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INTRODUCTION

Estuarine ecosystems form the transition zone be-
tween adjacent terrestrial, riverine, and oceanic
regions. Biogeochemically reactive materials enter
estuaries from the watershed and atmosphere and are
processed within estuarine systems prior to being
transported to the ocean (Kemp & Boynton 1984). Estu-
arine processing of anthropogenic and terrestrially
derived materials is regulated by a balance between

physical transport and biogeochemical uptake and
recycling (Kemp & Boynton 1984, Smith et al. 1991,
Howarth et al. 1996). Understanding the nature and
magnitude of these transformation and transport pro-
cesses is essential for evaluating and managing estuar-
ine production and nutrient cycling.

Past estuarine ecological research has elucidated
regional variation in key biogeochemical processes
(e.g. Cloern et al. 1983, Smith et al. 1991, Cowan et al.
1996). In upper regions of estuaries, high organic car-
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estuary during winter and spring supported >100% of the spring phytoplankton bloom. The spring
bloom, which subsequently sinks across the pycnocline to the bottom layer, was decomposed in
May–September to support 50 to 90% of annual bottom-layer NH4

+, PO4
3–, and silicate regeneration.

Sinking POC from surface waters accounted for 50 to 100% of bottom-layer respiration in the middle
estuary, with deficits partially compensated by organic carbon delivered in landward flowing bottom
water. Lateral transport of POC to the central channel from adjacent shallow waters was required to
meet bottom water respiratory demands. Bottom-layer regeneration and subsequent upward trans-
port of nutrients were sufficient to support 70 to 80% of summer rates of net organic production in
surface layers. Pelagic and benthic processes were most tightly linked in the middle estuary, which is
highly productive and does not interact strongly with adjacent waters. Elevated nutrient inputs to the
estuary associated with high freshwater flow enhanced chlorophyll a, net O2 production, and net DIN
uptake in surface layers; however, muted effects of flow on bottom-layer processes suggest that much
of the increased organic production in surface layers during high flow is transported to seaward
regions.
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bon loads and high turbidity cause low phytoplankton
productivity (Pennock & Sharp 1994) and net eco-
system heterotrophy (Smith et al. 1991, Heath 1995,
Kemp et al. 1997). Phytoplankton biomass and produc-
tivity maxima often occur in regions with high nutri-
ents and sufficient light (Kocum et al. 2002), typically
the seaward reaches of the estuary (Harding et al.
2002). Regional maxima of benthic respiration and
nutrient regeneration tend to occur in regions with the
highest surface water productivity and phytoplankton
biomass (e.g. Cowan & Boynton 1996).

Estuarine biogeochemical processes also exhibit dis-
tinct seasonal trends. Although peak phytoplankton
biomass may occur in summer or spring, primary pro-
ductivity maxima tend to occur in summer for temper-
ate estuaries (Harding et al. 2002). Net ecosystem pro-
duction (i.e. total ecosystem organic production minus
respiration) also varies seasonally, depending on the
magnitude and timing of freshwater, organic carbon,
and inorganic nutrient inputs (Smith & Hollibaugh
1997, Kemp et al. 1997). In many temperate systems,
benthic nutrient regeneration tends to follow seasonal
temperature cycles (Fisher et al. 1982, Cowan & Boyn-
ton 1996).

Seasonal and regional patterns in biogeochemical
processes may be mediated by horizontal and vertical
transport. Under high freshwater flow conditions, ele-
vated nutrient inputs fuel phytoplankton biomass and
sinking (Boynton & Kemp 2000), but strong horizontal
seaward transport may separate regions of high pro-
ductivity from depositional areas (Hagy et al. 2005).
Although the timing or magnitude of benthic respira-
tion and nutrient regeneration are strongly regulated
by temperature (Cowan et al. 1996), these processes
often respond rapidly to vertical sinking of particulate
organic material (Graf et al. 1982, Boynton & Rohland
2001). Nutrients regenerated from sinking organic
material may then be transported vertically to surface
waters to fuel productivity (Kemp & Boynton 1984,
Malone et al. 1988).

A conceptual model was developed to describe how
linkages between biogeochemical and physical pro-
cesses vary seasonally and regionally in partially-
stratified estuaries (Kemp & Boynton 1984). The model
suggested that large spring nutrient inputs are trans-
formed from dissolved into particulate forms in upper
estuarine regions and transported seaward, where
they sink to the bottom layer and are decomposed to
regenerate dissolved inorganic nutrients which diffuse
upward to fuel summer peaks in phytoplankton
productivity. Because this hypothetical model is quali-
tative, it would be useful to examine these coupled
ecological, biogeochemical, and physical transport
processes using a quantitative, integrated approach.

The purpose of this paper is to provide such an

analysis for a partially-stratified estuary using a salt-
and water-balance ‘box model’ applied to water qual-
ity monitoring databases to compute rates of net bio-
geochemical production and physical transport for
nutrients, O2, and organic carbon. The specific objec-
tives of this analysis were to: (1) quantify and assess
the seasonal and regional coupling of nutrient delivery
and transformation with organic production; (2) quan-
tify the seasonal coupling between organic production,
POC sinking, and benthic respiration; and (3) deter-
mine how variations in river flow effect biogeochemi-
cal processes.

METHODS

Study site and data availability. The Patuxent River
estuary is a tributary system of Chesapeake Bay
(Fig. 1). The estuary is ~65 km long, has a mean low-
water estuarine volume of 577 × 106 m3, and a surface
area of 126 × 106 m2. It averages 2.2 km in width and
6.0 m in depth over the most seaward 45 km of the
estuary with a mean tidal range varying from 0.4 m
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near the estuary mouth to 0.8 m in the upper estuary
(Hagy 1996). Two-layered circulation occurs for most
of the year in the estuary, with a seaward-flowing sur-
face layer and a landward-flowing bottom layer. The
upper estuary (above km 45) is vertically well-mixed.
Freshwater discharge at the head of the tide averaged
10.3 m3 s–1 from 1977 to 2003 (http://va.water.usgs. gov/
chesbay/RIMP/adaps2/pat.adaps.dat). Water quality
has been monitored at 2 to 4 wk intervals for 9 stations
along the estuarine axis since 1985, including mea-
surements of salinity, temperature, O2, chlorophyll a
(chl a), and dissolved and particulate forms of nutrients
and organic carbon (www.chesapeakebay.net, Fig. 1).
In addition, a series of continuous water quality sensors
(measuring O2, temperature, chl a) were deployed
from spring through fall at 6 stations in the estuary
(www.eyesonthebay.net, www.act-us.info).

