
Under consideration for publication in Formal Aspects of Computing

Constraint Logic Programming with a
Relational Machine 1

Emilio Jesús Gallego Arias1, James Lipton2, Julio Mariño3

1 CRI MINES ParisTech, 35 rue St Honoré, Fontainebleau, Seine-et-Marne, France
2 Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT 06459, USA
3 ETSI Informáticos, Universidad Politécnica de Madrid, Campus de Montegancedo S/N, 28660 Boadilla del Monte, Spain

Abstract. We present a declarative framework for the compilation of constraint logic programs into variable-
free relational theories which are then executed by rewriting. This translation provides an algebraic formulation
of the abstract syntax of logic programs. Logic variables, unification, and renaming apart are completely
elided in favor of manipulation of variable-free relation expressions.

In this setting, term rewriting not only provides an operational semantics for logic programs, but also a
simple framework for reasoning about program execution.

We prove the translation sound, and the rewriting system complete with respect to traditional SLD
semantics.

Keywords: logic programming, constraint programming, relation algebra, rewriting, semantics

1. Introduction

Logic programming is a paradigm based on proof search and programming with logical theories. The main goal
is declarative transparency : guaranteeing that execution respects the mathematical meaning of the program.
The power that such a paradigm offers comes at a cost for formal language research and implementation.
Logic variables, unification, renaming variables apart and proof search are cumbersome to handle formally.
Consequently, it is often the case that the treatment of these aspects is left outside the semantics of programs,
complicating reasoning about them and the introduction of new declarative features.

We address this problem here by proposing a new mathematical framework for compilation – based
on ideas of Tarski [TG87] and Freyd [FS91] – that encodes logic programming syntax into a variable-free
algebraic formalism: relation algebra. Relation algebras are pure equational theories of structures containing
the operations of composition, intersection and converse. An important class of relation algebras is that of the
so-called distributive relation algebras with quasi-projections, which also incorporate union and projections.

We present the translation of constraint logic programs to such algebras in three steps. First, for a CLP

1 The final publication is available at Springer; 10.1007/s00165-016-0369-z
Correspondence and offprint requests to: E. J. Gallego Arias, J. Lipton, J. Mariño

http://link.springer.com/article/10.1007/s00165-016-0369-z
http://dx.doi.org/10.1007/s00165-016-0369-z

2 E. J. Gallego Arias, J. Lipton, J. Mariño

edge(a,b). connected(X,X).
edge(b,c). connected(X,Y) ← edge(X,Z), connected(Z,Y).
edge(a,e).
edge(e,f).

Figure 1. A logic program to decide on node reachability in a graph.

program P with signature Σ, we define its associated relation algebra QRAΣ, which provides both the target
object language for program translation and formal axiomatization of constraints and logic variables. Second,
we introduce a constraint compilation procedure that maps constraints to variable-free relation terms in
QRAΣ. Third, a program translation procedure compiles constraint logic programs to an equational theory
over QRAΣ.

The key feature of the semantics and translation is its variable-free nature. Queries and resolvents,
which may contain logical variables, are represented as ground terms in our setting, which makes it possible
to express program execution as term rewriting, without the need of extra mechanisms for unification or
renaming of logic variables. The resulting system is sound and complete with respect to SLD resolution. Our
compilation provides a solution to the following problems:

• Underspecification of abstract syntax and logic variable management in logic programs: solved by the
inclusion of metalogical operations directly into the compilation process.

• Interdependence of compilation and execution strategies: solved by making target code completely
orthogonal to execution.

• Lack of transparency in compilation (for subsequent optimization and abstract interpretation): solved by
making target code a low-level yet fully declarative translation of the original program.

The second of these problems highlights what we feel is an important contribution to practical implementations
of logic programming. The relational translation described in this paper yields target code that is evaluated via
rewriting. Different rewriting strategies will permit the programmer to control search strategies (depth/breadth-
first search, iterative deepening, etc.). We think this paper is an important step towards efficient algebraic
execution and compilation of proof search for CLP. However, the rewriting system given here has not been
designed aiming at performance, which will depend on the efficiency of the chosen rewriting engine and
strategies.

In this paper we consider several criteria of correctness of the translation. We prove an adequacy theorem
(Cor. 3.14) which compares a fixed point treatment of relational semantics with a comparable treatment of
constraint logic programming, and we establish equivalence of a specific rewriting strategy with SLD resolution
(Thm. 5.23). The latter result is aimed at showing that rewriting of translated code can execute as least as
correctly as SLD resolution. But it is not exclusively for the sake of reproducing the depth-first execution of
SLD resolution that this work is undertaken. One of the aims of the separation of translation and rewriting is
to make execution independent of declarative content.

We illustrate the spirit of translation, and in particular the variable elimination procedure by considering a
simple case, namely the transitive closure of a graph (Fig. 1). In this carefully chosen example the elimination
of variables and the translation to binary relation symbols is immediate:

edge = (a, b) ∪ (b, c) ∪ (a, e) ∪ (e, f)

connected = id ∪ edge; connected

The key feature of the resulting term is the composition edge; connected. The logical variable Z is elimi-
nated by the composition of relations allowing the use of variable-free object code. A query connected(a,X)
is then modeled by the relation connected∩ (a, a)1 where 1 is the (maximal) universal relation and id by the
identity relation. Computation can proceed by rewriting the query using a suitable orientation of the relation
algebra equations and unfolding pertinent recursive definitions. Handling actual arbitrary constraint logic
programs is more involved. First, we use sequences and projection relations to handle predicates involving an
arbitrary number of arguments and an unbounded number of logic variables; second, we formalize constraints
in a relational way. Projections and permutations algebraically encode all the operations of logical variables,
disjunctive and conjunctive clauses are handled with the help of the standard relational operators ∩, ∪.

Constraint Logic Programming with a Relational Machine 3

1.1. Background: Constraint Logic Programming

Constraint Logic Programming is logic programming with two different classes of predicates. Computation is
the process of finding proofs for goals supplied by the programmer, consisting of sequences of such predicates.
Defined predicates are solved by conventional resolution theorem proving. Primitive predicates are defined
over an external logical theory. They are handled with the help of domain-specific inference engines called
constraint solvers. These solvers are external: they are a black-box addition to the pure logic programming
core.

There are many variants of logic programming depending on the fragment of logic used. In the rest of this
work, we will focus on Logic Programming with first order Horn clauses and constraints. In this setting, a
program is a set of Horn clauses with exactly one atomic consequence and a query is an existentially quantified
conjunction. In pure logic programming, the information returned by an answer is a set of witnesses for
the existentially quantified variables. In Constraint Logic Programming, answers are constraints restricting
possible values of the existentially quantified variables. Conventional logic programming can be recovered
from CLP by taking the constraint domain to be the Herbrand Universe. We assume the reader familiar with
CLP (an in-depth treatment can be found in [Llo84, JM94]). In this section we give a quick overview of the
main notions used in the paper.

Syntax Assume a permutative convention on symbols, i.e., unless otherwise stated explicitly, distinct names
f, g stand for different entities (e.g. function symbols) and the same for distinct names i, j, for indices. A
first-order language consists of a signature Σ = C ∪ F ∪ Pc ∪ Pd, given by C, the set of constant symbols,
F , the set of term formers or function symbols, and Pc,Pd the set of primitive and defined predicates. We
usually write f, g, . . . for elements of F , a, b for elements of C, r, s for elements of Pc, and pi, pj , qi, qj , . . .
for elements of Pd. The function α : Σ→ N returns the arity of its argument. We assume given a set X of
so-called logic variables whose members are denoted xi, yi, zi,

We write TΣ for the set of closed terms over C ∪ F . We write TΣ(X) for the set of open terms (in the
variables in X) over C ∪ F . We drop Σ when understood from context. We write t, u, v for terms in TΣ.

Given p ∈ Pd of arity α(p) = n and n terms t1, . . . , tn ∈ TΣ(X), p(t1, . . . , tn) is an atom. An atom is pure
iff all t1, . . . , tn are distinct variables. Similarly, for r ∈ Pc, r(t1, . . . , tn) is an atomic constraint. The set LD
of constraint formulas is the conjunctive and existential closure of the set of atomic constraints. We write
ϕ, φ, ψ for constraints. A literal is an atom or a constraint. We slightly abuse terminology and write pi(~x) for
literals using variables from ~x. A Horn Clause is a named expression of the following form:

cl : p(~t)← q1(~u1), . . . , qn(~un)

with p(~t) an atom, called the head and q1(~u1), . . . , qn(~un) a sequence of literals, with n ≥ 0, called the tail of
the cl . A constraint logic program is a finite set of Horn clauses.

We use vector notation extensively in the paper: ~x = x1, . . . , xm, ~t = t1, . . . , tn, ~p = p1, . . . , pk. The length
of a sequence is written |·|, thus |~x| = m, etc. t[~x] denotes a term t from TΣ(X) using variables in ~x, and ~t[~x]
denotes a sequence of terms using variables in ~x. p(~t[~x])) denotes an atom composed of a predicate p and
arguments t1[~x], . . . , tn[~x]. ~p(~t[~x]) denotes a sequence of atoms p1(~t1[~x]), . . . , pn(~tn[~x]). We may drop [~x] or
even ~t[~x] when the context allows and just write ~p for ~p(~t[~x]). Given a sequence ~p of n terms, variables or
atoms, we write ~p|k for the sequence of n− k + 1 elements starting with the one at position k.

Constraints and the Interpretation of Logic Programs Given a signature Σ, a Σ-structure gives
meaning to terms and primitive predicates:

Definition 1.1 (Σ-structure). A Σ-structure D consists of a set D and an assignment for elements of
C ∪ F ∪ Pc in D in the usual way: constant symbols are mapped to individuals in D, function symbols of
arity n to n-ary functions over D and predicate symbols of arity n to n-ary relations on D. We write aD, fD,
rD for the D-interpretation of constants, function and predicate symbols in D.

Definition 1.2 (Constraint Domain). A constraint domain is given by a pair (D,LD) consisting of a
Σ-structure D and the set of constraint formulas generated from Σ.

A Σ-structure D induces a mapping or interpretation from elements of LD to the two-point lattice:

Definition 1.3 (Constraint Interpretation). The interpretation function for closed formulas J·KD : LD →

4 E. J. Gallego Arias, J. Lipton, J. Mariño

{⊥,>} is defined by induction on the structure of the formulas:

Jp(t1, . . . , tn)KD =

{
⊥ if (tD1 , . . . , t

D
n) 6∈ pD

> if (tD1 , . . . , t
D
n) ∈ pD

Jϕ ∧ ψKD = min(JϕKD, JψKD)
J∃x.ϕKD = max(Jϕ[a/x]KD | a ∈ D)

The notion of interpretation is used to define constraint satisfaction:

Definition 1.4 (Constraint Satisfaction). A closed constraint formula ϕ is satisfied by D, written D |= ϕ,
if JϕKD = >. If ϕ is open, we write D |= ϕ for the satisfiability of its existential closure D |= ∃(ϕ).

Operational Semantics We follow [JM94]: a resolution computation with constraints is a sequence of
derivations induced by a transition system over program states that represent pending proof obligations and
accumulated (satisfiable) constraints:

Definition 1.5 (Program State). A program state is an ordered pair 〈~p |ϕ〉 where ~p is a sequence of
literals or resolvent and ϕ is a constraint formula or constraint store. We write 2 for the empty resolvent.

The standard operational semantics for SLD resolution is defined as the following transition system over
program states:

Definition 1.6 (SLD operational semantics).

〈ϕ, ~p |ψ〉 cs−→l 〈~p |ψ ∧ ϕ〉 iff D |= ψ ∧ ϕ
〈p(~t[~x]), ~p |ϕ〉 rescl−−→l 〈~q(~v[σ(~z)]), ~p |ϕ ∧ (~u[σ(~y)] = ~t[~x])〉 where: cl : p(~u[~y])← ~q(~v[~z])

D |= ϕ ∧ (~u[σ(~y)] = ~t[~x])
σ a renaming apart for ~y, ~z, ~x

This captures ideal CLP systems, where every new constraint is immediately checked for satisfiability. This
means that the constraint store is consistent for every program state reached in execution. The reliance
on an external constraint solver means that we lack any inference rules for constraint formulas, thus, the
Σ-structure D contains the only and complete specification of validity for constraint formulas.

A query Q is a sequence of literals p1, . . . , pn over ~x variables with n ≥ 1, logically interpreted as
∃~x.(p1 ∧ · · · ∧ pn). A query Q is usually embedded into a program state 〈Q | >〉 to be executed with the above
transition rules. A program state 〈~p |ϕ〉 succeeds iff it has a derivation that leads to an empty 〈2 |ψ′〉 state.
A state 〈~p |ϕ〉 is final iff no derivation exists starting from this state (denoted 〈~p |ϕ〉9). If ~p is not the empty
resolvent, we say that the state fails.

Denotational Semantics The denotational semantics for a logic program P is its set of atomic consequences.
In the presence of constraints, that amounts to the set of elements of D that satisfy P ’s predicates.

A constructive description of this set is usually done in terms of a sequence of approximations, using the
Apt-van Emden-Kowalski interpretation operator TP , see [Llo84, JM94].

We assume given in the rest of the section a program P with signature Σ, constraint domain (D,LD),
where D is a sigma structure.

A valuation θ is a mapping from variables to D and the natural extension that maps terms to D and
constraint formulas to closed LD formulas. A D-interpretation I of a formula is an interpretation of the
formula with the same domain as D and the same interpretation for the symbols in Σ as D. It can be
represented as a subset of I = {pi(~a) | pi ∈ Pd,~a ∈ Dα(pi)}.

Definition 1.7 (Interpretation transformer). Let I be the directed complete partial order of interpre-
tations. The interpretation transformer TDP : I −→ I is defined as:

TDP (I) = {p(~a) | p(~x)← φ, ~q ∈ P, θ(~x) = ~a,D |= θ(φ),∀i.θ(qi) ∈ I}

Without loss of generality, we have assumed that constraints φ are placed at the head of the clauses’ bodies.

TDP is continuous and by the Knaster-Tarski theorem it has a least fixed point JP Kwhich is the minimal model
of P : JP K =

⋃
n(TDP)(n)(∅).

Constraint Logic Programming with a Relational Machine 5

add(o, X, X). nat(o).
add(s(X), Y, s(Z)) ← add(X, Y, Z). nat(s(N)) ← nat(N).

even(E) ← add(H,H,E). leq(o,_).
odd(O) ← nat(O), \+ even(O). leq(s(N),s(M)) ← leq(N,M).

Figure 2. A logic program defining several predicates on Peano naturals.

