A Classification of Weak Asynchronous Models of Distributed Computing

Javier Esparza¹ Fabian Reiter²

¹Technische Universität München

²Université Gustave Eiffel

1 September 2020 @ CONCUR'20, Online

- All nodes run the same deterministic finite-state machine 80
- Task: decide some graph property by consensus.

- All nodes run the same deterministic finite-state machine 80
- Task: decide some graph property *by consensus*.

- All nodes run the same deterministic finite-state machine 80
- Task: decide some graph property *by consensus*.

- All nodes run the same deterministic finite-state machine 80
- Task: decide some graph property *by consensus*.

- All nodes run the same deterministic finite-state machine 80
- Task: decide some graph property by consensus.

- All nodes run the same deterministic finite-state machine 80
- Task: decide some graph property by consensus.

- All nodes run the same deterministic finite-state machine 80
- Task: decide some graph property *by consensus*.

- All nodes run the same deterministic finite-state machine 80
- Task: decide some graph property by consensus.

- All nodes run the same deterministic finite-state machine 80
- Task: decide some graph property *by consensus*.

- All nodes run the same deterministic finite-state machine 80
- Task: decide some graph property *by consensus*.

- All nodes run the same deterministic finite-state machine 80
- Task: decide some graph property *by consensus*.

- All nodes run the same deterministic finite-state machine 80
- Task: decide some graph property *by consensus*.

- All nodes run the same deterministic finite-state machine 80
- Task: decide some graph property *by consensus*.

- All nodes run the same deterministic finite-state machine 80
- Task: decide some graph property by consensus.

Is there a red node?

Easy if nodes can change their answer.

 ${\tt Esparza \& Reiter - Weak \ Asynchronous \ Models \ of \ Distributed \ Computing}$

- All nodes run the same deterministic finite-state machine 80
- Task: decide some graph property *by consensus*.
- Consistency condition: all legal runs must yield the same answer.

Is there a red node?

Easy if nodes can change their answer.

 ${\tt Esparza \& Reiter - Weak \ Asynchronous \ Models \ of \ Distributed \ Computing}$

- All nodes run the same deterministic finite-state machine 80
- Task: decide some graph property by consensus.
- Consistency condition: all legal runs must yield the same answer.

Is there a red node?

Easy if nodes can change their answer.

- All nodes run the same deterministic finite-state machine 80
- Task: decide some graph property by consensus.
- Consistency condition: all legal runs must yield the same answer.

Is there a red node?

Easy if nodes can change their answer.

- All nodes run the same deterministic finite-state machine 80
- Task: decide some graph property by consensus.
- *Consistency condition:* all legal runs must yield the same answer.

Is there a red node?

Easy if nodes can change their answer.

Is the graph a star?

Esparza & Reiter - Weak Asynchronous Models of Distributed Computing

- All nodes run the same deterministic finite-state machine 80
- Task: decide some graph property by consensus.
- Consistency condition: all legal runs must yield the same answer.

Is there a red node?

Easy if nodes can change their answer.

- All nodes run the same deterministic finite-state machine 80
- Task: decide some graph property by consensus.
- Consistency condition: all legal runs must yield the same answer.

Is there a red node?

Easy if nodes can change their answer.

- All nodes run the same deterministic finite-state machine 80
- Task: decide some graph property by consensus.
- Consistency condition: all legal runs must yield the same answer.

Is there a red node?

Easy if nodes can change their answer.

- All nodes run the same deterministic finite-state machine 80
- Task: decide some graph property by consensus.
- Consistency condition: all legal runs must yield the same answer.

Is there a red node?

Easy if nodes can change their answer.

Is the graph a star?

Esparza & Reiter - Weak Asynchronous Models of Distributed Computing

- All nodes run the same deterministic finite-state machine 80
- Task: decide some graph property by consensus.
- Consistency condition: all legal runs must yield the same answer.

Is there a red node?

Easy if nodes can change their answer.

- All nodes run the same deterministic finite-state machine 80
- Task: decide some graph property by consensus.
- Consistency condition: all legal runs must yield the same answer.

Is there a red node?

Easy if nodes can change their answer.

- All nodes run the same deterministic finite-state machine 80
- Task: decide some graph property by consensus.
- Consistency condition: all legal runs must yield the same answer.

Is there a red node?

Easy if nodes can change their answer.

Is the graph a star?

