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INTRODUCTION

‘… Model evaluation brings to bear all the subjective and
objective elements of conscious and unconscious thought and
reasoning of which the individual scientist is capable …’

E. J. Rykiel Jr (1996) Ecological Modelling 90:239

Mechanistic biogeochemical models have been used
extensively in aquatic ecosystems research (Jorgensen
1994, Franks 2002). For example, they have been ap-
plied as a management tool for predicting eutrophication

(Hamilton & Schladow 1997, Reckhow & Chapra 1999),
to understand oceanic ecosystems (e.g. bloom dynamics,
the global carbon cycle) and to predict biotic responses
to climate change (Aumont et al. 2002, Boyd & Doney
2002, Moore et al. 2002). During the last 3 decades, the
veracity of the scientific methodology of earth science
models and their adequacy for forming the basis of pub-
lic policy decisions has frequently been challenged
(Oreskes et al. 1994). Some researchers suggest ecolog-
ical models have only a heuristic value and consider their
validation impossible (Starfield & Bleloch 1986,
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Konikow & Bredehoeft 1992), others claim they resemble
‘works of fiction’ based on ‘properties of convenience’
(Cartwright 1983). While not all ecosystem modelers ac-
cept these viewpoints, there is no doubt that great un-
certainty characterizes both the technical and philo-
sophical aspects of the modeling endeavor. Despite the
extensive literature debating these issues (Beck 1987,
Rykiel 1996, Klepper 1997), there is still considerable
controversy amongst model developers and the resource
managers who use them about how to develop, evaluate
and interpret numeric earth science models.

In this study, we evaluate the current state of mech-
anistic aquatic biogeochemical models across the
range of temporal and spatial scales typically utilized.
We address several common modeling questions by
providing a quantitative assessment of model perfor-
mance and by assessing how model performance
depends on model development. This approach con-
trasts with several recent narrative discussions of mod-
eling advances (Franks 1995, Doney 1999, Frost &
Kishi 1999, Kantha & Clayson 2000, Doney et al. 2002,
Franks 2002, Kawamiya 2002). The data compiled rep-
resent a heterogeneous group of modeling studies,
especially with respect to complexity, spatial and tem-
poral scales and model development objectives. Given
the heterogeneous nature of these studies, our inten-
tion was not to determine which specific models ‘work
best’, but to assess the general performance of this
class of models. Any mechanistic model can obtain a
good fit for the right or for the wrong reasons. How-
ever, a model that provides a poor fit to observed data
clearly does not give an adequate representation of the
underlying processes (Oreskes et al. 1994). Hence,
with this analysis we attempted to quantify model per-
formance and identify factors associated with variation
in model performance (i.e. model complexity, simu-
lated spatio-temporal scales).

METHODS

We attempted to assess all aquatic biochemical mod-
els published from 1990–2002. The literature was
searched using the electronic databases: ‘Aquatic Sci-
ences & Fisheries Abstracts’, ‘BIOSIS previews’, ‘ISI
Web of science databases’ and ‘ScienceDirect’. The
keywords: ‘eutrophication model(l)-ing’, ‘NPZ model(l)-
ing’, water quality model(l)-ing’, ‘phytoplankton model(l)-
ing’, ‘freshwater model(l)-ing’, ‘ocean model(l)-ing’
and ‘biogeochemical model(l)-ing’ were used as search
terms. To be included in our analysis, studies had to
present graphs or tables in which field data were com-
pared to simulated data; 153 papers fit this criterion
(Appendix 1). Because the large majority of these stud-
ies did not quantify goodness-of-fit, we digitized the

relevant graphs in these papers to extract the original
raw data. We assessed the magnitude of digitizing
error by comparing the summary statistics for those
studies that reported these values to the corresponding
goodness-of-fit estimates obtained for the digitized
data. We found an r2 of 0.938 (y = 0.01 + 1.02 x, n = 42)
between the authors’ reported and our extracted esti-
mates of fit. Less than 5% of the modeling studies
assessed included information (statistics or time-series
plots) for all the state variables predicted, thus we were
not able to evaluate overall model performance.
We computed the relative error (RE = ∑|observed
values–simulated values|/∑observed values) and r2

values as diagnostic measures of individual state-vari-
able performance. The latter measure was selected
because of its common use in modeling practice for
assessing goodness-of-fit, but it should be noted that
there can be instances when this statistical test pro-
vides misleading results (e.g. Mayer & Butler 1993).
For example, lower r2 values result when there is little
temporal or spatial variability to be explained for a par-
ticular state variable.

In many cases, the spatio-temporal resolution of the
simulated versus observed data comparisons required
subjective judgment. For example, in many time-series
plots it was not obvious if the modelers’ intentions
were to compare monthly, weekly or other time aver-
ages. Hence, we inferred their intentions by inspecting
the time between data points and/or by looking for
clues in the text of these papers and aggregated the
data accordingly. The 2- or 3-dimensional comparisons
(XY, XZ and XYZ graphs) between simulated and
observed data were based on the use of grids, and data
sampling at grid-nodes. We also tested the effects
of these data aggregation schemes and model spatio-
temporal resolution on performance. Evaluation of the
temporal resolution was based on the assignment of
nominal values from 1 (comparisons where we consid-
ered as deviance the perpendicular distances from the
observed data to the simulated lines) to 5 (where we
compared seasonal averages). Resolution of spatial
comparisons varied from 0 (zero-dimensional or ‘state-
variable value vs time’ graphs) to 3 (3-dimensional
graphs). We computed the correlation coefficients
between these values and model performance (r2 and
RE). We found a trend in model performance with tem-
poral resolution (r = 0.102, p = 0.024 for state variable
RE; r = –0.205, p < 0.001 for state variable r2). In con-
trast, the spatial dimension of the simulated versus
observed data comparisons (r = 0.102, p = 0.024 for
state variable RE; r = –0.040, p = 0.342 for state variable
r2) did not seem to have a clear relation to model
performance. (An alternative assessment of the spatio-
temporal scale impact on model performance will be
discussed in the fourth subsection of ‘Results’.)
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RESULTS

The mechanistic aquatic biochemical models
assessed in this study had a very wide range of com-
plexity (Fig. 1a). Simple models, similar to the Fasham
et al. (1990) food-web model, consist of a small number
(<10) of state variables and highly aggregated biotic
compartments such as ‘phytoplankton’, ‘bacteria’ and
‘zooplankton’ which are modeled according to their
carbon or nitrogen content. Complex models (>70 state
variables) contain multiple elemental cycles (C, N, P,
Si, Fe), multiple functional groups across all levels of
organization, and sediment–water exchanges (Baretta
et al. 1995). Numerous models have intermediate lev-
els of complexity between these 2 extremes. During
the last decade, the majority of models have been
applied to oceanic systems (Fig. 1b), where they have
usually been used to determine functional properties
(i.e. long-term variation, nutrient supply to the
subtropical gyre, limiting resources in high nutrient/
low-chlorophyll regions) or to explore the interface
between the ocean’s carbon cycle and global climatic
responses (Dugdale et al. 1995, Hood et al. 2001,
Moore et al. 2002). Models developed for smaller
ecosystems (i.e. lakes, estuaries, harbors, bays and
coastal areas) have usually been site-specific con-
structs addressing management issues such as
eutrophication control (Le Pape & Menesguen 1997,
Arhonditsis et al. 2002), or studying theoretical issues
such as the potential productivity of upwelling systems
(Ianson & Allen 2002) and the transfer of organic
matter from the water column to sediments in margin
systems (Tusseau-Vuillemin et al. 1998).

How consistently do modelers follow conventional
modeling procedures?

The expression ‘conventional modeling procedures’
refers to the methodological steps typically recom-
mended by classic modeling texts (Jorgensen 1997).
We focused on 3 critical model development steps:
sensitivity analysis, calibration, and validation, by
exploring how these steps have been implemented in
aquatic biogeochemical models published during the
past decade.

Sensitivity analysis is the process by which the mod-
eler attempts to evaluate the model sensitivity to the
parameters selected, forcing functions, or state-vari-
able submodels (Jorgensen 1997). This step in model
development is essential for selecting the optimal
model structure and complexity, because it indicates
the accuracy required for the forcing function data and
identifies the parts of the model that need to be esti-
mated with greatest precision. We found 45.1% of the

models published from 1990 to 2002 did not report
results of sensitivity analysis (Fig. 2a). Thorough quan-
tification of model sensitivity (Beck 1987, Klepper
1997) was only reported in 27.5% of the studies. The
remaining 27.4% of the studies (‘YES–NO’ in Fig. 2a)
examined the influence of certain model structures
(e.g. alternative formulations) or parameters without
providing quantitative measures of model perfor-
mance.

Calibration is the procedure by which the modeler
attempts to find the best fit between computed and
observed data by adjusting model parameters. The
large majority of the published models (91.5%) were
calibrated by tuning the model within the range of lit-
erature parameter values until a satisfactory fit was
obtained (Fig. 2b). The problem with this approach is
that it does not ensure that the resulting parameter set
is optimal and whether any lack of fit is due to an inad-
equacy in the model’s structure or to poor parameter
choice (Kawamiya 2002). This problem can be solved
by application of optimization techniques designed to
search the parameter space for combinations of
parameters which provide the best fit through mini-
mization of cost functions. A wide variety of techniques
designed to identify both local and global minima have
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Fig. 1. Frequency histograms of (a) aquatic biogeochemical
model complexity based on number of state variables and 

(b) types of ecosystems modeled
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been developed during the second half of the last
decade (Matear 1995, Hurtt & Armstrong 1999, Vallino
2000). Hence, the studies that implemented calibration
optimization techniques still comprise only a small pro-
portion (8.5%) of those published during the last 12 yr.