Example 1.8 (Herbrand Constraint Domain). Suppose H is the Herbrand universe for a signature Σ,
that is to say, the free ΣH-structure, and let LH stand for all open formulas over the signature of H built up
from atoms using conjunction, existential quantification and equality of terms using variables from X , the set
of so-called logic variables. Then the Herbrand Constraint Domain is the pair (H,LH).

Example 1.9 (Peano Naturals). A standard example is the ΣN-structure given by the set N, constant o
interpreted as 0 and the unary function symbol s interpreted as x 7→ x+ 1. Figure 2 shows a small example
program.

Some executions of logical queries to the program above follow:

〈add(s(s(o)), s(s(o)), R) | >〉 → 〈2 |R = s(s(s(s(o))))〉
〈add(X,Y, s(s(o))) | >〉 → 〈2 |X = o ∧ Y = s(s(o))〉, 〈2 |X = s(o) ∧ Y = s(o)〉, 〈2 |X = s(s(o)) ∧ Y = o〉
〈even(s(s(o))) | >〉 → 〈2 | >〉
〈even((s(o)) | >〉 9
〈even(E) | >〉 → 〈2 |E = o〉, 〈2 |E = s(s(o))〉, 〈2 |E = s(s(s(s(o))))〉, . . .

2. Relation Algebras and Signatures

In this section, we define QRAΣ, a relation algebra in the style of [TG87, FS91]. The algebra contains special
constants formalizing a CLP signature Σ and the program predicates Pd, and the relational semantics is built
around a constraint domain D, a first order model. In this section we will define its language, its equational
theory and semantics. For the entire section, we work with a fixed first-order model D.

The reader should keep in mind, as the relational structure is defined below, that we are trying to capture
the following fundamental syntactic components of logic programs in a variable-free manner.

Constants a, b, c, . . . specified by the signature. These are formalized using relation terms of the form e.g.
(a, a) whose intended interpretation is the singleton relation {(a, a)}. For technical reasons (to fit into
the translation of terms and predicates), constants a are interpreted as the following relation expression
(a, a)1, where 1 is the universal relation consisting of all ordered pairs.
In the standard set-theoretic relational semantics defined below, this relation denotes the set of all pairs
(a, u) where a is fixed and u runs through all individuals of the relational model.

Variables from a master list x1, x2, . . . , xi, These are interpreted using the converse of relational
projections P1, P2, . . . to be defined below. In the semantics, the relation Pi associated with the ith variable
xi is the binary relation between n-tuples 〈u1, . . . , un〉 and the ith component ui. In the translation from
logical syntax to terms, variables xi are represented as the converse P ◦i of the ith projection relation.

Compound terms e.g. f(x3, g(a, x2)) built using the function symbols present in the signature of differing
arities, in this case f of arity 2, and g also of arity 2. This means defining relation constants Rf , Rg that
capture function symbols. Thus, unlike first-order logic programming languages (the relational counterparts
of) function symbols are constants in the language and hence first-class citizens. For our example of arity
2, the semantics of the binary relation symbol Rf is the set of all pairs (f(u1, u2), 〈u1, u2〉).
The compound term f(x3, g(a, x2)) can be viewed as f(y, z) for fresh variables y and z, where y = x3

and z = g(a, x2). This last equation in turn can be written z = g(u,w) and u = a and w = x2. Thus we
flatten compound terms into conjunctions of basic equations of the form x = a variable or constant. Then
the corresponding relational translation is

Rf [P1P
◦
3 ∩ P2Rg[P1(a, a)1 ∩ P2P

◦
2]]

which describes the term starting with f whose first component is the variable x3 and whose second
component is the term starting with g whose first component is a and whose second component is x2.

6 E. J. Gallego Arias, J. Lipton, J. Mariño

Atomic constraint formulas e.g. r(f(x3, g(a, x2), x1, b) built using relation symbols r of different arities
(also included in the signature). Here too we incorporate predicate symbols r as relation constants r. The
interpretation of relations is coreflexive: it is a set of pairs of the form (u, u), that is to say a subset of
the identity relation. In the specific case of a relation r of arity n the interpretation of the associated
relational constant r is the set of pairs (〈u1, . . . , un+k〉, 〈u1, . . . , un+k〉) such that r(u1, . . . , un) holds in
the associated constraint domain. The atomic formula will also be flattened, converted to a conjunction
of basic equations and then interpreted using intersections, compositions and converses of basic relation
constants, just like the compound term above.

Vectors of terms Given the presence of projections hd and tl we are able to formalize pairing and hence
the formation of sequences of terms in the relation calculus. We have already invoked this tacitly above by
using n-ary projections Pi that are built using repeated compositions of hd and tl as spelled out below.
A simple example is the relational formalization of a two element sequence 〈a, b〉 where a and b are
constants in Σ. The corresponding relational term is hd(a, a)hd◦ ∩ tl(b, b)tl◦, which in a set-theoretic
interpretation yields the set consisting of the ordered pair {(〈a, b〉, 〈a, b〉)}.

Taking stock of what we will need to capture logic with relational terms, we see that at the very least
we require constants to capture a signature, a universal relation 1 and its dual 0, converses, projections,
unions, intersections and compositions. A few more components will be useful as well, as we see in the next
subsection, which lays out the grammar and theory we will need.

2.1. Relational Language and Theory

The relation language RΣ is built from a set RC of relation constants for constant symbols, a set RF of relation
constants for function symbols from Σ, and a set of relation constants RPc for primitive predicates, as well as
a fixed set of relation constants and operators detailed below. Let us begin with RC . Each constant symbol
a ∈ CΣ defines a constant symbol (a, a) ∈ RC , each function symbol f ∈ FΣ defines a constant symbol Rf in
RF . Each predicate symbol r ∈ PcΣ (the set of primitive, or constraint predicates) defines a constant symbol
r in RPc

. We write RΣ for the full relation language:

RC = {(a, a) | a ∈ CΣ} RF = {Rf | f ∈ FΣ} RPc = {r | r ∈ PcΣ}
Ratom ::= RC | RF | RPc

| id | di | 1 | 0 | hd | tl
RΣ ::= Ratom | RΣ

◦ | RΣ ∪ RΣ | RΣ ∩ RΣ | RΣRΣ

The constants 1,0, id , di respectively denote the universal relation (whose standard semantics is the set of all
ordered pairs on a certain set), the empty relation, the identity (diagonal) relation, and identity’s complement.
Juxtaposition RR represents relation composition (often written R;R) and R◦ is the converse of R. We write
hd and tl for the head and tail relations. The projection of an m-tuple onto its i-th element is written Pi and
defined by P1 = hd, P2 = tl;hd, . . . , Pn = tln−1;hd.

Relation Variables Later in this paper we will have need of relation expressions in which a finite set of
relation variables {p1, . . . , pn} occur. We will call such expressions polynomials in the given set of relation
variables. The relational language RΣ(p1, . . . , pn), obtained by freely adding such variables to the relation
calculus RΣ, is defined the same way RΣ is, but with the relation variables added to the atomic case above.

Ratom ::= p1 | · · · | pn | RC | RF | RPc | id | di | 1 | 0 | hd | tl

QRAΣ (Fig. 3) is the standard theory of distributive relation algebras, plus Tarski’s quasiprojections
[TG87], and equations axiomatizing the new relations of RΣ.

Most of the equations will be familiar to the reader. They include the commutativity, associativity of
union and intersection, the distributive laws, and basic properties of composition and inversion. Perhaps
less familiar is the right modular law, RS ∩ T ⊆ (R ∩ TS◦)S, which can be thought of as expressing the
right-factoring of S in RS ∩ T . It is here written as containment, but can also be written in the equivalent
(and more useful) equational form RS ∩ T = (R ∩ TS◦)S ∩ T

The left modular law RS ∩ T ⊆ R(S ∩R◦T) is equivalent to the right modular law as can be shown by

Constraint Logic Programming with a Relational Machine 7

R ∩R = R R ∩ S = S ∩R R ∩ (S ∩ T) = (R ∩ S) ∩ T
R ∪R = R R ∪ S = S ∪R R ∪ (S ∪ T) = (R ∪ S) ∪ T

R id = R R0 = 0 0 ⊆ R ⊆ 1
R ∪ (S ∩R) = R = (R ∪ S) ∩R

R(S ∪ T) = RS ∪RT (S ∪ T)R = SR ∪ TR
R ∩ (S ∪ T) = (R ∩ S) ∪ (R ∩ T)

(R ∪ S)◦ = R◦ ∪ S◦ (R ∩ S)◦ = S◦ ∩R◦
R◦◦ = R (RS)◦ = S◦R◦

R(S ∩ T) ⊆ RS ∩RT RS ∩ T ⊆ (R ∩ TS◦)S
id ∪ di = 1 id ∩ di = 0

hd(hd)◦ ∩ tl(tl)◦ ⊆ id (hd)◦hd ⊆ id, (tl)◦tl ⊆ id (hd)◦tl = 1

Figure 3. QRAΣ

taking converses.

(RS ∩ T)◦ = S◦R◦ ∩ T ◦ (1)
⊆ (S◦ ∩ T ◦R)R◦ (2)
= (R(S ∩R◦T))◦ (3)

Taking converses again we obtain (RS ∩T) ⊆ R(S ∩R◦T) as we wanted to show. In special cases the modular
law takes on a particularly simple form.

Lemma 2.1. In QRAΣ, SS◦ ⊂ id implies A ∩ SR = S(S◦A ∩R). S◦S ⊂ id implies A ∩RS = (AS◦ ∩R)S.

Proof. By the modular law we have, in the first case, A ∩ SR = S(S◦A ∩ R) ∩ A. But S(S◦A ∩ R) ⊆
SS◦A ∩ SR ⊆ idA ∩ SR = A ∩ SR. Thus S(S◦A ∩ R) ∩ A reduces to S(S◦A ∩ R). The argument for the
second claim is symmetric.

Note that products and their projections are axiomatized in a relational, variable-free manner. The
equations for hd, the left projection and tl, the right projection guarantee that they are functional relations
(every pair has a unique head and a unique tail) and the equation hd◦tl = 1, when given a set-theoretic
interpretation, ensures that any element of the underlying set can be a head or a tail of a pair. hd(hd)◦∩tl(tl)◦ ⊆
id asserts that two ordered elements uniquely specify a pair with the first element as head and the second as
tail.

2.2. Semantics

Fix a signature Σ and a constraint domain D. We now define an interpretation to be a set-valued mapping
J_K on RΣ in a way that will satisfy every equation in QRAΣ and every atomic formula true in D in the
following sense

J(〈a1, . . . , an〉, 〈a1, . . . , an〉)K ⊆ JrK iff D |= r(a1, . . . , an)

where 〈a1, . . . , an〉 is a relational representation of a vector a1, . . . , an of Σ terms, and r is a predicate symbol
in Pc.

It will be sufficient for the purposes of this paper to fix a canonical interpretation of hd and tl, and use D
itself to interpret the relations Rf and r taken from the constraint signature. Relations will be interpreted in
a specific power set as sets of ordered pairs over a structure that contains sequences of members of D. Our
sole degree of freedom will be the interpretation of program predicates p1, . . . , pn, as members of this power
set. We will then establish the existence, for each program P , of interpretations of the pi that satisfy certain
relation equations derived from P .

The canonical semantics J_KD
†
We define D† to be the union of D0 = {〈〉} (the empty sequence), D

and D-finite products, for example: D2,D2 ×D,D ×D2, . . . We write 〈a1, . . . , an〉 for members of the n-fold

8 E. J. Gallego Arias, J. Lipton, J. Mariño

J1KD
†

= RA
J0KD

†
= ∅

JidKD
†

= {(u, u) | u ∈ D†}
JdiKD

†
= {(u, v) | u 6= v}

JhdKD
†

= {(〈a, b〉, a) | a, b ∈ D†}

JtlKD
†

= {(〈a, b〉, b) | a, b ∈ D†}
JR◦KD

†
= (JRKD

†
)◦

JR ∪ SKD
†

= JRKD
† ∪ JSKD

†

JR ∩ SKD
†

= JRKD
† ∩ JSKD

†

J(c, c)KD
†

= {(cD, cD)}
JRSKD

†
= JRKD

†
; JSKD

†

JRf KD
†

= {(x, ~y~u) | x = fD(a1, . . . , an) ∧ ~y = 〈a1, . . . , an〉, ai ∈ D, ~u ∈ D†, n = α(f)}
JrKD

†
= {(~x~u, ~x~u) | ~x = 〈a1, . . . , an〉 ∧ rD(a1, . . . , an), ai ∈ D, ~u ∈ D†, n = α(r)}

Figure 4. Standard interpretation of binary relations.

product associating to the right, that is to say, 〈a1, 〈a2, . . . , 〈an−1, an〉 · · ·〉〉. We assume right-association of
products wherever parentheses are absent. Note that the 1 element sequence does not exist in the domain, so
we write 〈a〉 for a as a convenience.

Let RD = D†×D†. We make the power set of RD into a model of the relation calculus by interpreting atomic
relation terms in a certain canonical way, and the operators in their standard set-theoretic interpretation. We
interpret hd and tl as projections in the model.

Definition 2.2. Given a structure D, a relational D-interpretation is a mapping J_KD
†
of relational terms

into RD satisfying the identities in Fig. 4. The function α used in this table and elsewhere in this paper refers
to the arity of its argument, whether a relation or function symbol from the underlying signature.

Theorem 2.3. Equational reasoning in QRAΣ is sound for any interpretation:

QRAΣ ` R = S =⇒ JRKD
†

= JSKD
†

Proof. The proof is straightforward. The rules of equational reasoning (substituting equal terms for a given
variable, applying transitivity, symmetry, identity and congruence laws) obviously preserve equality in a
set-theoretic interpretation, so all one has to check is soundness of the axioms of QRAΣ. He we illustrate by
showing that the modular law (in its “left-factored” form) holds in any interpretation and leave the remaining
cases to the reader.

Suppose (u, v) ∈ JR ∩ ST KD
†

= JRKD
† ∩ JSKD

†
JT KD

†
. Then for some w ∈ D†, we have (u,w) ∈ JSKD

†

and (w, v) ∈ JT KD
†
. But then (w, u) ∈ (JSKD

†
)◦ hence (w, v) is in both (JSKD

†
)◦JRKD

†
and JT KD

†
, so

(u, v) ∈ JS(S◦R ∩ T)KD
†
as was to be shown

2.3. Adding equations to the QRAΣ

We will now discuss how to build interpretations of the relation calculus satisfying a finite set of equations
in a certain canonical form. Let P be a program and p1, . . . , pn be a sequence of relation variables. Recall
(Subsection 2.1) that the extended relation calculus RΣ(p1, . . . , pn) is the set of relation terms, or polynomials
generated by p1, . . . , pn and the symbols in RΣ.

Definition 2.4. A finite set of equations in n relation variables p1, . . . , pn is said to be canonical or definitional
if it is in the form

pi = Ri(p1, . . . , pn) (1 ≤ i ≤ n)

where each Ri is a polynomial in RΣ(p1, . . . , pn).

