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The backward µ-fragment

µ

(
X

Y

)
.

(

(R ∧ Y ) ∨ X

Y

) Compute the
simultaneous
least fixpoint.

Y : “Going backwards, we cannot reach any
directed cycle (only dead-ends).”

X : “Going backwards, we can reach a red node
from which no directed cycle is reachable.”

constant

unnegated
variable ∃ incoming neighbor

∀ incoming neighbors
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Distributed automata

Transition function:
δ : Q × 2Q → Q
(Q: set of states)

1

2
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4

5

otherwise

if S * {4, 5}
and S * {1, 2, 4}

otherwise

if
S
*
{4,

5}

and
S
*
{1,

2,
4}

if S ⊆ {4}
if {5
} ⊆

S ⊆
{4, 5
}

otherwise

if S ⊆ {4, 5}

otherwise

if
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} ⊆

S

always

if
S ⊆
{4, 5
}

S: set of
received
states
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R R,X

R,Y

R,X ,Y

X
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Synchrony is too powerful
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if S ⊆ {2}
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always
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Will I hear from
all the leaves at
the same time?
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12 12

12 12

Not even expressible in monadic second-order logic (MSO)!

(Antti Kuusisto, 2013)
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Asynchronous run

Nodes may sleep,
miss messages.

Messages may be
delayed (FIFO).
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Asynchronous automata

A malicious adversary can choose the
timing, subject to fairness constraints.

An automaton is asynchronous if its
acceptance behavior is independent of
the adversary (on all finite digraphs).

Synchronous automata

Asynchronous
automata

Asynchrony is an additional
semantic property.
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Main result

Theorem

On finite digraphs, the backward µ-fragment is effectively
equivalent to quasi-acyclic asynchronous automata.

Open question: Is quasi-acyclicity really necessary?
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A little bonus

Lossless asynchrony
(weaker adversary):
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I will be awake at
the right times to
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Asynchronous run (formal version)

I Labeled digraph: G = (V ,E , λ), where λ : V → Labels.

I Distributed automaton: A = (Q, δ0, δ,F ),
where δ0 : Labels→ Q, δ : Q × 2Q → Q and F ⊆ Q.

I Timing of G: τ = (τ1, τ2, τ3, . . . ), where τt : V ∪ E → {0, 1},
such that 1 is assigned infinitely often to every node and edge.

I Asynchronous run of A on G timed by τ : ρ = (ρ0, ρ1, ρ2, . . . ),
where ρt : V ∪ E → Q+ with ρt(V ) ⊆ Q, such that

ρ0(v) = ρ0(vw) = δ0(λ(v)),

ρt+1(v) =

{
ρt(v) if τt+1(v) = 0,

δ
(
ρt(v), {ρt(uv).first | uv ∈ E}

)
if τt+1(v) = 1,

ρt+1(vw) =

{
ρt(vw).pushlast(ρt+1(v)) if τt+1(vw) = 0,

ρt(vw).pushlast(ρt+1(v)).popfirst if τt+1(vw) = 1.

Return
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