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Abstract
Function sensitivity—how much the result of a function can change
with respect to linear changes in the input—is a key concept in
many research areas. For instance, in differential privacy, one of the
most common mechanisms for turning a (possibly privacy-leaking)
query into a differentially private one involves establishing a bound
on its sensitivity.

One approach to sensitivity analysis is to use a type-based ap-
proach, extending the Hindley-Milner type system with functional
types capturing statically the sensitivity of a functional expression.
This approach — based on affine logic — has been used in Fuzz, a
language for differentially private queries.

We describe an automatic typed-based analysis that infers and
checks the sensitivity annotations for simple functional programs.
We have implemented a prototype in Fuzz’s compiler. The first
component of the analysis extends the typechecker to generate
nonlinear constraints over the positive real numbers extended with
infinity, which are then checked by the Z3 SMT solver; a solution
for them will provide an upper bound on the sensitivity annotations
and ensure the correctness of the annotations. We also present
a simple sensitivity minimization procedure and demonstrate the
effectiveness of the approach by analyzing several examples.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Specialized application lan-
guages; F.3.3 [Theory of computation]: Studies of Program Const-
ructs—Type structure

General Terms Design, Languages, Theory

Keywords Sensitivity Analysis, Differential Privacy, Linear Types,
Special Purpose Language, SMT solver

1. Introduction
The sensitivity of a function f(x) is an upper bound on how much
f(x) can change in response to a change to x—in other words, if
f has sensitivity k, then |f(x + δ) − f(x)| ≤ k · |δ| for all x
and δ. This property, also known as Lipschitz continuity, can be ex-
tended to entire programs with multiple inputs, and it has important
applications in many parts of computer science, including control
theory [26], dynamic systems [7], program analysis [9], and data
privacy [13].
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In these applications, it is often necessary to verify a claim that a
given function or program has a particular sensitivity. For instance,
consider the following scenario from the differential privacy litera-
ture [13]: A querierQ asks the owner of a private databaseD to run
some program f on D and then report the result f(D) back to Q.
It is known that this can be done safely, as long as a) the program
f has a finite sensitivity, and b) the answer f(D) is perturbed with
a bit of random “noise”, the amount of which depends on the sen-
sitivity of f . Note that f can be an arbitrary program, and that the
safety of the response depends on knowing the correct sensitivity;
if the owner of the database underestimates the sensitivity of f , the
result can be a serious privacy breach.

A related and equally important problem is to infer a minimal
sensitivity for a given program. A program with sensitivity k also
has sensitivity k′ for any k′ > k; thus, it is not incorrect to assign
a program a sensitivity that is larger than necessary. However, high
sensitivities come at a cost: for instance, a highly sensitive control
function may be deemed less stable than it actually is, or a highly
sensitive query on a private database may be perturbed with more
noise than is strictly necessary, reducing the accuracy of the result.
Thus, it is useful to be able to infer sensitivities that are as small as
possible.

One promising approach to these problems is to use an special-
ized functional language featuring a linear type system to reason
about sensitivity [11, 15, 22]. In this approach, the program types
are decorated with annotations describing the sensitivity of each
function; the typing rules are used to reason about the sensitivity
of larger and larger subprograms in a compositional way. Thus, the
sensitivity of the overall program can be verified from the known
sensitivities of the language primitives. This approach is attractive
because it produces a formal proof that a given program has a cer-
tain sensitivity; once the type-based verification succeeds, the pro-
gram may be compiled and run by standard functional tools. How-
ever, requiring the programmer to make extensive sensitivity anno-
tations throughout the program is tedious, error-prone, and hard to
maintain, since a small change in some part may require the user to
redo many annotations.

In this paper, we present a method that can infer and verify the
sensitivity annotations in a completely automated way, even in the
case where none are present. The key insight is to split the type-
checking process into two steps: 1) a symbolic step that is largely
analogous to standard type checking in functional programming
languages, and 2) a numerical step that infers suitable values for the
sensitivity annotations. The first step produces a set of constraints,
such that each satisfying assignment corresponds to a valid upper
bound on the program’s sensitivity; the second step then finds
solutions for these constraints by handing them to a standard SMT
solver.

To demonstrate that our approach is practical, we have applied
it to Fuzz [22], a programming language for differential privacy. In
Fuzz, the generated constraints are nonlinear inequalities over the



τ, σ ::= R | !rσ ( τ |σ ⊕ τ (types, r ∈ R∞)

e ::= x | r | f |λx : !rσ.e | e1 e2 | (expressions)
fix e | inji e |
case eof x→ el | y → er

Γ ::= ∅ |Γ, x : !rσ (environments)

Figure 1. µFuzz syntax

positive extended real numbers (the set {r ∈ R | r ≥ 0} ∪ {∞},
written R∞ here). Such constraints are difficult to handle for most
SMT solvers; fortunately, Z3 [12] is able to handle this theory
thanks to its built-in support for nonlinear real arithmetic and its
ability to integrate multiple theories. We have integrated our ap-
proach with the Fuzz compiler and measured running times on five
sample queries from the differential privacy literature. Our results
show that Z3 can solve all of the generated constraint systems in
less than 200 milliseconds each and that it can find a good approx-
imation to the minimal sensitivity in less than a second. In each
case, the compiler produces a full set of sensitivity annotations au-
tomatically, without programmer intervention.

