuracy; secondly D. sacculus, for which
machine accuracy was 100% but human accuracy
only 65%.

Linear discrimination analysis (LDA) of standard
morphological measurements of the specimens reflects
the performance trends described above. Only 3 mea-
surement parameters were used, as these were com-
mon across all species (Fig. 4). There is no evidence to
suggest that the subjects used these parameters in
their selection of label, and DiCANN uses a different
set of features to arrive at its discriminations (essen-
tially multi-channel shape and texture analysis). There
is no apparent common mode of operation, yet the
canonical discriminant function plot in Fig. 5 shows
that several of the test species share very similar mor-
phometric characteristics. 

This suggests that confusion can arise in categorisa-
tion where, for example, specimens of Dinophysis cau-
data have morphological parameters overlapping with
the main cluster of D. fortii specimens and D. acumi-
nata. In fact, all 3 metrics of difficulty and confusion

22

Table 3. Dinophysis spp.  Comparison of human and DiCANN categorising performance for 6 species

Performance D. fortii D. rotundata D. acuminata D. caudata D. tripos D. sacculus Overall

Human 50.83% 95.42% 38.38% 94.93% 88.69% 65.49% 72.29%
DiCANN 70.00% 84.21% 41.38% 56.10% 78.95% 100.00% 71.77%

Table 2. Dinophysis spp.  Confusion table for 6 species identified from DiCANN categorisation data

D. fortii D. rotundata D. acuminata D. caudata D. tripos D. sacculus Overall
accuray

D. fortii 35 2 4 4 0 0
D. rotundata 0 32 7 2 0 0
D. acuminata 12 0 12 11 0 0
D. caudata 3 1 5 23 4 0
D. tripos 0 0 0 1 15 0
D. sacculus 0 3 1 0 0 5

Totals 50 38 29 41 19 5 182

Label 70.00% 84.21% 41.38% 56.10% 78.95% 100.00% 71.77%

Fig. 4. Prototypical Dinophyceae specimen, showing the 3
morphological parameters used in the study. C: dorso-ventral
width of the epitheca; L: maximum length of the hypotheca; 

W: dorso-ventral width of the hypotheca
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(human, LDA and DiCANN) indicate that the task of
labelling the Dinophysis species was difficult. A com-
parison of these 3 metrics suggests that mistakes made
by both human and DiCANN were due to the overlap-
ping morphological characteristics of the specimens in
the data set. Fig. 6 shows the relationship between
DiCANN performance and intraspecific variance in
the morphology. It reveals that DiCANN is able to
operate with up to 25% variance of morphology within
a species before its performance degrades below 75%
on average.

Expert judgement is not 100% accurate. In pub-
lished studies by the authors (Simpson et al. 1992,
1993, Culverhouse et al. 1994, 1996) it has been shown
that an individual’s accuracy and repeatability must be
assessed in comparison to his or her peers, producing a
consistency score. Agreement between experts is of
paramount importance in providing robust analysis
of samples. Table 4 highlights the limitations of hu-
man categorisers and compares their performance to
machine learning systems developed by the authors in
these earlier studies. It is interesting that the 23 spp.
dinoflagellate task showed the best agreement be-
tween categorisation by the automatic methods (83%)
developed by the authors and that by a panel of
experts (86%) (see Culverhouse et al. 1996).

CONCLUSIONS

This study has highlighted the difficulties facing
human taxonomists, and has shown that automation
methods can perform complex categorisations as well
as humans. However, it is clear that human perfor-
mance of <100% accuracy must be acknowledged as
normal in scientific enquiry. It must also be accepted
that machine learning performance is likely to be sim-
ilar to human performance, with the exception that
with careful training machine systems may not suffer
from the same systematic biases as humans. Finally, it
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Table 4. Dinophysis spp.  Summary of human performances in categorisation of various species. na: not applicable

Categorisation task Self-consistency within Panel-consistency Machine performance
panel individuals across individuals

Ceratium longipes + Competent expert: 94–99% 95 to 43% across 8 experts 99%
C. arcticum ‘Book’ expert 67–83%

5 species Tintinnidae na 91% consistent across 6 experts 87%

3 species fish larvae

5–9 spp. dinoflagellates na 91–95% consistent across 6 experts 67% (low figure due to con-
fusion between C. longipes
+ C. arcticum)

23 spp. dinoflagellates na 83–86% consistent across 6 experts 83%

Fig. 5. Dinophysis spp. Linear discriminant analysis plot of 
morphological variation across 6 test species

Fig. 6. Dinophysis spp. Plot of relationship between DiCANN
performance and morphological variance of training set 

species 

Group Centroids

D. tripos

D. fortii

D. rotundata

D. acuta

D. caudata

D. acuminata
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must be recognised that it is difficult to categorise
specimens from species with significant interspecific
morphological variation, perhaps with morphologies
overlapping with those of other species. Our studies
(Table 4) indicate that trained personnel can be ex-
pected to achieve 67 to 83% self-consistency in an
expert taxonomic labelling task, a figure which drops
to 43% when compared to labelling by others. Experts
who are routinely engaged in particular discrimina-
tions can become highly self- and mutually-consistent,
for example within a HAB monitoring laboratory,
where consensus is achieved through regular dialogue
and debate. Our study reveals that these people can
return accuracies in the range of 84 to 95%. In general,
neither human nor machine can be expected to give
highly accurate or repeatable labelling of specimens in
tasks that contain large amounts of noise. In the con-
text of specimen labelling, morphological variance can
be interpreted as noise: the higher the variance in
visual characteristics of natural objects, the harder it
is to recognise them.

The diversity of the natural world has confounded
rule-based and numerical techniques for pattern
analysis. Taxonomic key tables have limited value in
automatic systems, but continue to provide the stan-
dards for taxonomy. The reason is perhaps that the
expert taxonomists, who are the target users for these
keys, must still apply considerable skill in identifying
biological specimens. These skills, however, are not
perfect, and performances can be lower than expected
from trained professional ecologists. Book experts (as
opposed to those with field expertise) are not self-con-
sistent, nor consistent with other experts. Specialists
who have honed their decision-making skills through
repeated practice can be up to 95% self-consistent and
are also able to form high level consensus of opinion
with other experts (84% in this study), even for re-
peated tasks. But both types of expert still suffer from
cognitive biases that degrade their performance over
time. The task of labelling biological specimens is
error-prone and should be acknowledged as such. This
is contrary to the dogma existing at the present time,
and impacts on how machine performance is viewed.

Finally, recall that the validator graded the task as
‘hard’. Under these conditions, it might be expected
that a wider view on consensus be sought. In effect,
this experiment is a detailed review of the formation of
that consensus. It is clear that even experts cannot
totally agree. These results provide information on the
nature of consensus for ‘hard’ categorisation tasks in
the future. Zingone (1996) comments ‘it seems the best
results in identification of algal species may be ob-
tained by combining different methods: observational
(including swimming patterns), morphometrical, fluo-
rometrical and others)’. The message is clear for taxon-

omists: use all available methods to ensure robust
categorisation and species delineation. These are time-
consuming to apply at present. Thus, for routine HAB
monitoring and ecology surveying whereby large vol-
umes of plankton must be quickly labelled, acceptable
levels of human (or machine) error must be assessed
and reported as part of laboratory experiment prac-
tices.
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