
Reasoning About Sound Programs

Emilio Jesús Gallego Arias

Joint work with O. Hermant & P. Jouvelot
MINES ParisTech, PSL Research University, France

Rennes, 15 Avril 2015

Software verification?

What is our gain?

Software verification?

What is our gain?

Software verification?

What is our gain?

Let’s assume a simple IIR filter:

smoothn “ p1´ cq ¨ xn ` c ¨ smoothn´1

What would we like to know about it?

Let’s assume a simple IIR filter:

smoothn “ p1´ cq ¨ xn ` c ¨ smoothn´1

What would we like to know about it?

smoothn “ p1´ cq ¨ xn ` c ¨ smoothn´1

Natural questions are:
§ Frequency response;
§ Stability;
§ Linearity/Time Invariance.

Standard DSP theory gives answers.

What about the implementation of the filter?

We dive into the realm of PL theory!

Paradigm shift!

smoothn “ p1´ cq ¨ xn ` c ¨ smoothn´1

Natural questions are:
§ Frequency response;
§ Stability;
§ Linearity/Time Invariance.

Standard DSP theory gives answers.

What about the implementation of the filter?

We dive into the realm of PL theory!

Paradigm shift!

smoothn “ p1´ cq ¨ xn ` c ¨ smoothn´1

Natural questions are:
§ Frequency response;
§ Stability;
§ Linearity/Time Invariance.

Standard DSP theory gives answers.

What about the implementation of the filter?

We dive into the realm of PL theory!

Paradigm shift!

Faust

§ Functional PL for digital signal processing.
§ Synchronous paradigm, geared towards audio.
§ Programs: circuits/block diagrams with feedback.
§ Semantics: streams of samples.
§ Efficiency is crucial.
§ Created in 2000 by Yann Orlarey et al. at GRAME.
§ Mature, compiles to more than 14 platforms.

Faust’s Ecosystem

Users:
§ Grame: Multiple projects, main developer.
§ Stanford: Class/books on signal processing, STK

instrument toolkit, Faust2android, Mephisto. . .
§ Ircam: Acoustic libraries, effects libraries,. . .
§ Other: Guitarix, moForte guitar, etc...

It has its market! Much easier than dwelling into C.

Recent Events:
§ Faust day at Stanford, LAC 2015.
§ Faust program competition (e2,000).
§ FEEVER project :)

Faust’s Ecosystem

Users:
§ Grame: Multiple projects, main developer.
§ Stanford: Class/books on signal processing, STK

instrument toolkit, Faust2android, Mephisto. . .
§ Ircam: Acoustic libraries, effects libraries,. . .
§ Other: Guitarix, moForte guitar, etc...

It has its market! Much easier than dwelling into C.

Recent Events:
§ Faust day at Stanford, LAC 2015.
§ Faust program competition (e2,000).
§ FEEVER project :)

Faust’s Ecosystem

Users:
§ Grame: Multiple projects, main developer.
§ Stanford: Class/books on signal processing, STK

instrument toolkit, Faust2android, Mephisto. . .
§ Ircam: Acoustic libraries, effects libraries,. . .
§ Other: Guitarix, moForte guitar, etc...

It has its market! Much easier than dwelling into C.

Recent Events:
§ Faust day at Stanford, LAC 2015.
§ Faust program competition (e2,000).
§ FEEVER project :)

Syntax and Well-Formedness

TERM
$! : 1 Ñ 0

ID
$ _ : 1 Ñ 1

PAR
$ f1 : i1 Ñ o1 ¨ ¨ ¨ $ fn : in Ñ on

$ pf1, . . . , fnq :
n
ÿ

j

ij Ñ
n
ÿ

j

oj

COMP
$ f : i Ñ k $ g : k Ñ o

$ pf : gq : i Ñ o

PAN
$ f : i Ñ k $ g : k ˚ n Ñ o 0 ă k ^ 0 ă n

$ f ă: g : i Ñ o

Feedback

FEED
$ f : og ` if Ñ ig ` of $ g : ig Ñ og

$ f „ g : if Ñ ig ` of

Diagram for + „ sin:

Back to the Filter

smoothn “ p1 ´ cqxn ` c ¨ smoothn´1

Using Faust:
smooth(c) = *(1-c) : + „ *(c)

[For c = 0.9]

Feedback Delay Network
fdnrev(N, dp, freqs, durs, loopgainmax)
= delaylines „ (delayfilters : feedbackmatrix)

where
delaylines = rep(N,i,delay(dp[i])));
delayfilters = rep(N,filter(freqs,durs));
feedbackmatrix = bhadamard(N);

Feedback Delay Network
fdnrev(N, dp, freqs, durs, loopgainmax)
= delaylines „ (delayfilters : feedbackmatrix)

where
delaylines = rep(N,i,delay(dp[i])));
delayfilters = rep(N,filter(freqs,durs));
feedbackmatrix = bhadamard(N);

PL & Faust

§ Causal/Synchronous Programming.
See next week’s talk!

§ Functional Reactive Programming/Arrows.
§ String Diagrams, Monoidal Closed Categories.
§ Stream/Data Flow Programming.

Data-intensive vs control-intensive require quite
different control techniques. [Berry, 2000]

Spectral processing may open a new gap from all of those!
Some related DSL: VOBLA, Ziria, Halide, Darkroom, Julia.

PL & Faust

§ Causal/Synchronous Programming.
See next week’s talk!

§ Functional Reactive Programming/Arrows.
§ String Diagrams, Monoidal Closed Categories.
§ Stream/Data Flow Programming.

Data-intensive vs control-intensive require quite
different control techniques. [Berry, 2000]

Spectral processing may open a new gap from all of those!
Some related DSL: VOBLA, Ziria, Halide, Darkroom, Julia.

PL & Faust

§ Causal/Synchronous Programming.
See next week’s talk!

§ Functional Reactive Programming/Arrows.
§ String Diagrams, Monoidal Closed Categories.
§ Stream/Data Flow Programming.

Data-intensive vs control-intensive require quite
different control techniques. [Berry, 2000]

Spectral processing may open a new gap from all of those!

Some related DSL: VOBLA, Ziria, Halide, Darkroom, Julia.

PL & Faust

§ Causal/Synchronous Programming.
See next week’s talk!

§ Functional Reactive Programming/Arrows.
§ String Diagrams, Monoidal Closed Categories.
§ Stream/Data Flow Programming.

Data-intensive vs control-intensive require quite
different control techniques. [Berry, 2000]

Spectral processing may open a new gap from all of those!
Some related DSL: VOBLA, Ziria, Halide, Darkroom, Julia.

DSP & Faust

§ Real-time Linear Processing.
§ Real-time Non-linear Processing.
§ Frequency Domain Processing.
§ Non-necessarily causal.
§ Filters, Feedback Networks, Interpolation.
§ Windowing!
§ Numerical issues.
§ Nyquist/precision/aliasing.

Verification in DSP/Faust

Use mechanized techniques to ensure correct behavior.

§ Model checking/automata.
§ Program analysis/logics.
§ Strong type systems/correct by construction.

§ Main efforts in DSP audio are numeric so far
[Souari,Tahar, et al].

§ Other non-DSP efforts (Antescofo, [Poncelet et. al]).

Problems with Audio:
bad sound, stability/glitches, under/overflows, time,
safety/security, remote distribution.
We need more!

Verification in DSP/Faust

Use mechanized techniques to ensure correct behavior.

§ Model checking/automata.
§ Program analysis/logics.
§ Strong type systems/correct by construction.

§ Main efforts in DSP audio are numeric so far
[Souari,Tahar, et al].

§ Other non-DSP efforts (Antescofo, [Poncelet et. al]).

Problems with Audio:
bad sound, stability/glitches, under/overflows, time,
safety/security, remote distribution.
We need more!