Esparza & Reiter - Weak Asynchronous Models of Distributed Computing

- All nodes run the same deterministic finite-state machine 80
- Task: decide some graph property by consensus.
- Consistency condition: all legal runs must yield the same answer.

Is there a red node?

Easy if nodes can change their answer.

- All nodes run the same deterministic finite-state machine 80
- Task: decide some graph property by consensus.
- Consistency condition: all legal runs must yield the same answer.

Is there a red node?

Easy if nodes can change their answer.

- All nodes run the same deterministic finite-state machine 80
- Task: decide some graph property by consensus.
- Consistency condition: all legal runs must yield the same answer.

Is there a red node?

Easy if nodes can change their answer.

- All nodes run the same deterministic finite-state machine 80
- Task: decide some graph property by consensus.
- *Consistency condition:* all legal runs must yield the same answer.

Is there a red node?

Easy if nodes can change their answer.

Esparza & Reiter - Weak Asynchronous Models of Distributed Computing

Is the graph a star?

Easy if nodes can count their neighbors.

Four parameters			
Detection	Acceptance	Selection	Fairness

Detection	Acceptance	Selection	Fairness
d : non-counting			
$A \qquad B \\ \{Sees: \\ \{A, B\} \}$			

Detection	Acceptance	Selection	Fairness
d : non-counting			
D : counting			
$\begin{array}{c} \textbf{A} \textbf{B} \\ \textbf{Sees:} \\ \{\{A, A, B\}\} \end{array}$			

Detection	Acceptance	Selection	Fairness
d : non-counting	a: halting		
$ \begin{array}{c} A \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$? \rightarrow ? \rightarrow Yes Answers are final.		
D : counting			

Detection	Acceptance	Selection	Fairness
d : non-counting	a: halting		
$ \begin{array}{c} \textbf{A} \textbf{A} \textbf{B} \\ \hline \textbf{Sees:} \\ \{A, B\} \end{array} $? \rightarrow ? \rightarrow Yes Answers are final.		
D : counting	A: stabilizing		
A A B { <i>Sees:</i> {{(A, A, B}}	No \rightarrow Yes \rightarrow Yes Answers can change.		

Esparza & Reiter - Weak Asynchronous Models of Distributed Computing

Esparza & Reiter - Weak Asynchronous Models of Distributed Computing

Esparza & Reiter - Weak Asynchronous Models of Distributed Computing

Synchronous selection ***\$* < Exclusive selection **Sf

Esparza & Reiter - Weak Asynchronous Models of Distributed Computing

Esparza & Reiter - Weak Asynchronous Models of Distributed Computing

Esparza & Reiter - Weak Asynchronous Models of Distributed Computing

Esparza & Reiter - Weak Asynchronous Models of Distributed Computing

Esparza & Reiter - Weak Asynchronous Models of Distributed Computing

Esparza & Reiter - Weak Asynchronous Models of Distributed Computing

Esparza & Reiter - Weak Asynchronous Models of Distributed Computing

Esparza & Reiter - Weak Asynchronous Models of Distributed Computing

Esparza & Reiter - Weak Asynchronous Models of Distributed Computing

Esparza & Reiter - Weak Asynchronous Models of Distributed Computing

Esparza & Reiter - Weak Asynchronous Models of Distributed Computing

Esparza & Reiter - Weak Asynchronous Models of Distributed Computing

Esparza & Reiter - Weak Asynchronous Models of Distributed Computing

Esparza & Reiter - Weak Asynchronous Models of Distributed Computing

Esparza & Reiter - Weak Asynchronous Models of Distributed Computing

Esparza & Reiter - Weak Asynchronous Models of Distributed Computing

Esparza & Reiter - Weak Asynchronous Models of Distributed Computing

Esparza & Reiter - Weak Asynchronous Models of Distributed Computing

Esparza & Reiter - Weak Asynchronous Models of Distributed Computing

Esparza & Reiter - Weak Asynchronous Models of Distributed Computing

Esparza & Reiter - Weak Asynchronous Models of Distributed Computing

Esparza & Reiter - Weak Asynchronous Models of Distributed Computing

Esparza & Reiter - Weak Asynchronous Models of Distributed Computing

Esparza & Reiter - Weak Asynchronous Models of Distributed Computing

Esparza & Reiter - Weak Asynchronous Models of Distributed Computing

Esparza & Reiter - Weak Asynchronous Models of Distributed Computing

Esparza & Reiter - Weak Asynchronous Models of Distributed Computing