In summary, our contributions are: first, a language-based ap-
proach for inferring and/or verifying program sensitivity in a com-
pletely automatic way, based on generating constraints on possible
sensitivity annotations that can then be solved by an SMT solver (§2
and §3); second, an application of our approach to Fuzz [22], a pro-
gramming language for differential privacy, and the corresponding
set of concrete constraints, which are nonlinear inequalities over
the real numbers (§4); third, an implementation of our approach
in the Fuzz compiler, which is based on the SMT solver Z3 (§5);
and fourth, an experimental evaluation with five concrete programs
from the differential privacy literature (§6).

2. The µFuzz language
As a vehicle for explaining our approach, we introduce µFuzz, a
simple functional programming language with a linear type system
able to reason about sensitivity. µFuzz is a proper subset of the lan-
guage Fuzz [22], including just the features needed to illustrate how
sensitivity analysis works. Extending the analysis to the full Fuzz
language is straightforward and completely modular as witnessed
by the implementation.

Types and terms. Figure 1 shows the formal grammar of µFuzz, a
simple functional language with real-number constants. Real num-
bers appear in µFuzz in two places: both as constants and as anno-
tations. In the examples, we will also use the arithmetic operations
of addition and multiplication by a scalar, but we don’t bother for-
malizing them here. A shown in [22], we can extend our language
and distance definition to standard algebraic data types.

The types are a refinement of the classical simply typed lambda-
calculus with some extra information about sensitivity. Specifically,
in a function with type !rσ ( τ , the annotation r (drawn from
R∞) gives an upper bound on the function’s sensitivity. When r is
equal to∞, it means that the sensitivity is not bounded. We define
r +∞ = ∞, and r · ∞ = ∞. We write σ → τ as a shorthand
for !∞σ ( τ . For the moment, sensitivity annotations on lambda-
abstractions are explicit; we explain how to infer them in §3.

Typing. Figure 2 shows the rules for type assignment in µFuzz. The
judgment Γ ` e : σ can be read as “the expression e has type σ
under the assumptions in environment Γ,” where Γ records both the
type of each free variable x appearing in e and an upper bound on
the sensitivity of e to changes x; the binding x : !rτ in Γ means
that e can be assigned type σ assuming that x has type τ and that
e is r-sensitive on x. Given r ∈ R∞ and two environments Γ and

∆ binding the same set of variables, we define the r-scaled sum
operation Γ + r ·∆ as follows:

Γ + r ·∆ = {x : !r1+r·r2σ | x : !r1σ ∈ Γ ∧ x : !r2σ ∈ ∆}
∪ {x : !r1σ | x : !r1σ ∈ Γ ∧ x 6∈ dom(∆)}
∪ {x : !r·r2σ | x 6∈ dom(Γ) ∧ x : !r2σ ∈ ∆}.

The (Prim) rule assigns to the primitives in our language the cor-
responding predefined types. The (Const) rule assigns the type R
to a real number constant r; since the expression r does not depend
on the variables in Γ the rule does not require further assumptions.
The (Var) rule says that the variable x has type τ , if x is assigned
the type τ by the environment, and the sensitivity annotation on x
is at least 1; this rule is motivated by the fact that the value of the
expression x is indeed 1-sensitive to changes in x. The (( I) rule
says that if e is r-sensitive in the free variable x, and if e yields a
value of type σ when x is of type τ , then the lambda-abstraction
λx : !rτ.e is an r-sensitive function of type !rτ ( σ. The most
interesting rule is (( E): if e1 is an r-sensitive function from τ
to σ, and if e2 has type τ , then 1) the application e1 e2 has type
σ, and 2) the sensitivity of e1 e2 in each free variable x is the sum
of r times the sensitivity of e2 in x, and the sensitivity of e1 in x
(because each use of x in e2 is “magnified” r times by the use that
e1 makes of its argument). A similar policy for sensitivities is used
by the rule (Case). A further aspect specific to this rule is that the
expressions el and er are required to have the same sensitivities in
their free variables. For this reason they are required to be typed in
the same environment Γ.

The remaining constructors for expressions are introduced as
typed combinators in Fig. 3. Note the fixpoint combinator fix for
every type ((!rτ ( σ) → (!rτ ( σ)) → (!rτ ( σ). While it
has unbounded sensitivity, its return type is an r-sensitive function
!rτ ( σ. In the same table, we also present the types of some
primitives1 that are used in our examples. Other primitives can be
added as described by the rule (Prim).

Semantics. To connect the type system with the operational seman-
tics and justify the way the rules propagate sensitivities, we equip
each type τ with a metric that defines a “distance” between ex-
pressions. The metric on the base type R is the standard distance
metric on reals. Metrics for type constructors like function types
are defined in terms of the metrics on their components; see [22].
A metric judgment of the form ` e1 ≈m e2 : τ indicates that the
expressions e1 and e2 are related at type τ , and that they are no
more than distance m apart with respect to the metric on τ (where
m ∈ R≥0 ∪ {∞} and∞+m =∞, 0 · ∞ = 0 and m · ∞ =∞
for m 6= 0). The type system is sound with respect to the metric if
every expression of type !rτ → σ actually computes a r-sensitive
function from τ to σ under a standard operational semantics for
expressions. Formally (writing e ↪→ v to mean that expression e
evaluates to value v):

Definition 1 (Metric Preservation [22]). Let ` e : !rτ → σ and
` v1 ≈m v2 : τ such that r · m is finite. If e v1 ↪→ w1, then
e v2 ↪→ w2 and ` w1 ≈r·m w2. Note that ≈ is symmetric.

