

Distributed Automata and Logic

Fabian Reiter

12 December 2017

Ultimate objective

Descriptive complexity theory

Distributed computing

∃ second-order logic

∃ second-order logic

∃ second-order logic

Example: Hamiltonian path

∃ second-order logic

Example: Hamiltonian path ∃R(

)

∃ second-order logic

Example: Hamiltonian path ∃R("R is a strict total order" ∧

)

∃ second-order logic

Example: Hamiltonian path ∃R("R is a strict total order" ∧ "R-successors are adjacent")

∃ second-order logic

Example: Hamiltonian path ∃R("R is a strict total order" ∧ "R-successors are adjacent")

∃ second-order logic

np turing machines

Example: Hamiltonian path ∃R("R is a strict total order" ∧ "R-successors are adjacent")

∃ second-order logic

∃ second-order logic

∃ second-order logic

some logical formalism

some logical formalism

SOME LOGICAL FORMALISM $\left\langle \frac{1}{2}$ EQUIVALENT $\right\rangle$ COMMUNICATING MACHINES

Formula class Φ Distributed algorithm class $\mathcal A$

Formula class Φ Distributed algorithm class $\mathcal A$

Unlike the sequential case:

Formula class Φ Distributed algorithm class $\mathcal A$

Unlike the sequential case: \rightarrow The graph is not encoded.

Formula class Φ Distributed algorithm class $\mathcal A$

- Unlike the sequential case: \rightarrow The graph is not encoded.
	- ▸ It does not have to be finite.

Hella · Järvisalo · Kuusisto · Laurinharju · Lempiäinen · Luosto · Suomela · Virtema

backward modal logic

Hella · Järvisalo · Kuusisto · Laurinharju · Lempiäinen · Luosto · Suomela · Virtema

backward modal logic

Hella · Järvisalo · Kuusisto · Laurinharju · Lempiäinen · Luosto · Suomela · Virtema
backward modal logic

Example: $\overline{\diamondsuit}(\overline{\Box}$ white $\vee \overline{\Box}$ red)

backward modal logic

Example: $\overline{\diamondsuit}(\overline{\Box}$ white $\vee \overline{\Box}$ red)

"I have an in-neighbor whose in-neighbors are all white or all red."

 $BACKWARD MODAL LOGIC \leq \sqrt{EQUIVALENT}$ LOCAL DISTRIB. AUTOMATA

Example: $\overline{\diamondsuit}(\overline{\Box}$ white $\vee \overline{\Box}$ red)

"I have an in-neighbor whose in-neighbors are all white or all red."

Finite-state machine δ∶ Q × 2^Q → Q

 $BACKWARD MODAL LOGIC \leq \sqrt{EQUIVALENT}$ LOCAL DISTRIB. AUTOMATA

Example: $\overline{\diamondsuit}(\overline{\Box}$ white $\vee \overline{\Box}$ red)

"I have an in-neighbor whose in-neighbors are all white or all red."

Finite-state machine δ∶ Q × 2^Q → Q

▸ Synchronous execution

 $BACKWARD MODAL LOGIC \leq \sqrt{EQUIVALENT}$ LOCAL DISTRIB. AUTOMATA

Example: $\overline{\diamondsuit}(\overline{\Box}$ white $\vee \overline{\Box}$ red)

"I have an in-neighbor whose in-neighbors are all white or all red."

Finite-state machine δ∶ Q × 2^Q → Q

- ▸ Synchronous execution
- Constant running time

ı

1

monadic second-order logic

monadic second-order logic

 $\forall Z(\exists x, y(Z(x) \land \neg Z(y)) \rightarrow \cdots)$

MONADIC SECOND-ORDER LOGIC $\left\langle \frac{L_{\text{QUINALEN}}}{L_{\text{QUINALEN}}} \right\rangle$ ALTERNATING LOCAL AUTOMATA

 $\forall Z(\exists x, y(Z(x) \land \neg Z(y)) \rightarrow \cdots)$

MONADIC SECOND-ORDER LOGIC $\left\langle \begin{array}{c} \sqrt{1-\mu} \\ \text{equivalent} \end{array} \right\rangle$ ALTERNATING LOCAL AUTOMATA

 δ : Q × 2^Q → 2^Q

 $\forall Z \left(\exists x,y\big(Z(x) \wedge \neg Z(y)\big) \rightarrow \cdots\right)$

MONADIC SECOND-ORDER LOGIC $\langle \overleftrightarrow{\text{equivalence}} \rangle$ ALTERNATING LOCAL AUTOMATA δ : Q × 2^Q → 2^Q