2.4. The Least Relational Interpretation Satisfying Definitional Equations

Let F be a finite set of n definitional equations in the relation variables p1, . . . , pn. Given a structure D we
now lift the definition of D-interpretation given in Def. 2.2 to the extended relation calculus. An extended

Constraint Logic Programming with a Relational Machine 9

interpretation JK : RΣ(p1, . . . , pn) −→ RD is a function satisfying the identities in Fig. 4 as well as mapping
each relation variable pi to an arbitrary member JpiK of RD. Given a structure D for a language its action
is completely determined by its values at the pi. Note that the set I of all such interpretations forms a
DCPO, a directed-complete partial order with a least element, under pointwise operations. That is to say,
any directed set {J Kd : d ∈ Λ} of interpretations has a supremum

∨
d∈ΛJ Kd given by T 7→

⋃
d∈ΛJT Kd. The

directedness assumption is necessary. For example, to show that a pointwise supremum of interpretations∨
d∈ΛJ Kd preserves composition (one of the 13 identities of Fig. 4), we must show that for any relation terms

R and S we have
⋃
d∈ΛJRSKd =

⋃
d∈ΛJRKd;

⋃
d∈ΛJSKd. However the right hand side of this identity is equal to⋃

d,e∈Λ×ΛJRKd; JSKe. But since the family of interpretations is directed, for every pair d, e of indices in Λ there
is an m ∈ Λ with J Kd, J Ke ≤ J Km, hence

⋃
d,e∈Λ×ΛJRKd; JSKe ≤

⋃
m∈ΛJRKmJSKm. The reverse inequality is

immediate and we obtain
⋃
d∈ΛJRKd;

⋃
d∈ΛJSKd =

⋃
d∈ΛJRSKd.

The least element of the collection I is the interpretation J K0 given by JpiK0 = ∅ for 0 ≤ i ≤ n. In the
remainder of this section, the word interpretation will refer to an extended D-interpretation.
Lemma 2.5. Let J K and J K′ be interpretations. If for all i JpiK ⊆ JpiK′ then J K ≤ J K′.

Proof. By induction on the structure of extended relations. For all relational constants c we have JcK = JcK′
We will consider one of the inductive cases, namely that of composition. Suppose JRK ⊆ JRK′ and JSK ⊆ JSK′.
Then we must show that JRSK ⊆ JRSK′. But this follows immediately by a set-theoretic argument, since
(x, u) ∈ JRK and (u, y) ∈ JSK imply, by inductive hypothesis, that (x, u) ∈ JRK′ and (u, y) ∈ JSK′. It can also
be proved using the axioms of QRAΣ by showing that A∪A′ = A′ and B∪B′ = B′ imply AB∪A′B′ = A′B′.
We leave the remaining cases to the reader.

We will now define a operator ΦF from interpretations to interpretations, show it continuous and define
the interpretation generated by F as its least fixed point. This interpretation will be the least extension of a
given relational D-interpretation satisfying the equations in F .
Definition 2.6. Let F be a set of definitional equations {pi $ Ri(p1, . . . , pn) : 1 ≤ i ≤ n} and let I be
the set of extended D-interpretations, with poset structure induced pointwise. Then we define the operator
ΦF : I −→ I as follows

ΦF (J K)(pi) = JRi(p1, . . . , pn)K.

Theorem 2.7. ΦF is a continuous operator, that is to say it preserves suprema of directed sets.

Proof. Let {J Kd : d ∈ Λ} be a directed set of interpretations. By Lem. 2.5 it suffices to show that for all pi

ΦF (
∨
d∈Λ

J Kd)(pi) = (
∨
d∈Λ

ΦF (J Kd))(pi).

Let J K∗ =
∨
d∈Λ J Kd. Then ΦF (

∨
d∈Λ J Kd)(pi) = JRi(p1, . . . , pn)K∗, which in turn is the union

⋃
d∈ΛJRi(p1, . . . , pn)Kd.

But this is equal to
⋃
d∈Λ ΦF (J Kd)(pi). Therefore ΦF (

∨
d∈Λ J Kd) =

∨
d∈Λ ΦF (J Kd).

By Kleene’s fixed point theorem ΦF has a least fixed point J K† in I. This fixed point is, in fact, the union of
all Φ

(n)
F (J K0), (n ∈ N). By virtue of its being fixed by ΦF we have JpiK

†
= JRi(p1, . . . , pn)K†. That is to say, all

equations in F are true in J K†, which is the least interpretation with this property under the pointwise order.

3. Program Translation

We define constraint and program translation to relation terms. To this end, we define a function K̇ from
constraint formulas with — possibly free — logic variables to a variable-free relational term. K̇ is the core of
the variable elimination mechanism and will appear throughout the rest of the paper.

Second, we translate defined predicates — and CLP programs — to equations p $ R, where p will be
drawn from a set of definitional variables standing for program predicate names p, and R is a relation term.
The set of definitional equations can be both seen as an executable specification, by understanding it in terms
of the rewriting rules given in this paper; or as a declarative one, by unfolding the definitions and using the
standard set-theoretic interpretation of binary relations.

10 E. J. Gallego Arias, J. Lipton, J. Mariño

3.1. Constraint Translation

We fix a canonical list x1, . . . , xn of variables occurring in all terms, so as to translate them to variable-free
relations in a systematic way. There is no loss of generality as later, we transform programs into this canonical
form.

Definition 3.1 (Term Translation). Define a translation function K : TΣ(X)→ RΣ from first-order terms
to relation expressions as follows:

K(c) = (c, c)1
K(xi) = P ◦i
K(f(t1, . . . , tn)) = Rf ;

⋂
i≤n Pi;K(ti)

K(〈t1, . . . , tn〉) =
⋂
i≤n Pi;K(ti)

The semantics of the relational translation of a term is the set of all of the instances of that term, paired
with the corresponding instances of its variables. For instance, the term x1 + s(s(x2)) is translated to the
relation +; (P1;P ◦1 ∩ P2; s;P1; s;P1;P ◦2). Thus (~a,~b) ∈ JK(x1 + s(s(x2)))KD

†
implies that a = +〈b1, s(s(b2))〉.

In the following lemma we see that this pattern holds for JK(~t)KD
†
in general. It will be convenient below to

use the notation tD for the interpretation, in D, of a ground termt ∈ TΣ.

Lemma 3.2. Let t[~x] be a term of TΣ(X) whose free variables are among those in the sequence ~x = x1, . . . , xm.
Then, for any sequences ~a = a1, . . . , am ∈ D†, ~u ∈ D† and any b ∈ D we have

(b,~a~u) ∈ JK(t[~x])KD
†
⇐⇒ b = (t[~a/~x])D

Proof. By induction on term structure. The first base case is t ≡ c where c is a constant in Σ. Then
(b,~a~u) ∈ JK(c)KD

†
holds if and only if (b,~a~u) is in J(c, c);1KD

†
, or equivalently, if b = cD. But this is equivalent

to saying b = (c[~a/~x])D.
The second base case is t ≡ xi. Then, the pair (b,~a~u) is in JK(xi)KD

†
, i.e. in JP ◦i KD

†
if and only if ai = b,

or, equivalently, b = (xi[~a/~x])D as we wanted to show.
For the first inductive case, observe that (b,~a~u) ∈ JK(f(t1, . . . , fn))KD

†
if and only if (b,~a~u) ∈ JRf ;∩i≤nPi;K(ti)KD

†
=

JRf KD
†
;∩i≤nJPiKD

†
; JK(ti)KD

†
. This is equivalent to saying that there are elements ~b = b1, . . . , bn with

(b,~b) ∈ JRf KD
†
and for all i ≤ n we have (~b,~a~u) ∈ JPiKD

†
; JK(ti)KD

†
, Equivalently, b = fD(b1, . . . , bn) and for

all i we have (bi,~a~u) ∈ JK(ti)KD
†
. By the induction hypothesis, this is equivalent to bi = (ti[~a/~x])D, so by

definition b = (f(t1, . . . , tn)[~a/~x])D as we wanted to show.
The argument for the remaining inductive case is almost identical.

We will translate constraints over m variables to partially coreflexive relations over the elements that
satisfy them. A binary relation R is coreflexive if it is contained in the identity relation, and it is i-coreflexive
if its i-th projection is contained in the identity relation: P ◦i ;R;Pi ⊆ id . Thus, for a variable xi free in a
constraint, the translation will be i-coreflexive.

We now formally define two partial identity relation expressions Im, Qi for the translation of existentially
quantified formulas, in such a way that if a constraint ϕ[~x] over m variables is translated to an m-coreflexive
relation the formula ∃xi. ϕ[~x] corresponds to a coreflexive relation in all the positions but the i-th one, as xi
is no longer free. In this sense Qi may be seen as a hiding relation.

Definition 3.3. The partial identity relation expressions Im, Qi for m, i > 0 are defined as follows.

Im :=
⋂

1≤i≤m

Pi(Pi)
◦ Qi = Ii−1 ∩ Ji+1 Ji = tli; (tl◦)i

Im is the identity on sequences up to the first m elements. Qi is the identity on all but the i-th element, with
the i-th position relating arbitrary pairs of elements.

Definition 3.4 (Constraint Translation). The K̇ : LD → RΣ translation function for constraint formulas

Constraint Logic Programming with a Relational Machine 11

is:

K̇(p(t1, . . . , tn)) = (
⋂
i≤n K(ti)

◦;P ◦i); p; (
⋂
i≤n Pi;K(ti)) ∩ id

K̇(ϕ ∧ θ) = K̇(ϕ) ∩ K̇(θ)
K̇(∃xi. ϕ) = Qi; K̇(ϕ);Qi ∩ id

As an example, the translation of the constraint ∃x1, x2.s(x1) ≤ x2 is

Q1; ([Q2; ([(P ◦1 ; s◦;P1 ∩ P ◦2 ;P2);≤; (P1; s;P ◦1 ∩ P2;P ◦2)] ∩ id);Q2] ∩ id);Q1 ∩ id

Observe that for every ϕ we have that K̇(ϕ) is coreflexive: (~u,~v) ∈ JK̇(ϕ)K implies that ~u = ~v.
The following lemma establishes that the semantics of the relational translation of a constraint is faithful

to the semantics of the constraint in the underlying model D.

Lemma 3.5. Let ϕ[~x] be a constraint formula with free variables among ~x = x1, . . . , xm. Then, for any
sequences ~a = a1, . . . , am and ~u of members of D

(~a~u,~a~u) ∈ JK̇(ϕ[~x])KD
†
⇐⇒ D |= ϕ[~a/~x]

Proof. By induction on the structure of the formulas:

• We consider the case of a unary constraint predicate p, where our atomic formula is just p(~t[~x])

(the argument extends easily to higher arities). Observe that (~a~u,~a~u) ∈ JK̇(p(t))KD
†
, i.e. (~a~u,~a~u) ∈

JK(t)◦P ◦1 ; p;P1;K(t)KD
†
is equivalent to the assertion that for some b ∈ D,~b, ~v ∈ D†

(~a~u, b) ∈ JK(t)◦KD
†
and (b,~b) ∈ JP ◦1 KD

†
and (b1~v, b1~v) ∈ JpKD

†
.

Equivalently, we have

b = b1, (b~v, b~v) ∈ JpKD
†
and b = (t[~a/~x])D

the latter equation by Lem. 3.2. By definition of JpKD
†
this implies that pD((t[~a/~x])D), that is to say, that

D |= p(t)[~a/~x].
Conversely, if pD((t[~a/~x])D) then for some ~v ∈ D† we have

((t[~a/~x])D~v, (t[~a/~x])D~v) ∈ JpKD
†
.

By the equivalences stated above, we obtain (~a~u,~a~u) ∈ JK(t)◦P ◦1 ; p;P1;K(t)KD
†
for any ~u ∈ D†.

• For the case ϕ[~x] ∧ θ[~x],

(~a~u,~a~u) ∈ JK̇(ϕ[~x]) ∩ K̇(θ[~x])K ⇐⇒ (~a~u,~a~u) ∈ JK̇(ϕ[~x])K and (~a~u,~a~u) ∈ JK̇(θ[~x])K

By the induction hypothesis this is equivalent to D |= ϕ[~a/~x] and D |= θ[~a/~x], i.e. D |= ϕ[~a/~x] ∧ θ[~a/~x].
• For the case ∃xi.ϕ[~x], let ~a be an arbitrary sequence in D† of the same length m as ~x, ~ai−1 ≡ a1, . . . , ai−1

and ~ai+1 ≡ ai+1, . . . , am. For arbitrary sequences ~u we have that

(~a~u,~a~u) ∈ QiJK̇(ϕ[~x])KQi ∩ id ⇐⇒ ∃~b~r (~a~u,~b) ∈ Qi ∧ (~b, ~r) ∈ JK̇(ϕ[~x])K ∧ (~r,~a~u) ∈ Qi.

Equivalently, by the definition of Qi

(~a~u,~a~u) ∈ QiJK̇(ϕ[~x])KQi ⇐⇒ ∃bi (~ai−1bi ~ai+1~u, ~ai−1bi ~ai+1~u) ∈ JK̇(ϕ[~x])KD
†

and by the induction hypothesis for ϕ

(~a~u,~a~u) ∈ QiJK̇(ϕ[~x])KQi ⇐⇒ ∃bi D |= ϕ[~ai−1bi ~ai+1/~x]

Equivalently, we have

D |= (∃xiϕ)[~a/~x].

as we wanted to show.

12 E. J. Gallego Arias, J. Lipton, J. Mariño

With the translation of terms and constraints defined, we now proceed to give the translation of complete
programs.

3.2. Translation of Constraint Logic Programs

To motivate the technical definitions below, we illustrate the program translation procedure using the Peano
addition example in Fig. 2. This program is first purified: the variables in the head of the clauses defining
each predicate are chosen to be a sequence of fresh variables x1, x2, x3, with all bindings stated as equations
in the tail.

add(x1, x2, x3)←− x1 = 0, x2 = x3.

add(x1, x2, x3)←− ∃x4x5. x1 = s(x4), x3 = s(x5), add(x4, x2, x5))

The clauses are combined into a single definition similar to the Clark completion of a program. We also
use the variable permutation π sending x1, x2, x3, x4, x5 7→ x4, x2, x5, x1, x3 to rewrite the occurrence of the
predicate add in the tail so that its arguments coincide with those in the head.

add(x1, x2, x3)↔ (x1 = 0, x2 = x3)

∨ ∃x4x5. x1 = s(x4), x3 = s(x5), wπ add(x1, x2, x3).