Other approaches. A slightly different type system for sensitivity
analysis is presented in [15]; any k-sensitive function is also seman-
tically k′-sensitive for all k′ ≥ k; this induces a (fairly standard)
subtyping relation on types.

The practical impact for type-checking an inference purposes
comes from the different application rules. In a subtyping-based
approach, inferring the minimal sensitivity of a function is enough.

1 From a type checking perspective, combinators and primitives are handled
similarly. However, from the operational point of view, primitives reduce to
values in one step, while combinators reduce to expressions that may need
further evaluation.



Γ ` r : R
(Const)

f r-sensitive primitive σ → τ

Γ ` f : !rσ ( τ
(Prim)

r ≥ 1

Γ, x : !rτ ` x : τ
(Var)

Γ, x : !rτ ` e : σ

Γ ` λx : !rτ.e : !rτ ( σ
(( I)

Γ ` e1 : !rτ ( σ ∆ ` e2 : τ

Γ + r ·∆ ` e1 e2 : σ
(( E)

∆ ` e : σ ⊕ τ x : !rσ,Γ ` el : µ y : !rτ,Γ ` er : µ

Γ + r ·∆ ` case eof x→ el | y → er : µ
(Case)

Figure 2. Type assignment rules for µFuzz

inj1 : σ ( σ ⊕ τ (∀στ types)
inj2 : τ ( σ ⊕ τ
fix : (F → F )→ F F ≡ !rτ ( σ (∀r ∈ R≥0)

(+) : !1R ( !1R ( R
(r ·) : !rR ( R (∀r ∈ R≥0)

Figure 3. Types of combinators and primitive expressions

However, in a subtyping-free system all the uses of a given function
must be taken into account in order to find the exact sensitivity,
leading to global-scope constraints.

In the rest of this paper we explore the challenges generated by
the subtyping-free version.

3. An Overview of Sensitivity Analysis
A well-typed function definition in the explicitly annotated lan-
guage described above can thus be viewed as a proof that this func-
tion has a particular sensitivity. For instance, if we assume the prim-
itive 2· (with typing rule ` 2· : !2R ( R), then the expression
λx : !2R . 2 · x can be given the type !2R ( R, expressing the fact
that the underlying function λx. 2 · x is 2-sensitive in its argument
x. The same underlying function can be annotated differently to
certify other (less precise) claims about its sensitivity. Indeed, for
every k ≥ 2 we can show x : !kR ` 2 · x : R by using the (( E)
rule with premises ` 2· : !2R ( R and x : !iR ` x : R, where
k = 2 · i and i ≥ 1 (the latter coming from the Var rule).

Finding such a proof—i.e., checking the well-typedness of a
fully annotated program—requires some nontrivial reasoning on
the part of the typechecker. For example, suppose we want to check
that the following is a valid typing judgment:

x : !5R ` (λf : !1(!3R ( R). f x) (λy : !3R. 3 · y + 0.5 · x) : R
The first step is to type the subexpressions. This requires splitting
the annotation on x—i.e., finding two environments x : !r1R and
x : !r2R that respectively allow us to prove

x : !r1R ` λf : !1(!3R ( R). f x : !1(!3R ( R) ( R
and

x : !r2R ` λy : !3R. 3 · y + 0.5 · x : !3R ( R
However, without further analyses on the subexpressions we do not
know anything about the values r1 and r2 except that they should
be such that 5 ≥ r1 + 1 · r2, as required by the rule (( E).
This example shows how even typechecking fully annotated ex-
pressions requires reasoning about constraints. A similar situation
arises for languages like ML, whose polymorphic type systems re-
quire unification-based constraint solving, except that here the con-
straints are numerical.

In this particular example, the generated constraints are local
and can be solved efficiently by a simple special-purpose algorithm
(as was done in the original Fuzz implementation, for example).
However, this form of constraint solving is not powerful enough to
enable convenient programming with sensitivities. In particular, the

task of providing complete annotations can be difficult and error-
prone, so we would also like to be able to check the correctness
of “partial programs” where some of the explicit sensitivity anno-
tations are replaced by variables. We might, for example, want to
verify a judgment like the following:

x : !5R ` (λf : !i1(!i2R ( R). f x) (λy : !i3R. 3·y+0.5·x) : R

This requires not only finding the split environments for x as
described above but also finding values for i1, i2, and i3 with
the condition that i2 must be equal to i3. Note that now the only
information we have from the rule (( E) is that 5 ≥ r1 + i1r2;
unlike the previous case, this constraint is nonlinear and thus harder
to solve. Similar constraints can arise when a program contains
case expressions.

A natural further step is to ask not just for some set of annota-
tions that makes an expression well typed, but for a set of minimal
annotations. Consider a similar judgment:

x : !jR ` (λf : !i1(!i2R ( R).2+f x) (λy : !i3R.3·y+0.5·x) : R

To know the minimal value that j can take on, we have to find the
least j satisfying the equation j ≥ r1 + i1r2. (It turns out to be 7

2
.)