Computing salt and water transport. In this study,
we computed the Patuxent estuary’s time-dependent,
seasonal mean circulation using mean monthly
salinity (www.chesapeakebay.net) and freshwater
input data (http://va.water.usgs.gov/chesbay/RIMP/
adaps2/pat.adaps.dat, http://www7.ncdc.noaa.gov/
IPS/MCDWPubs?action=getpublication). This box-
modeling approach computes advective and diffusive
exchanges of water and salt between adjacent control
volumes (which are assumed to be well-mixed) and
across end-member boundaries using the solution to
non-steady-state equations balancing salt and water
inputs, outputs, and storage changes (Pritchard 1969,
Officer 1980, Hagy et al. 2000). Stratified estuarine
regions are represented by surface and bottom layers
that capture the essential features of 2-layered estuar-
ine circulation (Pritchard 1969). The box model used in
this analysis calculates advection and mixing between
6 boxes in the Patuxent River estuary (Boxes 2 to 6
include surface and bottom-layer sub-boxes, Figs. 1 &
2; Hagy et al. 2000). Boundaries separating adjacent
boxes were defined based on data availability, degree
of density stratification, and an effort to retain similar
salinity gradients and water volumes among boxes.
The salt and water balances (Eqs. 1 & 2 respectively)
for a surface-layer box ‘m ’ in the 2-layer scheme are
described below:

(1)

(2)

where Vm is the volume of the box, Qm and Qm–1 are
the advective transports to the seaward box and from
the landward box, Qvm is the vertical advective input
into the box, Em–1,m and Em,m+1 are the diffusive

exchanges with the landward and seaward boxes, Evm

is the vertical diffusive exchange, sm and s’m are the
salinities in the upper and bottom-layer boxes, and sm–1

and sm+1 are the salinities in the landward and seaward
boxes, and t is time. We assumed that Em,m–1 = 0 for m ≠
2, Em,m+1 = 0 for m ≠ 1, and Evm = 0 and Qvm = 0 for m =
1 (Officer 1980, Hagy et al. 2000). For Eq. (2), Qfm is the
freshwater input directly into the box. The left hand
side of Eq. (1) is computed as the monthly salinity
change, while the left hand side of Eq. (2) is assumed to
be zero at monthly time scales. The salt and water bal-
ances (Eqs. 3 & 4) for a bottom-layer box ‘m’ in the 2-
dimensional scheme are similar:

(3)

(4)
where Q’m and Q’m+1 are the advective transports to
the landward box and from the seaward box and s’m+1

is the salinity of the seaward box in the bottom layer.
Nutrient transport and production rates. We com-

puted monthly and seasonal rates of transport and net
biogeochemical production of dissolved O2, nutrients,
and organic carbon for 6 regions of the Patuxent River
estuary from 1985 to 2003. Physical transport rates for
these non-conservative biogeochemical variables were
computed by multiplying the solute concentration by
the advective and non-advective fluxes (Q’s and E ’s,
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respectively) for each box and month. Rates
were calculated for the following variables: (1)
dissolved inorganic nitrogen (DIN = NO2

– +
NO3

– + NH4
+), (2) dissolved inorganic phospho-

rus (DIP = PO4
3–), (3) dissolved silicate (DSi), (4)

total organic carbon (TOC), and (5) dissolved
O2. Monthly mean values of these variables
were computed for each box (and upstream
and downstream boundaries) from water qual-
ity monitoring data (see Fig. 1 for monitoring
stations) using a simple linear spatial interpola-
tion scheme with a grid of 477 cells spaced at
1 m vertical intervals, 1.85 km horizontal inter-
vals, and spanning the width of the estuary for
each sampling date (Hagy et al. 2000). Net bio-
geochemical production rates (Pm or P ’m = production –
consumption) for each non-conservative water quality
variable were computed for each box using the analyt-
ical solutions for the advective (Q) and diffusive (E)
transport rates in each box. The equations are similar
in form to Eqs. (1) & (2), except salinity is replaced with
the water quality variable and the net production term
(Pm or P ’m) is added. Thus, for a surface-layer box ‘m’ in
the 2-layer scheme of the box-model without longitudi-
nal E ’s, the mass balance equation is:

(5)
which can be rearranged to calculate Pm:

(6)
For any bottom-layer box ‘m’, the mass balance
expression is:

(7)

which can be rearranged to calculate bottom-layer net
production, P ’m:

(8)

where c is the concentration of the non-conservative
material and Pm and P ’m are the net production (or
consumption) rates in the surface and bottom layers,
calculated per unit area or volume using geometry
data for each box (Table 1).

Input terms for wet atmospheric deposition of DIN
were added to mass-balance equations of surface-
layer boxes and deposition rates were calculated using
data for precipitation volume and concentrations of
NO3

– and NH4
+ (http://nadp.sws.uiuc.edu). We also

tested for the effects of direct non-point nutrient inputs
to each box using the Chesapeake Bay Watershed
Model (Linker et al. 1996, L. Linker pers. comm.) and
found that these terms did not substantially affect the
net production rates. We omitted non-point inputs in
our calculations due to widely recognized uncertain-
ties in model-generated loading rates and to prevent
the introduction of unknown error (Williams et al.
2006).

Computing net production of dissolved O2 in surface
layers required adjustments to O2 concentrations and
the box-model calculation. The first step was to adjust
observed O2 concentrations at a particular time of day
to the equivalent daily mean O2 value for that day. This
was accomplished using measurements of diel varia-
tions in O2 concentrations (15 min intervals) observed
at nearby moored-sensor stations (Fig. 1). Hourly mean
O2 values (as % saturation) were calculated for each
month of the year at 6 moored-sensor stations (www.
eyesonthebay.net, www.act-us.info, Fig. 1) that span
the estuarine axis; for the 2 surface boxes without a
sensor, we used the average of the 2 adjacent boxes.
We then calculated a ‘diel correction’ coefficient for
each hour of the day in each month at each station as
the ratio of the daily mean O2 concentration to the
hourly mean O2 concentration for the sampling hour in
that day. The ‘daily mean corrected’ O2 value was cal-
culated by multiplying the measured O2 concentration
from the grab sample by the ‘diel correction’ coeffi-
cient for time of day and month.