Validation is perhaps the most controversial issue in
the model development process, and this controversy
‘arises as much from semantic and philosophical con-

siderations as from the selection of valida-
tion procedures’ (Rykiel 1996). Generally, it
is defined as a test of whether ‘a model
within its domain of applicability possesses a
satisfactory range of accuracy consistent
with the intended application of the model’,
and it is considered an essential step for
obtaining an objective measure of model
reliability (Rykiel 1996, Jorgensen 1997).
The present study compiled information for
4 types of validation: replicative, predictive
and structural validation, and model trans-
ferability. Replicative model validation
means evaluation of the agreement between
predicted values and observational data
from the real system during the calibration
phase (Power 1993); essentially the quantifi-
cation of goodness-of-fit during the formula-
tion and estimation phases of model con-
struction with data already acquired from
the real system (Fig. 2c). Only 30.1% (‘YES’
in Fig. 2c) of plankton modeling studies
published during the last decade statistically

evaluated the model performance, and only a small
fraction (<6%) of these objectively quantified the
model’s performance by applying all appropriate
measures of fit (i.e. RE, mean absolute error) and sta-
tistical significance (i.e. t-test, regression analysis)
(Mayer & Butler 1993, Power 1993). In the remaining
69.9% of cases, the authors presented time-series
plots but did not report quantitative measures of per-
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Percentile T DO Nitrate Ammonium Phosphate Silicate Phyt Zoop Bact

10th r2 0.42 0.34 0.10 0.05 0.07 0.20 0.08 0.06 0.00
RE 2% 4% 8% 18% 19% 18% 20% 17% 21%

20th r2 0.62 0.52 0.37 0.13 0.13 0.35 0.16 0.09 0.00
RE 4% 7% 18% 30% 26% 30% 26% 31% 25%

30th r2 0.81 0.58 0.47 0.18 0.20 0.46 0.30 0.12 0.01
RE 5% 8% 26% 34% 32% 32% 32% 44% 33%

40th r2 0.92 0.62 0.56 0.29 0.30 0.52 0.41 0.19 0.03
RE 5% 10% 32% 40% 36% 34% 37% 52% 35%

50th r2 0.93 0.70 0.68 0.39 0.47 0.61 0.48 0.24 0.06
RE 7% 12% 36% 48% 42% 37% 44% 70% 36%

60th r2 0.95 0.78 0.79 0.44 0.57 0.66 0.56 0.37 0.18
RE 7% 14% 44% 55% 47% 41% 51% 79% 37%

70th r2 0.96 0.86 0.84 0.57 0.69 0.69 0.63 0.69 0.21
RE 9% 17% 57% 65% 55% 46% 58% 115% 42%

80th r2 0.97 0.88 0.91 0.78 0.80 0.80 0.76 0.90 0.24
RE 11% 19% 68% 77% 69% 55% 66% 138% 49%

90th r2 0.98 0.92 0.95 0.89 0.86 0.89 0.83 0.97 0.39
RE 15% 22% 88% 101% 84% 64% 79% 201% 59%

100th r2 0.99 1.00 1.00 0.99 0.96 0.98 0.98 1.00 0.64
RE 25% 31% 554% 206% 218% 302% 128% 435% 66%

Table 1. Performance of aquatic biogeochemical models for study period 1990–2002. Coefficient of determination (r2) and relative
error (RE, %) values for temperature (T), dissolved oxygen (DO), nitrate, ammonium, phosphate, silicate, phytoplankton (Phyt), 

zooplankton (Zoop) and bacteria (Bact)

Fig. 2. Proportion of aquatic biogeochemical modeling studies that 
(a) performed sensitivity analyses, (b) used optimization techniques for
model calibration, (c) quantified fit between simulated and field data, and
(d) validated models (see first subsection of ‘Results’). In (a) category
‘YES–NO’ indicates qualitative approaches (see first subsection of 

‘Results’ for further explanation)
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formance. Fig. 2d also includes aggregated informa-
tion for the other 3 types of validation: (1) predictive
validation, which is defined as an evaluation of
model-fit to independent data sets (model perfor-
mance against data acquired from the real system
after model calibration), (2) model transferability to
different systems (performance of a specific model
structure to different regions or ecosystem types), and
(3) structural validation, which is defined as the
assessment of the realistic reproduction of the opera-
tional characteristics, causal relationships, and rela-
tive magnitudes of various components of the system
by the model (biological rates, derived quantities)
(Power 1993). These validation procedures were car-
ried out in 47.1% of the studies, while the remaining
52.9% were not predictively or structurally validated.

How well do aquatic biogeochemical models 
simulate real-world dynamics?

The 153 aquatic biogeochemical models assessed
simulated the dynamics of 3386 state variables. Of
these 3386 cases, the authors fully reported statistical
measures of model performance (as well as time-series
plots in which simulated values were compared with
observed data) in 42 cases. In 569 cases, the authors
presented time-series plots, but no statistical measures
of performance. In 2817 cases, neither measures of
statistical performance nor time series plots were
reported for the state variables. In most of these cases
the non-reported state variables were not the focus of
these studies and/or observational data were not avail-
able for the respective comparisons. In the 569 cases
where only time-series plots were presented, we
digitized these graphs and used the extracted data to
independently assess state-variable performance as
expressed by the RE and the coefficient of determina-
tion (r2) (Fig. 3). Temperature and dissolved oxygen
had the highest r2 values (the respective medians were
0.93 and 0.70) and lowest RE (median < 10%). Limiting
nutrients (NO3, NH4, PO4 and Si) and phytoplankton
biomass had intermediate fit, with median r2 values
ranging from 0.40 to 0.60 and the median RE around
40%. Only a fairly small number of aquatic biogeo-
chemical studies presented model performance for
bacteria (n = 14) and zooplankton (n = 30) dynamics.
Both of these state variables were poorly modeled,
with bacteria having the lowest median r2 value (0.06)
and zooplankton the highest RE (70%). The zooplank-
ton predation simulations were also characterized by
the widest range of r2 (interquartile range ~0.8) and RE
(interquartile range ~85%) values. More detailed
information about the state-variable performance is
provided in Table 1.

Is ‘calibration bias’ between state variables 
introduced during model calibration process?

We looked for potential ‘calibration bias’ introduced
when calibrating aquatic biogeochemical models. Cal-
ibration bias can occur when, in the process of maxi-
mizing the fit for a specific state variable (usually
phytoplankton biomass), the fit is reduced for other
state variables (such as limiting nutrient concentra-
tions or herbivorous zooplankton biomass) (Franks
1995). As previously mentioned, more than 95% of the
studies we assessed did not report performance results
for all state variables. In some cases this might suggest
selective presentation of the state variables with better
performance and/or that modelers presented the state
variables they were mostly interested in. The lack of
performance information for all the state variables pre-
cluded a comprehensive assessment of calibration bias
in the present database. However, we sought evidence
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Fig. 3. Performance of aquatic biogeochemical models for the
study period 1990 to 2002. Relative error (RE, %) and coeffi-
cient of determination (r2) values for temperature (TEMP),
dissolved oxygen (DO), nitrate (NO3), ammonium (NH4),
phosphate (PO4), silicate (Si), phytoplankton (PHYT), zoo-
plankton (ZOOP) and bacteria (BACT). Number of studies as-
sessed for each state variable is indicated above box-plots.
Several extreme RE values were not included in these plots
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of biased calibration by comparing the fits between the
key components of the aquatic biogeochemical mod-
els: limiting nutrients (inorganic nitrogen or phos-
phate), phytoplankton and zooplankton biomass.
Despite the limitations of the underlying data, this
approach provides some insight to the relative perfor-
mance of the basic state variables for the aquatic bio-
geochemical models. The results of these comparisons
did not show negative correlations between state vari-
ables (Fig. 4). In fact, significant positive correlations

were observed for the r2 values between limiting nutri-
ents and phytoplankton biomass (r = 0.453, p < 0.001),
phytoplankton and zooplankton biomass (r = 0.456, p =
0.019), and a non-significant but still positive correla-
tion between limiting nutrients and zooplankton bio-
mass (r = 0.335, p = 0.174). Hence, the general result is
that the last decade’s plankton models can be differen-
tiated into models with ‘poor’ to ‘good’ model perfor-
mance with a uniformly apportioned fit between the
basic structural components.

How do model complexity, spatio-temporal scale and
type of modeled ecosystem impact model performance?

Determination of the most appropriate level of model
complexity is an issue of particular interest to the eco-
logical modeling community. This problem was articu-
lated by Costanza & Sklar (1985), who examined how
optimum complexity (with respect to the number of
components, time and space) influenced model effec-
tiveness (the observed variability explained). Simple
models are more easily understood, have fewer uncon-
strained parameters and are more easily subjected to
detailed sensitivity analyses, but they are often criti-
cized as being crude oversimplifications not capable of
reproducing real-world dynamics. Complicated models
parameterize numerous processes and theoretically
have the potential to be more accurate representations
of complex natural systems. However, when model
complexity is not accompanied by sufficient knowledge
about the systems being modeled (i.e. in data-poor situ-
ations), complex models have been criticized for being
completely artificial constructs that may include mis-
conceptualizations of the modeled systems. The result-
ing uncertainty undermines their value and limits their
role to that of mere heuristic tools. We therefore as-
sessed the effect of model complexity (expressed as the
number of state variables), spatial dimension (from zero
to 3-dimensional) and simulation period (from days to
decades) on model performance (Table 2).