Now we apply relational translation K̇ defined above to all relation equations, and eliminate the existential
quantifier using the partial identity operator I3 defined above. We represent the permutation π using the
relation expression Wπ that simulates its behavior in a variable-free manner and replace the predicate add
with a corresponding relation variable add. (A formal definition of Wπ and its connection with function wπ is
given below, see Def. 3.10 and Lemma 3.11.)

add $ K̇(x1 = o ∧ x2 = x3) ∪ I3((K̇(x1 = s(x4) ∧ x3 = s(x5)) ∩Wπ addW
◦
π)))

Now we give a description of the general translation procedure. We first process programs to their complete
database form as defined in [Cla77], which given the executable nature of our semantics reflects the choice to
work within the minimal semantics. The main difference in our processing of a program P to its completed
form P ′ is that a strict policy on variable naming is enforced, so that the resulting completed form is suitable
for translation to relational terms.

Definition 3.6 (General Purified Form for Clauses). For a clause p(~t[~y]) ← ~q(~v[~y]), let h = α(p),
y = |~y|, v = |~v|, and m = h+ y + v. Assume given the following vectors.

~x = ~xh~xt = ~xh~xy~xv = x1, . . . , xh,xh+1, . . . , xh+y,xh+y+1, . . . , xm
~xh = x1, . . . , xh
~xt = ~xy~xv = xh+1, . . . , xh+y,xh+y+1, . . . , xm
~xy = xh+1, . . . , xh+y

~xv = xh+y+1, . . . , xm

the clause’s GPF form is:

p(~xh)← ∃h↑.((~xh = ~t[~xy] ∧ ~xv = ~v[~xy]), ~q(~xv))

∃n↑ denotes existential closure with respect to all variables whose index is greater than n. ~xh and ~xt stand
for head and tail variables. A program is in GPF form iff every one of its clauses is. After the GPF step, we
perform Clark’s completion.

Definition 3.7 (Completion of a Predicate). We define Clark’s completed form for a defined predicate
p with clauses cl1, . . . , cln in GPF form:

p(~xh)←cl1 tl1
. . .
p(~xh)←cln tlk

}
Clark’s comp.
========⇒ p(~xh)↔ tl1 ∨ · · · ∨ tlk

Constraint Logic Programming with a Relational Machine 13

The above definition easily extends to programs. Completed forms are translated to relations by using K̇ for
the constraints, mapping conjunction to ∩ and ∨ to ∪. Existential quantification, recursive definitions and
parameter passing are handled in a special way which we proceed to detail next.

3.2.1. Existential Quantification: Binding Local Variables

Variables local to the tail of a clause are existentially quantified. For technical reasons — simpler rewrite
rules — we use the partial identity relation In, rather than the Qn relation defined in the previous sections.
In acts as an existential quantifier for all variables of index greater than a given number.

Lemma 3.8.

JInKD
†

= {(~z~u, ~z~v)| |~z| = n, ~z, ~u,~v ∈ D†}

Proof. Immediate: just observe that for each i JPi(Pi)◦KD
†

= {(~ua~v, ~u′a~v′)||~u| = |~u′| = i−1 and ~u, ~u′, ~v,~v′, a ∈
D†} that is to say, that Pi(Pi)◦ relates arbitrary sequences except for the position i, where it is the identity.

Lemma 3.9. Let ~a = a1, . . . , an ∈ D, ~x = x1, . . . , xn, let ϕ be a constraint over m free variables, with m > n,
~y a vector of length k such that n+ k = m, and ~u,~v ∈ D†, then:

(~a~u,~a~v) ∈ JIn; K̇(ϕ[~x~y]); InKD
†
⇐⇒ D |= (∃n↑.ϕ[~x~y])[~a/~x]

Proof. (~a~u,~a~v) ∈ JIn; K̇(ϕ[~x~y]); InKD
† ⇐⇒ for some bn+1, . . . , bm, ~u

′,∈ D†

(~a~b~u′,~a~b~u′) ∈ JK̇(ϕ[~x~y])KD
†
.

By Lem. 3.5, we know that (~a~b~u′,~a~b~u′) ∈ JK̇(ϕ[~x~y])KD
† ⇐⇒ D |= ϕ[~a~b/~x~y].

So (~a~u,~a~v) ∈ JIn; K̇(ϕ[~x~y]); InKD
†
is equivalent to D |= (∃n↑.ϕ[~x~y])[~a/~x].

3.2.2. Parameter Passing

The information about the order of parameters in each pure atomic formula p(xi1 , . . . , xir) is captured using
permutations. Given a permutation π : {1..n} → {1..n}, the function wπ on formulas and terms is defined in
the standard way by its action over variables. We write Wπ for the corresponding relation:

Definition 3.10 (Switching Relations). Let π : {1..n} → {1..n} be a permutation. The switching relation
expression Wπ, associated to π is:

Wπ =

n⋂
j=1

Pπ(j)(Pj)
◦.

We call n the order of π, and write it o(π).

Lemma 3.11. Fix a permutation π and its corresponding wπ and Wπ. Then:

JK̇(wπ(p(x1, . . . , xn)))K = JWπK̇(p)W ◦π K

Proof. Straightforward, This is just a restatement of the easy claim:

(~a′,~a′) ∈ JRK ⇐⇒ (~a,~a) ∈ JWπRW
◦
π K

where ~a = a1, . . . , an and ~a′ = aπ(1), . . . , aπ(n).

3.2.3. The Translation Function

Now we may define the translation for defined predicates. We remind the reader (see Def. 3.6) that after
being put in GPF, each clause is in the form p(~xh)↔ tl1 ∨ · · · ∨ tlk where each tail tl is in the form ∃h↑.~b
with ~b a conjunction b1, . . . , bk where each bi is either an atomic formula pi(~xi) (with pi a defined predicate)
or a constraint formula ϕ.

14 E. J. Gallego Arias, J. Lipton, J. Mariño

Definition 3.12 (Relational Translation of Predicates). Let h, p(~xh) be as in Def. 3.6. The translation
function Tr from completed predicates to relational equations is defined by:

Tr(p(~xh)↔ tl1 ∨ · · · ∨ tlk) = (p $ Tr tl(tl1) ∪ · · · ∪ Tr tl(tlk))

Tr tl(∃h↑.~b) = Ih; (Tr l(b1) ∩ · · · ∩ Tr l(bn)); Ih
Tr l(ϕ) = K̇(ϕ) ϕ a constraint
Tr l(pi(~xi)) = Wπ; pi;W

◦
π such that π(x1, . . . , xα(pi)) = ~xi

where ~xi is the original sequence of variables in pi in the Clark completion of the program, and π a permutation
on the variables in the clausethat transforms the ordered sequence of length α(p) starting at x1 to ~xi.

We will sometimes write In(R) for InRIn and Wπ(R) for WπRW
◦
i .

3.3. Adequacy of the Translation

In this subsection we establish the adequacy of the program translation introduced in the preceding subsection
in the following sense. The canonical least fixed point semantics for a constraint logic program P agrees with
the least fixed point semantics of its relational translation, as defined in subsection 2.4.

The TDP operator We shall be interested in the fixed-point semantics induced by the continuous operator
TDP of Def. 1.7. We recapitulate the relevant definitions here in an equivalent form that will be useful in our
context. It will also be convenient to adopt here the conventional notation for program clauses that places all
constraints ϕ in front of the remaining atoms bi: pi(~xi)←− ϕ, b1, . . . , br, since in the denotational semantics
the order does not matter. The clauses are assumed to be in GPF.

TDP (I) = {pi(~a) : pi(~xi)←− ϕ, b1, . . . , br ∈ P ∧ ∃~uD |= ϕ(~a~u) ∧ ∀k bk[~a~u/~x] ∈ I}

where the defined predicate symbols in the program are p1, . . . , pm, and ~a, ~u are in D†. The notation I0 will
be used for the empty D-interpretation and for each n we will denote by In the n-fold iteration (TDP)(n)(I0) of
TDP on I0. We adopt a parallel notation for relational interpretations. Let tr(P) = F be the set of definitional
equations for program P , and ΦF the operator it induces on relational interpretations (Subsec. 2.4). Then,
letting J K0 be the interpretation sending all definitional relation variables pi to 0, we put J Kn+1 = ΦF (J Kn).

Theorem 3.13. Let pi be a defined predicate symbol in program P , and let ~a ∈ D† be such that |~a| = |pi|,
the arity of pi. Then for each n and ~v ∈ D†

(~a~v,~a~v) ∈ JpiKn ⇐⇒ pi(~a) ∈ In.

Proof. By induction on n. The base case is immediate. Suppose (~a,~a) ∈ JpiKn+1. Since JpiKn+1 = JRi(p1, . . . , pm)Kn
we have (~a~v,~a~v) ∈

⋃
tr(tlj) where p←→

∨
tlj is the completed form for predicate pi. But then for some tail

tlj = ϕ, b1, . . . , br with each bk = wπk
pik(~x),

(~a~v,~a~v) ∈ JIh(K̇(ϕ) ∩
⋂
k≤r

Wπk
pikW

◦
πk

)IhKn

where h = |pi|. By coreflexivity of JK̇(ϕ)K (i.e. JK̇(ϕ)K ⊆ id) there exists ~u ∈ D† with (~a~u,~a~u) ∈
JK̇(ϕ) ∩

⋂
Wπk

pikW
◦
πk

Kn. Thus we have (~a~u,~a~u) ∈ JK̇(ϕ)Kn, which by Lem. 3.5 implies that D |= ϕ[~a~u/~x].
Also for every k (1 ≤ k ≤ r) we have that (~a~u,~a~u) ∈ JWπk

pikW
◦
πk

K which implies that (wπk
~a~u,wπk

~a~u) ∈
JpikKn.

By the induction hypothesis there is a ~u ∈ D† such that for every k we have pik [wπk
~a~u/wpk~x] ∈ In. Thus

∀k bk[~a~u/~x] ∈ In. By the definition of TDP we have pi(~a) ∈ In+1, which is what we were trying to show.
The converse is shown by a symmetric argument and is left to the reader.

Recall that J K† is the least fixed point of ΦF and JP K the least fixed point of TDP . We have the following
corollary, which asserts that the least relational interpretation of program predicates agrees with its meaning
in the program.

Corollary 3.14. Let ~a,~v ∈ D† with |~a| = |pi|. Then (~a~v,~a~v) ∈ JpiK† if and only if pi(~a) ∈ JP K.

Constraint Logic Programming with a Relational Machine 15

m1 : Im(K̇(ψ)) P7−→ K̇(∃m↑.ψ) Hiding meta-reduction
m1∗ : Im(0) P7−→ 0
m2 : Wπ(K̇(ψ)) P7−→ K̇(wπ(ψ)) Permutation meta-reduction
m2∗ : Wπ(0) P7−→ 0
m3 : K̇(ψ1) ∩ K̇(ψ2) P7−→ K̇(ψ1 ∧ ψ2) D |= ψ1 ∧ ψ2

m3 : K̇(ψ1) ∩ K̇(ψ2) P7−→ 0 D 6|= ψ1 ∧ ψ2

m4 : K̇(ψ) ∩ q P7−→ K̇(ψ) ∩ (Θ) where q $ Θ ∈ Tr(P)

Figure 5. Constraint meta-reductions

Since JpiK† is the union of the JpiKn and JP K the union of the In the conclusion follows immediately from the
preceding theorem.

4. A Rewriting System for Resolution

In this section we present a rewriting system for proof search. The system is derived from equational theory
QRAΣ, which makes soundness of execution immediate. In Sec. 5 we will show that answers obtained by
SLD-resolution correspond to answers yielded by our rewriting system and conversely, thus establishing
operational completeness.

The translation of logic programs to a ground signature allows us to use rewriting for programs with logic
variables, overcoming the practical and theoretical difficulties that the existence of such variables entails.
Additionally, we may speak of executable semantics: we use the same function to compile and denote CLP
programs.

For practical reasons, we do not define our rewriting system over the full relational language, but over the
image of the translation function. That is to say, the system makes sense for terms in the image of Tr. In
principle, there would be no problem to drop this restriction, at the cost of using significantly more rules for
no gain.

Formally, the signature of our rewriting system is given by the following term-forming operations over
the sort TR: I : (N × TR) → TR, W : (Perm × TR) → TR, K : LD → TR, ∪ : (TR × TR) → TR and
∩ : (TR × TR)→ TR. Thus, for instance, the relation In;R; In is formally represented in the rewriting system
as I(n,R), provided R represents R. In practice we make use of the conventional relational notation In,Wπ

when no confusion can arise. Rewrite rules are of the form ρ : l→ r where ρ is the rule’s name (optional), l
and r patterns, and l not a variable.

For a given term, it may happen that more than one reducible position or redex exists. We call a rewriting
strategy non-deterministic when the redex can be freely chosen. We say a strategy is parallel-outermost when
the redex chosen is not a subterm of any other redex and if there is more than one such redex, all of them
are reduced. We say a strategy is left-outermost if it tries to reduce the outermost term, and if this is not
possible then selects the leftmost redex of the tree of reduction candidates for the subterms.

4.1. Meta-reductions

We formalize the interface between the rewrite system and the constraint solver as meta-reductions (Fig. 5).
Every meta-reduction uses the constraint solver in a black-box manner to perform constraint manipulation
and satisfiability checking.

Lemma 4.1. All meta-reductions are sound: if mi : l P7−→ r then JlKD
†

= JrKD
†
.

Proof. Follows from Lem. 3.5. Let us consider rule m1, whose left hand side abbreviates the term ImK̇(ψ))Im
and whose right hand side is K̇(∃m↑. ψ). Suppose the free variables of ψ are among ~x, where ~x is chosen to
be of length greater then m.

Given ~a, ~u, ~u′ ∈ D† with | ~a | equal tom, we have (~a~u,~a~u′) ∈ JImK̇(ψ))ImKD
†
if there are ~v, ~w, ~w′ ∈ D† with

| ~a~v |=| ~x | such that (~a~v ~w,~a~v ~w′) ∈ JK̇(ψ)KD
†
. By Lem. 3.5, this is the case if and only if there is a ~v such that

16 E. J. Gallego Arias, J. Lipton, J. Mariño

p1 : 0 ∪R P7−→ R
p2 : 0 ∩R P7−→ 0
p3 : Wπ(R ∪ S) P7−→ Wπ(R) ∪Wπ(S)
p4 : In(R ∪ S) P7−→ In(R) ∪ In(S)
p5 : (R ∪ S) ∩ T P7−→ (R ∩ T) ∪ (S ∩ T)
p6 : K̇(ψ) ∩ (R ∪ S) P7−→ (K̇(ψ) ∩R) ∪ (K̇(ψ) ∩ S)
p7 : K̇(ψ) ∩ (R ∩Wπ(qi))

P7−→ (K̇(ψ) ∩R) ∩Wπ(qi)
p8 : K̇(ψ) ∩Wπ(q) P7−→ W ◦π (Wπ(K̇(ψ)) ∩ q)
p9 : K̇(ψ) ∩ Im(R) P7−→ Im(Im(K̇(ψ)) ∩R) ∩ K̇(ψ)

Figure 6. Rewriting system for SLD.