Verification in DSP/Faust

Use mechanized techniques to ensure correct behavior.

§ Model checking/automata.
§ Program analysis/logics.
§ Strong type systems/correct by construction.
§ Main efforts in DSP audio are numeric so far

[Souari,Tahar, et al].

§ Other non-DSP efforts (Antescofo, [Poncelet et. al]).

Problems with Audio:
bad sound, stability/glitches, under/overflows, time,
safety/security, remote distribution.
We need more!

Verification in DSP/Faust

Use mechanized techniques to ensure correct behavior.

§ Model checking/automata.
§ Program analysis/logics.
§ Strong type systems/correct by construction.
§ Main efforts in DSP audio are numeric so far

[Souari,Tahar, et al].
§ Other non-DSP efforts (Antescofo, [Poncelet et. al]).

Problems with Audio:
bad sound, stability/glitches, under/overflows, time,
safety/security, remote distribution.
We need more!

Verification in DSP/Faust

Use mechanized techniques to ensure correct behavior.

§ Model checking/automata.
§ Program analysis/logics.
§ Strong type systems/correct by construction.
§ Main efforts in DSP audio are numeric so far

[Souari,Tahar, et al].
§ Other non-DSP efforts (Antescofo, [Poncelet et. al]).

Problems with Audio:
bad sound, stability/glitches, under/overflows, time,
safety/security, remote distribution.
We need more!

A Case Study: Stability

Test-bed: use Coq
Coq is a theorem prover that provides very strong evidence

as compared to Mathlab, etc. . .

Stability of Smooth
When is smooth stable?

smoothn “ p1´ cqxn ` c ¨ smoothn´1

Smooth is stable when c Ps0,1r. Formally:

@i P ra,bs, c Ps0,1rÑ smoothpcq i P ra,bs

Let’s build a mechanized constructive proof.

A Case Study: Stability

Test-bed: use Coq
Coq is a theorem prover that provides very strong evidence

as compared to Mathlab, etc. . .

Stability of Smooth
When is smooth stable?

smoothn “ p1´ cqxn ` c ¨ smoothn´1

Smooth is stable when c Ps0,1r. Formally:

@i P ra,bs, c Ps0,1rÑ smoothpcq i P ra,bs

Let’s build a mechanized constructive proof.

A Case Study: Stability

Test-bed: use Coq
Coq is a theorem prover that provides very strong evidence

as compared to Mathlab, etc. . .

Stability of Smooth
When is smooth stable?

smoothn “ p1´ cqxn ` c ¨ smoothn´1

Smooth is stable when c Ps0,1r. Formally:

@i P ra,bs, c Ps0,1rÑ smoothpcq i P ra,bs

Let’s build a mechanized constructive proof.

What’s the plan?

1. Define the syntax of Faust inside Coq.

2. Define a representation for (sampled) sound.
3. Link the two: Interpretation.
4. Define a logic to simplify reasoning.
5. Verify!

What’s the plan?

1. Define the syntax of Faust inside Coq.
2. Define a representation for (sampled) sound.

3. Link the two: Interpretation.
4. Define a logic to simplify reasoning.
5. Verify!

What’s the plan?

1. Define the syntax of Faust inside Coq.
2. Define a representation for (sampled) sound.
3. Link the two: Interpretation.

4. Define a logic to simplify reasoning.
5. Verify!

What’s the plan?

1. Define the syntax of Faust inside Coq.
2. Define a representation for (sampled) sound.
3. Link the two: Interpretation.
4. Define a logic to simplify reasoning.

5. Verify!

What’s the plan?

1. Define the syntax of Faust inside Coq.
2. Define a representation for (sampled) sound.
3. Link the two: Interpretation.
4. Define a logic to simplify reasoning.
5. Verify!