The second step involved adjusting computed rates
of net O2 production in surface boxes for the effects of
air-water gas exchange. We computed the air-water O2

exchange (FA–O2) on monthly time-scales using O2 val-
ues measured in the top 0.5 m of the water column
(corrected for time of day) following Caffrey (2003):
FA–O2 = α(1 – CO2/CO2s) where α is the air–water
exchange coefficient (mmol O2 m–2 d–1), CO2 is the
adjusted daily mean O2 concentration at 0.5 m depth
(mmol m–3), and CO2s is the O2 saturation value (mmol
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Box Volume (106 m3) Surface area (106 m2)  Mean depth (m)
Surface Bottom MLW Pycnocline Surface Bottom

1 17.60 7.20 2.43
2 29.70 3.50 17.90 1.70 1.66 2.03
3 63.80 17.90 26.10 5.90 2.45 3.03
4 104.00 33.50 28.40 7.30 3.67 4.57
5 110.00 44.00 24.20 5.80 4.53 7.59
6 100.00 62.80 22.20 9.00 4.50 6.95

Table. 1. Physical dimensions of all boxes for the box model of Hagy et
al. (2000). Dimension information may be used to convert all box
model computed nutrient transport and production rates to the desired
units. MLW: area of each surface box at mean low water. Box 

boundaries are shown in Fig. 1
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m–3). Using published relationships with wind speed
(e.g. Marino & Howarth 1993) and monthly mean wind
data observed at the nearby airport, we chose a value
for α of 3.75 × 102 mmol m–2 d–1 (0.5 g m–2 h–1) for all
months. Analyses of wind data suggested that there
were significant variations in wind velocity on daily to
weekly scales, but there were no significant monthly or
seasonal trends.

Assessing error in box-model rates. The monitoring
data used to compute monthly mean concentrations for
a given control volume in each box were collected
from vertical profiles at mid-channel stations (Fig. 1) at
2 to 4 wk intervals. Although the boxes span the width
of the estuary, containing both deep 2-layer regions
near the estuarine channel and shallow (<4 m) verti-
cally mixed areas flanking the channel, previous stud-
ies of Chesapeake Bay tributary monitoring data
revealed that parallel measurements at mid-channel
and adjacent near-shore areas were statistically indis-
tinguishable for 90% of the time when stations were
<2 km apart (Kemp et al. 2004). Comparisons of con-
tinuous (15 min) mid-channel measurements of salinity
and O2 (www.act-us.info) with measurements from
shallow water sensors in 2004 (www.eyesonthebay.
net) showed significant correlations between the 2
sites (salinity: r2 = 0.50, O2: r2 = 0.43, p < 0.01) and
nearly equivalent means. In addition, significant corre-
lations between monthly averages of mid-channel
grab samples (www.chesapeakebay.net) and continu-
ous shallow water sensors in 2004 and 2005 suggest
that mid-channel grab samples characterize the key
temporal variability for entire boxes (salinity: r2 =
0.91–0.98, O2: r2 = 0.72–0.95, p < 0.01). Slopes of the
linear fits were always ~1 (range: 0.75–1.4).

Stoichiometric calculations. The net production
rates computed with the box-model were used to esti-
mate additional biogeochemical processes by assum-
ing fixed stoichiometric relationships between vari-
ables (C:Si:O2) based on elemental compositions of
algal (e.g. diatom) cells (Redfield 1958). We estimated
the contribution of diatom photosynthesis to total net
organic carbon production rates by applying a stoi-
chiometric adjustment to the computed surface-layer
net DSi production rate: PCSim = kC:Si (–PSim), where
PCSim is the net carbon production (for Box m) attrib-
uted to diatoms (mmol C m–3 d–1), kC:Si is the assumed
carbon-silica ratio for diatoms of 6.625 (Redfield 1958),
and PSim is the computed surface net DSi production
rate (mmol Si m–3 d–1) for Box m (Hagy 1996).

We also estimated the sinking flux of particulate
organic carbon, POC (SPOCm, mmol C m–2 d–1) between
surface and bottom layers using box-model computed
net production rates for O2 and total organic carbon
(TOC) in the surface layer in the stratified estuarine
regions (Boxes 2–6) as follows: SPOCm = kC:O PO2m –

PTOCm, where PO2m is the surface-layer net O2 produc-
tion rate (mmol O2 m–2 d–1), PTOCm is surface-layer net
production rate of TOC (mmol C m–2 d–1), and kC:O is
the photosynthetic quotient (assumed to be 1.0). This
formulation assumes that, in the absence of POC sink-
ing, net O2 production (converted to carbon units) and
TOC production are equivalent.

RESULTS

Spatial and temporal variation in concentrations

Typical seasonal and regional variations in concen-
tration and distribution of chl a, salinity, and dissolved
O2 are illustrated using time-space isopleths for 1995, a
year of average freshwater flow (Fig. 3). A phytoplank-
ton chl a peak occurred in early spring during the
period of maximum nutrient loading (Kemp and Boyn-
ton 1984) and migrated seaward during the following
month, eventually disappearing from the water column
in late spring (Fig. 3). The peak extended to 7 to 10 m
in depth and 20 to 30 km along the axis of the middle
estuary (Fig. 3). There was a vertical gradient in chl a,
with the higher concentrations in the surface in early
spring, but in the bottom during late spring. Hypoxia
(O2 < 2 mg l–1) developed in deep water during late
spring (May to June) in the region where the chl a
peak occurred earlier in the season (February to April;
Fig. 3). Nutrient concentrations were generally highest
in the upper estuary. Seasonal minima of DIN and DSi
occurred in the middle and lower estuary during
summer, while DIP peaked during summer in these
regions.