A significant but quite weak negative correlation
was found between the duration of the simulation
period and the state variable r2 values (r = –0.250,
p < 0.001), and a very weak positive correlation was
found between the simulation period and the RE (r =
0.098, p = 0.022). The same trend was identified when
testing the state variables individually (r = –0.386,
p < 0.001 and r = 0.239, p = 0.004 for phytoplankton r2

and RE, respectively). In general, longer simulations
resulted in slightly poorer model performance. The
effects of the temporal resolution on model results
were insignificant (rpartial = 0.057, p = 0.184 for the state
variable RE and rpartial = –0.063, p = 0.136 for the state
variable r2) after accounting for the duration of the
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Fig. 4. Testing for ‘calibration-bias’ during calibration of
aquatic biogeochemical models. Relationships between coef-
ficient of determination (r2) values of (a) the limiting nutrient
and phytoplankton, (b) phytoplankton and zooplankton and 

(c) the limiting nutrient and zooplankton
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respective simulation periods. Hence, the previously
reported significant correlations most likely reflect the
influence of the simulation period, which indirectly
determines the temporal resolution of the observed
versus simulated data comparisons (i.e. shorter simula-
tion periods such as less than 1 yr, were usually com-
bined with finer temporal resolution such as days or
weeks). Marginally significant correlations were found
between the spatial complexity of the models and their
performance trends (r = –0.086, p = 0.043 and r = 0.104,
p = 0.015 for r2 and RE, respectively). The fact that cou-
pling physical and biological processes did not
improve model predictability was not surprising, since
the biogeochemical models can only be as good as the
physical framework on which they are based. On the
other hand, the fact that no significant degradation of
model results was observed is a promising sign for
future modeling development, and especially for the
prospect of refining circulation models. A greater num-
ber of state variables does not seem to improve model
performance, as indicated by the significant negative
(but very weak) correlation between the number of
state variables and the r2 values (r = –0.108, p = 0.011),
and the significant positive correlation with the RE of
the model outputs (r = 0.219, p < 0.001). The RE
increase was clear for phytoplankton (r = 0.248,
p = 0.003) and zooplankton dynamics (r = 0.626,
p < 0.001), while both nitrogen r2 (r = –0.198, p = 0.010)

and RE (r = 0.160, p = 0.039) values
were significantly degraded with
increasing model complexity. This find-
ing contradicts a common notion in
modeling that the more complex the
model, the more accurate it is likely to
be due to a larger number of tunable
parameters (Franks 1995). In theory
this notion seems plausible, but in prac-
tice modelers do not appear to use all
the increased degrees of freedom pro-
vided by highly parameterized models
when calibrating their models. This
may also be a sign of insufficient cali-
bration effort or, alternatively, erro-
neous parameterization, which in turn
raises questions about the current level
of understanding of the relevant
aquatic ecosystem processes. It should
be noted however that the majority of
the complex models in our dataset
belong to the ERSEM (European
Regional Seas Ecosystem Model) fam-
ily, and the present results are — at
least partially — influenced by the
development purposes, modeled envi-
ronments and practices followed by

this particular family of models. Finally, when using
analysis of variance (ANOVA) to test for differences in
model performance (both r2 and RE values) between
system categories (i.e. mesocosm, lake–reservoir,
bay–lagoon–harbor, coastal area–estuary and ocean–
sea), we found model performance did not vary
depending on the type of the ecosystem modeled.
Apparently, the last decade’s ambitious plankton mod-
eling efforts to increase the level of biological detail, to
increase spatial complexity and to use longer simula-
tion periods have not led to a systematic improvement
in model performance.

DISCUSSION

Present experience and future perspectives

Our intention with this meta-analysis was to carry
out a systematic classification of a heterogeneous data-
base in order to identify trends in current aquatic bio-
geochemical modeling practice. We showed that most
plankton modelers do not evaluate sensitivity, test
validity or assess the performance of their models in a
consistent manner. Many aquatic biogeochemical
models are still developed and applied without having
a clearly stated purpose or a predetermined acceptable
model performance level. Nevertheless, the need for
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Performance Simulation Spatial Model
period dimension complexity

All state variables
r2 –0.250 (p < 0.001) –0.086 (p = 0.043) –0.108 (p = 0.011)
RE 0.098 (p = 0.022) 0.104 (p = 0.015) 0.219 (p < 0.001)

Phytoplankton
r2 –0.386 (p < 0.001) –0.122 (p = 0.142) –0.053 (p = 0.522)
RE 0.239 (p = 0.004) 0.178 (p = 0.033) 0.248 (p = 0.003)

Zooplankton
r2 –0.408 (p = 0.025) –0.369 (p = 0.045) –0.205 (p = 0.276)
RE 0.092 (p = 0.634) 0.524 (p = 0.003) 0.626 (p < 0.001)

Nitrogena

r2 –0.351 (p < 0.001) –0.180 (p = 0.019) –0.198 (p = 0.010)
RE 0.211 (p = 0.007) 0.083 (p = 0.287) 0.160 (p = 0.039)

Phosphorusa

r2 –0.330 (p = 0.007) 0.244 (p = 0.050) 0.086 (p = 0.495)
RE –0.063 (p = 0.619) –0.072 (p = 0.570) 0.103 (p = 0.416)

aIncludes all modeled inorganic and organic forms of this nutrient

Table 2. Correlation matrix between state variable performance (expressed as
coefficient of determination r2 and relative error RE) and simulation period, spa-
tial dimension and model complexity (expressed as number state variables).
Simulation period and spatial dimension: 0- to 3-dimensional modeling studies
(not the reported graphs) were assigned nominal values from 0 to 3; 
simulation period durations of several days (<1 mo), several months (<1 yr), 
several years (<1 decade), and >1 decade were assigned nominal values from 

1 to 4, respectively
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methodological consistency during model develop-
ment has been emphatically argued during the last
decade (Power 1993, Jorgensen 1994, Franks 1995,
Rykiel 1996), and specification of performance criteria
has been deemed an essential step for determining
model acceptability. It has also been pointed out that
given the subjectivity inherent in assessment of model
performance, what is actually needed is a predeter-
mined global convention (similar to the 0.05 probabil-
ity level for statistical significance testing) that would
be used by all modelers. The present study’s quantita-
tive assessment of aquatic biogeochemical model per-
formance can contribute to the development of prede-
termined model performance criteria. As indicated by
our results, in order to develop a fair test it is necessary
to take into account and weigh model performance for
the simulation period and probably the model com-
plexity (number of state variables). Performance tests
should not neglect biological rates (primary production
or grazing rates) and derived quantities (f ratios) when
testing whether the simulation realistically reproduces
the functional properties of the system modeled. In
cases where relevant data are not available, it should
be clearly indicated that the model was not structurally
validated, and therefore the match between state vari-
ables and observed data might not be the result of a
correct model solution. Furthermore, during predictive
validation of models it is common practice to split the
data set into 2 subsets, and use the first subset for cali-
bration and the second for testing its predictive ability.
This procedure can be useful for determining whether
a model was ‘overfitted’ to data during calibration.
However, it has also been claimed that validation rigor
is dependent on the difference between the calibration
and validation data sets (Reckhow & Chapra 1999). For
example, in studies intended to model system
responses to increasing nutrient loading, the validation
data set should describe enrichment conditions that
significantly differ from those used during the calibra-
tion process. In cases where such data sets are not
available and the 2 subsets (calibration and validation)
are essentially identical, the modelers should be aware
that they have not unequivocally tested the model’s
ability to predict new conditions (e.g. Omlin et al.
2001).

The selection of the model complexity should be
driven by the system being studied and the questions
being asked (Franks 1995). Some modelers have
suggested, as a rule-of-thumb, starting with simple
approaches and proceeding to greater complexity as
warranted by data availability. However, models are
quite often turned into ‘mathematical exercises’ by
incorporating enormous complexity, which according
to our results does not improve performance (Table 2).
In addition, more than 95% of the studies we assessed

did not report performance results for all state vari-
ables. Aside from the possibility of selective presenta-
tion of the state variables with better performance, this
could also indicate inclusion of ‘tunable’ state variables
in the models which are not constrained by data. If this
is the case, this should be explicitly stated in the model,
and the calibration process should assure that reason-
able behavior for one variable is not sacrificed to
achieve a good fit for others (Franks 1995).

The idea that optimal complexity and model perfor-
mance assessments should be based on appropriate
data sets does not imply that the observed data are a
perfect criterion (Fagerstrom 1987). Observational
data are just a ‘snapshot’ of the real system, an instan-
taneous record of a few components from numerous
complex and interactive processes that must be care-
fully interpreted. Modelers should rather consider the
observational data as an approximate representation
of the real system that can, depending on the sampling
network used, the ecosystem modeled and the ques-
tions addressed, form an objective basis for evaluating
model performance. By taking into account these
uncertainties, data assimilation methods attempt to
provide solutions which are dynamically consistent
with both the data and model outputs and can assist in
model performance evaluation (Doney 1999). The
choice of the misfit measure between model and obser-
vational data (cost function problem) has a significant
effect on the ‘best’ estimate of model parameters
(Evans 2003). Although this approach has been criti-
cized for making models data interpolation algorithms,
data assimilation methodologies may be one of the
most promising means for solving the problem of
model initialization, while also improving model para-
meterization and predictive ability (Gregoire et al.
2003). In addition, they can highlight missing pro-
cesses, verify present model structure and guide future
model reformulation (e.g. Spitz et al. 1998, Evans
1999). Thus, it is expected that modelers will embrace
the assimilation techniques over the next decade
beyond their current 8.5% application level, and
explore their use as a part of the standard modeling
development process. Currently, these approaches are
more frequently combined with low-dimension ecosys-
tem models (Evans 1999, Fennel et al. 2001). Applica-
tions to 3-dimensional models are more limited, but
consist of attempts to estimate poorly quantified
fluxes/biogeochemical rates and nutrient distributions
as derived from large-scale physical circulation fields
(Doney et al. 2002, Schlitzer 2002). Two major issues
that will expedite the dissemination of the data assimi-
lation methods on the oceanographic/limnological
practice are (1) the construction of user-friendly auto-
mated systems linking the observing systems, numeri-
cal models and assimilation schemes, and (2) the adop-
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tion and refinement of approaches from other fields
(meteorology) to support coupled physical–biological
data assimilation.