Mechanized Semantics for Streams

§ Coinductive semantics [Boulmé, et al]: problematic.
§ Didn’t consider PACO, etc. . . .
§ Our wish: Sequences S of a base type R [Auger2013]

Soundness needs stronger semantics (also [Guatto2014]):

J$ f : i Ñ oKn : JRˆ . . .ˆ R
l jh n

i

Kn
Ñ JRˆ . . .ˆ R

l jh n

o

Kn

Index by number of steps; equality of streams more
intensional wrt to (NÑ R).

Mechanized Semantics for Streams

§ Coinductive semantics [Boulmé, et al]: problematic.
§ Didn’t consider PACO, etc. . . .
§ Our wish: Sequences S of a base type R [Auger2013]

Soundness needs stronger semantics (also [Guatto2014]):

J$ f : i Ñ oKn : JRˆ . . .ˆ R
l jh n

i

Kn
Ñ JRˆ . . .ˆ R

l jh n

o

Kn

Index by number of steps; equality of streams more
intensional wrt to (NÑ R).

The Second Piece: Real Analysis

What about the base type R?

§ Reals not in Mathcomp – algebraic structures good
enough for most of our experiments so far.

§ There are lots of work to do here. We lack convenient
complex numbers, exponentials, etc...

The Second Piece: Real Analysis

What about the base type R?

§ Reals not in Mathcomp – algebraic structures good
enough for most of our experiments so far.

§ There are lots of work to do here. We lack convenient
complex numbers, exponentials, etc...

Proving Stability

We could do the proof directly in Coq; it is not difficult, but a
bit cumbersome in general. What is worse, the same
patterns with minor variations are repeated in each proof:

Not practical.

To remedy this, we define a program logic for sample-level
properties.

Proving Stability

We could do the proof directly in Coq; it is not difficult, but a
bit cumbersome in general. What is worse, the same
patterns with minor variations are repeated in each proof:

Not practical.

To remedy this, we define a program logic for sample-level
properties.

Sampled-Level Predicates

Definition (Sample-Level Property)
A property P : SÑ B is sample-level if there exists a
characteristic predicate ϕ : R Ñ B such that for all streams
s:

Ppsq ðñ @n.ϕpsrnsq

Boundedness x P ra,bs is a sample-level property!
Properties can be made sample-level by self-composition,
e.g: ratio:

f ñ xf , f 1y : {

We can also prove this way equivalence of filter
implementation.

Sampled-Level Predicates

Definition (Sample-Level Property)
A property P : SÑ B is sample-level if there exists a
characteristic predicate ϕ : R Ñ B such that for all streams
s:

Ppsq ðñ @n.ϕpsrnsq

Boundedness x P ra,bs is a sample-level property!

Properties can be made sample-level by self-composition,
e.g: ratio:

f ñ xf , f 1y : {

We can also prove this way equivalence of filter
implementation.

Sampled-Level Predicates

Definition (Sample-Level Property)
A property P : SÑ B is sample-level if there exists a
characteristic predicate ϕ : R Ñ B such that for all streams
s:

Ppsq ðñ @n.ϕpsrnsq

Boundedness x P ra,bs is a sample-level property!
Properties can be made sample-level by self-composition,
e.g: ratio:

f ñ xf , f 1y : {

We can also prove this way equivalence of filter
implementation.

A Sampled Logic

Definition (Sampled Judgment)
Given two characteristic predicates ϕ, ψ, we write

tϕu f tψu

“for all input i meeting ϕ, the fi satisfies ψ.”

Example
The stability judgment for smooth is written as:

tx P ra,bsu smooth tx P ra,bsu

Rules for The Sampled Logic

@i1, i2, pϕ1pi1q ^ ϕ1pi2qq ùñ ψpi1 ` i2q
tϕ1, ϕ2u ` tψu

Prim

tϕu f tθu tθu g tψu
tϕu f : g tψu

Comp

|ù ψpx0q tθ, ϕu f tψu tψu g tθu
tϕu f „ g tψu

Feed

Soundness of the Logic

Definition (Validity)

Jtϕu f tψuK ” @i .p@t .ϕpiptqqq ùñ p@t , ψpJf Kqpiqptqq

Theorem (Soundness)
For any program f of type i o, if

tϕ1, . . . , ϕiu f tψ1, . . . , ψou

is derivable then,

Jtϕ1, . . . , ϕiu f tψ1, . . . , ψouK

is valid.

