Emptiness Problems for Distributed Automata

Fabian Reiter

IRIF, Université Paris Diderot

September 21, 2017

Joint work with Antti Kuusisto

Distributed automata

1/5

Distributed automata

1/5

Distributed automata

1/5

Distributed automata

1/5

Distributed automata

Transition function:
5. Qx29 5 Q
(Q: set of states)

1/5

Distributed automata

Transition function:
5. Qx29 5 Q
(Q: set of states)

S: set of
received
states

1/5

Distributed automata
S: set of

received
o oOR™

Transition function:
5. Qx29 5 Q
(Q: set of states)

1/5

Distributed automata

Transition function:
5. Qx29 5 Q
(Q: set of states)

S: set of
received
states

1/5

Distributed automata

S: set of
received
states

Transition function:
o: Q X 2Q — Q otherwise
(Q: set of states)

1/5

Distributed automata

S: set of
received
states

otherwise

Transition function:
o: Q X 2Q — Q otherwise
(Q: set of states)

1/5

Distributed automata

S: set of
received
states

otherwise

Transition function:
o: Q X 2Q — Q otherwise
(Q: set of states)

Synchronous run:

1/5

Distributed automata

S: set of
received
states

otherwise

Transition function:
o: Q X 2Q — Q otherwise
(Q: set of states)

Synchronous run:

1/5

Distributed automata

S: set of
received
states

otherwise

Transition function:
o: Q X 2Q — Q otherwise
(Q: set of states)

Synchronous run:

1/5

Distributed automata

S: set of
received
states

otherwise

Transition function:
o: Q X 2Q — Q otherwise
(Q: set of states)

Synchronous run:

1/5

Distributed automata

otherwise S: set of
received
P D
Transition function:
0 QX2Q*> Q if SN{2,3} # @ otherwise

(Q: set of states)

Synchronous run:

1/5

Distributed automata

otherwise S: set of
received
P D
Transition function:
0 QX2Q*> Q if SN{2,3} # @ otherwise

(Q: set of states)

Synchronous run:

1/5

Emptiness problem

2/5

Emptiness problem

Automaton A accepts digraph G on node v € G
iff v visits an accepting state at some time t € N.

2/5

Emptiness problem

Automaton A accepts digraph G on node v € G
iff v visits an accepting state at some time t € N.

Emptiness problem:

Does automaton A accept on some node in some digraph?

2/5

Emptiness problem

Automaton A accepts digraph G on node v € G
iff v visits an accepting state at some time t € N.

Emptiness problem:

Does automaton A accept on some node in some digraph?

Simple reduction:

2/5

Emptiness problem

Automaton A accepts digraph G on node v € G
iff v visits an accepting state at some time t € N.

Emptiness problem:

Does automaton A accept on some node in some digraph?

Simple reduction:

undecidable on dipaths

O-0O-0C-0O

2/5

Emptiness problem

Automaton A accepts digraph G on node v € G
iff v visits an accepting state at some time t € N.

Emptiness problem:

Does automaton A accept on some node in some digraph?

Simple reduction:

undecidable on dipaths == undecidable on digraphs

O-0O-0C-0O

2/5

Simulating a Turing machine

3/5

Simulating a Turing machine

Would be easy on doubly linked dipaths:

3/5

Simulating a Turing machine

Would be easy on doubly linked dipaths:

Turing machine
with alphabet {1, 0}
and state set {0,1,2,3}

3/5

Simulating a Turing machine

Would be easy on doubly linked dipaths:

space ——

L2l T]

Turing machine
with alphabet {1, 0}
and state set {0,1,2,3}

3/5

Simulating a Turing machine

Would be easy on doubly linked dipaths:
space —— space ——

CLRITTT T] OO CO -

Turing machine
with alphabet {1, 0}
and state set {0,1,2,3}

3/5

Simulating a Turing machine

Would be easy on doubly linked dipaths:

space —— space ——
T RICITTIT] Orox@CaCeCono0 -+
Turing machine Distributed automaton
with alphabet {1, 0} with state set
and state set {0,1,2,3} {O0,0} x {¢0,1,2,3}

3/5

Simulating a Turing machine

Would be easy on doubly linked dipaths:

space —— space ——
T RICITTIT] Orox@CaCeCono0 -+
Turing machine Distributed automaton
with alphabet {1, 0} with state set
and state set {0,1,2,3} {O0,0} x {¢0,1,2,3}

But not on simple dipaths:

3/5

Simulating a Turing machine

Would be easy on doubly linked dipaths:

space —— space ——
T RICITTIT] Orox@CaCeCono0 -+
Turing machine Distributed automaton
with alphabet {1, 0} with state set
and state set {0,1,2,3} {O0,0} x {¢0,1,2,3}