Future research should also focus on refinements to
several mechanistic aspects of current aquatic biogeo-
chemical models (Doney 1999). We showed that zoo-
plankton and bacteria dynamics are the most poorly
simulated state variables (Fig. 3). While some studies
provided fairly good simulations of phytoplankton/
zooplankton interactions (Fig. 4), most aquatic biogeo-
chemical models were unable to obtain satisfactory
performance. One reason for this might be error asso-
ciated with converting the observed zooplankton data
(in units of individuals per volume) to the modeled
units (usually carbon or nitrogen mass per volume).
Other authors have suggested that the only effective
way to predict zooplankton dynamics is to fully simu-
late zooplankton life histories. A characteristic exam-
ple is the copepod-submodel suggested by Fennel &
Neumann (2001) that included eggs, nauplii, cope-
podites and adults as state variables. In addition,
recent advances in stoichiometric nutrient recycling
theory, reformulation of the zooplankton grazing term
to include algal food-quality effects on assimilation
efficiency, and a more detailed consideration of energy
transfer through food-web processes (Touratier et al.
2001) should improve the realism of dynamic plankton
simulations. Other important issues that need to be
considered are the modeling of multi-nutrient interac-
tions at the primary producer level (Flynn 2003), inclu-
sion of the optimal nutrient/food-web framework
(Reckhow & Chapra 1999), refinement of the sediment
diagenesis processes (Di Toro et al. 1990), incorpora-
tion of the microbial loop and reformulation of the
nutrient recycling processes (Doney et al. 2002). Con-
cerning the latter, our meta-analysis showed that only
a small number of studies explicitly modeled bacteria,
which was also a poorly simulated state variable. Com-
parisons with the appropriate data from the real sys-
tem (active instead of total bacterial abundance) and
different parameterizations (first- vs higher-order
kinetics) are 2 plausible strategies for improving the
microbial loop simulations. Furthermore, caution
should be exercised concerning the choice of the
zooplankton mortality (the so-called ‘closure’ term).
Several recent studies addressed this issue, and it was
shown that the choice of this term can have a strong
influence on model dynamics (e.g. Steele & Henderson
1992, Edwards & Brindley 1999, Edwards & Yool 2000).
Hence, site-specific selection as derived from field
experimentation seems to be the most appropriate way
for choosing between a linear, quadratic, hyperbolic or
sigmoid functional form (Franks 2002). Finally, recent
mechanistic advancements in biogeochemical models
include a more sophisticated physiological basis and

associate chemical composition changes in phyto-
plankton cells with ambient condition variability. For
example, the model by Geider et al. (1998) accounts for
acclimation of growth rate, photosynthesis, respiration,
C:chlorophyll a, and the N:C of phytoplankton to irra-
diance. The modeling strategy introduced by Lancelot
et al. (2000) simulates phytoplankton content in func-
tional metabolites, reserve products and monomeric
substrates in order to distinguish between photo-
synthesis and growth processes. This explicit treat-
ment of the dynamic nature of the phytoplankton cell
properties combined with models that consider the
local-scale physiological structure in phytoplankton
populations is also likely to improve plankton process
simulations (Broekhuizen et al. 2003).

Is use of goal functions based on non-equilibrium
thermodynamics the solution for more realistic models?

Aside from the previous comments on biogeochemi-
cal models, this family of models still has a fundamen-
tal weak point. Classic aquatic biogeochemical models
have a rigid structure based on a fixed set of parame-
ters, which does not allow for modifications or replace-
ments of system components (Jorgensen 1997). How-
ever, changes in external forcing (weather conditions,
nutrient loading) induce shifts in plankton community
composition, and thus it would ultimately be more
realistic to carry out simulations using time-varying
parameters. Furthermore, it is possible that the exten-
sive use of non-linear modeling approaches stems from
attempts to get acceptable model performance using
unrealistically rigid parameter sets, while linear
approaches with time-varying parameters might give
more reasonable results (Patten 1997). A new genera-
tion of models attempts to simulate the dynamic struc-
ture of ecosystems, using goal functions (or governing
laws) that determine the self-organizing response of
ecosystems to perturbations. Several goal functions
derived from non-equilibrium thermodynamics have
been proposed for tracking the direction of ecosystem
development (Vallino 2003).

From this modeling strategy, we will use as an exam-
ple the thermodynamic variable exergy, combined
several times with aquatic biogeochemical models, to
briefly describe the basic concept of these frameworks.
Exergy is a measure of the distance from thermody-
namic equilibrium (where no structure and free energy
is available), which is related to the biomass and infor-
mation (expressed by the number of genes) of the var-
ious system components (model state variables) (Jor-
gensen 1997). It is hypothesized that the way the
ecosystem (model) operates is that it tends to maximize
its exergy (goal function) according to the prevailing

21



Mar Ecol Prog Ser 271: 13–26, 2004

conditions at each time step by changing the proper-
ties (model parameters) of its components (state vari-
ables). Thus, according to this scheme, the same type
of models operate now with continuously changing
parameter values as determined by the goal function:
the optimization of the ecosystem’s exergy under the
variant environmental conditions. The first case stud-
ies to apply this approach gave plausible results and
reproduced structural shifts in the biotic compart-
ments, which with conventional approaches would
have been feasible with only very complex models
(Jorgensen 1999). This may be a promising framework
for getting reliable parameter estimates and more
effectively featuring ecosystem properties in models.
At this point however it cannot be claimed that this
structural dynamic approach gives better results than
the classic aquatic biochemical models. Further
research and more experience are needed before
applying these models for practical management pur-
poses.

In conclusion, our meta-analysis showed that the
performance of existing mechanistic aquatic bio-
geochemical models declines as we move from physi-
cal/chemical to biological components of planktonic
systems. The same decreasing trend was identified
when we compared phytoplankton with bacteria/zoo-
plankton simulations. In addition, longer simulation
periods and increased model complexity did not
improve model performance. Aquatic biogeochemical
modelers do not consistently apply conventional
methodological steps during model development (e.g.
sensitivity analysis, validation). Thus, the establish-
ment of a systematic methodological protocol for
aquatic biogeochemical model development, which is
widely accepted by the modeling community, would
be a very useful step. Data assimilation techniques, the
development of models with a stronger physiological
basis and the combination of the present family of
models with goal functions that allow for time-varying
parameters provide promising frameworks for improv-
ing simulations of planktonic processes. Finally, the
purpose of the model development, the adopted model
complexity, and the spatio-temporal scale of interest
should also be considered for developing performance
criteria that objectively evaluate the aquatic biogeo-
chemical models.

Acknowledgements. We thank C. L. DeCasperi (King County,
Department of Natural Resources and Parks), M. Danielsdot-
tir (Civil and Environmental Engineering, University of Wash-
ington), K. H. Reckhow (Nicholas School of the Environment
and Earth Sciences, Duke University) and 4 anonymous
reviewers for very useful suggestions and comments regard-
ing the manuscript. The study was supported by a grant from
the King County, Department of Natural Resources and
Parks, Wastewater Treatment Division.

LITERATURE CITED

Arhonditsis G, Tsirtsis G, Karydis M (2002) The effects of
episodic rainfall events to the dynamics of coastal marine
ecosystems: applications to a semi-enclosed gulf in the
Mediterranean sea. J Mar Syst 35:183–205

Aumont O, Belviso S, Monfray P (2002) Dimethylsulfoniopro-
pionate (DMSP) and dimethylsulfide (DMS) sea surface
distributions simulated from a global three-dimensional
ocean carbon cycle model. J Geophys Res C 107:3029

Baretta JW, Ebenhoh W, Ruardij P (1995) The European-
Regional Seas-Ecosystem-Model, a complex marine eco-
system model. J Sea Res 33:233–246

Beck MB (1987) Water-quality modeling — a review of the
analysis of uncertainty. Water Resour Res 23:1393–1442 

Boyd PW, Doney SC (2002) Modeling regional responses by
marine pelagic ecosystems to global climate change. Geo-
phys Res Lett 29(16):53-1–53-4

Broekhuizen N, Oldman J, Zeldis J (2003) Sub-grid-scale dif-
ferences between individuals influence simulated phyto-
plankton production and biomass in a shelf-sea system.
Mar Ecol Prog Ser 252:61–76

Cartwright N (1983) How the laws of physics lie. Clarendon
Press, Oxford

Costanza R, Sklar FH (1985) Articulation, accuracy and effec-
tiveness of mathematical models — a review of fresh-
water wetland applications. Ecol Model 27:45–68

Di Toro DM, Paquin PR, Subburamu K, Gruber DA (1990)
Sediment oxygen demand model: methane and ammonia
oxidation. J Environ Engr ASCE 116:945–986

