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Fagin’s theorem (1974)

∃ second-order logic equivalent np turing machines

Example: Hamiltonian path

∃R (

“R is a strict total order” ∧
“R-successors are adjacent”

)

. . . 0 1 1 0 1 0 0 1 . . .

▸ Nondeterministic moves

▸ Polynomial running time

encoding
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Descriptive complexity

some logical formalism equivalent some abstract machines

Formula class Φ

. . . 0 1 1 0 1 0 0 1 . . .

Algorithm class A
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Descriptive distributed complexity

some logical formalism equivalent communicating machines

Formula class Φ

Distributed algorithm class A

Unlike the sequential case:

▸ The graph is not encoded.

▸ It does not have to be finite.
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The “Helsinki-Tampere theorem” (2012)

backward modal logic equivalent local distrib. automata

Example: ( white ∨ red)

“I have an in-neighbor whose
in-neighbors are all white or all red.”

:
Finite-state machine

δ∶Q × 2Q →Q

▸ Synchronous execution
▸ Constant running time

Hella · Järvisalo · Kuusisto · Laurinharju · Lempiäinen · Luosto · Suomela · Virtema
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Contributions

monadic second-order logic equivalent alternating local automata

∀Z (∃x,y(Z(x) ∧ ¬Z(y)) → ⋯)

δ∶Q × 2Q → 2Q

+ Alternation

+ Global acceptance

the backward µ-fragment equivalent asynchronous automata
with quasi-acyclic diagrams

µ(
X

Y
) .(
(R ∧ Y) ∨ X

Y
)

δ∶Q × 2Q →Q

+ Unbounded running time

− Asynchronous execution

Other contributions:

▸ Emptiness problems for deterministic nonlocal automata.

▸ Connections to classical automata on words and trees.

▸ Set quantifier alternation hierarchies in modal logic.
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Monadic second-order logic (msol)

Example: weakly connected digraph

∀Z (

∃x,y(Z(x) ∧ ¬Z(y))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Z is a nontrivial subset.

→

∃x,y((Z(x) ↔ ¬Z(y)) ∧ E(x,y))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Z is connected to its complement.

)

x y

7 / 13
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Contributions

monadic second-order logic equivalent alternating local automata

∀Z (∃x,y(Z(x) ∧ ¬Z(y)) → ⋯)

δ∶Q × 2Q → 2Q

+ Alternation

+ Global acceptance

the backward µ-fragment equivalent asynchronous automata
with quasi-acyclic diagrams

µ(
X

Y
) .(
(R ∧ Y) ∨ X

Y
)

δ∶Q × 2Q →Q

+ Unbounded running time

− Asynchronous execution

Other contributions:

▸ Emptiness problems for deterministic nonlocal automata.

▸ Connections to classical automata on words and trees.

▸ Set quantifier alternation hierarchies in modal logic.
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2 4

1 5

3 6

●

3 ∉ S

3 ∈ S

2 ∈ S

2 ∉ S

S∶ set of
received
states

universal existential permanent (QP)

δ∶Q × 2Q → 2Q

(transition)

F ⊆ 2QP

(global acceptance)

Same example: weakly connected digraph
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Contributions

monadic second-order logic equivalent alternating local automata

∀Z (∃x,y(Z(x) ∧ ¬Z(y)) → ⋯)

δ∶Q × 2Q → 2Q

+ Alternation

+ Global acceptance

the backward µ-fragment equivalent asynchronous automata
with quasi-acyclic diagrams

µ(
X

Y
) .(
(R ∧ Y) ∨ X

Y
)

δ∶Q × 2Q →Q

+ Unbounded running time

− Asynchronous execution

Other contributions:

▸ Emptiness problems for deterministic nonlocal automata.

▸ Connections to classical automata on words and trees.

▸ Set quantifier alternation hierarchies in modal logic.
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Y
) .(

(R ∧ Y) ∨ X

Y

)

Compute the
simultaneous
least fixpoint.

Y: “Going backwards, we cannot reach any
directed cycle (only dead-ends).”

X: “Going backwards, we can reach a red node
from which no directed cycle is reachable.”

constant

unnegated
variable

∃ incoming neighbor

∀ incoming neighbors
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Asynchronous automata

δ∶Q × 2Q →Q
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diagram.

Nodes may sleep
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Definition of asynchrony

A malicious adversary can choose the
timing, subject to fairness constraints.

An automaton is asynchronous if its
acceptance behavior is independent of
the adversary (on all finite digraphs).

Synchronous automata

Asynchronous
automata

Asynchrony is an additional
semantic property.
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Perspectives

▸ An alternation level that covers first-order logic?

▸ Can we decide if an automaton is asynchronous?

▸ . . .

▸ A “Fagin-style” theorem for distributed computing?

2019...

Thanks!
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