
An Overview of the Sloth2005 Curry System
System Description

Emilio Jesús Gallego Arias Julio Mariño
Universidad Politécnica de Madrid ∗

egallego@babel.ls.fi.upm.es jmarino@fi.upm.es

Abstract
We present the current state and immediate future developments of
Sloth [7], a Curry [2] to Prolog translator. Currently it implements
almost all the features required the Curry Report [5] – no encapsu-
lated search at the moment – and there is support for some exten-
sions like, for instance, type classes and constraint programming
over rationals.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features; D.3.2 [Programming
Languages]: Language Classifications—Applicative Languages,
Constraint and Logic Languages, Multiparadigm Languages

General Terms Languages

Keywords Curry, Sloth, Type Classes, Constraint Definitional
Trees

1. Introduction
Sloth is a compiler that translates Curry programs into Prolog,
extending our previous work on the translation of Babel programs.

The motivation for implementing and maintaining an apparently
inefficient implementation of Curry is the need of keeping up to
date with a rapidly evolving language, easily introducing changes
that would take longer in an abstract machine implementation.
Nevertheless, while slower than Prolog, Sloth is perfectly usable
as a first contact with Curry.

Another goal is to encourage other groups to have their own im-
plementations of Curry, by making the front-end of Sloth available
to them.

Currently, Sloth generates Ciao Prolog [6] code but we think
is 100% ISO compliant - i.e. easily portable. One of the main
advantages of Sloth being built on top of Ciao is the huge number of
libraries, extensions of LP, metaprogramming facilities, analyzers,
etc, already present in the Ciao system which make life easier when
trying some things. Moreover, Ciao is an open source project, so in
case there is some feature lacking it is possible to add it — specially
when the main development team is in the next room.

∗The authors are totally/partly supported by the Spanish MCYT grant
TIC2002-0055.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
WCFLP’05 September 29, 2005, Tallinn, Estonia.
Copyright c 2005 ACM 1-59593-069-8/05/0009. . . $5.00.

Sloth2005 is available at http://babel.ls.fi.upm.es/
research/Sloth.

The basic Curry to Prolog translation schemes can be found
in our first paper [7], along with more on the Sloth concept. The
following sections focus on specific features recently implemented
or in development. Section 2 describes the translation of modules.
The interactive shell is presented in Sec. 3. Section 4 describes
the support of type classes, while Sec. 5 introduces constraint pro-
gramming over the rationals. Finally, Sec. 6 presents some features
currently being developed. In order to make the paper more self-
contained, the appendix introduces the basics of the Curry to Prolog
translation.

2. Modules support
We have based our module system on Ciao Prolog’s. The underly-
ing idea is to compile a Curry module to a Prolog module, and let
Ciao’s module system do almost all the work.

A compiled Curry module has two different parts:
Module interface This part tells the compiler what are the types

and functions exported for use by other modules, and their
respective types or constructors.

Object code This part mainly contains Prolog predicates to imple-
ment reduction to head normal form of Curry defined function
symbols.
The key idea here is to have both parts in the same file, so we

can handle a Curry module as a single file.

2.1 Identifier handling

All type and function identifiers are internally qualified, using the
following format: qid(ModuleName, IdentifierName).

When compiled to Prolog, we use the following translation
scheme:
qid(Module, Identifier)→ Module_Identifier.

2.2 Interface handling

The module’s interface is represented by a Prolog predicate exports
/1, for each symbol exported. The predicate can contain two differ-
ent terms:

� A qualifier exporter term:
exports(id(IdName, Type)) where IdName is a qualified iden-
tifier and Type is the identifer type.

� A type exporter term:
exports(type(Type, [Constructor])), where
Constructor = (CName, CType).

Interface loading is done by importing the exports/1 predicate in
the compiler, and then finding them by qualified name:

66

load_exports(Module) :-
use_module(Module, [exports/1]),
!,
findall(iface(Iface), Module:exports(Iface), Exports

),
load_interfaces(Exports).