Doney SC (1999) Major challenges confronting marine bio-
geochemical modeling. Global Biogeochem Cycles 13:
705–714

Doney SC, Kleypas JA, Sarmiento JL, Falkowski PG (2002)
The US JGOFS synthesis and modeling project — an intro-
duction. Deep-Sea Res II 49:1–20

Dugdale RC, Wilkerson FP, Minas HJ (1995) The role of a
silicate pump in driving new production. Deep-Sea Res I
42:697–719

Edwards AM, Brindley J (1999) Zooplankton mortality and
the dynamical behaviour of plankton population models.
Bull Math Biol 61:303–339

Edwards AM, Yool A (2000) The role of higher predation in
plankton population models. J Plankton Res 22:1085–1112

Evans GT (1999) The role of local models and data sets in the
Joint Global Ocean Flux Study. Deep-Sea Res I 46:
1369–1389

Evans GT (2003) Defining misfit between biogeochemical
models and data sets. J Mar Syst 40:49–54

Fagerstrom T (1987) On theory, data and mathematics in ecol-
ogy. Oikos 50:258–261

Fasham MJR Ducklow HW, McKelvie SM (1990) A nitrogen-
based model of plankton dynamics in the oceanic mixed
layer. J Mar Res 48:591–639

Fennel K, Losch M, Schroter J, Wenzel M (2001) Testing a
marine ecosystem model: sensitivity analysis and parame-
ter optimization. J Mar Syst 28:45–63

Fennel W, Neumann T (2001) Coupling biology and oceanog-
raphy in models. Ambio 30:232–236

Flynn KJ (2003) Modeling multi-nutrient interactions in
phytoplankton; balancing simplicity and realism. Prog
Oceanogr 56:249–279

Franks PJS (1995) Coupled physical-biological models in
oceanography. Rev Geophys 33:1177–1187

Franks PJS (2002) NPZ models of plankton dynamics: their
construction, coupling to physics, and application.
J Oceanogr 58:379–387

22



Arhonditsis & Brett: Mechanistic biogeochemical models

Frost BW, Kishi MJ (1999) Ecosystem dynamics in the eastern
and western gyres of the Subarctic Pacific — a review of
lower trophic level modeling. Prog Oceanogr 43:317–333

Geider RJ, MacIntyre HL, Kana TM (1998) A dynamic regula-
tory model of phytoplanktonic acclimation to light, nutri-
ents, and temperature. Limnol Oceanogr 43:679–694

Gregoire M, Brasseur P, Lermusiaux P (2003) The use of data
assimilation in coupled hydrodynamic, ecological and bio-
geo-chemical models of the ocean. 33rd International
Liège Colloquium on Ocean Dynamics. J Mar Syst 40–41:
1–3

Hamilton DP, Schladow SG (1997) Prediction of water quality
in lakes and reservoirs. 1. Model description. Ecol Model
96:91–110

Hood RR, Bates NR, Capone DG, Olson DB (2001) Modeling
the effect of nitrogen fixation on carbon and nitrogen
fluxes at BATS. Deep-Sea Res II 48:1609–1648

Hurtt GC, Armstrong RA (1999) A pelagic ecosystem model
calibrated with BATS and OWSI data. Deep-Sea Res II 46:
27–61

Ianson D, Allen SE (2002) A two-dimensional nitrogen and
carbon flux model in a coastal upwelling region. Global
Biogeochem Cycles 16: Art. no. 1011

Jorgensen SE (1994) Fundamentals of ecological modeling.
Elsevier Science, Amsterdam

Jorgensen SE (1997) Integration of ecosystem theories: a pat-
tern. Kluwer, Dordrecht

Jorgensen SE (1999) State-of-the-art of ecological modeling
with emphasis on development of structural dynamic
models. Ecol Model 120:75–96

Kantha LH, Clayson CA (2000) Small scale processes in geo-
physical fluid flows. Academic Press, San Diego

Kawamiya M (2002) Numerical model approaches to address
recent problems on pelagic ecosystems. J Oceanogr 58:
365–378

Klepper O (1997) Multivariate aspects of model uncertainty
analysis: tools for sensitivity analysis and calibration. Ecol
Model 101:1–13

Konikow LF, Bredehoeft JD (1992) Groundwater models can-
not be validated. Adv Water Resour 15:75–83

Lancelot C, Hannon E, Becquevort S, Veth C, De Baar HJW
(2000) Modeling phytoplankton blooms and carbon export
production in the Southern Ocean: dominant controls by
light and iron in the Atlantic sector in austral spring 1992.
Deep-Sea Res I 47:1621–1662

Le Pape O, Menesguen A (1997) Hydrodynamic prevention of
eutrophication in the Bay of Brest (France), a modeling
approach. J Mar Syst 12:171–186

Matear RJ (1995) Parameter optimization and analysis of

ecosystem models using simulated annealing — a case
study at station-P. J Mar Res 53:571–607

Mayer DG, Butler DG (1993) Statistical validation. Ecol Model
68:21–32

Moore JK, Doney SC, Kleypas JA, Glover DM, Fung IY (2002)
An intermediate complexity marine ecosystem model for
the global domain. Deep-Sea Res II 49:403–462

Omlin M, Brun R, Reichert P (2001) Biogeochemical model of
Lake Zurich: sensitivity, identifiability and uncertainty
analysis. Ecol Model 141:105–123

Oreskes N, Shrader-Frechette K, Belitz K (1994) Verification,
validation, and confirmation of numerical models in the
earth-sciences. Science 263:641–646

Patten BC (1997) Synthesis of chaos and sustainability in a
nonstationary linear dynamic model of the American
black bear (Ursus americanus pallas) in the Adirondack
Mountains of New York. Ecol Model 100:11–42

Power M (1993) The predictive validation of ecological and
environmental models. Ecol Model 68:33–50

Reckhow KH, Chapra SC (1999) Modeling excessive nutrient
loading in the environment. Environ Pollut 100:197–207

Rykiel EJ (1996) Testing ecological models: the meaning of
validation. Ecol Model 90:229–244

Schlitzer R (2002) Carbon export fluxes in the Southern
Ocean: results from inverse modeling and comparison
with satellite-based estimates. Deep-Sea Res II 49:
1623–1644

Spitz YH, Moisan JR, Abbott MR, Richman JG (1998) Data
assimilation and a pelagic ecosystem model: parameteri-
zation using time series observations. J Mar Syst 16:
51–68

Starfield AM, Bleloch AL (1986) Building models for conser-
vation and wildlife management. Macmillan, New York

Steele JH, Henderson EW (1992) The role of predation in
plankton models. J Plankton Res 14:157–172

Touratier F, Field JG, Moloney CL (2001) A stoichiometric
model relating growth substrate quality (C:N:P ratios) to
N:P ratios in the products of heterotrophic release and
excretion. Ecol Model 139:265–291

Tusseau-Vuillemin MH, Mortier L, Herbaut C (1998) Model-
ing nitrate fluxes in an open coastal environment (Gulf of
Lions): transport versus biogeochemical processes. J Geo-
phys Res C 103:7693–7708

Vallino JJ (2000) Improving marine ecosystem models: use of
data assimilation and mesocosm experiments. J Mar Res
58:117–164

Vallino JJ (2003) Modeling microbial consortiums as distrib-
uted metabolic networks. Biol Bull (Woods Hole) 204:
174–179

23

Aksnes DL, Ulvestad KB, Balino BM, Berntsen J, Egee JK, Svendsen
E (1995) Ecological modeling in coastal waters–towards predic-
tive physical-chemical-biological simulation models. Ophelia 41:
5–36

Allen JI (1997) A modeling study of ecosystem dynamics and nutri-
ent cycling in the Humber plume, UK. J Sea Res 38:333–359

Allen JI, Blackford JC, Radford PJ (1998) An 1-D vertically resolved
modeling study of the ecosystem dynamics of the middle and
southern Adriatic Sea. J Mar Syst 18:265–286

Allen JI, Howland RMH, Bloomer N, Uncles RJ (1998) Simulating the
spring phytoplankton bloom in the Humber plume, UK. Mar Pol-
lut Bull 37:295–305

Allen JI, Blackford J, Holt J, Proctor R, Ashworth M, Siddorn J (2001)
A highly spatially resolved ecosystem model for the North West
European Continental Shelf. Sarsia 86:423–440

Anderson TR, Williams PJL (1998) Modeling the seasonal cycle of
dissolved organic carbon at station E-1 in the English Channel.
Estuar Coast Shelf Sci 46:93–109

Arhonditsis G, Tsirtsis G, Karydis M (2000) Quantification of the
effects of non-point sources to coastal marine eutrophication:
applications to a semi-enclosed gulf in the Mediterranean Sea.
Ecol Model 129:209–227

Arhonditsis G, Tsirtsis G, Karydis M (2002) The effects of episodic
rainfall events to the dynamics of coastal marine ecosystems:
applications to a semi-enclosed gulf in the Mediterranean Sea.
J Mar Syst 35:183–205

Asaeda T, Van Bon T (1997) Modeling the effects of macrophytes on
algal blooming in eutrophic shallow lakes. Ecol Model 104:
261–287

Asaeda T, Trung VK, Manatunge J, Van Bon T (2001) Modeling

Appendix 1. Aquatic biogeochemical modeling studies used for present analysis



Mar Ecol Prog Ser 271: 13–26, 200424

macrophyte-nutrient-phytoplankton interactions in shallow eu-
trophic lakes and the evaluation of environmental impacts. Ecol
Eng 16:341–357