To formally define these problems, we enrich the possible an-
notations in expressions, types, and environments to include sen-
sitivity variables i, j, k, . . . from a set X . We will call any ob-
ject containing such sensitivity variables open. Assigning values
to variables corresponds to applying a substitution, a total function
ρ : X → R∞. As usual, substitutions on variables can be extended
to open expressions, types and environments. A constraint C con-
taining free sensitivity variables is satisfiable if there is a substitu-
tion ρ such that ρ(C) is valid in the structure R∞; we write Jρ(C)K
in this case. Now, the two problems we address can be described
formally as follows.

Problem 1 (Sensitivity Checking). Input: an open expression (or
annotated program) e, and an open type σ. Output: yes, if there
exists a substitution ρ such that ` ρ(e) : ρ(σ); no, otherwise.

Problem 2 (Sensitivity Minimization). Input: an open expression
e (or annotated program), an open type σ, and a set of sensitivity
variables ~i. Output: ρ sat, if ρ is the minimal substitution with
respect to ~i such that ` ρ(e) : ρ(σ); unsat if there is no such
substitution.

Our approach to these problems is outlined in Figure 4. The
input of the analysis is a µFuzz program where the sensitivity of
every function expression is either provided by the user or left un-
specified. The program is processed using a sensitivity analysis ex-
tending a standard typechecking. The result is a set of sensitivity
constraints over R∞ capturing all the program’s sensitivity infor-
mation. The resulting set of constraints is then submitted to an SMT
solver. If the formula is satisfiable, the solver supplies the values
of the unknown sensitivities (solution set). Otherwise, the solver
provides a negative answer meaning that the user annotations are
incorrect. In the case of a positive answer, a minimization engine
can be used to generate a solution that is minimal (minimal solu-
tion set). This minimal solution provides the values of the missing
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Figure 4. Our approach

annotations. If the minimal solution for a variable doesn’t exist, the
engine will stop at a value which is minimal with respect to a user-
defined delta.

4. Constraint Solving and Generation
We describe our method for extracting constraints from a given µ
Fuzz program, such that (1) the constraints are satisfiable iff the
program is typable, and (2) every satisfying assignment directly
corresponds to an upper bound on the program’s sensitivity. For
clarity, we present our method in two steps. First, we present a type-
based constraint generation algorithm which, given a program, pro-
duces a set of constraints over R∞; the minimal solutions to such
constraints characterize the program sensitivities (§4.1). Second,
we transform the constraints over R∞ into a different representa-
tion that can be solved using SMT solvers such as Z3 (§4.2). We
conclude the section with a discussion on complexity (§4.3).

4.1 Type-based constraint generation
Our constraint generation algorithm is shown in Figure 5. The algo-
rithm takes as input an environment without sensitivity annotations
and an open expression (Γ ` e). It returns a type σ, an updated envi-
ronment Γ′ containing the annotations !k for the original variables
in Γ, and a constraint C. We write Γ ` e ⇒ σ a Γ′ | C for an al-
gorithm call. We write Γ for the environment resulting from remov-
ing all the sensitivity annotations from the bindings in Γ. Formally
Γ = {x : σ | (x : !iσ) ∈ Γ}. The algorithm operates by traversing
the expression syntax tree and accumulating information about the
sensitivities in the set of constraints C; at the same time, it updates
the environments to reflect the newly computed information about
sensitivities.

The first two rules are standard and do not generate any interest-
ing constraint. The rule (Var) , given a variable x, introduces a new
sensitivity variable and a constraint to record that the sensitivity of
x is greater or equal than one. The rule (( I), given an abstraction
λx : !kσ.e, runs the analysis on the inner expression e; such analy-
sis will return a type σ and a sensitivity r which is checked against
the annotations k.

The rule (( E), given an application e1 e2, runs the anal-
ysis on e1 and e2. These two calls to the algorithm return two
environments Γ and ∆ containing different sensitivities annota-
tions which need to be combined into a single environment rep-
resenting Γ + r · ∆. To compute such an environmnet, we use
the procedure fresh(Σ) that introduces a fresh sensitivity variable
for each element of the initial environment Σ, and the procedure
merge(Γ, r,∆) that produces a set of arithmetic constraints that
link the new variables to the ones from Γ and ∆. Since the inferred
types σ, σ′ may contain different sensitivities, we impose the con-
straint σ = σ′, which assuming structural equality of σ and σ′

requires all the sensitivities appearing in the types to be equal. If
the types are not structurally equal, the term is not typable.

The rule (⊕E) generalizes the approach described above. Given
an expression case eof x→ el | y → er , it runs the analysis on e,
el and er . The first step to obtain the output environment is to find

an upper bound for the two environments ∆l and ∆r inferred for
the two branches of the case. This is again achieved by using the
procedure fresh~n(Σ) that introduces a fresh sensitivity variable in
~n for each element of the initial environment Σ, and the procedure
sup~n(∆l,∆r) that produces a set of arithmetic constraints that
link the new variables in ~n to the ones from ∆l and ∆r . The
second step is to find an upper bound for the sensitivities of x
and y. This is obtained by introducing a new sensitivity variable
r and by imposing the constraints r ≥ rl and r ≥ rr . Using
the results of these two steps, the environments fresh~n(Σ) and Γ
can be combined into a single one representing fresh~n(Σ) + r · Γ
using the same technique described for the rule (( E). Finally,
we need to make sure that the return type in the two branches
is the same. To obtain this we impose the constraint µl = µr

which assuming structural equality of µl and µr requires all the
sensitivities appearing in the types to be equal.