Seasonal variation in modeled non-conservative
rates

Rates of net biogeochemical production for non-
conservative water quality variables were computed for
each month over the 19 yr record and monthly mean val-
ues (± SE) were computed for all years. Strong seasonal
trends were evident in the data. Monthly box-model-
computed net production rates for all years in the data
set (19 yr) were grouped (n = 12) and a 1-way ANOVA
with a Scheffe’s Test was used to determine if the
monthly rates were significantly different in each estuar-
ine region. These tests revealed that the peak seasonal
rates were significantly (p < 0.05) higher than seasonal
minimum rates for all variables, except for surface-layer
net O2 production in the middle and lower estuary.

In the upper estuary, peaks in net O2 uptake
(–80 mmol O2 m–2 d–1) corresponded to peaks in net
DIP production in summer, but with reduced net DIN

67
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and DSi uptake (<2 mmol m–2 d–1) relative to other
regions (Fig. 4). Surface net O2 production (net
autotrophy) peaked in late spring (60 to 80 mmol m–2

d–1) in the middle and lower estuary and was linked to
net DSi uptake (–5 mmol Si m–2 d–1) and the seasonal

chla peak (see Fig. 8). In summer, however, there was
net production (10 to 25 mmol Si m–2 d–1) of DSi
throughout the estuary. The annual peak in net DIN
uptake (–5 mmol N m–2 d–1) lagged ~1 mo behind the
maximum of net O2 production.
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Bottom-layer rates of net DSi (8 to 20 mmol Si m–2

d–1), DIN (4 to 20 mmol N m–2 d–1), and DIP (0.6 to 1.2
mmol P m–2 d–1) production peaked between May and
September throughout the estuary corresponding to
peaks in net O2 uptake (Fig. 4). DIP, NH4

+, and DSi re-
generation and bottom net O2 uptake were significantly
correlated with temperature throughout the estuary,
but the correlations were highest in the middle estuary
(Fig. 5). The magnitudes of nutrient regeneration and
O2 uptake m–2 were generally highest in the lower estu-
ary (see Fig. 7). Despite these relationships, 50 to 80%
of the variation was not explained by temperature.

On a monthly scale, surface-layer rates of net O2 pro-
duction and net nutrient uptake were generally en-

hanced in wet years (river flow > 20 yr average), rela-
tive to dry years (Fig. 6; net O2 production was elevated
by 1 to 15 mmol m–2 d–1). In the surface layers of the
middle and lower estuary during the summer of wet
years, measured chl a levels were elevated by 10 to
15 μg l–1. Consequently, summer net DIN uptake was
0.3 to 1.5 mmol m–3 d–1 higher during wet years and the
summer peak persisted later in the year in the middle
and lower estuary. Differences between surface-layer
net O2 production, net DIN uptake, and measured chl a
in the summers (averaged over May–August) of wet
versus dry years were significant in the middle and
lower estuary, but bottom-layer rates were not sig-
nificantly affected by flow (ANOVA, p < 0.05).
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Axial distributions of modeled non-conservative
rates

Surface-layer rates of net O2 production reveal a gra-
dient along the estuary’s length from net heterotrophy
in landward estuarine regions to net autotrophy in sea-
ward regions (Boxes 1 & 2 and 3 to 5 respectively), with
peak net O2 production (40 to 100 mmol O2 m–2 d–1)
occurring in the middle estuary (Fig. 7). Axial chl a dis-

tributions revealed a peak in Boxes 3 & 4, where the
highest net O2 production rates occurred. The highest
chl a measurements were made during spring in the
middle and lower estuary (spring bloom) and in sum-
mer in the upper estuary (Boxes 1 & 2). Net DIN and
DIP uptake occurred in the surface layer of Boxes 3 to
6, and highest rates (0.08 to 0.16 mmol DIP m–2 d–1, 3 to
4 mmol DIN m–2 d–1) occurred in the middle estuary,
where net O2 production rates and chl a were highest.

On the annual scale, net O2 production was nearly
twice as high during wet years than during dry years,
but bottom-layer net O2 uptake did not significantly
increase with higher flow (Fig. 7). Chl a was signifi-
cantly (p < 0.01) elevated and the regional peak shifted
20 km seaward under high flow conditions. Surface-
layer rates of net DIN and DIP uptake were highest in
the middle estuary during wet years and increased
with river flow up to 30%. Mean annual rates of river
flow were positively correlated with mean annual chl a
(r2 = 0.24 to 0.50, p < 0.01), net DIN uptake (r2 =
0.32–0.46, p < 0.01), and net O2 uptake (r2 = 0.38 to
0.56, p < 0.01) in the middle and lower estuary. During
wet years, surface net DIP uptake increased in the
middle estuary (Boxes 2 to 5), but decreased at the
landward and seaward extremes (Boxes 1 & 6 respec-
tively). Bottom-layer net O2 uptake, chl a, and DIP pro-
duction were 5 to 30% higher in wet years relative to
dry years in the middle and lower estuary, but these
differences were not significant (p > 0.05, Fig. 7). The
axial distribution of rate magnitudes did not change
with variation in freshwater inputs.

Stoichiometric computations

Seasonal patterns of POC sinking generally followed
those observed for POC concentration and peaked at
75 to 100 mmol C m–2 d–1 in late winter and spring
(February to April) throughout the estuary (Fig. 8). A
spring peak in net DSi uptake (5 mmol C m–3 d–1)
occurred in the middle estuary (Boxes 3 & 4; Fig. 8).
POC sinking and concentration and chl a were higher
in the middle estuary than lower regions. POC sinking
rates were relatively low during summer, but in-
creased to a fall peak of 10 to 30 mmol C m–2 d–1. Com-
puted settling rates (calculated as POC sinking flux
divided by the POC concentration) ranged from 0.4 to
0.6 m d–1 during winter spring and 0.1 to 0.2 m d–1 dur-
ing summer.