The reader can see how powerful Ciao’s module system is in the
above code. Predicate use_module/2 loads the exports/1 predicate
and bring it into the scope, then all the exports of the module are
found and passed to the load_interfaces/1 predicate, which loads
all the exports into the compiler’s symbol table.

The programmer is allowed to specify external functions (gen-
erally programmed in Prolog) using the external keyword. This
will generate the interface for the function without any code:
(+) :: Int → Int → Int

(+) external

A similar scheme is used in the PACKS Curry compiler.

2.3 Code handling

Code sharing is allowed by making the tohnf/2 predicate mul-
tifile, so the only thing a module importing Module has to do is
use_module(Module) in its Prolog code, and the Module’s code will
be accessible.

3. Interactive Shell
One of the most wanted features of any declarative system is an
interactive shell. Given that our compiler translates Curry code to
Prolog code, the natural way of implementing an interactive shell
is generating a Prolog query from shell expressions and executing
it against the loaded expressions.

3.1 Compiling expressions

Expression compilation is done by the non-interactive parser and
translator, without using any especial code.

3.2 Executing code

Once we have the expression in Prolog (which is our internal
representation), we turn it into a query and execute it:
exec(Expr, (Binds, Res)) :-

free_rule(Expr, ExprFree, Dicc),
tr_expr(ExprFree, Prolog),
varset(Prolog, Vs1),
filter_bindings(Vs1, Dicc, Binds),
Query = tonf(Prolog, Res),
(
call(Query)

;
Res = failed

),
!.

Required modules for the execution are imported using the module
system.

Some steps of our code translation scheme (as lambda lifting)
result in new auto generated functions. This is solved in two ways:
� Make tohnf/2 a dynamic predicate: This would be the preferred

solution, but debugging capabilities and performance of the
resulting Prolog code are affected in serious ways1. We think
Prolog compilers will be ready for such advanced use in little
time, so this will be the final solution we will adopt.

1 Talking with Ciao developers, the main blocker for turning tonhf/2 into
a dynamic predicate is that global analysis and optimization are disabled
on said predicates, missing the predicate pre-indexing optimization, which
is fundamental to our implementation due that Sloth relies in the efficient
unification of the first parameter of tohnf/2.

� Compile all the additional functions into a temporary module
and load it: This is more a workaround than a real solution, but
the performance and ease of implementation suppose a valuable
edge about the dynamic solution.

3.3 Partial evaluation

One of the most attractive features of the shell is the possibility of
performing a partial evaluation of the current expression.

Normally, a query E is translated to a Prolog query in the form
of tonf(E, Result). Partial evaluation is achieved by modifying
the translation scheme such as every case of a tonf/2 reduction the
execution stops and the shell is awaken so it can show the results,
translating back the Prolog expression to Curry.

This is an experimental feature at the moment, but we plan
to formalize it and define the semantics for this kind of partial
evaluation.

4. Type classes
Type classes are one of the distinguishing features of Haskell and,
of course, they are expected to be seriously supported by the dif-
ferent implementations of Curry. We are currently supporting their
most basic incarnation – no constructor classes, no multiparameter
classes, etc.

4.1 Type checker design

The previous Sloth type checker was based on a classical Prolog
implementation of a Hindley-Milner type inference algorithm. One
of its key features is, of course, the representation or type variables
by Prolog variables, and to rely on Prolog’s unification algorithm
for the type extraction process.

Adapting our type checker to allow type classes has been done
using attributed variables. Actual class constraints are stored in the
variable’s extended attributes. This way, when unifying two types,
the type checker can perform the type classes verification, without
any modification on the core algorithm.

4.2 Code translation

We follow the translation scheme presented in [3], which proposes
translating all the expressions involving a type class overloading
function to an equivalent program whose types belong to a classical
Hindley-Milner type system.