D |= ψ[~a~v/~x], i.e. iff D |= ∃m↑ ψ[a1, . . . , am/x1, . . . , xm], which in turn, implies (~a~u,~a~u′) ∈ JK̇(∃m↑ ψ[~x])KD
†
.

The argument for the converse is symmetric. Soundness for m2 and m3 is similar.

4.2. A Rewriting System for SLD Resolution

The rewriting system for proof search is in Fig. 6. We prove local confluence.

Lemma 4.2. P7−→ is sound: if pi : l P7−→ r then JlKD
†

= JrKD
†
.

Proof. All of the rules are consequences of relation algebra, except p9. For p9, we apply the modular law to
obtain the derivation:

K̇ ∩ IRI =[IK̇I ⊇ K̇]
K̇ ∩ IK̇I ∩ IRI ⊆[RS ∩ T ⊆ (R ∩ TS◦)S]
K̇ ∩ (IR ∩ IK̇II◦)I ⊆[RS ∩ T ⊆ R(R◦T ∩ S)]
K̇ ∩ I(R ∩ I◦IK̇II◦)I =[I◦I = I]
K̇ ∩ I(R ∩ IK̇I)I

The opposite direction K̇ ∩ IRI ⊇ K̇ ∩ I(IK̇I ∩R)I is immediate.

A left outermost strategy gives priority to p7 over p8. Our system is confluent under left outermost rewriting.

Lemma 4.3. If we give higher priority to p7 over p8, P7−→ is locally confluent.

Proof. We prove that all the critical pairs join. We have three cases:

• m1 overlaps with p8, so using p8: K̇(ψ1) ∩ Im(K̇(ψ2)) P7−→ Im(Im(K̇(ψ1)) ∩ K̇(ψ2)) ∩ K̇(ψ1) P7−→
Im(K̇(∃m↑.ψ1)∩K̇(ψ2))∩K̇(ψ1) P7−→ Im(K̇(∃m↑.ψ1∧ψ2))∩K̇(ψ1) P7−→ K̇(∃m↑.(∃m↑.ψ1∧ψ2))∩K̇(ψ1) P7−→
K̇(∃m↑.(∃m↑.ψ1 ∧ψ2)∧ψ1) which is logically equivalent to K̇(ψ1 ∧∃m↑.ψ2), that we obtain reducing with
m1.

• p1 overlaps with p5, so using p5: K̇(ψ)∩(0∪R) P7−→ (K̇(ψ)∩0)∪(K̇(ψ)∩R) P7−→ 0∪(K̇(ψ)∩R) P7−→ K̇(ψ)∩R,
which is what we get using p1 directly.
• p7 overlaps with p8, and indeed this overlapping is not solvable without assigning a priority to some of the

rules. The overlapping term is of the form K̇(ψ1)∩ (K̇(ψ2)∩W (q)), and as p7 has higher priority than p8

this is rewritten to (K̇(ψ1) ∩ K̇(ψ2)) ∩W (q) which leads to a non-problematic term K̇(ψ1 ∧ ψ2) ∩W (q).

5. Operational Equivalence

Theorem 3.14 establishes the correspondence of the relational and transformer-based interpretations. In this
section, we aim to emulate that result for the computational interpretation of CLP programs. Viewed as

Constraint Logic Programming with a Relational Machine 17

computational devices, constraint logic programs take the role of a theory, and the computational procedure
will perform proof search for user-provided queries.

Several proof search strategies are common; we restrict our attention to widely-used SLD resolution; its
popularity steas from a good efficiency versus completeness compromise, making it practical for a wide range
of applications.

Additionally, SLD is a good representative for a strategy not particularly well suited to be captured in
our algebraic approach: clause selection and the particular form of backtracking used yield control-flavored
rewriting rules, obstructing profits coming from usual algebraic uniformity; think of an expression R ∩ S,
under SLD, R and S don’t fully stand on equal footing.

Given a query, rewriting with the system of Sec. 4, will reach a certain normal form or fail to terminate.
Then, our goal is to establish that the rewriting will precisely reach a normal form iff SLD proof search does
find a proof.

Formally, we prove that given a program P and query Q, rewriting its relational translation will return a
term K(ϕ) iff SLD resolution for P ` Q reaches a program state 〈2 |ϕ′〉, with answer constraints logically
equivalent, ϕ ⇐⇒ ϕ′. The proof proceeds in two main steps using an intermediate transition system:

• First, we prove “traditional” SLD equivalent to a carefully-crafted transition system that internalizes the
renaming apart and search performed by the strategy.
The states of the new transition system include an internal notion of scope, a natural number which
represents the number of global variables in the state; substate, with parameter passing captured by a
permutation of variables; failure and parallel states, which model alternatives in the search tree.

• The internal system can be then directly related to a transition system between relations, which captures
the rewriting system at a higher level of granularity than its individual rules. Proving that the rewriting
system indeed rewrites in synchrony with the transitions completes the proof.

5.1. Operational Semantics in Logic Style for SLD-resolution

We recall the standard SLD semantics and extend the notion of General Purified Form to program states. We
prove several technical results, mainly the equivalence with the system in General Purified Form so we can
work exclusively with them without loss of generality in the next subsections.

A program state is an ordered pair 〈A1, . . . , An| ϕ〉 where A1, . . . , An is a sequence of atomic formulas or
constraints known as the resolvent, and ϕ is a constraint formula known as the constraint store. We write 2
for the null resolvent, i.e. the empty sequence of formulas. We assume free variables in the constraint store to
be existentially quantified.

Definition 5.1. The standard transition system capturing SLD resolution is:

〈ϕ, ~p |ψ〉 cs−→l 〈~p |ψ ∧ ϕ〉 iff D |= ψ ∧ ϕ
〈p(~t[~x]), ~p |ϕ〉 rescl−−→l 〈~q(~v[σ(~z)]), ~p |ϕ ∧ (~u[σ(~y)] = ~t[~x])〉 iff D |= ϕ ∧ (~u[σ(~y)] = ~t[~x])

where: cl : p(~u[~y])← ~q(~v[~z]) σ a renaming apart for ~y, ~z, ~x

We write GPF for general purified form, that is, the form where atoms in the resolvent contain only variables.
For a state Q, we write Q′ for its GPF form, and for a program P , we write P ′ for its GPF form as defined
in Sec. 3.

Definition 5.2. The GPF form of state 〈~p(~u[~x]) |ϕ[~x]〉 is 〈~p(~x′) |ϕ[~x] ∧ ~x′ = ~u[~x]〉, with ~x = x1, . . . , xm,
k = |~u|, and ~x′ = xm+1, . . . , xm+k.

Lemma 5.3. Let ϕ be the constraint store of a state Q, and ϕ′ the store of Q′. Then, D |= ϕ iff D |= ϕ′.

Lem. 5.3 A consequence of soundness. Take a formula ∃~x.ϕ, then, for ~x′ fresh, and any sequence of terms ~t
from TΣ(X), ∃~x.ϕ ⇐⇒ ∃~x.ϕ ∧ ~t = ~t ⇐⇒ (∃~x.ϕ ∧ ~x′ = ~t)[~x′/~t] ⇐⇒ ∃~x~x′.ϕ ∧ ~x′ = ~t.

Definition 5.4. We define an equivalence relation ≈D on states:

〈~p(~t[~x1]) |ψ1[~x1]〉 ≈D 〈~p(~t[~x2]) |ψ2[~x2]〉 iff D |= ∃~x1 ψ1[~x1] ⇐⇒ D |= ∃~x2 ψ2[~x2]

Lemma 5.5. Let Q1 ≈D R1. Q1 −→l Q2 iff for some state R2, R1 −→l R2 and Q2 ≈D R2.

18 E. J. Gallego Arias, J. Lipton, J. Mariño

Lem. 5.5 Immediate consequence of the soundness of the constraint solver. The same resolvent guarantees
that the choice of every step is identical. Then, for every step, either a resolution or a constraint one, we have
ψ1 ⇐⇒ ψ2, thus for a newly added constraint ϕ arising from either a resolution or a constraint step, it is
the case that ψ1 ∧ ϕ ⇐⇒ ψ2 ∧ ϕ.
Lemma 5.6 (GPF Equivalence). For a state Q1 and its GPF form Q′1:

• A derivation Q1
cs−→l Q2 exists iff Q′1

cs−→l C2 does and C2 ≈D Q′2.
• A derivation Q1

res−→l Q2 exists iff Q′1
res−→l C1

cs−→l C2 does and C2 ≈D Q′2.
Lem. 5.6 We annotate the number of variables in use in each constraint store to make the proof more readable.
Let |~x| = m, |~u| = |~x′| = k. Recall that ~x′ = xm+1, . . . , xm+k then

Q1 = 〈~p(~u[~x]) |ϕ[~x]〉 [m]
Q′1 = 〈~p(~x′) |ϕ[~x] ∧ ~x′ = ~u[~x]〉 [m+k]

We know that Q1 ≈D Q′1, so a derivation will always exist for Q1 iff it exists for Q′1. Now we check that
Q′2 ≈ C2.

• If p1 ≡ ψ, then we have Q1
cs−→l Q2 and Q′1

cs−→l C2. The new states are:

Q2 = 〈~p|2(~u|2[~x]) |ϕ[~x] ∧ ψ〉 [m]

Q′2 = 〈~p|2(~x′) |ϕ[~x] ∧ ψ ∧ ~x′ = ~u|2[~x]〉 [m+k]

C2 = 〈~p|2(~x′) |ϕ[~x] ∧ ψ ∧ ~x′ = ~u|2[~x]〉 [m+k]

They are the same identical state given that we do not purify constraints.
• If p1 is a defined predicate with clause:

cl : p1(~t[~y]) ← ~q(~v[~y])

cl′ : p1(~xh) ← ∃m′h+1.((~xh = ~t[~xy] ∧ ~xv = ~v[~xy]), ~q(~xv))

Let j = |~y|, ~xσ = xm+1, . . . , xm+j , j′ = j′1 + j′2, j′1 = |~v| j′2 = |~u|2|, ~x′q = xm+j+1, . . . , xm+j+j′1
,

~x′p = xm+j+j′1+1, . . . , xm+j+j′ . The states Q2 and Q′2 arising from the derivation rules are:

Q2 = 〈~q(~v[~xσ]), ~p|2(~u|2[~x]) |ϕ[~x] ∧ ~u1[~x] = ~t[~xσ]〉 [m+j]

Q′2 = 〈~q(~x′q)), ~p|2(~x′p) |ϕ[~x] ∧ ~u1[~x] = ~t[~xσ] ∧ ~x′q = ~v[~xσ] ∧ ~x′p = ~u|2[~x]〉 [m+j+j’]

Let ~xhσ, etc. . . , be the m+ k shifted vectors of variables arising from renaming them apart from variables
in Q′1. The states C1, C2 are:

C1 = 〈(~xhσ = ~t[~xyσ] ∧ ~xvσ = ~v[~xyσ]), ~q(~xvσ), ~p|2(~x′|2)

| ϕ[~x] ∧ ~x′ = ~u[~x] ∧ ~xhσ = ~x′1〉 [m+k+m’]
C2 = 〈~q(~xvσ), ~p|2(~x′|2)

| ϕ[~x] ∧ ~x′ = ~u[~x] ∧ ~xhσ = ~x′1 ∧ ~xhσ = ~t[~xyσ] ∧ ~xvσ = ~v[~xyσ]〉 [m+k+m’]

We will apply vector splitting and variable renaming to go from the constraint store of C2 to the one
belonging to Q′2. We omit the number of variables used but the reader can easily check that the elimination
preserves it.

ϕ[~x] ∧ ~x′ = ~u[~x] ∧ ~xhσ = ~x′1 ∧ ~xhσ = ~t[~xyσ] ∧ ~xvσ = ~v[~xyσ] ⇔
{~x′ = ~x′1~x

′
|2, ~u[~x] = ~u1[~x]~u|2[~x]}

ϕ[~x] ∧ ~x′1 = ~u1[~x] ∧ ~x′|2 = ~u|2[~x] ∧ ~xhσ = ~x′1 ∧ ~xhσ = ~t[~xyσ] ∧ ~xvσ = ~v[~xyσ] ⇔
{~x′1, ~xhσ elimination}

ϕ[~x] ∧ ~u1[~x] = ~t[~xyσ] ∧ ~xvσ = ~v[~xyσ] ∧ ~x′|2 = ~u|2[~x] ⇔
{renaming}

ϕ[~x] ∧ ~u1[~x] = ~t[~xσ] ∧ ~x′q = ~v[~xσ] ∧ ~x′p = ~u|2[~x]

by soundness, C2 ≈D Q′2.

Constraint Logic Programming with a Relational Machine 19

The derivation set of a state in GPF form is in direct correspondence to the original one, and reachable
answers coincide up to logical equivalence:

Theorem 5.7. Q −→l . . . −→l 〈2 |ϕ〉 iff Q′ −→l . . . −→l 〈2 |ϕ′〉 and 〈2 |ϕ〉 ≈D 〈2 |ϕ′〉.

5.1.1. Call-Return Transition System

A resolution step instantiating a predicate definition requires renaming apart of the fresh logical variables
to avoid name clashes, given the default global scope of variables in CLP. Adopting a “logical” point of
view, renaming in an instantiation step is equivalent to the problem of rewriting two constraints with local
quantifiers to a constraint with a single one: ∃~x.ϕ[~z~x], ∃~y.ψ[~z~y] where ~z is shared. Renaming apart allows to
obtain a logically-equivalent new constraint ∃~x~yσ.(ϕ[~z~x] ∧ ψ[~z~yσ]) where ~yσ = σ~x(~y) a renaming apart of ~y
for ~x. However, if we relax the top-level quantifier condition, we can combine the two original constraints in
different ways, such as (∃~x.ϕ[~x]) ∧ (∃~y.ψ[~y]). In the relational approach, this last form is natural, allowing us
to avoid an explicit renaming apart process during proof search. Implementing this choice however effectively
requires a carefully chosen canonical naming scheme and the use of the common variables ~z to propagate
constraints outside the scope of the quantifiers.

This choice gives rise to a notion of sub-state with local variables, which we keep track of using a cut-off
index n. Variables x1, . . . , xn are “global”, whereas variables greater than n are considered “local” to the
particular sub-state. Communication between a sub-state and its parent state requires the use of a permutation
of variables that permutes the parent’s variables such that the needed global variables appear in the correct
index position.