Sensitivity annotations are only required to be greater or equal
than the value of the actual sensitivity. For example a 1-sensitive
function can be annotated with any sensitivity greater than 1, as
any k-sensitive function is k′-sensitive for all k′ ≥ k.

Next, we relate the constraint generation algorithm with the type
system presented in §2, which does not contemplate the use of
sensitivity variables in the judgments. The algorithm in Figure 5
is sound in the sense that, if it generates a set of constraints C
for a given expression e, then any satisfying assignment of C
corresponds to a valid type for e. The algorithm is also complete
in the sense that it always generates a satisfiable set of constraints
C if the input is a well typed expression e. Moreover, for every
sound sensitivity annotation of e there exists a solution of C with
values corresponding to those of such annotation.

Definition 2 (Soundness). For all e and Γ, if Γ ` e⇒ σ a Γ′ | C,
then for all ρ such that Jρ(C)K, we have ρ(Γ′) ` ρ(e) : ρ(σ).

Definition 3 (Completeness). If Γ ` e : σ, then Γ ` e⇒ σ a Γ′ |
C and exists ρ such that Jρ(C)K and Γ ≥ ρ(Γ′).

4.2 Constraint Satisfiability and Minimization
The constraint generation algorithm in Figure 5 generates equalities
and inequalities over a set of terms containing variables, constants
in R∞ and functions {+, ∗}. The structure of the generated con-
straints is described by the following grammar:

r ::= X | R∞ c ::= r ≥ e | r = r e ::= r | e + r ∗ e (1)

Given the above constraints, we study how to solve them and how
to minimize the value of a solution. The constraints generated in
this paper follow a particular pattern, however they are not trivial
to implement, making sense to use an already existing constraint
solver. Not being tailored to a particular constraint solver algorithm
also allowed to experiment more easily with different variations of
the type system.

4.2.1 Constraint solving over the extended real line:
Our constraints are quite common in nonlinear real arithmetic with
one important exception: we use real arithmetic extended to real
line with ∞. This raises a difficulty, as most SMT solvers are
restricted to solving over R.

To overcome this limitation we encode terms r over R∞ as a pair
(B×R). Assume a set of variables XB and XR for variables over B
and R. The translation I from terms over R∞ to terms over (B×R)
is presented in Figure 6. Predicates over R∞ are encoded using
the same principles, using the translation function P . The boolean
component determines when a term is infinity, and variables over
R∞ are represented as a pair of variables over (B × R). Note that
the translation is not a bijection, although it would be easy to do so.



~m fresh
Γ ` r⇒ R a fresh~m(Γ) | ~m ≥ 0

(Const)
f typed σ ~m fresh

Γ ` f ⇒ σ a fresh~m(Γ) | ~m ≥ 0
(Prim)

r fresh ~m fresh
x : σ,Γ ` x⇒ σ a x : !rσ, fresh~m(Γ) | r ≥ 1 ∧ ~m ≥ 0

(Var)
x : σ,Γ ` e⇒ τ a x : !rσ,Γ

′ | C
Γ ` λx : !kσ.e⇒ !kσ ( τ a Γ′ | k ≥ r ∧ C

(( I)

Σ ` e1 ⇒ !rσ ( τ a Γ | C1 Σ ` e2 ⇒ σ′ a ∆ | C2 ~m fresh
Σ ` e1 e2 ⇒ τ a fresh~m(Σ) | C1 ∧ C2 ∧merge~m(Γ, r,∆) ∧ σ = σ′

(( E)

Σ ` e⇒ σ ⊕ τ a Γ | Ce x : σ,Σ ` el ⇒ µl a x : !rl ,∆l | Cl y : τ,Σ ` er ⇒ µr a y : !rr ,∆r | Cr

Σ ` case eof x→ el ⇒ µ a fresh~m(Σ) | Ce ∧ Cl ∧ Cr ∧ r ≥ {rl, rr}
| y → er ∧ merge~m(Γ, r, fresh~n(Σ)) ∧ sup~n(∆l,∆r) ∧ µl = µr

(⊕ E)

fresh~m(Γ) ≡ {xi : !miσi | (xi : σi) ∈ Γ}
sup~m(Γ,∆) ≡ {mi ≥ ji ∧mi ≥ ki | (xi : !ji : σ, xi : !kiσ) ∈ (Γ,∆)}

merge~m(Γ, r,∆) ≡ {mi ≥ ji + r · ki | (xi : !jiσi, xi : !kiσi) ∈ (Γ,∆)}

Figure 5. Constraint generation algorithm

I(r) = (r.inf, r.val) r ∈ X (r.inf, r.val) ∈ (XB,XR)
I(r) = (false, r) r 6=∞
I(∞) = (true, )
I(r1 + r2) = (r1.inf ∨ r2.inf, r1.val + r2.val) (ri.inf, ri.val) = I(ri), i ∈ {1, 2}
I(r1 ∗ r2) = (r1.inf ∨ r2.inf, r1.val ∗ r2.val)

P [r1 2 r2] = P2[I(r1) 2 I(r2)] 2 ∈ {=,≥}
P2[(b1, r1) = (b2, r2)] = (b1 ∧ b2) ∨ (¬b1 ∧ ¬b2 ∧ r1 = r2)
P2[(b1, r1) ≥ (b2, r2)] = b1 ∨ (¬b1 ∧ ¬b2 ∧ r1 ≥ r2)

Figure 6. Translation of the extended real numbers

The constraints resulting from the encoding are still challenging
to solve because they mix boolean constraints with nonlinear real
arithmetic, but, as we will show in §5, there is at least one current
solver (Z3) that can handle them.