Barciela RM, Garcia E, Fernandez E (1999) Modeling primary pro-
duction in a coastal embayment affected by upwelling using
dynamic ecosystem models and artificial neural networks. Ecol
Model 120:199–211

Baretta-Bekker JG, Baretta JW, Ebenhoh W (1997) Microbial dynam-
ics in the marine ecosystem model ERSEM II with decoupled car-
bon assimilation and nutrient uptake. J Sea Res 38:195–211

Baretta-Bekker JG, Baretta JW, Hansen AS, Riemann B (1998) An
improved model of carbon and nutrient dynamics in the microbial
food web in marine enclosures. Aquat Microb Ecol 14:91–108

Bartholow J, Hanna RB, Saito L, Lieberman D, Horn M (2001) Simu-
lated limnological effects of the Shasta Lake temperature control
device. Environ Manag 27:609–626

Benoist AP, Brinkman AG, van Diepenbeek PMJA, Waals JMJ
(1998) Bekwaam, a model fit for reservoir design and manage-
ment. Water Sci Technol 37:269–276

Bierman VJ, Hinz SC, Zhu DW, Wiseman WJ, Rabalais NN, Turner
RE (1994) A preliminary mass-balance model of primary produc-
tivity and dissolved-oxygen in the Mississippi river plume inner
gulf shelf region. Estuaries 17:886–899

Blackford JC (1997) An analysis of benthic biological dynamics in a
North Sea ecosystem model. J Sea Res 38:213–230

Blackford JC (2002) The influence of microphytobenthos on the
Northern Adriatic ecosystem: a modeling study.  Estuar Coast
Shelf Sci 55:109–123

Blackford JC, Burkill PH (2002) Planktonic community structure and
carbon cycling in the Arabian Sea as a result of monsoonal for-
cing: the application of a generic model. J Mar Syst 36:239–267

Bocci M, Coffaro G, Bendoricchio G (1997) Modeling biomass and
nutrient dynamics in eelgrass (Zostera marina L.): applications to
the Lagoon of Venice (Italy) and Oresund (Denmark). Ecol Model
102:67–80

Bonnet MP, Poulin M (2002) Numerical modeling of the planktonic
succession in a nutrient-rich reservoir: environmental and physio-
logical factors leading to Microcystis aeruginosa dominance. Ecol
Model 156:93–112

Broekhuizen N, Heath MR, Hay SJ, Gurney WSC (1995) Modeling
the dynamics of the North-Sea mesozooplankton. Neth J Sea Res
33:381–406

Broekhuizen N, Hadfield M, Taylor AH (1998) Seasonal photoadap-
tation and diatom dynamics in temperate waters. Mar Ecol Prog
Ser 175:227–239

Brostrom G, Drange H (2000) On the mathematical formulation and
parameter estimation of the Norwegian Sea plankton system.
Sarsia 85:211–225

Cerco CF (1995) Simulation of long-term trends in Chesapeake Bay.
J Environ Eng-ASCE 121:298–310

Cerco CF, Cole T (1993) 3-dimensional eutrophication model of
Chesapeake Bay. J Environ Eng-ASCE 119:1006–1025

Cerco CF, Meyers M (2000) Tributary refinements to Chesapeake
Bay model. J Environ Eng-ASCE 126:164–174

Cerco CF, Seitzinger SP (1997) Measured and modeled effects of
benthic algae on eutrophication in Indian River Rehoboth Bay,
Delaware. Estuaries 20:231–248

Chau KW, Jin HH (2002) Two-layered, 2D unsteady eutrophication
model in boundary-fitted coordinate system. Mar Pollut Bull 45:
300–310

Chen CS, Wiesenburg DA, Xie LS (1997) Influences of river dis-
charge on biological production in the inner shelf: a coupled bio-
logical and physical model of the Louisiana–Texas shelf. J Mar
Res 55:293–320

Chen CS, Ji RB, Schwab DJ, Beletsky D, Fahnenstiel GL and 9 others
(2002) A model study of the coupled biological and physical
dynamics in Lake Michigan. Ecol Model 152:145–168

Christian JR, Verschell MA, Murtugudde R, Busalacchi AJ, McClain
CR (2002) Biogeochemical modeling of the tropical Pacific Ocean.
I. Seasonal and interannual variability. Deep-Sea Res II 49:
509–543

Coffaro G, Sfriso A (1997) Simulation model of Ulva rigida growth in
shallow water of the Lagoon of Venice. Ecol Model 102:55–66

Connolly JP, Coffin RB (1995) Model of carbon cycling in planktonic
food webs. J Environ Eng-ASCE 121:682–690

Crispi G, Crise A, Solidoro C (2002) Coupled Mediterranean eco-

model of the phosphorus and nitrogen cycles. J Mar Syst 33–34:
497–521

Dadou I, Lamy F, Rabouille C, Ruiz-Pino D, Andersen V, Bianchi M,
Garcon V (2001) An integrated biological pump model from the
euphotic zone to the sediment: a 1-D application in the northeast
tropical Atlantic. Deep-Sea Res II 48:2345–2381

Delfuria L, Rizzoli A, Arditi R (1995) Lakemaker — a general object-
oriented software tool for modeling the eutrophication process in
lakes. Environ Software 10:43–64

Doney SC, Glover DM, Najjar RG (1996) A new coupled, one-dimen-
sional biological-physical model for the upper ocean: applications
to the JGOFS Bermuda Atlantic time-series study (BATS) site.
Deep-Sea Res II 43:591–624

Dugdale RC, Barber RT, Chai F, Peng TH, Wilkerson FP (2002) One-
dimensional ecosystem model of the equatorial Pacific upwelling
system. Part II. Sensitivity analysis and comparison with JGOFS
EqPac data. Deep-Sea Res II 49:2747–2768

Ebenhoh W, Kohlmeier C, Radford PJ (1995) The benthic biological
submodel in the European-Regional Seas Ecosystem Model. Neth
J Sea Res 33:423–452

Ebenhoh W, Baretta-Bekker JG, Baretta JW (1997) The primary pro-
duction module in the marine ecosystem model ERSEM II, with
emphasis on the light forcing. J Sea Res 38:173–193

Eldridge PM, Sieracki ME (1993) Biological and hydrodynamic regu-
lation of the microbial food-web in a periodically mixed estuary.
Limnol Oceanogr 38:1666–1679

Evans GT (1999) The role of local models and data sets in the Joint
Global Ocean Flux Study. Deep-Sea Res I 46:1369–1389

Everbecq E, Gosselain V, Viroux L, Descy JP (2001) Potamon: a
dynamic model for predicting phytoplankton composition and
biomass in lowland rivers. Water Res 35:901–912

Fasham MJR, Evans GT (1995) The use of optimization techniques to
model marine ecosystem dynamics at the JGOFS station at
47º N–20º W. Philos Trans R Soc Lond B 348:203–209

Fasham MJR Ducklow HW, McKelvie SM (1990) A nitrogen-based
model of plankton dynamics in the oceanic mixed layer. J Mar Res
48:591–639

Fasham MJR, Sarmiento JL, Slater RD, Ducklow HW, Williams R
(1993) Ecosystem behavior at Bermuda station-S and Ocean
weather station India — a general-circulation model and observa-
tional analysis. Global Biogeochem Cycles 7:379–415

Fennel K, Losch M, Schroter J, Wenzel M (2001) Testing a marine
ecosystem model: sensitivity analysis and parameter optimization.
J Mar Syst 28:45–63

Fennel K, Spitz YH, Letelier RM, Abbott MR, Karl DM (2002) A
deterministic model for N-2 fixation at stn. ALOHA in the sub-
tropical North Pacific Ocean. Deep-Sea Res II 49:149–174

Flindt MR, Kamp-Nielsen L (1997) Modeling of an estuarine eutroph-
ication gradient. Ecol Model 102:143–153

Franks PJS, Chen CS (2001) A 3-D prognostic numerical model study
of the Georges bank ecosystem. Part II. Biological-physical model.
Deep-Sea Res II 48:457–482

Friedrichs MAM (2002) Assimilation of JGOFS EqPac and SeaWiFS
data into a marine ecosystem model of the central equatorial
Pacific Ocean. Deep-Sea Res II 49:289–319

Gabric A, Murray N, Stone L, Kohl M (1993) Modeling the produc-
tion of dimethylsulfide during a phytoplankton bloom. J Geophys
Res C 98:22805–22816

Gao HW, Feng SZ, Guan YP (1998) Modeling annual cycles of pri-
mary production in different regions of the Bohai Sea. Fish
Oceanogr 7:258–264

Garnier J, Billen G, Hannon E, Fonbonne S, Videnina Y, Soulie M
(2002) Modeling the transfer and retention of nutrients in the
drainage network of the Danube River. Estuar Coast Shelf Sci 54:
285–308

Gin KYH, Guo JH, Cheong HF (1998) A size-based ecosystem model
for pelagic waters. Ecol Model 112:53–72

Guillaud JF, Andrieux F, Menesguen A (2000) Biogeochemical mod-
eling in the Bay of Seine (France): an improvement by introducing
phosphorus in nutrient cycles. J Mar Syst 25:369–386

Hadfield MG, Sharples J (1996) Modeling mixed layer depth and
plankton biomass off the west coast of South Island, New
Zealand. J Mar Syst 8:1–29

Hassan H, Hanaki K, Matsuo T (1998) A modeling approach to simu-
late impact of climate change in lake water quality: phytoplank-
ton growth rate assessment. Water Sci Technol 37:177–185

Appendix 1 (continued)