Definition 5.8. The set CS of call-return states is defined inductively as:
• 〈~p |ϕ[~x]〉n, where pi ≡ pi(~xi) is an atom or pi ≡ ψ a constraint, ~xi a vector of variables, n a natural

number, and ϕ[~x] a constraint store.
•
〈π
CS, ~p |ϕ[~x]

〉
n
, where CS is a call-return state, π is a permutation for sequences of natural numbers, ~p

a vector of atoms similar to the previous case, n a natural number and ϕ[~x] a constraint store.

As written, n captures the number of arguments involved in a predicate call and π is a permutation of
variables local to the state; it will be undone upon return. Thanks to the canonical naming scheme, the head
of every clause is of the form p(x1, . . . , xn). Then, the call transition will appropriately permute the current
constraint store so that the right constraints are placed on p’s variables. Such manipulations of the constraint
store are straightforward but tedious, thus we define notations ∆ and ∇ for the manipulations performed at
call and return time.

∆π
n(ϕ) ≡ ∃n↑.π(ϕ) ∇πn(ϕ,ψ) ≡ ψ ∧ π-1(∃n↑. ϕ)

∆π
n(ϕ) may be read as “modify ϕ to be placed in a context with n open variables and permutation π”. ∇πn(ϕ,ψ)

may be read as “merge constraint ϕ with scope (π, n) with ψ”. With this notation in place, we can proceed to
define a new transition system which logically formalizes a resolution step for a defined predicate; this system
could be understood as a formalization of the notion of call-frame present in common Prolog implementations:

Definition 5.9. The Call-Return transition system is:

〈ψ, ~p |ϕ〉n
constraint−−−−−→cr 〈~p |ϕ ∧ ψ〉n if p1 ≡ ψ and ϕ ∧ ψ satisfiable

〈p(~x1), ~p |ϕ〉n
call/cli−−−−→cr

〈π〈~q |∆π
h(ϕ)〉h, ~p |ϕ

〉
n

if cli : p(~xh)← ∃h↑.~q ∈ P ′ and π(~x1) = ~xh〈π〈2 |ψ〉m, ~p |ϕ〉n return−−−→cr 〈~p | ∇πm(ψ,ϕ)〉n〈π
PS , ~p |ϕ

〉
n

sub−−→cr

〈π
PS ′, ~p |ϕ

〉
n

if PS 6= 〈2 |ϕ′〉h, and PS −→p PS
′

The call-return transition system is equivalent to the standard one.

Lemma 5.10. Write ~p|2 for the subsequence of ~p starting at the second element. Then, given a GPF state
Q1 = 〈p1(~x1), ~p|2(~x) |ϕ〉n and program P :

Q1 −→l . . . −→l 〈~p|2(~x) |ϕ′〉n ⇐⇒ Q1 −→cr . . . −→cr 〈~p|2(~x) |ϕ′′〉n
with 〈~p|2(~x) |ϕ′〉n ≈D 〈~p|2(~x) |ϕ′′〉n

20 E. J. Gallego Arias, J. Lipton, J. Mariño

which implies:

Q1 −→l . . . −→l 〈2 |ϕ′〉n ⇐⇒ Q1 −→cr . . . −→cr 〈2 |ϕ′′〉n ϕ′ ⇐⇒ ϕ′′

Lem. 5.10 By induction over the length of the first derivation, and unfolding the sub-state transitions.

Base Case: A derivation of length 1, may correspond to either a constraint step or an empty clause
p1(~xh)← .

• If p is a constraint, the proof is immediate as the constraint transition is the same in both systems.
• If p is a defined predicate with empty clause, the proof is direct, the transition for the first system is:

〈p(~xp), ~p(~x) |ϕ〉n
res−→l 〈~p(~x) |ϕ ∧ ~xhσ = ~xp〉n

and for the call-return one is:

〈p(~xp), ~p(~x) |ϕ〉n
call−−→cr

〈π〈2 | ∃h↑.π(ϕ)〉h, ~p |ϕ
〉
n

return−−−→cr 〈~p |ϕ ∧ π-1(∃h↑.∃h↑.π(ϕ))〉n

ϕ ∧ π-1(∃h↑.∃h↑.π(ϕ))⇔ ϕ and (ϕ ∧ ~xhσ = ~xp)⇔ ϕ, completing the proof.

Inductive Case: In inductive case, we necessarily have p1 a defined predicate with a non-empty clause:

p1(~xh)← ∃nm.~q(~x′).

Note that the ~x occurring in the states and in the clause are different, we will use ~x′ for the one coming from
the clause, but it is also a sequence x1, . . . , xn. ~x and ~x′ only differ in length. We have a derivation of length
i+ 1. The derivations for both transition systems are:

〈~p(~x) |ϕ[~x]〉 →r 〈~q(~xσ), ~p|2(~x) |ϕ[~x] ∧ ~x1 = ~xhσ〉
i︷ ︸︸ ︷

→ · · · →〈~p|2(~x) |ϕ[~x] ∧ ~x1 = ~xhσ ∧ ϕ′[~xσ]〉

〈~p(~x) |ϕ[~x]〉m
call−−→cr

〈π〈~q(~x′) | ∃h↑.π(ϕ[~x])〉h, ~p|2 |ϕ[~x]
〉
m

i′︷ ︸︸ ︷
→ · · · →〈π〈2 | ∃h↑.π(ϕ[~x]) ∧ ϕ′[~x′]〉h, ~p|2 |ϕ[~x]

〉
m

return−−−→cr 〈~p|2(~x) |ϕ[~x] ∧ π-1(∃h↑.(∃h↑.π(ϕ[~x]) ∧ ϕ′(~x′)))〉m
with π(~x1). We must be able to apply the induction hypothesis for the derivations of length i and i′, which
amounts to checking equivalence of the substate with a restricted notion of the second one. Then, we must
check logical equivalence of the resulting constraint store after return.

Derivations for the first atom or constraint of a resolvent do not depend on the rest of it:

〈~p(~x) |ϕ[~x]〉 −→l . . . −→l 〈2, ~p|2(~x) |ϕ[~x] ∧ ϕ′[~x1]〉 iff
〈p1(~x1) |ϕ[~x]〉 −→l . . . −→l 〈2 |ϕ[~x] ∧ ϕ′[~x1]〉

Then, we check the equivalence of the two states:

〈~q(~x′) | ∃h↑.π(ϕ[~x])〉 ≈D 〈~q(~xσ) |ϕ[~x] ∧ ~x1 = ~xhσ〉

Thus, the precise statement needed to prove state equivalence is:

∃~x′.∃h↑.π(ϕ[~x]) ⇐⇒ ∃~x~xσ.(ϕ[~x] ∧ ~x1 = ~xhσ)

Let m = |~x| and k = |~x′|. Thus ~x = x1, . . . , xm, ~x′ = x1, . . . , xk and ~xσ = xm+1, . . . , xm+k. The captured
variables inside the ∃h↑ quantifier are xh+1, . . . , xm. Let ~xr = ~x/~x1. Then, π(~x) = x1, . . . , xh, π(~xr). Renaming
apart π(~xr) to ~xr′ = xk+1, . . . , xk+m we can eliminate the inner quantifier:

∃~x′~xr′ .ϕ[~xh~xr′] ⇐⇒ ∃~x~xσ.(ϕ[~x] ∧ ~x1 = ~xhσ)

This will match ~x′ to ~xσ, but ~xr′ is missing h variables. If we add h new variables ~xh′ and add the equation
~xh′ = ~xh we get the desired equivalence:

∃~x′~xr′~xh′ .(ϕ[~xh~xr′] ∧ ~xh′ = ~xh) ⇐⇒ ∃~x~xσ.(ϕ[~x] ∧ ~x1 = ~xhσ)

We apply the induction hypothesis. Actually, we are applying induction as many times as elements or

Constraint Logic Programming with a Relational Machine 21

constraints ~q has. We could recast this lemma to make this fact more explicit:

〈~p(~x) |ϕ〉
i︷ ︸︸ ︷

→ · · · →〈2, ~p|2(~x) |ϕ′〉
j︷ ︸︸ ︷

→ · · · →〈2 |ϕ′′〉
but we think the current presentation is clearer.

After applying the induction hypothesis, the following equivalence remains to be proven:

∃~x~xσ.(ϕ[~x] ∧ ~x1 = ~xhσ ∧ ϕ′[~xσ]) ⇐⇒ ∃~x.(ϕ[~x] ∧ π-1(∃h↑.(∃h↑.π(ϕ[~x]) ∧ ϕ′(~x′))))
We focus on the formula on the right. Similarly to the previous case, we apply the permutation using the
knowledge of the variables involved:

∃~x.(ϕ[~x] ∧ ∃~x′/~x1.(ϕ
′(π-1(~x′)) ∧ ∃~x′/~x1(ϕ[~x]))))

Renaming apart ~x′ and adding the new variables needed with their corresponding equations, we get:

∃~x~xσ.(ϕ[~x] ∧ ~x1 = ~xhσ ∧ ϕ′[~xσ] ∧ ∃~x′/~x1(ϕ[~x]))

which is clearly equivalent to:

∃~x~xσ.(ϕ[~x] ∧ ~x1 = ~xhσ ∧ ϕ′[~xσ])

This concludes the proof.

5.1.2. Folding of SLD derivations

We now extend our notion of call-return state to internalize disjunction in the proof-search tree. We fold
the set of possible derivations from a CS state into a single one between resolution states, an extension
of our previous states with a parallel constructor (PS1 PS2). Making failure explicit is necessary, so we
also introduce a new 〈fail〉 state. The left-bias of SLD resolution needs additional treatment, thus we split
the previous resolution transition in two: clause selection and parameter passing. Resolution states capture
the theory of naming and proof search of constraint logic programming except recursion, which operates
meta-logically by grafting predicate symbols onto their definitions.

Definition 5.11. The set PS of resolution states is inductively defined as:
• 〈fail〉.
• 〈~p |ϕ〉n, where pi ≡ Pi(~xi) is an atom, or a constraint pi ≡ ψ, ~xi a vector of variables, ϕ a constraint store

and n a natural number.
•
〈π

PS , ~p |ϕ
〉
n
, where PS is a resolution state, and π a permutation.

•
〈π
� PS , ~p |ϕ

〉
n
, the “select state”. It represents the state just before selecting a clause to proceed with

proof search.
• (PS 1 PS 2). Parallel composition: captures choice in the proof search tree.

Definition 5.12. The resolution transition system →P⊆ (PS × PS) is shown in Fig. 7.

The two first transitions deal with the case where a constraint is first in the resolvent, failing or adding it
to the constraint store in case it is satisfiable. When the head of the resolvent is a defined predicate, the
call transition will replace it by its definition, properly encapsulated by a select state equipped with the
permutation capturing argument order.

The select transition performs two tasks: first, it modifies the current constraint store adding the appropriate
permutation and scoping (n, π); second, it selects the first clause for proof search. The return transitions will
either propagate failure or undo the permutation and scoping performed at call time. sub, backtrack, and seq
are structural transitions with a straightforward interpretation from a proof search perspective.

The main property of the system is the internalization of the SLD search strategy:

Lemma 5.13 (Clause Selection). Suppose we are given a set of clauses:

cl1 : p(~xh)← ∃h↑.~q cl2 : p(~xh)← ∃h↑.~r
and a state 〈p(~x), ~p |ϕ〉. The derivation set using the call-return system is: 〈p(~x), ~p |ϕ〉n

call/cl1−−−−→cr

〈π〈~q |∆π
h(ϕ)〉h, ~p |ϕ

〉
n
−→cr/

〈p(~x), ~p |ϕ〉n
call/cl2−−−−→cr

〈π〈~r |∆π
h(ϕ)〉h, ~p |ϕ

〉
n

constraint−−−−−→cr

〈π〈~r|2 | r1 ∧∆π
h(ϕ)〉h, ~p |ϕ

〉
n



22 E. J. Gallego Arias, J. Lipton, J. Mariño

〈ψ, ~p |ϕ〉n
constraint−−−−−→p 〈~p |ϕ ∧ ψ〉n

〈ψ, ~p |ϕ〉n
fail−−→p 〈fail〉 if ϕ ∧ ψ is not satisfiable

〈p(~x), ~p |ϕ〉n
call−−→p

〈π
� (〈~q1 | >〉h . . . 〈~qk | >〉h), ~p |ϕ

〉
n

if p(~xh)← ∃h↑.(~q1 ∨ . . . ∨ ~qk) ∈ P ′, π(~x) = ~xh〈π
� (〈~q |ψ〉h PS), ~p |ϕ

〉
n

select−−−→p

(〈π〈~q |ψ ∧∆π
h(ϕ)〉h, ~p |ϕ

〉
n

〈π
� PS , ~p |ϕ

〉
n

)〈π〈2 |ψ〉h, ~p |ϕ〉n return−−−→p 〈~p | ∇πh(ψ,ϕ)〉n〈π〈fail〉, ~p |ϕ〉
n

return−−−→p 〈fail〉〈π
PS , ~p |ϕ

〉
n

sub−−→p

〈π
PS ′, ~p |ϕ

〉
n

if PS 6= 〈2 |ψ〉n, PS 6= 〈fail〉, and PS −→p PS
′

(〈fail〉 PS)
backtrack−−−−−→p PS

(PS1 PS2)
seq−−→p (PS′1 PS2) if PS 6= 〈fail〉, and PS 1 −→p PS

′
1

(We omit the case in select where the left side has no PS component which happens when the number of
clauses for a given predicate is one (k = 1))

Figure 7. Resolution Transition System

iff the derivation in the resolution system is:

〈p(~x), ~p |ϕ〉n −→p . . . −→p

〈π〈~r|2 | r1 ∧∆π
h(ϕ)〉h, ~p |ϕ

〉
n

Lem. 5.13 The derivation set is only possible if q1 ∧∆π
h(ϕ) is not satisfiable. We check the transitions using

−→p (we label sub and seq transitions with the actual atomic ones):

〈p(~x) |ϕ〉n
call−−→p

〈π
� (〈~q | >〉h 〈~r | >〉h), ~p |ϕ

〉
n

select−−−→p(〈π〈~q |∆π
h(ϕ)〉h, ~p |ϕ

〉
n

〈π
� 〈~r | >〉h, ~p |ϕ

〉
n

) fail−−→p(〈π〈fail〉, ~p |ϕ〉 〈π� 〈~r | >〉, ~p |ϕ〉) return−−−→p

(
〈fail〉

〈π
� 〈~r | >〉, ~p |ϕ

〉) backtrack−−−−−→p〈π
� 〈~r | >〉, ~p |ϕ

〉 select−−−→p

〈π〈~r |∆π
h(ϕ)〉h, ~p |ϕ

〉
n

constraint−−−−−→cr

〈π〈~r|2 | r1 ∧∆π
h(ϕ)〉h, ~p |ϕ

〉
n

If −→p could carry out any other transition, the derivation set would be different.