This implies adding another parameter to any function that is
defined by a type class, but provides a significant advantage in
terms of ease of implementation and correctness.

5. Constraint Programming
One natural extension to functional–logic programming is using
constraints. We have done a very basic CLPQ implementation in
Sloth, using the CLPQ library from CIAO.

5.1 Allowed operators

The newly introduced operators are:
� :+: :: Num a ⇒ a → a → a

Addition over Q.
� :-: :: Num a ⇒ a → a → a

Subtraction over Q.
� :*: :: Num a ⇒ a → a → a

Multiplication over Q.
� :/: :: Num a ⇒ a → a → a

Division over Q.
� :<: :: Num a ⇒ a → a → Success

Less than over Q.

67

� :<=: :: Num a ⇒ a → a → Success

Less than or equal over Q.
� :>: :: Num a ⇒ a → a → Success

Greater than over Q.
� :>=: :: Num a ⇒ a → a → Success

Greater than or equal over Q.

5.2 Implementation

All the CLPQ code is placed into the libraries, the compiler doesn’t
know anything about it.

The libraries are written in pure Prolog, using CIAO’s clpq
package.

This extension is highly experimental and will change in the
future, perhaps to be compatible with PACKS [4]. A first step will
be lifting our constraint support from the domain of Q to R.

6. Planned improvements
We think Sloth is rapidly evolving into a mature system, and as
such we are planning some future improvements.

Two main areas of future work are Constraint Definitional Trees
and Encapsulated Search, when completed will make Sloth com-
pliant with the Curry Prelude and establish a solid base for future
research.

6.1 Constraint Definitional Trees

CDTs [8] are a proposal by the second author and José María
Rey to extend the current compilation scheme of needed narrowing
from sets of pattern-based definition rules to sets of constraint-
guarded rules. The following lines assume certain familiarity with
definitional trees – see [1] for a recent survey on the subject.

For instance, a definition like the following one will be allowed
and a sequential, lazy code can be generated for it:

f :: Bool → Bool → Bool
f p q | ¬ q = True

| p ∧ q = False

Variable q is a pivot since substituting ⊥ for it makes both
guards undefined (that is, both guards demand q). A branch node
at position {2} is thus generated. Since q ranges over {False, True
}, two branches are generated (one for each value). When q is
False, guard 1 is taken for further processing. Guard 2 is chosen
when q is True (right branch of the tree). This branch continues
in another branch node since p is demanded by the second guard.
Again, two branches come out from this node. The resulting CDT
can be depicted as:

f p q {1, 2}

f p False {1}

rule 1

f p True {2}

f False True {}

fail

f True True {2}

rule 2
where the positions for branching (pivots) have been underlined
and the sets of (indices of) applicable cases are shown between
braces.

6.2 Encapsulated Search

Support for encapsulated search is still an open problem. At the mo-
ment, a provisional solution using Ciao’s threads library is on the
way, but we are still looking for more clever translation schemes.

Acknowledgments
The authors wish to thank the anonymous referees for their useful
comments.

References
[1] Sergio Antoy. Evaluation strategies for functional logic programming.

Journal of Symbolic Computation, 40(1):875–903, 2005.
[2] M. Hanus (ed.), H. Kuchen, and J.J. Moreno-Navarro. Curry: An

integrated functional logic language. Technical report, RWTH Aachen,
2000.

[3] Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and
Philip L. Wadler. Type classes in haskell. ACM Trans. Program.
Lang. Syst., 18(2):109–138, 1996.

[4] Michael Hanus. Packs User’s Manual. Available at
http://www.informatik.uni-kiel.de/˜pakcs/.

[5] Michael Hanus, Sergio Antoy, Herbert Kuchen, Francisco J. López-
Fraguas, Wolfgang Lux, Juan José Moreno-Navarro, and Frank Steiner.
Curry: An Integrated Functional Logic Language, 0.8 edition, April
2003. Editor: Michael Hanus.