A constraint satisfiability problem for a set of constraints C
consists in finding a substitution ρ such that ρ(C) is a valid set
of (in)equalities in R∞ or alternatively in saying that no such
substitution exists. It is easy to show that the encoding is correct
and complete with respect to constraint solving, that is to say, an
encoded constraint will have a solution with respect to the theory
of the booleans and reals iff it has a solution over the theory of
the extended positive real line, or formally ∀C.(∃ρ.Jρ(C)K ⇐⇒
∃ρ(B×R)Jρ(B×R)(P [C])K).

4.2.2 Sensitivity minimization:
A constraint minimization problem for a set of constraints C and
a variable x consists on finding the substitution ρ that satisfies
C such that for every other valid substitution ρ′, ρ′(x) ≥ ρ(x).
Assume a formula C(x) parametric on x, then we can express
the minimization problem as the following first-order formula:
∃x.(C(x) ∧ ∀y.(C(y)→ y ≥ x).

This definition can be extended to several variables by extending
the ≥ operation to take a variable set:

f( ~xmin) = ∃ ~xmin.(C( ~xmin)∧∀ ~x′min(C( ~x′min)→ ~x′min
~≥ ~xmin))

A formula may have no minimal solution.
The constraints generated by the sensitivity algorithm — char-

acterized in Eq. (1) — feature some properties crucial for the min-
imization algorithm to work:

Definition 1. Assume a constraint C(~x) with variables among ~x
and a solution ρ for it. For every variable x ∈ ~x, ifC(~x)∧x < ρ(x)
is satisfiable, exists a solution ρ′ such that ρ′(~x) ≤ ρ(~x).

Trying a lower value for a variable will never force other sensi-
tivity variables to be assigned a higher value if the solver is com-
plete. By this fact, we can use a one-variable-at-time minimization
strategy, and the order in which we pick the variables to be mini-
mized will not affect the final result. Indeed, in this version of the
type system, the generated constraints will always have a minimal
solution.2

4.3 Theoretical Complexity Bounds
First-order constraints (with conjunction and negation) over R
with inequalities, equalities, sum and multiplication are gener-
ally referred to as Existential Theory of the Reals (ETR). Solving
ETR constraints is a PSPACE problem with an NP-HARD lower
bound [23]. This complexity result can be applied to our problem
using the following variant of the reduction in 4.2. Every variable x
over R∞ can be represented by two variables x.inf and x.val, this
time both of type R, where if x.inf = 0 then x represents∞ else
x represents the real number x.val. Operations such as sum and
multiplication are as in §4.2. The resulting number of variables and
constraints is polynomial in the size of the initial constraint set, so
the PSPACE bound still holds.

The constraint minimization problem can be solved via quan-
tifier elimination. This procedure takes a formula f(x) and com-

2 It should be noted that in general no minimal solution exists for con-
straints over reals.



Algorithm 1 Constraint Minimization
Input: (x, lower, upper) variable to minimize, lower and upper

bounds
(cs) set of satisfiable constraints
(ISDELTA) binary predicate that returns true iff its two argu-
ments reached the desired distance/precision.

Output: minimal solution for the variable x in cs with precision
depending on the predicate ISDELTA

1: function MIN(x, lower, upper, cs, ISDELTA)
2: if ISDELTA(lower, upper) then
3: return VALUEOF(x, cs)

4: ADDCONSTRAINT(x ≤ upper+lower
2

, cs)
5: if ISSATISFIABLE(cs) then
6: return MIN(x, lower,VALUEOF(x, cs), cs, ISDELTA)
7: else
8: REMOVELASTCONSTRAINT(cs)

9: return MIN(x, upper+lower
2

, upper, cs, ISDELTA)

putes an equivalent formula f ′(x) that does not contain quanti-
fiers. The first order theory of reals (ETR with quantifiers) admits
quantifier elimination, and, when the number of quantifier alter-
nations is bounded, has complexity EXPTIME [4]. We can apply
this technique to solve our constraints. The formula f( ~xmin) of
§4.2 can be encoded, as in the previous paragraph, as a formula
f1( ~xmin.val) of size polynomial in that of f( ~xmin). After this en-
coding we can use the quantifier elimination and obtain an equiva-
lent formula f ′( ~xmin.val), where ~xmin.inf is forced to have value
greater than 0, of size exponential in that of f1( ~xmin.val). Finally,
f ′( ~xmin.val) can be solved using the PSPACE procedure of [23],
with final complexity EXPSPACE. If f ′( ~xmin.val) does not admit
any solution, the special case in which ~xmin.inf = 0 (the minimum
value of ~xmin is∞) is checked separately (this does not change the
complexity).

5. Implementation: Fuzz and Z3
We have applied our sensitivity analysis method to Fuzz [22], a pro-
gramming language for differential privacy that uses a sensitivity
analysis to determine how much private information a given pro-
gram could release. Our implementation is now part of the public
release of Fuzz, available from the project web page [25].

After some experimenting with SMT solvers we decided to use
Z3, which recently incorporated a complete solver (nlsat) for the
existential theory of the reals [17]. This solver seamlessly integrates
with boolean formulas; thus, Z3 supports the encoding of R∞ we
have described in §4.2.