Lemma 5.14 (Backtracking). For a set of clauses:

cl1 : p(~xh)← ∃h↑.q(~x1), ~q cl3 : q(~xi)← ∃i↑.~s
cl2 : p(~xh)← ∃h↑.r(~x2), ~r cl4 : r(~xj)← ∃j↑.~t

and a state 〈p(~x), ~p |ϕ〉, the derivation set using the call-return system is:

〈p(~x), ~p |ϕ〉n
call/cl1−−−−→cr

〈π〈q(~x1), ~q |∆π
h(ϕ)〉h, ~p |ϕ

〉
n

call/cl3−−−−→cr〈π〈π1〈~s |∆π1
i (∆π

h(ϕ))〉h, ~q |∆π
h(ϕ)

〉
, ~p |ϕ

〉
n
−→cr/

〈p(~x), ~p |ϕ〉n
call/cl2−−−−→cr

〈π〈r(~x2), ~r |∆π
h(ϕ)〉h, ~p |ϕ

〉
n

call/cl4−−−−→cr〈π〈π2〈~t |∆π2
j (∆π

h(ϕ))〉h, ~r |∆π
h(ϕ)

〉
, ~p |ϕ

〉
n

constraint−−−−−→cr〈π〈π2〈~t|2 | t1 ∧∆π2
j (∆π

h(ϕ))〉h, ~r |∆π
h(ϕ)

〉
, ~p |ϕ

〉
n


iff the derivation using the resolution system is:

〈p(~x), ~p |ϕ〉n −→p . . . −→p

〈π〈π2〈~t|2 | t1 ∧∆π2
j (∆π

h(ϕ))〉h, ~r |∆π
h(ϕ)

〉
, ~p |ϕ

〉
n

Constraint Logic Programming with a Relational Machine 23

Lem. 5.14 We check the transitions as in the previous lemma.

〈p(~x), ~p |ϕ〉n
call−−→p

〈π
� (〈q(~x1), ~q | >〉h 〈r(~x2), ~r | >〉h), ~p |ϕ

〉
n

select−−−→p(〈π〈q(~x1), ~q |∆π
h(ϕ)〉h, ~p |ϕ

〉
n

〈π
� 〈r(~x2), ~r | >〉h, ~p |ϕ

〉
n

) call−−→p(〈π〈π1〈~s |∆π1
i (∆π

h(ϕ))〉h, ~q |∆π
h(ϕ)

〉
, ~p |ϕ

〉
n

〈π
� 〈r(~x2), ~r | >〉h, ~p |ϕ

〉
n

) fail−−→p(〈π〈π1〈fail〉, ~q |∆π
h(ϕ)

〉
, ~p |ϕ

〉
n

〈π
� 〈r(~x2), ~r | >〉h, ~p |ϕ

〉
n

) return−−−→p(〈π〈fail〉, ~p |ϕ〉
n

〈π
� 〈r(~x2), ~r | >〉h, ~p |ϕ

〉
n

) return−−−→p

(
〈fail〉

〈π
� 〈r(~x2), ~r | >〉h, ~p |ϕ

〉
n

)
backtrack−−−−−→p

〈π
� 〈r(~x2), ~r | >〉h, ~p |ϕ

〉
n

select−−−→p

〈π〈r(~x2), ~r |∆π
h(ϕ)〉h, ~p |ϕ

〉
n

call−−→p〈π〈π2〈~t |∆π2
j (∆π

h(ϕ))〉h, ~r |∆π
h(ϕ)

〉
, ~p |ϕ

〉
n

constraint−−−−−→p〈π〈π2〈~t|2 | t1 ∧∆π2
j (∆π

h(ϕ))〉h, ~r |∆π
h(ϕ)

〉
, ~p |ϕ

〉
n

Lemma 5.15. For all queries 〈~p |ϕ〉n, the first −→cr successful derivation using a SLD strategy uniquely
corresponds to a −→p derivation:

〈~p |ϕ〉n −→cr . . . −→cr 〈2 |ϕ′〉n ⇐⇒ 〈~p |ϕ〉n −→p . . . −→p (〈2 |ϕ′〉n PS)

Proof. By induction over the length of the successful derivation, repeatedly applying Lem. 5.13 and Lem. 5.14.

Theorem 5.16. The transition systems of Def. 5.1 and Fig. 7 are answer-equivalent: for any query they
return the same answer constraint.

Thm. 5.16 The standard transition system is equivalent to the call-return system by Lem. 5.6 and Lem. 5.10.
The call-return system is equivalent to the resolution transition system by Cor. 5.15.

5.2. Relational Operational Semantics for SLD-resolution

Thm. 5.16 provides a convenient formal framework for the algebraic study of SLD, however, the rewriting
system in Sec. 4.2 is too fine-grained to be directly related to the resolution transition system. In order to
overcome this problem, we introduce a transition system over carefully chosen relations, which can in turn be
related to the rewriting system. We use the helper notation

−−−−→
W (p)∩ ≡ R1 ∩ . . . ∩Rn, where Ri ≡ K̇(ϕi) or

Ri ≡Wπi
(pi).

Definition 5.17. The set RS of relational states is inductively defined as:

• 0, failure.

• In(K̇(ϕ) ∩
−−−−→
W (p̄)∩), base query, n, ϕ, p parameters.

• In(W ◦π (K̇(ϕ) ∩ RS) ∩
−−−−→
W (p̄)∩), selection, n, π, ϕ, p, RS parameters.

• In(W ◦π (RS ∩ K̇(ϕ)) ∩
−−−−→
W (p̄)∩), subquery, n, π, ϕ, p, RS parameters.

• (RS 1 ∪ RS 2), parallel, RS 1, RS 2 parameters.

Recall that a predicate p is translated to an equation p $ Θ1 ∪ · · · ∪Θk, and Θi = Iα(p)(K̇(ϕi) ∩
−−−−→
W (q)∩).

Definition 5.18. The transition system for relational states is defined by the rules of Fig. 8.

5.3. The Equivalence

We define an isomorphism between logical and relational states. It is straightforward to check that both
transition systems are equivalent, that is to say, the isomorphism is a simulation between them. Then, we
check that the rewriting system of Sec. 4.2 implements the relational transition system, which gives a proof
of completeness.

24 E. J. Gallego Arias, J. Lipton, J. Mariño

In((K̇(ϕ) ∩ K̇(ψ)) ∩
−−−−→
W (p)∩)

constraint−−−−−→r In(K̇(ϕ ∧ ψ) ∩
−−−−→
W (p̄)∩) if ϕ ∧ ψ satisfiable

In((K̇(ϕ) ∩ K̇(ψ)) ∩
−−−−→
W (p)∩)

fail−−→r 0 if ϕ ∧ ψ not satisfiable

In((K̇(ϕ) ∩Wπ(p)) ∩
−−−−→
W (p)∩)

call−−→r In(W ◦π (K̇(π(ϕ)) ∩Θ) ∩
−−−−→
W (p)∩) with p $ Θ

In(W ◦π (K̇(ϕ) ∩ (Θ1 ∪Θ)) ∩
−−−−→
W (p̄)∩)

select−−−→r In(W ◦π (Θ′1 ∩ K̇(ϕ)) ∩
−−−−→
W (p̄)∩) ∪

In(W ◦π (K̇(ϕ) ∩Θ) ∩
−−−−→
W (p̄)∩)

Θ1 ≡ Im(
−−−−→
W (q)∩) Θ′1 ≡ Im(K̇(∃m↑.ϕ) ∩

−−−−→
W (q)∩)

In(W ◦π (Im(K̇(ϕ1)) ∩ K̇(ϕ)) ∩
−−−−→
W (p̄)∩)

return−−−→r In(K̇(π-1(ϕ ∧ (∃m↑. ϕ1))) ∩
−−−−→
W (p̄)∩)

In(W ◦π (0 ∩ K̇(ϕ)) ∩
−−−−→
W (p̄)∩)

return−−−→r 0

In(W ◦π (RS ∩ K̇(ϕ)) ∩
−−−−→
W (p̄)∩)

sub−−→r In(W ◦π (RS ′ ∩ K̇(ϕ)) ∩
−−−−→
W (p̄)∩) if RS −→r RS

′

(0 ∪ RS)
backtrack−−−−−→r RS

(RS 1 ∪ RS 2)
seq−−→r (RS ′1 ∪ RS 2) if RS 1 −→r RS

′
1

Figure 8. Relational Transition Rules

Definition 5.19. We define functions R : PS → RS and R-1 : RS → PS by induction over the structure of
the states:

R(〈fail〉) = 0

R(〈~p |ϕ〉n) = In(K̇(ϕ) ∩
−−−−→
W (p̄)∩)

R(
〈π
� PS , ~p |ϕ

〉
n
) = In(W ◦π (K̇(π(ϕ)) ∩ R(PS)) ∩

−−−−→
W (p̄)∩)

R(
〈π

PS , ~p |ϕ
〉
n
) = In(W ◦π (R(PS) ∩ K̇(π(ϕ))) ∩

−−−−→
W (p̄)∩)

R((PS 1 PS 2)) = (R(PS 1) ∪ R(PS 2))

~p is in purified form, so each element pi of ~p corresponds to a relational term K̇(ϕi) or Wπi
(Pi). R-1 is defined

as:
R-1(0) = 〈fail〉
R-1(In(K̇(ϕ) ∩

−−−−→
W (p̄)∩)) = 〈~p |ϕ〉n

R-1(In(W ◦π (K̇(ϕ) ∩ RS) ∩
−−−−→
W (p̄)∩)) =

〈π
� R-1(RS), ~p |π-1(ϕ)

〉
n

R-1(In(W ◦π (RS ∩ K̇(ϕ)) ∩
−−−−→
W (p̄)∩)) =

〈π
R-1(RS), ~p |π-1(ϕ)

〉
n

R-1((RS 1 ∪ RS 2)) =
(
R-1(RS 1) R-1(RS 2)

)
Note that R is an extension of the translation function of Sec. 4.2, and an isomorphism.

Lemma 5.20. R is an isomorphism.

Lem. 5.20 By induction over the structure of the states.

Lemma 5.21. R is a simulation between the resolution transition system of Fig. 7 and the relational
transition system of Fig. 8.

Lem. 5.21 We check that the relation R ⊆ (PS ×RS) induced by the isomorphism R is a simulation:

∀RS ,PS . (PS ,RS) ∈ R⇒ ((PS −→p PS
′ ⇐⇒ RS −→r RS

′) ∧ (PS ′,RS ′) ∈ R)

Given that R is a bijective map and that the transition systems are deterministic, any of

PS −→p PS
′ ⇒ R(PS) −→r R(PS ′) RS −→r RS

′ ⇒ R-1(PS) −→p R
-1(PS ′)

implies that R is a simulation. We check the non-obvious transitions constraint, fail, call, and select.In order
to help the reader, we show both transitions, then perform the check outlined above.
• constraint:

〈ψ, ~p |ϕ〉n
constraint−−−−−→p 〈~p |ϕ ∧ ψ〉n

In((K̇(ϕ) ∩ K̇(ψ)) ∩
−−−−→
W (p)∩)

constraint−−−−−→r In(K̇(ϕ ∧ ψ) ∩
−−−−→
W (p̄)∩)

Constraint Logic Programming with a Relational Machine 25

and the corresponding check:

R(〈ψ, ~p |ϕ〉n) = In((K̇(ϕ) ∩ K̇(ψ)) ∩
−−−−→
W (p)∩)

constraint−−−−−→r

In(K̇(ϕ ∧ ψ) ∩
−−−−→
W (p̄)∩) = R(〈~p |ϕ ∧ ψ〉n)

• fail:

〈ψ, ~p |ϕ〉n
fail−−→p 〈fail〉 if ϕ ∧ ψ is not satisfiable

In((K̇(ϕ) ∩ K̇(ψ)) ∩
−−−−→
W (p)∩)

fail−−→r 0

the simulation check is:

R(〈ψ, ~p |ϕ〉n) = In((K̇(ϕ) ∩ K̇(ψ)) ∩
−−−−→
W (p)∩)

fail−−→r 0 = R(〈fail〉)
• call:

〈p(~x), ~p |ϕ〉n
call−−→p

〈π
� (〈~q1 | >〉h . . . 〈~qk | >〉h), ~p |ϕ

〉
n

if p(~xh)← ∃h↑.(~q1 ∨ . . . ∨ ~qk) ∈ P ′, π(~x) = ~xh

In((K̇(ϕ) ∩Wπ(p)) ∩
−−−−→
W (p)∩)

call−−→r In(W ◦π (K̇(π(ϕ)) ∩Θ) ∩
−−−−→
W (p)∩) with p = Θ

R(〈~qi | >〉h) = Ih(
−−−−−→
W (qi)∩) ≡ Θi, thus R((〈~q1 | >〉h . . . 〈~qk | >〉h)) = Θ1 ∪ · · · ∪Θk ≡ Θ. The check is:

R(〈~p |ϕ〉n) = In(K̇(ϕ) ∩
−−−−→
W (p̄)∩)

call−−→r

In(W ◦π (K̇(π(ϕ)) ∩Θ) ∩
−−−−→
W (p)∩) = R(

〈π
� (〈~q1 | >〉h . . . 〈~qk | >〉h), ~p |ϕ

〉
n
)

• select:〈π
� (〈~q | >〉h PS), ~p |ϕ

〉
n

select−−−→p

(〈π〈~q |∆π
h(ϕ)〉h, ~p |ϕ

〉
n

〈π
� PS , ~p |ϕ

〉
n

)
In(W ◦π (K̇(ϕ) ∩ (Θ1 ∪Θ)) ∩

−−−−→
W (p̄)∩)

select−−−→r In(W ◦π (Θ′1 ∩ K̇(ϕ)) ∩
−−−−→
W (p̄)∩) ∪

In(W ◦π (K̇(ϕ) ∩Θ) ∩
−−−−→
W (p̄)∩)

Θ1 ≡ Im(
−−−−→
W (q)∩) Θ′1 ≡ Im(K̇(∃m↑.ϕ) ∩

−−−−→
W (q)∩)

The check is:

R(
〈π
� (〈~q | >〉h PS), ~p |ϕ

〉
n
) = In(W ◦π (K̇(ϕ) ∩ (Ih(

−−−−→
W (q)∩) ∪ R(PS))) ∩

−−−−→
W (p̄)∩)

select−−−→p

In(W ◦π (Ih(K̇(∃m↑.ϕ) ∩
−−−−→
W (q)∩) ∩ K̇(π(ϕ))) ∩

−−−−→
W (p̄)∩) ∪

In(W ◦π (K̇(π(ϕ)) ∩ R(PS)) ∩
−−−−→
W (p̄)∩) = R(

(〈π〈~q |∆π
h(ϕ)〉h, ~p |ϕ

〉
n

〈π
� PS , ~p |ϕ

〉
n

)
)

The last step in the equivalence proof is to check that the transition relation is properly embedded into
the rewriting relation.