Arhonditsis & Brett: Mechanistic biogeochemical models 25

Haupt OJ, Wolf U, Von Bodungen B (1999) Modeling the pelagic
nitrogen cycle and vertical particle flux in the Norwegian Sea.
J Mar Syst 19:173–199

Henderson EW, Steele JH (1995) Comparing models and observations
of shelf plankton. J Plankton Res 17:1679–1692

Hoch T, Garreau P (1998) Phytoplankton dynamics in the English
Channel: a simplified 3-dimensional approach. J Mar Syst 16:
133–150

Hood RR, Bates NR, Capone DG, Olson DB (2001) Modeling the
effect of nitrogen fixation on carbon and nitrogen fluxes at BATS.
Deep-Sea Res II 48:1609–1648

Hu WP, Salomonsen J, Xu FL, Pu PM (1998) A model for the effects
of water hyacinths on water quality in an experiment of physico-
biological engineering in Lake Taihu, China. Ecol Model 107:
171–188

Humborg C, Fennel K, Pastuszak M, Fennel W (2000) A box model
approach for a long-term assessment of estuarine eutrophication,
Szczecin Lagoon, southern Baltic. J Mar Syst 25:387–403

Hurtt GC, Armstrong RA (1999) A pelagic ecosystem model cali-
brated with BATS and OWSI data. Deep-Sea Res I 46:27–61

James RT, Bierman VJ (1995) A preliminary modeling analysis of
water-quality in Lake Okeechobee, Florida—calibration results.
Water Res 29:2755–2766

James RT, Martin J, Wool T, Wang PF (1997) A sediment resuspen-
sion and water quality model of Lake Okeechobee. J Am Water
Resour Assoc 33:661–680

Jamu DM, Piedrahita RH (2002) An organic matter and nitrogen
dynamics model for the ecological analysis of integrated aquacul-
ture/agriculture systems. II. Model evaluation and application.
Environ Model Software 17:583–592

Janse JH, Aldenberg T, Kramer PRG (1992) A mathematical-model
of the phosphorus cycle in Lake Loosdrecht and simulation of
additional measures. Hydrobiologia 233:119–136

Janse JH, Van Donk E, Aldenberg T (1998) A model study on the sta-
bility of the macrophyte-dominated state as affected by biological
factors. Water Res 32:2696–2706

Jayaweera M, Asaeda T (1995) Impacts of environmental scenarios
on chlorophyll a in the management of shallow, eutrophic lakes
following biomanipulation: an application of a numerical model.
Ecol Eng 5:445–468

Jewell PW (1995) A simple surface-water biogeochemical model. 2.
Simulation of selected lacustrine and marine settings. Water
Resour Res 31: 2059-2070

Jimenez-Montealegre R, Verreth J, Steenbergen K, Moed J,
Machiels M (1995) A dynamic simulation-model for the blooming
of Oscillatoria-Agardhii in a monomictic lake. Ecol Model 78:17-24

Jimenez-Montealegre R, Verdegem MCJ, van Dam A, Verreth JAJ
(2002) Conceptualization and validation of a dynamic model for
the simulation of nitrogen transformations and fluxes in fish
ponds. Ecol Model 147: 123-152

Karagounis I, Trosch J, Zamboni F (1993) A coupled physical-
biochemical model for forecasting water-quality — application to
the northern basin of lake Lugano. Aquat Sci 55:87–102

Kellershohn DA, Tsanis IK (1999) 3D eutrophication modeling of
Hamilton Harbour: analysis of remedial options J Gt Lakes Res 25:
3–25

Kiirikki M, Haapamaki J, Koponen J, Ruuskanen A, Sarkkula J
(1998) Linking the growth of filamentous algae to the 3D-ecohy-
drodynamic model of the Gulf of Finland. Environ Model Soft-
ware 13:503–509

Kuhn W, Radach G (1997) A one-dimensional physical-biological
model study of the pelagic nitrogen cycling during the spring
bloom in the northern North Sea (FLEX ’76). J Mar Res 55:
687–734

Kuusisto M, Koponen J, Sarkkula J (1998) Modeled phytoplankton
dynamics in the Gulf of Finland. Environ Model Software 13:
461–470

Lancelot C, Hannon E, Becquevort S, Veth C, De Baar HJW (2000)
Modeling phytoplankton blooms and carbon export production in
the Southern Ocean: dominant controls by light and iron in the
Atlantic sector in Austral spring 1992. Deep-Sea Res I 47:
1621–1662

Lancelot C, Staneva J, Van Eeckhout D, Beckers JM, Stanev E (2002)
Modeling the Danube-influenced north-western continental shelf
of the Black Sea. II. Ecosystem response to changes in nutrient
delivery by the Danube River after its damming in 1972. Estuar

Coast Shelf Sci 54:473–499
Lee JHW, Arega F (1999) Eutrophication dynamics of Tolo Harbour,

Hong Kong. Mar Pollut Bull 39:187–192
Lenhart HJ, Radach G, Ruardij P (1997) The effects of river input on

the ecosystem dynamics in the continental coastal zone of the
North Sea using ERSEM. J Sea Res 38:249–274

Le Pape O, Menesguen A (1997) Hydrodynamic prevention of
eutrophication in the Bay of Brest (France), a modeling approach.
J Mar Syst 12:171–186

Le Pape O, Jean F, Menesguen A (1999) Pelagic and benthic trophic
chain coupling in a semi-enclosed coastal system, the Bay of Brest
(France): a modeling approach. Mar Ecol Prog Ser 189:135–147

Levy M, Memery L, Andre JM (1998) Simulation of primary produc-
tion and export fluxes in the northwestern Mediterranean Sea.
J Mar Res 56:197–238

Lewis DM, Elliot JA, Lambert MF, Reynolds CS (2002) The simula-
tion of an Australian reservoir using a phytoplankton community
model: PROTECH. Ecol Model 150:107–116

Liu KK, Chao SY, Shaw Part, Gong GC, Chen CC, Tang TY (2002)
Monsoon-forced chlorophyll distribution and primary production
in the South China Sea: observations and a numerical study.
Deep-Sea Res I 49:1387–1412

Lonin SA, Tuchkovenko YS (2001) Water quality modeling for the
ecosystem of the Cienaga de Tesca coastal lagoon. Ecol Model
144:279–293

Marmefelt E, Arheimer B, Langner J (1999) An integrated biogeo-
chemical model system for the Baltic Sea. Hydrobiologia 393:
45–56

Marra J, Ho C (1993) Initiation of the spring bloom in the Northeast
Atlantic (47° N, 20° W) — a numerical simulation. Deep-Sea Res II
40:55–73

McGillicuddy DJ, McCarthy JJ, Robinson AR (1995) Coupled physi-
cal and biological modeling in the North Atlantic. 1. Model for-
mulation and one-dimensional bloom processes. Deep-Sea Res I
42:1313–1357

McClain CR, Arrigo K, Tai KS, Turk D (1996) Observations and sim-
ulations of physical and biological processes at ocean weather sta-
tion P, 1951–1980. J Geophys Res C 101:3697–3713

Menesguen A, Guillaud JF, Aminot A, Hoch T (1995) Modeling the
eutrophication process in a river plume — the Seine case study
(France). Ophelia 42:205–225

Menshutkin VV, Astrakhantsev GP, Yegorova NB, Rukhovets LA,
Simo TL, Petrova NA (1998) Mathematical modeling of the evolu-
tion and current conditions of the Ladoga Lake ecosystem. Ecol
Model 107:1–24

Mesple F, Casellas C, Trousellier M, Bontoux J (1995) Some difficul-
ties in modeling chlorophyll a evolution in a high rate algal pond
ecosystem. Ecol Model 78:25–36

Moll A (1998) Regional distribution of primary production in the
North Sea simulated by a three-dimensional model. J Mar Syst 16:
151–170

Moore JK, Doney SC, Kleypas JA, Glover DM, Fung IY (2002) An inter-
mediate complexity marine ecosystem model for the global domain.
Deep-Sea Res II 49:403–462

Muhammetoglu AB, Soyupak S (2000) A three-dimensional water
quality–macrophyte interaction model for shallow lakes. Ecol
Model 133:161–180

Murray AG, Parslow JS (1999) Modeling of nutrient impacts in Port
Phillip Bay — a semi-enclosed marine Australian ecosystem. Mar
Freshw Res 50:597–611

Napolitano E, Oguz T, Malanotte-Rizzoli P, Yilmaz A, Sansone E
(2000) Simulations of biological production in the Rhodes and Ion-
ian basins of the eastern Mediterranean. J Mar Syst 24:277–298

Oguz T, Ducklow H, Malanotte-Rizzoli P, Tugrul S, Nezlin NP, Unlu-
ata U (1996) Simulation of annual plankton productivity cycle in
the Black Sea by a one-dimensional physical-biological model.
J Geophys Res C 101:16585–16599

Oguz T, Ducklow HW, Purcell JE, Malanotte-Rizzoli P (2001) Model-
ing the response of top–down control exerted by gelatinous carni-
vores on the Black Sea pelagic food web. J Geophys Res C 106:
4543–4564

Olivieri RA, Chavez FP (2000) A model of plankton dynamics for the
coastal upwelling system of Monterey Bay, California. Deep-Sea
Res II 47:1077–1106

Omlin M, Reichert P, Forster R (2001) Biogeochemical model of Lake
Zurich: model equations and results. Ecol Model 141:77–103

Appendix 1 (continued)