[6] M. Hermenegildo, F. Bueno, M. García de la Banda, and G. Puebla.
The CIAO multi-dialect compiler and system: An experimenta-
tion workbench for future (C)LP systems. In Proceedings of the
ILPS’95 Workshop on Visions for the Future of Logic Program-
ming, Portland, Oregon, USA, december 1995. Available from
http://www.clip.dia.fi.upm.es/.

[7] Julio Mariño and José María Rey. The implementation of Curry via its
translation into Prolog. In Kuchen, editor, 7th Workshop on Functional
and Logic Programming (WFLP98), number 63 in Working Papers.
Westfälische Wilhelms-Universität Münster, 1998.

[8] Julio Mariño and José María Rey. Adding constraints to curry via flat
guards. In Workshop on Curry and Functional Logic Programming,
WCFLP2005. ACM, 2005. To appear.

A. Essentials of the Curry to Prolog translation
scheme

In this section we present a very brief and informal description of
the translation method used by Sloth. A complete reference can be
found in [7].

A.1 Main execution model

The execution of Curry is achieved in Sloth by lazy narrowing. This
reduction strategy is based on computing the Head Normal Form of
an expression.

An expression E is in Head Normal Form when:
� E is a free variable.
� E is a constant.
� E is a constructor.
� E is a partial applied function.

Any other expression E, like a function application, is not in
Head Normal Form, so our compiler generates for it a tohnf/2
predicate, which takes as the first parameter the expression to

evaluate, and unifies the second with the given in Head Normal
Form.

Let’s look to the if_then_else function:

if_then_else :: Bool → a → a → a
if_then_else True t _ = t
if_then_else False _ f = f

We can see that this function needs the first parameter to be
in Head Normal Form, and depending on the parameter value, it
should return the second or third parameter.

The desired Prolog code is:

68

tohnf(if_then_else(B,C,D), Res) :-
tohnf(B, E),
if_then_else1(E,C,D,A).

if_then_else1(’True’,A,_,B) :-
tohnf(A,B).

if_then_else1(’False’,_,A,B) :-
tohnf(A,B).

The first step that the tohnf/2 predicate does is to evaluate to
Head Normal Form the first parameter, and then it calls the cor-
responding rule. Pattern matching is implemented using standard
Prolog unification. More details on how the compiler knows what
parameters are needed will follow in the next section.

Note that the second and third parameter are not guaranteed to
be in Head Normal Form, so if_then_else1 has to reduce those
parameters to HNF before returning the result.

A.2 Dealing with lazy evaluation

Curry is a lazy language, so our compiler has to detect which values
are needed, to avoid any unnecessary computation. The main place
where this occurs is when a function tries to evaluate its parameters.

Sloth solves this problem using Definitional Trees. Definitional
Trees are able to obtain the needed parameters and the evaluation
order for them, so we can guarantee that no unnecessary parameter
evaluation will take place.

The compiler implements Definitional Trees using a two phase
approach, first it reduces to Head Normal Form the first needed
parameter and then it calls the pattern matching rule:

tohnf(’Prelude_length’(B), A) :-
tohnf(B,C),
’Prelude_length1’(C,A).

’Prelude_length1’([],0).

’Prelude_length1’([_|A],B) :-
tohnf(’Prelude_+’(1,’Prelude_length’(A)),B).

This process is applied recursively when more than one param-
eter is needed by the function.

A.3 Evaluating to Normal Form

The evaluation to Head Normal Form not always gives the desired
results, because it doesn’t force any of the constructor parameters
to be in Head Normal Form. This yields partially evaluated terms,
so we have to specify a stronger state for an expression, the Normal
Form.

An expression E is in Normal Form when:
� E is a free variable.
� E is a constant.
� E is a constructor and all its parameters are in Normal Form.

The Prolog predicate that implements this is called tonf/2.

69