But not on simple dipaths:

Ll 2l P T]

3/5

Simulating a Turing machine

Would be easy on doubly linked dipaths:

space ——

L2l T]

Turing machine
with alphabet {1, 0}
and state set {0,1,2,3}

But not on simple dipaths:

Ll 2l P T]

space ——

Distributed automaton

with state set

{0,0} x {¢,0,1,2,3}

3/5

Simulating a Turing machine

Would be easy on doubly linked dipaths:

space ——

L2l T]

Turing machine
with alphabet {1, 0}
and state set {0,1,2,3}

But not on simple dipaths:

Ll 2l P T]

space ——

Distributed automaton

with state set

{0,0} x {¢,0,1,2,3}

One-way communication ®

3/5

Exchanging space and time

4/5

Exchanging space and time

Turing machine

alphabet: {O,O}
state set: {0,1,2,3}

4/5

Exchanging space and time

Turing machine

space ——

— ouwn

alphabet: {O,O}
state set: {0,1,2,3}

4/5

Exchanging space and time

Turing machine

space ——

——— 2wn

alphabet: {O,O}
state set: {0,1,2,3}

4/5

Exchanging space and time

Turing machine

space ——

ol LT]
Ll []

——— 2wn

alphabet: {O,O}
state set: {0,1,2,3}

4/5

Exchanging space and time

Turing machine

space ——

ol LT]
Ll []

——— 2wn

alphabet: {O,O}
state set: {0,1,2,3}

4/5

Exchanging space and time

Turing machine

space ——

ol LT]
Ll []

——— BuwIn

EY

alphabet: {O,O}
state set: {0,1,2,3}

4/5

Exchanging space and time

Turing machine

space ——

alphabet: {O,O}
state set: {0,1,2,3}

4/5

Exchanging space and time

Turing machine

space ——

alphabet: {O,O}
state set: {0,1,2,3}

4/5

Exchanging space and time

Turing machine Distributed automaton

space ——

alphabet: {O,O}
state set: {0,1,2,3}

4/5

Exchanging space and time

Turing machine Distributed automaton

space —— time —

]

=

H

H

L]
«——— 9deds

alphabet: {O,O}
state set: {0,1,2,3}

4/5

Exchanging space and time

Turing machine Distributed automaton

space —— time —

]

=

N

N

||
«——— o9oeds

alphabet: {O,O}
state set: {0,1,2,3}

4/5

Exchanging space and time

Turing machine Distributed automaton

space —— time —

]

=

H

|

L]
«—— 23deds

alphabet: {O,0O} ‘: waiting node
state set: {0,1,2,3}

4/5

Exchanging space and time

Turing machine Distributed automaton

space —— time —

]

=

H

|

L]
«—— 23deds

alphabet: {O,0O} ‘: waiting node
state set: {0,1,2,3} O@O : nodes “visiting" a Turing cell

4/5

Exchanging space and time

Turing machine Distributed automaton

space —— time —

]

=

H

|

L]
«—— 23deds

alphabet: {O,0O} ‘: waiting node
state set: {0,1,2,3} O@O : nodes “visiting" a Turing cell

4/5

Exchanging space and time

Turing machine Distributed automaton

space —— time —

©O

]

=

H

|

L]
«—— 23deds

alphabet: {O,0O} ‘: waiting node
state set: {0,1,2,3} O@O : nodes “visiting" a Turing cell

4/5

Exchanging space and time

Turing machine Distributed automaton

space —— time —

@O0

]

=

H

|

L]
«—— 23deds

alphabet: {O,0O} ‘: waiting node
state set: {0,1,2,3} O@O : nodes “visiting" a Turing cell

4/5

Exchanging space and time

Turing machine Distributed automaton

space —— time —

@000

]

=

H

|

L]
«—— 23deds

alphabet: {O,0O} ‘: waiting node
state set: {0,1,2,3} O@O : nodes “visiting" a Turing cell

4/5

Exchanging space and time

Turing machine Distributed automaton

space —— time —

@©@O00O0O

]

=

H

|

L]
«—— 23deds

alphabet: {O,0O} ‘: waiting node
state set: {0,1,2,3} O@O : nodes “visiting" a Turing cell

4/5

Exchanging space and time

Turing machine Distributed automaton

space —— time —

@©@O000O0

]

=

H

|

L]
«—— 23deds

alphabet: {O,0O} ‘: waiting node
state set: {0,1,2,3} O@O : nodes “visiting" a Turing cell

4/5

Exchanging space and time

Turing machine Distributed automaton

space —— time —

]

=

H

|

L]
«—— 23deds

alphabet: {O,0O} ‘: waiting node
state set: {0,1,2,3} O@O : nodes “visiting" a Turing cell