 $\forall Z(\exists x, y(Z(x) \land \neg Z(y)) \rightarrow \cdots)$

+ Alternation

MONADIC SECOND-ORDER LOGIC $\langle \overleftrightarrow{\text{equivalence}} \rangle$ ALTERNATING LOCAL AUTOMATA

 $\forall Z(\exists x, y(Z(x) \land \neg Z(y)) \rightarrow \cdots)$

 δ : Q × 2^Q → 2^Q

- **+** Alternation
- **+** Global acceptance

MONADIC SECOND-ORDER LOGIC $\langle \overleftrightarrow{\text{equivalence}} \rangle$ ALTERNATING LOCAL AUTOMATA

 $\forall Z\left(\exists x,y(Z(x) \land \neg Z(y)) \rightarrow \cdots\right)$

 δ : Q × 2^Q → 2^Q

- **+** Alternation
- **+** Global acceptance

THE BACKWARD µ-FRAGMENT

MONADIC SECOND-ORDER LOGIC $\langle \overleftrightarrow{\text{equivalence}} \rangle$ ALTERNATING LOCAL AUTOMATA

 $\forall Z\left(\exists x,y\big(Z(x)\wedge\neg Z(y)\big)\rightarrow\cdots\right)$

 δ : Q × 2^Q → 2^Q

- **+** Alternation
- **+** Global acceptance

the backward µ-fragment

MONADIC SECOND-ORDER LOGIC \langle Equivalent alternating local automata $\forall Z [\exists x, y (Z(x) \land \neg Z(y)) \rightarrow \cdots]$ δ : Q × 2^Q → 2^Q **+** Alternation **+** Global acceptance THE BACKWARD μ -FRAGMENT \langle Equivalent \rangle ASYNCHRONOUS AUTOMATA with quasi-acyclic diagrams μ $\binom{X}{Y}$ $\chi \choose \gamma$. $\begin{pmatrix} (R \wedge Y) & \vee & \heartsuit X \\ & \Box Y \end{pmatrix}$ $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

Other contributions:

▸ Emptiness problems for deterministic nonlocal automata.

Other contributions:

- ▸ Emptiness problems for deterministic nonlocal automata.
- Connections to classical automata on words and trees.

Other contributions:

- Emptiness problems for deterministic nonlocal automata.
- Connections to classical automata on words and trees.
- Set quantifier alternation hierarchies in modal logic.

Example: weakly connected digraph

∀Z(

)

Example: weakly connected digraph

∀Z(´ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶ Z is a nontrivial subset.

> Z \mathbf{x}

)

Example: weakly connected digraph

∀Z(∃x,y(Z(x) ∧ ¬Z(y)) →

´ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶ Z is a nontrivial subset. ´ ¹¹¸ ¹¹¶ Z is connected to its complement.

)
Monadic second-order logic (msol)

Example: weakly connected digraph

Contributions

 $1 \mid$

δ∶ Q × 2^Q → 2^Q (transition)

δ∶ Q × 2^Q → 2^Q (transition)

δ∶ Q × 2^Q → 2^Q

(transition)

 δ : Q × 2^Q → 2^Q

(transition)

S∶ set of received states

δ∶ Q × 2^Q → 2^Q

(transition)

S∶ set of received states

δ∶ Q × 2^Q → 2^Q

(transition)

S∶ set of received states

δ: Q \times 2^Q \rightarrow 2^Q

(transition)

S∶ set of received states

δ: Q \times 2^Q \rightarrow 2^Q (transition)

 δ : Q × 2^Q → 2^Q

(transition)

 $\mathcal{F} \subset 2^{Q_P}$

(global acceptance)

 δ : Q × 2^Q → 2^Q

(transition)

 $\mathcal{F} \subseteq 2^{Q_P}$

(global acceptance)

Same example: weakly connected digraph

Contributions

The backward µ-fragment

The backward µ-fragment

 μ X \bigvee \bigvee

)

 \bigvee \bigvee $(R \wedge Y) \vee \bigdiamond X$)

 μ X \bigvee \bigvee $(R \wedge Y) \vee \bigdiamond X$) constant

)

Y: "Going backwards, we cannot reach any directed cycle (only dead-ends)."

Y: "Going backwards, we cannot reach any directed cycle (only dead-ends)."

X: "Going backwards, we can reach a red node from which no directed cycle is reachable."