Pelagic-benthic coupling

Relationships between surface- and bottom-layer
biogeochemical rates illustrate the nature and regional
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variations of vertical coupling along the estuarine axis.
We found significant (p < 0.05) positive correlations
between modeled annual mean surface-layer net O2

production and bottom-layer O2 uptake in the middle
(r2 = 0.43, p < 0.01, Fig. 9a) and lower estuary (r2 = 0.26,
p < 0.05). The correlation was strongest and the rates
were highest in the middle estuary with reduced rates
in the lower estuary. Modeled surface-layer net O2

production (0.3 to 1.3 × 103 kmol O2 d–1) exceeded bot-
tom-layer net O2 uptake (0.3 to 0.9 × 103 kmol O2 d–1) in
the middle estuary (Fig. 9a).

Positive correlations were observed between surface
chla and modeled bottom-layer net O2 uptake and the
chl a versus net O2 uptake relationship was strongest
for the middle estuary (r2 = 0.40, p < 0.01) but the rela-
tionship was also significant for the upper estuary.
Modeled spring POC sinking was also positively corre-
lated with modeled bottom-layer net O2 uptake on an
annual scale in the middle estuary (Fig. 9b), but not on
monthly scales. Similarly, chl a was significantly and
positively correlated with box-model computed POC

sinking in the middle estuary. POC sinking during
February to April was significantly correlated with
modeled bottom-layer net NH4

+, DIP, and DSi produc-
tion in the middle estuary (NH4

+: r2 = 0.25, p < 0.05;
DSi: r2 = 0.32, p < 0.05; DIP: r2 = 0.51, p < 0.01). Mod-
eled bottom-layer net O2 uptake was positively corre-
lated with modeled NH4

+ (r2 = 0.39, p < 0.01) and DIP
(r2 = 0.23, p < 0.05) regeneration in the lower estuary,
but significant relationships existed in the middle and
lower estuary for NH4

+, DIP, and DSi.

Nutrient transport rates

Box-model computed DIN inputs to the upper estu-
ary were dominated by spring seaward transports and
the magnitude of seaward DIN inputs increased in
more seaward boxes. The magnitude of vertical trans-
port of DIN to upper (Box 2) and lower (Box 5) estuary
surface layers was similar to seaward advection
from May to October (upper: 3 mmol N m–2 d–1; lower:
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5 mmol N m–2 d–1; Fig 10b). Conversely, DIN inputs to
the middle estuary (Boxes 3 & 4) were dominated by
seaward advection in spring, but vertical transport
dominated from May to October and was 50% higher
than seaward inputs in the middle estuary (Fig. 10a).
Spring DIN inputs from seaward advection were suffi-
cient to support modeled spring net O2 production, but
vertical DIN inputs were required to support summer
rates of net O2 production in the middle estuary
(Fig. 10a).

DISCUSSION

This analysis demonstrates the use of box-models to
calculate integrated rates of physical transport and
biogeochemical transformation of nutrients, O2, and
organic matter using easily accessible data from a
water quality monitoring program. The quantification
of these rates allowed us to assess for the Patuxent
River estuary the relative importance of physical trans-
port and vertical exchange in support of biogeochemi-
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Fig. 7. Mean annual net biogeochemical production rates of surface- and bottom-layer O2 (surface rate corrected for air–water
exchange), DIN, and DIP, computed by the box-model, as well as chl a, along the estuarine axis of the Patuxent River estuary. 

Annual means (± SE) were calculated for years of above-average (open) and below-average (filled) river flow
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cal processes, and to establish clear regional- and
seasonal-scale patterns and interannual responses to
climatic variation. These rates are useful for address-
ing a wide range of scientific questions; here, we pro-
vide 8 specific examples.

Seasonal and regional patterns in modeled surface
productivity and nutrient uptake

The calculated transition from net heterotrophy in
landward regions of the Patuxent to autotrophy (i.e.
net carbon production) in seaward areas (Fig. 7) is a
general pattern in many temperate estuaries (e.g.
Heath 1995, Kemp et al. 1997), is consistent with the
‘river continuum’ concept (Vannote et al. 1980), and
suggests that most of the organic production occurs in
the mid-to-lower estuary. Net heterotrophy in the
upper estuary results from both high turbidity (mean
total suspended solids [TSS] = 70 mg l–1, Secchi = 0.4 to
0.6 m) that limits photosynthesis (Cloern et al. 1983)
and large inputs of allocthonous carbon (annual mean
= 125 mmol C m–2 d–1) that fuel respiration (Smith &
Hollibaugh 1997), consistent with other estuarine sys-
tems (Howarth et al. 1996). Modeled net O2 production
in seaward regions occurs where light and nutrients
are abundant and allocthonous inputs are reduced rel-
ative to landward regions.

Although phytoplankton production tends to peak in
mid-summer in the Patuxent (Kemp & Boynton 1984)
and other coastal systems (Radach et al. 1990, Harding
et al. 2002), we found that modeled net O2 production
generally exhibited seasonal maxima in late spring
(e.g. Hoppema 1991). The decline of modeled net O2

production in summer was due to increased respira-
tion, which led to more balance between gross produc-
tion and respiration (Smith & Kemp 1995). As ex-
pected, the spring net O2 production maximum
coincided with the spring diatom bloom (Malone et al.
1988) and the seasonal peak in plankton biomass. This
is also consistent with the fact that regional maxima for
modeled net O2 production, nutrient uptake, and chl a
all coincide in the middle and lower Patuxent estuary
(Figs. 4 & 7).

This spatial and seasonal peak in modeled net O2

production appears to be linked to the annual DSi
cycle. Computed rates of net DSi uptake can be gener-
ally attributed to diatom growth in the Patuxent
because DSi is not affected by chemical and physical
reactions at typical spring concentrations (Kamatani &
Riley 1979) or temperatures (<13°C, Yamada & D’Elia
1984). Spring peaks in modeled net O2 production and
net DSi uptake in the middle and lower estuary coin-
cided with the typical timing of diatom spring blooms
(Figs. 4 & 8) (Fisher et al. 1988, Malone et al. 1988).

Converting net DSi uptake to equivalent carbon units
(C:Si = 6.625; Redfield 1958) suggests diatom photo-
synthesis comprises 50 to 80% of net O2 production
during spring, whereas net production of DSi, which
occurs in summer in all regions of the estuary, indi-
cates temperature-stimulated dissolution of silica min-
erals (Yamada & D’Elia 1984).