Our implementation is based on Z3’s Python bindings. The
compiler applies some basic optimizations to the generated con-
straints. For instance, it removes trivial constraints like∞ ≥ i or
4 ≥ 3. The encoding of R∞ interferes with Z3 own optimizations,
as constraints like i = 3, which Z3 would eliminate using substitu-
tion propagation, are seen as a conditional boolean formula. There
is room to experiment with compiler-side constraint optimization,
for instance, compiler-side substitution propagation would halve
the number of sensitivity variables finally sent to Z3, with the con-
sequent runtime improvement.

As discussed in §4.2, the minimization problem can be ex-
pressed using quantifiers; however, Z3 does not yet support quanti-
fier elimination for the minimization problem. Instead, we have im-
plemented a simple minimization procedure based on binary search
(see pseudocode in Algorithm 1). The basic idea is to use the con-
straint solver to successively narrow the range of the variable that is
being optimized until the desired precision has been reached. Our
procedure supports both relative and absolute precision parameters.

Problem SC (ms) SM (ms) DB sens Iterations
(p = 0.01) LoC

over40 33 266 1 10 47
income 50 424 4 11 81

age-histo 48 438 1 10 84
ipquery 53 368 1 10 74
k-means 67 662 6 12 126

Table 1. Running times for Sensitivity Checking (SC) and Sensi-
tivity Minimization (SM) for DP algorithms. The Iterations column
denotes the number of binary search iterations necessary to find the
minimal sensitivity with error±0.01. The lines of code (LoC) omit
those in the libraries for lists and bags (about 250 lines).
6. Evaluation
In this section we report results from an experimental evaluation of
our approach, based on the extension to full Fuzz described in §5.
The key metric we focus on is performance: in order to be practical
for interactive applications (such as developing Fuzz programs),
the analysis must complete within a reasonable amount of time.
Since the time needed to generate the constraints is dwarfed by the
time needed to solve them, we only report the latter, unless speci-
fied otherwise. Our experiments were performed on a commodity
laptop—specifically, an Apple MacBook with a 1.7 GHz processor
and 4 GB of memory.

6.1 Performance for realistic programs
To get a first impression of the performance for realistic Fuzz
programs, we ran our analysis on the five example programs that
are distributed with Fuzz. Each of these programs is motivated by
a concrete application from the differential privacy literature. The
programs take a database with private information (e.g., census
data) as their single argument, and they return some aggregate
result (e.g., the number of individuals in the database who have
certain attributes).

We separately measured the time needed for sensitivity check-
ing and for sensitivity minimization. For the former, we removed
all sensitivity annotations except for the one on the database argu-
ment; for the latter, we removed all annotations and asked for the
sensitivity of the database argument to be minimized, with a preci-
sion of±0.001. We additionally report the number of iterations for
the binary search, as well as the number of lines of code (LoC) in
each program.

Table 1 shows our results. All experiments completed within
one second (in the case of sensitivity checking even within 100 ms),
which is fast enough for interactive applications, such as program
development. As a sanity-check for our implementation, we also
verified that the minimum sensitivities matched the (known) sensi-
tivities of the programs, as expected.

6.2 Scalability Analysis
Next, we measured how the analysis scales with respect to three key
parameters: the sensitivity of the program, the size of the program
in LoC, and the requested precision for minimization.
Sensitivity values. The cost of the binary search depends partly
on the absolute value of the program’s sensitivity—if this value is
very big or very small, the search takes more time. To quantify this,
we ran the analysis on a series of small programs with sensitivity
values ranging between compute 0.39 and 29. We found that the
running times were slightly affected by the sensitivitity values,
althouth remaining below one second. Thus, at least for the small
programs we tested, the runtime remains practical even for extreme
sensitivities.
Program size. We expect the analysis time to increase with the
program size as well, since larger programs tend to generate more
constraints. To generate a number of comparable programs of dif-
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Figure 7. Running times for Sensitivity Checking and Sensitivity
Minimization on k-means benchmark varying lines of code. We
consider an absolute error of 0.01. The graph on the left also shows
(dotted line) the running time required by the solver to say that the
constraints are not satisfiable when inserting the wrong sensitivity
annotation.

ferent sizes, we varied the number of iterations in the k-means
program; the main loop calls 11 auxiliary functions, so each extra
iteration adds 58 LoC once the loop is unrolled. We thus obtained
ten programs K1, . . . ,K10 with sizes between 84 LoC (K1) and
606 LoC (K10). Figure 7 shows our results; the dotted line on the
left is for the unsatisfiable constraints. For programs of 600 LoC
or less, sensitivity checking takes at most 1 seconds until the check
either succeeds or fails. For sensitivity minimization, at 600 LoC,
the running time is of 6 seconds.
Precision. Finally, we quantified the impact of the requested pre-
cision on the runtime of the analysis. We re-ran all the tests from
§6.1 with absolute precisions between 0.01 and 0.000001 and rela-
tive precisions between 1% and 0.0001%. We found that, the max-
imum runtime was 1350 ms, and therefore still practical.
Summary and discussion. The main conclusions from our evalu-
ation results are as follows. Sensitivity checking is usable: In all of
our experiments, the tool produced a (positive or negative) answer
to the sensitivity checking problem in less than a second, for pro-
grams of up to 600 LoC. For the realistic programs (§6.1), the an-
swer never took more than one second. Higher-order functions are
supported well: Since complex types cause the application rule to
generate more equality constraints, we initially expected the analy-
sis to slow down as the order of functions increases (i.e., the depth
of functions taking functions as arguments which themselves take