Mar Ecol Prog Ser 271: 13–26, 200426

Oschlies A, Koeve W, Garcon V (2000) An eddy-permitting coupled
physical-biological model of the North Atlantic. 2. Ecosystem
dynamics and comparison with satellite and JGOFS local studies
data. Global Biogeochem Cycles 14:499–523

Park SS, Lee YS (2002) A water quality modeling study of the
Nakdong River, Korea. Ecol Model 152:65–75

Patsch J, Radach G (1997) Long-term simulation of the eutrophica-
tion of the North Sea: temporal development of nutrients, chloro-
phyll and primary production in comparison to observations. J Sea
Res 38:275–310

Patsch J, Kuhn W, Radach G, Casiano JMS, Davila MG, Neuer S,
Freudenthal T, Llinas O (2002) Interannual variability of carbon
fluxes at the North Atlantic Station ESTOC. Deep-Sea Res II 49:
253–288

Pei HP, Ma JY (2002) Study on the algal dynamic model for West
Lake, Hangzhou. Ecol Model 148:67–77

Petihakis G, Triantafyllou G, Koutsoubas D, Allen I, Dounas C (1999)
Modeling the annual cycles of nutrients and phytoplankton in a
Mediterranean lagoon (Gialova, Greece). Mar Environ Res 48:
37–58

Pondaven P, Fravalo C, Ruiz-Pino D, Treguer P, Queguiner B, Jean-
del C (1998) Modeling the silica pump in the permanently open
ocean zone of the Southern Ocean. J Mar Syst 17:587–619

Priyantha DGN, Asaeda T, Saitoh S, Gotoh K (1997) Modeling effects
of curtain method on algal blooming in reservoirs. Ecol Model 98:
89–104

Prunet P, Minster JF, Ruiz-Pino D, Dadou I (1996) Assimilation of sur-
face data in a one-dimensional physical–biogeochemical model of
the surface ocean. 1. Method and preliminary results. Global Bio-
geochem Cycles 10:111–138

Prunet P, Minster JF, Echevin V, Dadou I (1996) Assimilation of sur-
face data in a one-dimensional physical-biogeochemical model of
the surface ocean. 2. Adjusting a simple trophic model to chloro-
phyll, temperature, nitrate, and pCO2 data. Global Biogeochem
Cycles 10:139–158

Radach G, Lenhart HJ (1995) Nutrient dynamics in the North Sea —
fluxes and budgets in the water column derived from ERSEM.
Neth J Sea Res 33:301–335

Ruardij P, Vanraaphorst W (1995) Benthic nutrient regeneration in
the ERSEM ecosystem model of the North Sea. Neth J Sea Res 33:
453–483

Ruardij P, Van Haren H, Ridderinkhof H (1997) The impact of ther-
mal stratification on phytoplankton and nutrient dynamics in shelf
seas: a model study. J Sea Res 38:311–331

Sagehashi M, Sakoda A, Suzuki M (2000) A predictive model of
long-term stability after biomanipulation of shallow lakes. Water
Res 34:4014–4028

Sagehashi M, Sakoda A, Suzuki M (2001) A mathematical model of a
shallow and eutrophic lake (the Keszthely Basin, Lake Balaton)
and simulation of restorative manipulations. Water Res 35:
1675–1686

Salencon MJ, Thebault JM (1996) Simulation model of a mesotrophic
reservoir (Lac de Pareloup, France): MELODIA, an ecosystem
reservoir management model. Ecol Model 84:163–187

Savchuk OP (2002) Nutrient biogeochemical cycles in the Gulf of
Riga: scaling up field studies with a mathematical model. J Mar
Syst 32:253–280

Schartau M, Oschlies A, Willebrand J (2001) Parameter estimates of
a zero-dimensional ecosystem model applying the adjoint
method. Deep-Sea Res II 48:1769–1800

Schladow SG, Hamilton DP (1997) Prediction of water quality in
lakes and reservoirs. 2. Model calibration, sensitivity analysis and
application. Ecol Model 96:111–123

Sharples J, Tett P (1994) Modeling the effect of physical variability
on the midwater chlorophyll maximum. J Mar Res 52:219–238

Shen YM, Zheng YH, Komatsu T, Kohashi N (2002) A three-dimen-
sional numerical model of hydrodynamics and water quality in
Hakata Bay. Ocean Eng 29:461–473

Sin Y, Wetzel RL (2002) Ecosystem modeling analysis of size-struc-
tured phytoplankton dynamics in the York River estuary, Virginia
(USA). II. Use of a plankton ecosystem model for investigating
controlling factors on phytoplankton and nutrient dynamics. Mar
Ecol Prog Ser 228:91–101

Six KD, Maier-Reimer E (1996) Effects of plankton dynamics on sea-
sonal carbon fluxes in an ocean general circulation model. Global

Biogeochem Cycles 10:559–583
Skliris N, Elkalay K, Goffart A, Frangoulis C, Hecq JH (2001) One-

dimensional modeling of the plankton ecosystem of the north-
western Corsican coastal area in relation to meteorological con-
straints. J Mar Syst 27:337–362

Soiland H, Skogen MD (2000) Validation of a three-dimensional bio-
physical model using nutrient observations in the North Sea. ICES
J Mar Sci 57:816–823

Soyupak S, Mukhallalati L, Yemisen D, Bayar A, Yurteri C (1997)
Evaluation of eutrophication control strategies for the Keban Dam
reservoir. Ecol Model 97:99–110

Spitz YH, Moisan JR, Abbott MR, Richman JG (1998) Data assimila-
tion and a pelagic ecosystem model: parameterization using time
series observations. J Mar Syst 16:51–68

Spitz YH, Moisan JR, Abbott MR (2001) Configuring an ecosystem
model using data from the Bermuda Atlantic Time Series (BATS).
Deep-Sea Res II 48:1733–1768

Stramska M, Dickey TD (1994) Modeling phytoplankton dynamics in
the Northeast Atlantic during the initiation of the spring bloom.
J Geophys Res C 99:10241–10253

Suzuki M, Sagehashi M, Sakoda A (2000) Modeling the structural
dynamics of a shallow and eutrophic water ecosystem based on
mesocosm observations. Ecol Model 128:221–243

Taguchi K, Nakata K (1998) Analysis of water quality in Lake
Hamana using a coupled physical and biochemical model. J Mar
Syst 16:107–132

Tamsalu R, Ennet P (1995) Ecosystem modeling in the Gulf of Fin-
land. 2. The aquatic ecosystem model FINEST. Estuar Coast Shelf
Sci 41:429–458

Taylor AH, Harbour DS, Harris RP, Burkill PH, Edwards ES (1993)
Seasonal succession in the pelagic ecosystem of the North-
Atlantic and the utilization of nitrogen. J Plankton Res 15:875–891

Tett P, Walne A (1995) Observations and simulations of hydrography,
nutrients and plankton in the southern North-Sea. Ophelia 42:
371–416

Thebault JM, Salencon MJ (1993) Simulation model of a mesotrophic
reservoir (Lac-de-Pareloup, France) — biological model. Ecol
Model 65:1–30

Tian RC, Vezina AF, Legendre L, Ingram RG and 7 others (2000)
Effects of pelagic food-web interactions and nutrient remineral-
ization on the biogeochemical cycling of carbon: a modeling
approach. Deep-Sea Res II 47:637–662

Tian RC, Vezina AF, Starr M, Saucier F (2001) Seasonal dynamics of
coastal ecosystems and export production at high latitudes: a
modeling study. Limnol Oceanogr 46:1845–1859

Triantafyllou G, Petihakis G, Dounas C, Theodorou A (2001) Assess-
ing marine ecosystem response to nutrient inputs. Mar Pollut Bull
43:175–186

Tufford DL, McKellar HN (1999) Spatial and temporal hydrodynamic
and water quality modeling analysis of a large reservoir on the
South Carolina (USA) coastal plain. Ecol Model 114:137–173

Tusseau MH, Lancelot C, Martin JM, Tassin B (1997) One-D coupled
physical-biological model of the northwestern Mediterranean
Sea. Deep-Sea Res II 44:851–880

Varela RA, Cruzado A, Tintore J, Ladona EG (1992) Modeling the
deep-chlorophyll maximum — a coupled physical–biological
approach. J Mar Res 50:441–463

Varela RA, Cruzado A, Gabaldon JE (1995) Modeling primary pro-
duction in the North-Sea using the European-regional seas-
ecosystem-model. Neth J Sea Res 33:337–361

Vichi M, Pinardi N, Zavatarelli M, Matteucci G, Marcaccio M,
Bergamini MC, Frascari F (1998) One-dimensional ecosystem
model tests in the Po Prodelta area (Northern Adriatic Sea). Envi-
ron Model Software 13:471–481

Wang PF, Martin J, Morrison G (1999) Water quality and eutrophica-
tion in Tampa Bay, Florida. Estuar Coast Shelf Sci 49:1–20

Wirtz KW, Echkardt B (1996) Effective variables in ecosystem models
with an application to phytoplankton succession. Ecol Model 92:
33–53

Yanagi T, Inoue K, Montani S, Yamada M (1997) Ecological model-
ing as a tool for coastal zone management in Dokai Bay, Japan.
J Mar Syst 13:123–136

Zavatarelli M, Baretta JW, Baretta-Bekker JG, Pinardi N (2000) The
dynamics of the Adriatic Sea ecosystem: an idealized model
study. Deep-Sea Res I 47:937–970

Appendix 1 (continued)

Editorial responsibility: Otto Kinne (Editor), 
Oldendorf/Luhe, Germany

Submitted: July 23, 2003; Accepted: January 20, 2004
Proofs received from author(s): April 19, 2004