Strong seasonal patterns of modeled surface-layer
DIN uptake rates were observed throughout the estu-
ary, with spring peaks consistent with high rates of
modeled net O2 production and DSi uptake. Assuming
an O2:N ratio of 6.625, the DIN uptake expected from
modeled net O2 production accounted for 80% of the
modeled net DIN uptake in the middle and lower estu-
ary during February to March, but <50% in May and
June. The difference between modeled net DIN con-
sumption and the stoichiometric-equivalent DIN
uptake associated with net O2 production reflects the
balance between denitrification and nitrogen fixation
(Smith et al. 1991). This computed ‘net denitrification’
in the middle and lower estuary during spring and
summer suggests loss of DIN via denitrification in
sediments along the estuarine flanks at rates of 75 to
125 μmol N m–2 h–1, which agree favorably with mea-
sured values (e.g. Jenkins & Kemp 1984).

O2 versus DIP as measures of net ecosystem
production

Coupling between modeled net O2 and DIP produc-
tion was less direct and consistent than for other vari-
ables. Box-model computations of net DIP production
have been effectively used to estimate net ecosystem
production in several systems (e.g. Smith et al. 1991,
Gordon et al. 1996), but O2 may be a better variable at
smaller spatial scales for turbid estuaries like the
Patuxent with strong salinity gradients. For example,
DIP biogeochemistry may be largely controlled by
non-biological processes, such as sorption (Froelich
1988) and flocculation (Sholkovitz 1976). Analyses of
seasonal behavior of surface-layer rates in the mesoha-
line estuary (Boxes 3 to 5) reveal that modeled net O2

production and DIP uptake were comparable from
June to December, but not in winter and spring, where
rates of net O2 production expected from modeled net
DIP uptake (assuming O2:DIp = 106) were 25 to 50% of
modeled net O2 production. Timing of these discrepan-
cies coincides with seasonal maxima in modeled net O2

production, chl a, and TSS. Because DIP desorbs
rapidly from particles to replace biologically assimi-
lated ions (Froelich 1988), changes in DIP concentra-
tions at the monthly and regional scales of this analysis
might fail to capture this high biological variability.
Indeed, the particulate phosphorus pool dominates
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(>80%) total water column P from January to May in
estuarine regions (www.chesapeakebay.net). In addi-
tion, our computations may fail to capture all varia-
bility in the bioavailable P fraction, as DOP may be
an important component of soluble reactive P (e.g.
Gazeau et al. 2005). Modeled net O2 uptake and DIP
production in the oligohaline estuary were highly cor-
related year-round, but DIP production rates were
80% lower than expected from net O2 uptake. The
waters in this region are relatively shallow, connected
to sediments, and net heterotrophic, thus DIP released
from organic matter oxidation would tend to bind to
iron complexes in oxic sediments (Rozan et al. 2002).
Because this region is also characterized by high con-
centrations of suspended inorganic particles, a large
fraction of DIP may be sorbed to these particles,
thereby damping changes in DIP associated with bio-
logical processes.

Using modeled net O2 production as a measure of
net ecosystem production (Caffrey 2003) also has limi-
tations; we were able to address directly two potential
problems associated with this approach. We corrected
instantaneous measurements of O2 to equivalent 24 hr
mean values considering systematic diel variations
associated with photosynthesis and respiration and
found that this correction altered the O2 concentration
by <5%. We also corrected modeled surface-layer net
O2 production rates for air–water exchange and found
that variation in the exchange coefficient (α) of ± 50%
resulted in small changes in net O2 production (5 to
10% in the middle and lower estuary [Boxes 3 to 6] and
5 to 15% in the upper estuary [Boxes 1 to 2]). Our esti-
mates of net O2 production, however, agree well with
the regional variation, magnitude, and seasonality of
previous computations for Chesapeake Bay using a
range of different techniques (Smith & Kemp 1995,
Kemp et al. 1997). Although modeled bottom-layer net
O2 uptake represents a reasonable index of aerobic
and anaerobic respiration (via re-oxidation of sulfide
derived from sulfate reduction [SR]; Cornwell & Sam-
pou 1995), there may be a lag between sulfide produc-
tion and re-oxidation that is greater than a month (the
scale of our computations). Apart from long term burial
(<10% of SR; Roden et al. 1995), however, the sulfide
produced via SR diffuses into overlying water to con-
sume O2 within a year.

Spatial and temporal patterns of pelagic–benthic
coupling

Coincident spring peaks of chl a and modeled POC
sinking and net diatom growth support the view that
diatom blooms comprise most of the spring vertical
particle flux (Malone et al. 1988) and that a large frac-

tion of the spring bloom is ungrazed (Kanneworff &
Christensen 1986). Diverse studies in temperate sys-
tems have reported spring peaks in POC deposition,
suggesting that sinking is the dominant loss term for
phytoplankton blooms in spring (Smetacek et al. 1978).
Box-model computed POC settling velocities during
winter–spring agree with measured rates for many
larger diatoms (Bienfang 1981).

Vertical sinking of POC provides a mechanism by
which surface-layer net production is transported to
bottom layers, and box-model computed POC sinking
rates for the mesohaline estuary compare favorably
with data from sediment trap deployments at nearby
sites (Kemp & Boynton 1984, Roden et al. 1995). Com-
parative analyses of model-computed annual mean
rates of surface-layer net O2 production, bottom-layer
net O2 uptake, and POC sinking, as well as measured
chl a, revealed that pelagic and benthic processes
were tightly coupled in the middle region, but more
weakly connected in other areas of the Patuxent.
This regional difference may result from the middle
region’s relatively shallower depths, longer water resi-
dence time, and greater isolation of the middle regions
relative to other areas of the Patuxent (Hagy et al.
2000).

Positive net O2 production in surface layers indicated
that excess organic production was exported to and
respired in adjacent regions (Kemp et al. 1997). Signif-
icant correlations between modeled annual rates of
surface-layer net O2 production and underlying bot-
tom-layer net O2 uptake in the middle estuary suggest
that this excess organic production tends to be
exported vertically in most years (Fig. 9). Correlations
between surface chl a and modeled POC sinking with
modeled bottom-layer net O2 uptake in the middle
estuary suggest phytoplankton drive organic produc-
tion and subsequent vertical carbon export, which has
been inferred from measured rates in other estuaries
(Lignell et al. 1993).