@©@OO0O0O0000OO0O0O0O -

4/5

Exchanging space and time

Turing machine Distributed automaton

space —— time —

]

=

H

|

L]
«—— 23deds

alphabet: {O,0O} ‘: waiting node
state set: {0,1,2,3} O@O : nodes “visiting" a Turing cell

@©@OO0O0O0000OO0O0O0O -

4/5

Exchanging space and time

Turing machine Distributed automaton

space —— time —

]

=

H

|

L]
«—— 23deds

alphabet: {O,0O} ‘: waiting node
state set: {0,1,2,3} O@O : nodes “visiting" a Turing cell

@©@O00000OOOOOO ~

4/5

Exchanging space and time

Turing machine Distributed automaton

space —— time —

]

=

H

|

L]
«—— 23deds

alphabet: {O,0O} ‘: waiting node
state set: {0,1,2,3} O@O : nodes “visiting" a Turing cell

?OOOOQOOOOOO-“

4/5

Exchanging space and time

Turing machine Distributed automaton

space —— time —

]

=

H

|

L]
«—— 23deds

alphabet: {O,0O} ‘: waiting node
state set: {0,1,2,3} O@O : nodes “visiting" a Turing cell

?eOOOQOOOOOO-“

4/5

Exchanging space and time

Turing machine Distributed automaton

space —— time —

—— auwn
]
=
H
|
L]
«—— 23deds

|
Delay of 2 time steps
between neighbors.

alphabet: {O,0O} ‘: waiting node
state set: {0,1,2,3} O@O : nodes “visiting" a Turing cell

?gOOOQOOOOOO“

4/5

Exchanging space and time

Turing machine Distributed automaton

space —— time —

—— auwn
]
=
H
|
L]
«—— 23deds

|
Delay of 2 time steps
between neighbors.

alphabet: {O,0O} ‘: waiting node
state set: {0,1,2,3} O@O : nodes “visiting" a Turing cell

?ggOOQOOOOOO“

4/5

Exchanging space and time

Turing machine Distributed automaton

space —— time —

—— auwn
]
=
H
|
L]
«—— 23deds

|
Delay of 2 time steps
between neighbors.

alphabet: {O,0O} ‘: waiting node
state set: {0,1,2,3} O@O : nodes “visiting" a Turing cell

?gggOQQOOOOO“-

4/5

Exchanging space and time

Turing machine Distributed automaton

space —— time —

—— auwn
]
=
H
|
L]
«—— 23deds

|
Delay of 2 time steps
between neighbors.

alphabet: {O,0O} ‘: waiting node
state set: {0,1,2,3} O@O : nodes “visiting" a Turing cell

?2888@0@@@0@-“

4/5

Exchanging space and time

Turing machine Distributed automaton

space —— time —

]

=

H

|

L]
«—— 23deds

|
Delay of 2 time steps
between neighbors.

alphabet: {O,0O} ‘: waiting node
state set: {0,1,2,3} O@O : nodes “visiting" a Turing cell

63338555835

4/5

Exchanging space and time

Turing machine Distributed automaton

space —— time —

]

=

H

|

L]
«—— 23deds

|
Delay of 2 time steps
between neighbors.

alphabet: {O,0O} ‘: waiting node
state set: {0,1,2,3} O@O : nodes “visiting" a Turing cell

868530335550

4/5

Exchanging space and time

Turing machine Distributed automaton

space —— time —

]

=

H

|

L]
«—— 23deds

|
Delay of 2 time steps
between neighbors.

alphabet: {O,0O} ‘: waiting node
state set: {0,1,2,3} O@O : nodes “visiting" a Turing cell

838922882528

4/5

Exchanging space and time

Turing machine Distributed automaton

space —— time —

]

=

H

|

L]
«—— 23deds

|
Delay of 2 time steps
between neighbors.

alphabet: {O,0O} ‘: waiting node
state set: {0,1,2,3} O@O : nodes “visiting" a Turing cell

839922882528

4/5

Exchanging space and time

Turing machine Distributed automaton

space —— time —

]

=

H

|

L]
«—— 23deds

|
Delay of 2 time steps
between neighbors.

alphabet: {O,0O} ‘: waiting node
state set: {0,1,2,3} O@O : nodes “visiting" a Turing cell

839922882528

4/5

Exchanging space and time

Turing machine Distributed automaton

space —— time —

]

=

H

|

L]
«—— 23deds

|
Delay of 2 time steps
between neighbors.

alphabet: {O,0O} ‘: waiting node
state set: {0,1,2,3} O@O : nodes “visiting" a Turing cell

838922852528

4/5

Exchanging space and time

Turing machine Distributed automaton

space —— time —

]

=

H

|

L]
«—— 23deds

|
Delay of 2 time steps
between neighbors.

alphabet: {O,0O} ‘: waiting node
state set: {0,1,2,3} O@O : nodes “visiting" a Turing cell

839922552528

4/5

Exchanging space and time

Turing machine Distributed automaton

space —— time —

]

=

H

|

L]
«—— 23deds

|
Delay of 2 time steps
between neighbors.

alphabet: {O,0O} ‘: waiting node
state set: {0,1,2,3} O@O : nodes “visiting" a Turing cell

839922952925

4/5

Exchanging space and time

Turing machine Distributed automaton

space —— time —

3383

|
Delay of 2 time steps
between neighbors.