Contributions

Asynchronous automata

Asynchronous automata

δ: $Q \times 2^Q \rightarrow Q$

Asynchronous automata δ∶ Q × 2^Q → Q Quasi-acyclic diagram. 1 3 $\frac{1}{2}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{2}$ $\frac{1}{5}$ \angle

2

4

5

Asynchronous automata δ∶ Q × 2^Q → Q Quasi-acyclic diagram. 1 2 3 4 5 $\frac{1}{2}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{2}$ $\frac{1}{5}$ \angle

Asynchronous automata δ∶ Q × 2^Q → Q Quasi-acyclic diagram. 1 3 5 $\frac{1}{2}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{2}$ $\frac{1}{5}$ \angle

4

2

Asynchronous automata δ: $Q \times 2^Q \rightarrow Q$ Quasi-acyclic diagram. 1 3 5 $\frac{1}{2}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{2}$ $\frac{1}{5}$ \angle S: set of received

2

states

4

Asynchronous automata δ : Q × 2^Q → Q Quasi-acyclic diagram. Nodes may sleep & miss messages. 1 2 3 Δ 5 otherwise if $S \nsubseteq \{4, 5\}$ and $S \nsubseteq \{1, 2, 4\}$ in C & E & C 2, A & Y if $S \subseteq \{4\}$ i_{i} {5} \in S \in {4,5} otherwise if $S \subseteq \{4, 5\}$ if ${x}$ is ${y}$ always $i^{S} \in \{4,5\}$ S: set of received states

otherwise

otherwise

Asynchronous automata δ : Q × 2^Q → Q Quasi-acyclic diagram. Nodes may sleep & miss messages. Messages may be delayed (FIFO). 1 2 3 4 5 otherwise if $S \nsubseteq \{4, 5\}$ and $S \nsubseteq \{1, 2, 4\}$ otherwise in C & E & C 2, A & Y if $S \subseteq \{4\}$ i_{f} {5} \in S \in {4,5} otherwise if $S \subseteq \{4, 5\}$ otherwise if $\sqrt{5}$ is a set always i^{S} \in {4,5} S: set of received states

Asynchronous automata δ : Q × 2^Q → Q Quasi-acyclic diagram. Nodes may sleep & miss messages. Messages may be delayed (FIFO). 1 2 3 4 5 otherwise if $S \nsubseteq \{4, 5\}$ and $S \nsubseteq \{1, 2, 4\}$ otherwise in C & E & C 2, A & Y if $S \subseteq \{4\}$ i_{f} {5} \in S \in {4,5} otherwise if $S \subseteq \{4, 5\}$ otherwise if $\sqrt{5}$ is a set always i^{S} \in {4,5} S: set of received states

Asynchronous automata δ : Q × 2^Q → Q Quasi-acyclic diagram. Nodes may sleep & miss messages. Messages may be delayed (FIFO). 1 2 3 4 5 otherwise if $S \nsubseteq \{4, 5\}$ and $S \nsubseteq \{1, 2, 4\}$ otherwise in C & E & C 2, A & Y if $S \subseteq \{4\}$ i_{f} {5} \in S \in {4,5} otherwise if $S \subseteq \{4, 5\}$ otherwise if $\sqrt{5}$ is a set always i^{S} \in {4,5} S: set of received states

A malicious adversary can choose the timing, subject to fairness constraints.

A malicious adversary can choose the timing, subject to fairness constraints.

An automaton is asynchronous if its acceptance behavior is independent of the adversary (on all finite digraphs).

A malicious adversary can choose the timing, subject to fairness constraints.

An automaton is asynchronous if its acceptance behavior is independent of the adversary (on all finite digraphs).

A malicious adversary can choose the timing, subject to fairness constraints.

An automaton is asynchronous if its acceptance behavior is independent of the adversary (on all finite digraphs).

A malicious adversary can choose the timing, subject to fairness constraints.

An automaton is asynchronous if its acceptance behavior is independent of the adversary (on all finite digraphs).

Asynchrony is an additional semantic property.

▸ An alternation level that covers first-order logic?

- ▸ An alternation level that covers first-order logic?
- ▶ Can we decide if an automaton is asynchronous?

- ▸ An alternation level that covers first-order logic?
- ▶ Can we decide if an automaton is asynchronous?
- \blacktriangleright ...

- ▸ An alternation level that covers first-order logic?
- ▶ Can we decide if an automaton is asynchronous?
- \blacktriangleright ...
- ▸ A "Fagin-style" theorem for distributed computing?

- ▸ An alternation level that covers first-order logic?
- ▶ Can we decide if an automaton is asynchronous?
- \blacktriangleright ...
- ▸ A "Fagin-style" theorem for distributed computing?

- ▸ An alternation level that covers first-order logic?
- ▶ Can we decide if an automaton is asynchronous?
- \blacktriangleright ...
- ▸ A "Fagin-style" theorem for distributed computing?

Thanks!