Lemma 5.22. The relational transition system of Fig. 8 is implemented by the rewriting system of Fig. 6
That is to say, for every transition (r1, r2) ∈ (−→r),

∃n.(r1, r2) ∈ (P7−→)n ∧ ∀r3.(r1, r3) ∈ (P7−→)n ⇒ r2 = r3

Lem. 5.22 Given that our rewriting system is locally confluent, we can easily check that the transition system
is just a collapsing of a particular rewriting chain, omitting uninteresting states. We show a few relevant
transitions: constraint, fail, call, and return.
• constraint:

In((K̇(ϕ) ∩ K̇(ψ)) ∩
−−−−→
W (p)∩)

constraint−−−−−→r In(K̇(ϕ ∧ ψ) ∩
−−−−→
W (p̄)∩)

This transition is implemented by the rewriting rule m3.
• fail:

In((K̇(ϕ) ∩ K̇(ψ)) ∩
−−−−→
W (p)∩)

fail−−→r 0

26 E. J. Gallego Arias, J. Lipton, J. Mariño

This transition is implemented by the rewriting chain:

In((K̇(ϕ) ∩ K̇(ψ)) ∩
−−−−→
W (p)∩) P7−→ (m3∗) In(0 ∩

−−−−→
W (p)∩) P7−→ (p2)

In(0) P7−→ (m1∗) 0

• call:

In((K̇(ϕ) ∩Wπ(p)) ∩
−−−−→
W (p)∩)

call−−→r In(W ◦π (K̇(π(ϕ)) ∩Θ) ∩
−−−−→
W (p)∩) with p = Θ

the transition is implemented by the rewriting chain:

In((K̇(ϕ) ∩Wπ(p)) ∩
−−−−→
W (p)∩) P7−→ (p8) In(Wπ(W ◦π (K̇(ϕ)) ∩ p) ∩

−−−−→
W (p)∩) P7−→ (m2)

In(Wπ(K̇(π(ϕ)) ∩ p) ∩
−−−−→
W (p)∩) P7−→ (m4) In(W ◦π (K̇(π(ϕ)) ∩Θ) ∩

−−−−→
W (p)∩)

• return:

In(W ◦π (Im(K̇(ψ)) ∩ K̇(ϕ)) ∩
−−−−→
W (p̄)∩)

return−−−→r In(K̇(π-1(ϕ ∧ (∃m↑. ψ))) ∩
−−−−→
W (p̄)∩)

the transition is implemented by the rewriting chain:

In(W ◦π (Im(K̇(ψ)) ∩ K̇(ϕ)) ∩
−−−−→
W (p̄)∩) P7−→ (m1) In(W ◦π (K̇(∃m↑. ψ) ∩ K̇(ϕ)) ∩

−−−−→
W (p)∩

P7−→ (m3)

In(W ◦π (K̇(∃m↑. ψ ∧ ϕ)) ∩
−−−−→
W (p)∩

P7−→ (m2) In(K̇(π-1(∃m↑. ψ ∧ ϕ)) ∩
−−−−→
W (p)∩

• return second case:

In(W ◦π (0 ∩ K̇(ϕ)) ∩
−−−−→
W (p̄)∩)

return−−−→r 0

the transition is implemented by the rewriting chain:

In(W ◦π (0 ∩ K̇(ϕ)) ∩
−−−−→
W (p̄)∩) P7−→ (p2) In(W ◦π (0) ∩

−−−−→
W (p)∩) P7−→ (m2∗)

In(0 ∩
−−−−→
W (p)∩) P7−→ (p2) In(0) P7−→ (m1∗)

0

The sub and seq rules are a consequence of the rewriting strategy used.

Thus, relation rewriting will return an answer constraint K(ϕ) iff SLD resolution reaches a state 〈2 |ϕ′〉
and ϕ ⇐⇒ ϕ′.

Theorem 5.23. The rewriting system simulates SLD-resolution. That is to say, the rewriting system of
Fig. 6 implements the transition system of Def. 1.6. Formally, for every transition (r1, r2) ∈ (−→l)

∗,

∃n.(Tr(r1), T r(r2)) ∈ (P7−→)n and ∀r3.(Tr(r1), r3) ∈ (P7−→)n ⇒ Tr(r2) = r3

Thm. 5.23 By Lem. 5.22 and Theorem 5.16. Indeed, when SLD-resolution diverges, the relational rewriting
system does so in the same way.

6. Related and Future Work

Previous Work: The paper is the continuation of previous work in [BL94, LC98, GALMN11] extended
to constraint logic programming, which requires a new translation procedure, operational semantics, and
rewriting system.

In particular, the presence of constraints in this paper permits a different translation of the Clark
completion of a program and plays a crucial role in the proof of completeness, which was missing in earlier
work.

This paper improves substantially on the results of the preliminary conference version of [GALMn15]. We
incorporate a new, unified parametric relational theory embodying definitional recursion and constraints,
a new adequacy theorem comparing the relational semantics of translated programs with the fixed-point
semantics of the original programs, and proofs of correctness and completeness for the relational execution
mechanism.

Constraint Logic Programming with a Relational Machine 27

Related Work: A number of solutions have been proposed to the syntactic specification problem. There is
an extensive literature treating abstract syntax of logic programming (and other programming paradigms)
using encodings in higher-order logic and the lambda calculus [PE88], which has been very successful in
formalizing the treatment of substitution, unification and renaming of variables, although it provides no
special framework for the management and progressive instantiation of logic variables, and no treatment
of constraints. Our approach is essentially orthogonal to this, since it relies on the complete elimination
of variables, substitution, renaming and, in particular, existentially quantified variables. Our reduction of
management of logic variables to variable free rewriting is new, and provides a complete solution to their
formal treatment.

An interesting approach to syntax specification is the use of nominal logic [UPG04, CU04] in logic
programming, another, the formalization of logic programming in categorical logic [AM89, RB86, KP96,
ALM09, FFL03] which provides a mathematical framework for the treatment of variables, as well as for
derivations [KP11]. None of the cited work gives a solution that simultaneously includes logic variables,
constraints, proof search strategies and rewriting however.

Bellia and Occhiuto [BO93] have defined a new calculus, the C-expression calculus, to eliminate variables
in logic programming. We believe our translation into the well-understood and scalable formalism of binary
relations is more applicable to extensions of logic programming.

An interesting combinatory, variable-free approach to logic programming has also been developed by
Hamfelt, Nilsson and Vitória in [Nil90, HN98, HNV98] based on higher order predicates. Their execution
mechanism is not based on rewriting and the authors do not consider constraints as we do here.

Future Work: A complementary approach to this work is the use of category theory, in particular Freyd’s
theory of tabular allegories [FS91] which extends the binary relation calculus to an abstract category of
relations providing native facilities for generation of fresh variables and a categorical treatment of monads.
A first attempt in this direction has been published by the authors in [GAL12]. It would be interesting to
extend the translation to hereditarily Harrop or higher order logic [MNPS91] by using a stronger relational
formalism, such as division and power allegories. Also, the framework would yield important benefits if it
was extended to include relation and set constraints explicitly.

We have also started a mechanized proof using the Coq theorem prover, in order to alleviate the symbolic
density of some of the proofs. So far, we have modeled the transition systems and proved a few lemmas such
as 5.20. See https://github.com/ejgallego/clprm-coq for details.

This paper deals with the mathematical definition of combinatorial proof search; we consider that
developing a realistic implementation requires considerable effort and is out of scope for this mainly theoretical
contribution. However, we have kept as an important priority for the framework to be amenable to practical
implementation, and we discuss our thoughts after some preliminary work in that area.

A first prototype implementation written in Haskell showed the feasibility of the relational compilation of
logic programs, and the possibility of executing logic programs with different search strategies — depth- and
breadth-first. Also, its limitations revealed that term sharing – which was not supported – is a key point
regarding performance. Most of the rewriting rules are straightforward and we believe they should pose
little problem to mature rewriting engines; the main challenge is posed by the rule for procedure call, which
duplicates a term. We plan to investigate how state-of-the-art rewriting engines can deal efficiently with this
issue via term-sharing.

7. Conclusion

We have developed a declarative relational framework for the compilation of Constraint Logic programming
that eliminates logic variables and gives an algebraic treatment of program syntax. We have proved operational
equivalence to the classical approach. We believe our framework is also a step towards the unified formal
treatment of the metatheory and compilation and execution of constraint logic programming. Programs can
be analyzed, transformed and optimized entirely within this framework. In these two ways, specification and
implementation are brought closer together than in the traditional logic programming formalism.

Acknowledgments: The authors want to thank the anonymous reviewers for their suggestions. This research
has been partially funded by Comunidad de Madrid grant S2013/ICE-2731 (N-Greens Software) and Spanish
MINECO grant TIN2012-39391-C04-03 (StrongSoft).

28 E. J. Gallego Arias, J. Lipton, J. Mariño

References

[ALM09] Gianluca Amato, James Lipton, and Robert McGrail. On the algebraic structure of declarative programming
languages. Theoretical Computer Science, 410(46):4626 – 4671, 2009. Abstract Interpretation and Logic Programming:
In honor of professor Giorgio Levi.

[AM89] Andrea Asperti and Simone Martini. Projections instead of variables: A category theoretic interpretation of logic
programs. In ICLP, pages 337–352, 1989.

[BL94] Paul Broome and James Lipton. Combinatory logic programming: computing in relation calculi. In ILPS ’94:
Proceedings of the 1994 International Symposium on Logic programming, pages 269–285, Cambridge, MA, USA,
1994. MIT Press.

[BO93] Marco Bellia and M. Eugenia Occhiuto. C-expressions: A variable-free calculus for equational logic programming.
Theor. Comput. Sci., 107(2):209–252, 1993.

[Cla77] Keith L. Clark. Negation as failure. In Gallaire and Minker, editors, Logic and Data Bases, pages 293–322. Plenum
Press, 1977.

[CU04] James Cheney and Christian Urban. Alpha-prolog: A logic programming language with names, binding, and
alpha-equivalence, 2004.

[FFL03] Stacy E. Finkelstein, Peter J. Freyd, and James Lipton. A new framework for declarative programming. Theor.
Comput. Sci., 300(1-3):91–160, 2003.

[FS91] P.J. Freyd and A. Scedrov. Categories, Allegories. North Holland Publishing Company, 1991.
[GAL12] Emilio Jesús Gallego Arias and James Lipton. Logic programming in tabular allegories. In Agostino Dovier and

Vítor Santos Costa, editors, Technical Communications of the 28th International Conference on Logic Programming,
ICLP 2012, September 4-8, 2012, Budapest, Hungary, volume 17 of LIPIcs, pages 334–347. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2012.

[GALMN11]Emilio Jesús Gallego Arias, James Lipton, Julio Mariño, and Pablo Nogueira. First-order unification using
variable-free relational algebra. Logic Journal of IGPL, 19(6):790–820, 2011.

[GALMn15] Emilio Jesús Gallego Arias, James Lipton, and Julio Mariño. Declarative compilation for constraint logic program-
ming. In Maurizio Proietti and Hirohisa Seki, editors, Logic-Based Program Synthesis and Transformation, volume
8981 of Lecture Notes in Computer Science, pages 299–316. Springer International Publishing, 2015.

[HN98] Andreas Hamfelt and Jørgen Fischer Nilsson. Inductive synthesis of logic programs by composition of combinatory
program schemes. In P. Flener, editor, LOPSTR’98, 8th. International Workshop on Logic-Based Program Synthesis
and Transformation, volume 1559 of Lecture Notes in Computer Science, pages 143–158. Springer, 1998.

[HNV98] A. Hamfelt, J.F. Nilsson, and A. Vitoria. A combinatory form of pure logic programs and its compositional semantics.
Technical Report, 1998.

[JM94] Joxan Jaffar and Michael J. Maher. Constraint logic programming: A survey. Journal of Logic Programming,
19/20:503–581, 1994.

[KP96] Yoshiki Kinoshita and A. John Power. A fibrational semantics for logic programs. In Roy Dyckhoff, Heinrich Herre,
and Peter Schroeder-Heister, editors, ELP, volume 1050 of Lecture Notes in Computer Science, pages 177–191.
Springer, 1996.

[KP11] Ekaterina Komendantskaya and John Power. Coalgebraic derivations in logic programming. In Marc Bezem, editor,
CSL, volume 12 of LIPIcs, pages 352–366. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011.

[LC98] Jim Lipton and Emily Chapman. Some notes on logic programming with a relational machine. In Ali Jaoua,
Peter Kempf, and Gunther Schmidt, editors, Using Relational Methods in Computer Science, Technical Report Nr.
1998-03, pages 1–34. Fakultät für Informatik, Universität der Bundeswehr München, July 1998.

[Llo84] John W. Lloyd. Foundations of logic programming. Springer-Verlag New York, Inc., New York, NY, USA, 1984.
[MNPS91] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform proofs as a foundation for logic

programming. Annals of Pure and Applied Logic, 51(1-2):125–157, 1991.
[Nil90] J. F. Nilsson. Combinatory logic programming. In Procs. of the 2nd Workshop on Meta- programming in Logic,

K.U. Leuven, Belgium, 1990.
[PE88] F. Pfenning and C. Elliot. Higher-order abstract syntax. In PLDI ’88: Proceedings of the ACM SIGPLAN 1988

conference on Programming Language design and Implementation, pages 199–208, New York, NY, USA, 1988.
ACM.

[RB86] David E. Rydeheard and Rod M. Burstall. A categorical unification algorithm. In Proceedings of a tutorial and
workshop on Category theory and computer programming, pages 493–505, New York, NY, USA, 1986. Springer-Verlag
New York, Inc.

[TG87] Alfred Tarski and Steven Givant. A Formalization of Set Theory Without Variables, volume 41 of Colloquium
Publications. American Mathematical Society, Providence, Rhode Island, 1987.

[UPG04] Christian Urban, Andrew M. Pitts, and Murdoch J. Gabbay. Nominal unification. Theoretical Computer Science,
323(1–3):473–497, 2004.

	Introduction
	Background: Constraint Logic Programming

	Relation Algebras and Signatures
	Relational Language and Theory
	Semantics
	Adding equations to the QRA
	The Least Relational Interpretation Satisfying Definitional Equations

	Program Translation
	Constraint Translation
	Translation of Constraint Logic Programs
	Adequacy of the Translation

	A Rewriting System for Resolution
	Meta-reductions
	A Rewriting System for SLD Resolution

	Operational Equivalence
	Operational Semantics in Logic Style for SLD-resolution
	Relational Operational Semantics for SLD-resolution
	The Equivalence

	Related and Future Work
	Conclusion
	References