Seasonal mismatch between POC sinking and
bottom-layer respiration

Although annual means of modeled POC sinking
and bottom-layer net O2 uptake correlate strongly in
the middle estuary, seasonal trends in POC concentra-
tion and sinking do not match with those of net O2 up-
take. A large fraction of POC appeared to sink in
spring (February to April), but summer (May to Sep-
tember) peaks computed for bottom-layer net O2 up-
take (Fig. 4) indicate that fresh organic matter may not
be immediately respired in this system, but consumed
later as temperature increases (Cowan et al. 1996).
Rates of sediment O2 uptake measured in the Patuxent
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using benthic chambers also peaked 2 mo after the
seasonal POC sinking maxima (Boynton & Rohland
2001). However, early summer maxima in bottom-layer
net O2 uptake found throughout the estuary preceded
the temperature maximum by 1 mo or more (Fig. 4),
suggesting that respiration in this system will respond
to recently deposited material (Graf et al. 1982, Fisher
et al. 1982), as well as increasing temperature. A multi-
ple regression using contemporaneous temperature
and the previous month’s bottom-layer chl a explained
40% more of the variability (r2 = 0.74 vs. 0.35) in bot-
tom-layer net O2 uptake than a regression of tempera-
ture versus respiration (Hagy 1996). Thus, the respira-
tion of labile organic matter in bottom layers of this
estuary is modulated by both temperature and the tim-
ing of downward transport of organic matter.

Organic carbon sources for bottom-layer respiration:
role of shallow water production

Independent calculations of POC sinking and bot-
tom-layer net O2 uptake were converted to equivalent
C rates (assuming the respiratory quotient = 1.0, Hop-
kinson 1985) to estimate what fraction of bottom-layer
net O2 uptake was attributable to direct POC sinking
from the overlying surface layer. Because the surface
layer overlies both the bottom water confined to the
central estuarine channel and bottom sediments of the
shallow flanks, the surface layer is wider than the bot-
tom layer. Thus, all of the POC sinking from the sur-
face layer may not reach the central bottom layer.
Here, we consider two contrasting assumptions. If we
assume, on the one hand, that POC sinking is vertical
and uniformly distributed, it would settle from surface
to bottom layer only where the two overlap (25% of the
area in the middle estuary, Table 1), and POC sinking
would account for only 20 to 50% of the annual organic
C input needed to support modeled bottom-layer net
O2 uptake. On the other hand, if we assume that the
entire POC sinking flux was transported to the bottom
layer, modeled POC sinking would be sufficient to sup-
port 80 to 150% of annual net O2 uptake. The latter
assumption requires that all organic particles settling
over the flanks were transported laterally down-slope
toward the central channel’s lower layer (e.g. Kemp et
al. 1997). Because a fraction of upper layer production
is buried or incorporated into biomass, it is unlikely
that all of this production is transported laterally to the
deep channel and the actual coupling between surface
and bottom layers is likely somewhere between these 2
contrasting conditions (i.e. 50 to 100%). Although ver-
tical POC sinking rates have been linked to measured
benthic respiration rates (e.g. Kamp-Nielsen 1992),
this study suggests that a portion of the organic matter

produced in shallow water (<6 m) is transported later-
ally to support deep, bottom-layer respiration.

Our calculations suggest that surface-layer POC is
occasionally insufficient to provide the carbon neces-
sary to support bottom-layer net O2 uptake. Deficits in
POC input to benthos have also been reported for
other systems where horizontal transport was a sug-
gested additional organic source (Graf et al. 1982). In
the Patuxent estuary, landward transport via gravita-
tional circulation is a likely alternative carbon source
(Kemp et al. 1997). Computed rates for net longitudinal
transport (input-output) of organic carbon to the bot-
tom layers of the middle and lower estuarine regions
ranged from 5 to 30 mmol C m–2 d–1, which is ~25% of
POC sinking rates. Organic carbon transported longi-
tudinally to the bottom layer, however, likely origi-
nated as production in seaward surface layers, making
it older and less labile than locally produced organic
matter. Vertical and lateral POC transport mechanisms
thus dominate carbon fluxes to bottom waters in this
estuary.

Pelagic–benthic coupling: factors driving nutrient
regeneration

Box-model calculations suggest that vertical trans-
port of organic carbon from surface to bottom layers is
closely linked to nutrient regeneration in bottom lay-
ers of the middle estuary. Correlations for annual
mean rates of modeled net bottom-layer DSi produc-
tion versus both annual mean surface chl a (r2 = 0.61)
and modeled spring POC sinking (r2 = 0.35) suggests
that sinking diatoms are a key source of biogenic sil-
ica (Yamada & D’Elia 1984) and that surface produc-
tion and bottom-layer DSi regeneration are linked
(Cowan & Boynton 1996). Similar correlations for
annual means of both chl a and modeled spring POC
sinking rates versus modeled net bottom-layer pro-
duction of NH4

+ (r2 = 0.34, 0.25 respectively, p < 0.05)
and DIP (r2 = 0.31, 0.55 respectively, p < 0.05) also
reflect tight coupling between nutrient regeneration
and surface phytoplankton growth (Nixon 1981,
Cowan et al. 1996). Because modeled POC sinking
accounted for 50 to 90% of modeled bottom-layer net
regeneration of NH4

+, DIP, and DSi, we suggest that
nutrients generated in the bottom layer in summer are
predominantly derived from the previous spring’s pro-
duction, rather than from long-term accumulation of
sediment nutrients (Boynton & Kemp 2000). Similar
links have been shown using direct instantaneous
measurements of nutrient regeneration and phyto-
plankton productivity or POC sinking in coastal sys-
tems (e.g. Jensen et al. 1990). Unlike box-model-com-
puted rates, however, instantaneous measurements at
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fixed sites may not reflect rates integrated over
broader time/space scales.