]

=

H

|

L]
«—— 23deds

alphabet: {O,0O} ‘: waiting node
state set: {0,1,2,3} O@O : nodes “visiting" a Turing cell

4/5

Exchanging space and time

Turing machine Distributed automaton

space —— time —

]

=

H

|

L]
«——— 2oeds

|
Delay of 2 time steps
between neighbors.

alphabet: {O,O} ‘: waiting node
state set: {0,1,2,3} O@O : nodes “visiting" a Turing cell

4/5

Exchanging space and time

Turing machine Distributed automaton

space —— time —

]

=

H

|

L]
«——— 2oeds

|
Delay of 2 time steps
between neighbors.

alphabet: {O,O} ‘: waiting node
state set: {0,1,2,3} O@O : nodes “visiting" a Turing cell

4/5

Exchanging space and time

Turing machine Distributed automaton

space —— time —

]

=

H

|

L]
«——— 2oeds

|
Delay of 2 time steps
between neighbors.

alphabet: {O,O} ‘: waiting node
state set: {0,1,2,3} O@O : nodes “visiting" a Turing cell

4/5

Exchanging space and time

Turing machine Distributed automaton

space —— time —

]

=

H

|

L]
«——— 2oeds

|
Delay of 2 time steps
between neighbors.

alphabet: {O,O} ‘: waiting node
state set: {0,1,2,3} O@O : nodes “visiting" a Turing cell

4/5

Exchanging space and time

Turing machine Distributed automaton

space —— time —

]

=

H

|

L]
«——— 2oeds

R/_/

Delay of 2 time steps
between neighbors.

alphabet: {O,O} ‘: waiting node
state set: {0,1,2,3} O@Q : nodes “visiting" a Turing cell

4/5

Exchanging space and time

Turing machine Distributed automaton

space —— time —

]

=

H

|

L]
«——— 2oeds

R/_/

Delay of 2 time steps
between neighbors.

alphabet: {O,O} ‘: waiting node
state set: {0,1,2,3} O@Q : nodes “visiting" a Turing cell

4/5

Results

5/5

Results

Emptiness problem undecidable:

5/5

Results

Emptiness problem undecidable:

> In general.

5/5

Results

Emptiness problem undecidable:
> In general.

» For quasi-acyclic automata.

5/5

Results

Emptiness problem undecidable:
> In general.
» For quasi-acyclic automata.

- State diagrams acyclic except for self-loops.

5/5

Results

Emptiness problem undecidable:
> In general.
» For quasi-acyclic automata.

- State diagrams acyclic except for self-loops.

Emptiness problem decidable in LOGSPACE:

5/5

Results

Emptiness problem undecidable:
> In general.

» For quasi-acyclic automata.

- State diagrams acyclic except for self-loops.

Emptiness problem decidable in LOGSPACE:
» For forgetful automata.

5/5

Results

Emptiness problem undecidable:
> In general.

» For quasi-acyclic automata.

- State diagrams acyclic except for self-loops.

Emptiness problem decidable in LOGSPACE:
» For forgetful automata.

- Nodes cannot remember their own state.

5/5

Results

Emptiness problem undecidable:
> In general.
» For quasi-acyclic automata.

A State diagrams acyclic except for self-loops.

Emptiness problem decidable in LOGSPACE:
» For forgetful automata.

— Nodes cannot remember their own state.

On words: MSO logic = forgetful automata

5/5

Results

Emptiness problem undecidable:
> In general.
» For quasi-acyclic automata.

A State diagrams acyclic except for self-loops.

Emptiness problem decidable in LOGSPACE:
» For forgetful automata.

— Nodes cannot remember their own state.

On words: MSO logic = forgetful automata

On trees: _—

N

5/5

Results

Emptiness problem undecidable:
> In general.
» For quasi-acyclic automata.

A State diagrams acyclic except for self-loops.

Emptiness problem decidable in LOGSPACE:
» For forgetful automata.

— Nodes cannot remember their own state.

On words: MSO logic = forgetful automata

On trees: _—

On digraphs: —

R N

5/5

Thank youl!