functions...). However, in our experiments we did not find a signifi-
cant slowdown, even with sixth-order functions. Precision is not ex-
pensive: The binary search provides a way to get high precision at
a relatively small cost: increasing the precision by an order of mag-
nitude adds only two extra iterations. Big and small numbers take
time: Our minimization procedure is affected by the values of the
sensitivity: when large programs have large sensitivity values, the
minimization procedure can be slowed down. However, once SMT
solvers add native support for minimization, performance should
improve. Large programs take time: The minimization procedure
takes longer than 5 seconds when the size of the program exceeds
500 LoC, even for relatively low precisions. However, practical
queries are often smaller than this, and minimization need only
be run once (after that, the identified values can be plugged into
the program as annotations), so this may still be acceptable. Also,
performance should improve once native support for minimization
becomes available.

7. Related Work
Sensitivity analyses. Chaudhuri et al. in [8] and [9] study an au-
tomatic program analysis that can verify robustness of imperative
programs. Their notion of robustness is same as program sensitiv-
ity: a program is K-robust if an ε-variation of the input can cause
the output to vary by at most ±Kε. In [9] they further extend this
notion by parametrizing it over the “size” of the input (e.g. the num-
ber of elements in an array). Their technique performs a numerical
analysis of the function computed by the program and then reasons
about such function. Our approach differs from the one in [9] in
several aspects. (1) Their analysis only considers terminating pro-
grams for which bounds on the number of loop iterations are known
a priori. Our analysis does not impose a priori restrictions on the
program that can be studied. (2) Their analysis allows to prove ro-
bustness of programs for which our analysis fails. Moreover, they
are able to express the robustness in terms of sizes, rational num-
bers, and input values. This also entails the capability of reasoning
in a more refined way about conditional branching. While Fuzz is
not able to do this, the extended type system proposed in [15] can
capture such variations to some extent. We plan on extending our
analysis to this more complex type system. (3) Their analysis is able
to verify but not infer a minimal sensitivity. And (4) their analysis
is “mostly automated” due to proof obligations that are not always
automatically solvable, while ours is fully automated.

Palamidessi and Stronati [20] recently proposed a constraint-
based approach to compute the sensitivity of relational algebra
queries. In particular, their analysis is able to compute the minimal
sensitivity of wide range of queries. In contrast, the goal of our
approach is to provide an upper bound on the sensitivity not of
relational queries but for higher order functional programs.
Type systems and constraint solvers. Many previous works have
reduced type inference and type checking to constraint satisfiabil-
ity (see [19, 21] for an introduction). A recent language that uses
an SMT solver for typechecking is Dminor [5]. This typed lan-
guage uses subtyping and refinement types to process relational
data. The SMT solver is used to check logical constraints corre-
sponding to the refinement types and the subtyping relation. Simi-
larly, the SAGE language [16] uses an SMT solver to check the va-
lidity of refinement types in a language with dynamic typing. This
approach differs from ours since it considers symbolic constraints
rather than numeric ones. Linear types are a key tool to support fine
grained reasoning about resource management. Type checking and
type inference for linear types usually involve some type decoration
problem that can be reduced to a corresponding problem on inte-
ger constraints [1, 2]. These constraints can usually be solved effi-
ciently using constraint solvers for integer programming. Dal Lago



and Petit [11] have recently proposed an inference algorithm for a
type system for implicit complexity that combines linear indexed
types with dependent types. Their algorithm generates integer con-
straints that can be solved using Why3 [6], a platform combining
automatic and interactive solvers. ATS [10] is a language that com-
bines linear types with automatic and interactive solvers for inte-
ger constraints. ATS helps reasoning about memory and pointers
properties. However, linear types as used in ATS are not enough to
reason about the sensitivity of programs. Our approach differs from
all of these in the use of an SMT solver to decide constraints over
the reals.
Differential privacy. Differential privacy [14] is one of the strongest
privacy guarantees that has been proposed to date. Other linguis-
tic tools besides Fuzz have been proposed to ensure differential
privacy. PINQ [18] is an SQL-like differentially private query lan-
guage embedded in C#; Airavat [24] is a MapReduce-based solu-
tion using a modified Java VM. CertiPriv [3]. is a machine-assisted
framework—built on top of the Coq proof assistant—for reasoning
about differential privacy from first principles. None of these tools
provides a static sensitivity analysis method.

8. Conclusion
We have presented an approach for checking and inferring the sen-
sitivity of functional programs. The approach is based on the type
system of Fuzz, a higher-order functional programming language
for differential privacy. Our technique generates constraints over
positive real numbers extended with infinity so that each constraint
solution is an upper bound for the program sensitivity. We used the
SMT solver Z3 to solve such constraints and adopted our analysis
to infer and verify the correct sensitivity of real world differential
privacy programs.

We were able to scale our analysis for programs with more than
500 lines of code. We identified a few limitations in our method
related to the minimization procedure. The use of an SMT solver
makes our approach modular and extensible whenever new SMT
solving techniques are introduced and we believe that future ad-
vances in the SMT community will address our analysis limitations.

We plan to extend our method to deal with the type system
proposed in [15]. This extension would enable analysis of programs
for which the sensitivity depends on some input values, for example
array sizes.
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