Summer peaks in bottom-layer biogeochemical pro-
cesses indicate the role of temperature in controlling
bottom-layer net O2 uptake and nutrient recycling.
Seasonal coherence between modeled net nutrient re-
generation and net O2 uptake in bottom layers during
summer is not only consistent with the enhancement of
bacterial respiration rates and enzyme activity by ele-
vated temperature (Fisher et al. 1982, Kamp-Nielsen
1992), but also diagentic coupling between organic
matter decomposition and nutrient regeneration (Kelly
et al. 1985, Cowan & Boynton 1996). Although we re-
lated the magnitude of modeled net nutrient regenera-
tion in the bottom layer to modeled POC sinking, the
timing of regeneration is primarily controlled by tem-
perature-dependent processes, including chemical
dissolution (e.g. DSi; Yamada & D’Elia 1984), shifts in
redox conditions (e.g. DIP; Rozan et al. 2002), and en-
zyme catalyzed hydrolysis (e.g. NH4

+, O2; Cowan &
Boynton 1996).

Seasonal variability in nitrogen sources fueling
surface-layer productivity

In temperate estuaries, the traditional paradigm
asserted that ‘new’ organic production in spring was
supported by watershed nutrient inputs, while summer
production was fueled by nutrients recycled from
organic matter deposited into the bottom layer during
spring (e.g. Kemp & Boynton 1984, Malone et al. 1988).
Because the patterns observed in many estuaries are
not so distinct, we used the box-model to quantify DIN
transport at seasonal and regional scales. Our analysis
of the Patuxent estuary indicates that, consistent with
previous suggestions, seaward transport of DIN is suf-
ficient to support >100% of spring phytoplankton pro-
duction (as reflected in net O2 production) in the mid-
dle and lower estuary, while vertical fluxes of DIN
(mostly NH4

+) from bottom to surface layers tend to be
large enough to satisfy 70 to 80% of net summertime
DIN uptake computed for the surface layer (Fig. 10).
Vertical DIN fluxes are supported by bottom-layer DIN
regeneration (Hagy 1996) and because this annual
mean DIN production is tightly linked to spring POC
sinking, we can infer the coupling of spring N inputs to
summer regeneration. Support of summer phytoplank-
ton productivity by sediment NH4

+ fluxes has been
inferred from core or chamber measurements in other
temperate estuaries (Fisher et al. 1982). The additional
20 to 30% of N inputs during summer are probably
derived from upstream sources, atmospheric inputs, or
internal pelagic recycling processes (Suttle et al. 1990).
In the lower estuary, over 100% of the surface-layer

net DIN demand could be supported by seaward DIN
transport in all seasons. A substantial fraction of this
DIN transported seaward from the upper to the lower
estuary during summer, however, is derived from ver-
tical inputs of NH4

+ from bottom waters in upstream
regions. Indeed, NH4

+ comprised 60 to 80% of seaward
DIN transport to the lower estuary during summer and
seaward NH4

+ transport increased linearly from Box 1
to Box 5. This cumulative increase in solutes mixed
vertically from bottom to surface waters is driven by 2-
layer gravitational circulation (e.g. Dyer 1974, Hagy et
al. 2000) and it is supported by nutrient regeneration
from both bottom water and sediment processes (Testa
2006). This analysis provides quantitative support for
the concept that high spring DIN inputs generate net
organic production that sinks to the lower layer, where
DIN is regenerated in summer and transported upward
to support primary productivity in many shallow tem-
perate estuaries (Kemp & Boynton 1984, Malone et al.
1988). We emphasize, however, that DIN regenerated
in bottom water may be transported both vertically and
horizontally before it is assimilated.

Effects of river flow on surface- and bottom-layer
biogeochemistry

Variation in river flow can exert a strong influence
on phytoplankton biomass and productivity via the
processes of nutrient inputs, allocthonous inputs, strat-
ification, and residence time. In many estuaries, in-
creased phytoplankton productivity and biomass are
often associated with high river flow (Malone et al.
1988). This occurred in the middle and lower Patuxent
estuary (Figs. 6 & 7) where modeled surface-layer rates
of net O2 production and DIN uptake, along with mea-
sured chl a, were generally elevated during high flow
years, especially during summer (Fig. 6). It appears
that the primary mechanism for this stimulation is
attributable to increased nutrient inputs at high river
flow (Boynton & Kemp 2000), particularly during sum-
mer when nutrient limitation is most pronounced
(Fisher et al. 1988). Conversely, chl a and modeled
rates of net O2 production decreased during high flow
in the upper estuary because of increased turbidity and
flushing rates (Cloern et al. 1983).

Despite the significant positive effects of river flow
on surface biomass and productivity in the mesohaline
estuary, our analysis suggests that POC sinking and
modeled rates of bottom-layer net O2 uptake and nutri-
ent regeneration were less responsive to variations in
river flow (Fig. 7). Previous studies in Chesapeake Bay
have reported increased rates of chl a deposition and
increased sediment NH4

+ regeneration during high
flow (Boynton & Kemp 2000), but the lack of significant
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relationships between river flow and net biogeochemi-
cal rates in bottom layers of the Patuxent may be attrib-
utable to enhanced seaward advective transport in the
estuary’s surface layer under high flow conditions. In
this case, much of the excess primary production in wet
years tends to be swept seaward out of estuarine
regions rather than sinking vertically to the underlying
bottom layer (Hagy et al. 2005) because the Patuxent is
a much smaller system than Chesapeake Bay. Indeed,
surface-layer seaward advective rates calculated with
the box-model reveal that seaward POC transport (out
of each box) is 30 to 45% higher in wet years compared
to dry years.

Here we have presented a range of scientific ques-
tions that we were able to address using box-model
computations; however, an even broader scope of spe-
cific or generic questions could be investigated with
this approach, particularly in estuarine systems with 2-
layered circulation. The approach is limited, however,
in that only net rates can be computed, so that the
many specific processes contributing to these net rates
cannot be quantified separately. Related approaches
have already been applied at various scales in many
systems throughout the world (e.g. Wulff & Stige-
brandt 1989, Smith et al. 1991, Gazeau et al. 2005,
Bozec et al. 2006), but the full interpretive power of
these computations has seldom been exploited. Ulti-
mately, however, this technique has potential to pro-
vide an integrative approach for addressing both fun-
damental research questions and critical management
problems in diverse coastal ecosystems.
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