Stability Proof for Smooth

l

tIabu ˚p1´ cq tIabcu

l

tIabc , Iabcu ` tIabu

l

tIabu ˚pcq tIabcu

tIabcu ` „ ˚pcq tIabu

ti P ra,bsu ˚p1´ cq : ` „ ˚pcq to P ra,bsu

with:

Iabpxq ” x P ra,bs
Iabcpxq ” x P ra ˚ c,b ˚ cs
Iabcpxq ” x P ra ˚ p1´ cq,b ˚ p1´ cqs

Stability of Smooth

Three main VC in the proof:

(* (1 - c) * i \in [(1 - c) * a, (1 - c) * b] *)
by rewrite ?ler_wpmul2r ?ler_subr_addr ?add0r.

have Ha: a = a ∗ c + a ∗ (1 ´ c)
by rewrite ´mulrDr addrC addrNK mulr1.

have Hb: b = b ∗ c + b ∗ (1 ´ c)
by rewrite ´mulrDr addrC addrNK mulr1.

by rewrite Ha Hb !ler_add.

(* c * i \in [c * a, c * b] *)
by rewrite ?ler_wpmul2r.

We pushed the VCs to Why3 with success.
Interval technique ready to go into the main compiler.

Stability Proof

One Step Beyond

Extending the logic
Allow predicates to refer to windows.

ϕpiq ” ti{il “ 0.8u

where il is the sample produced in the execution step.

Linear System Theory

Consider the following subset of Faust:

˚pcq scaling by c
` addition
: composition
„ addition

Then every Faust program is LTI. Very related to [Bonchi et
al. 2015]
A consequence of that is that every program can be viewed
as a polynomial.

Two Poles IIR Filter

twopole = fir : + „ feedback
where
fir(x) = (x - x’’) * g * (1-RR) / 2;
feedback(v) = 2*R*cos(T) * v - RR * v’;
....

Get and verify its transfer function:

H pzq “
1 ´ z´2

1 ´ 2R cospΘc qz´1 ` R2z´2

Two Poles IIR Filter

twopole = fir : + „ feedback
where
fir(x) = (x - x’’) * g * (1-RR) / 2;
feedback(v) = 2*R*cos(T) * v - RR * v’;
....

Get and verify its transfer function:

H pzq “
1 ´ z´2

1 ´ 2R cospΘc qz´1 ` R2z´2

Ongoing: Frequency Domain Analysis

Recall the Fourier Matrix:

W “ 1{
?

N

»

—

—

—

—

—

–

1 1 1 ¨ ¨ ¨ 1
1 ω ω2 ¨ ¨ ¨ ωN´1

1 ω2 ω4 ¨ ¨ ¨ ω2pN´1q

...
...

...
1 ωN´1 ω2pN´1q ¨ ¨ ¨ ω pN´1qpN´1q

fi

ffi

ffi

ffi

ffi

ffi

fl

or:

W “

ˆ

ω jk
?

N

˙

j ,k“0, . . . ,pN´1q

where ω the nth-root of the unity. Then the DFT can be
expressed as:

X “ Wx

Fourier Properties Formally

Linearity, shifting and scaling follow from lemmas already
in the MathComp linear algebra library!
Parseval’s theorem is work in progress:

N´1
ÿ

n“0

|xn |2 “
N´1
ÿ

n“0

|Xn |2

Transfer Functions

§ We can use a similar approach for the certification of
transfer functions.

§ We use the finite Z -transform, plus some caveats,
mainly about the bounds.

§ C.f: Algebraic Signal Processing [Puesel, Moura]

Paper with our adventures coming end
of month.

Transfer Functions

§ We can use a similar approach for the certification of
transfer functions.

§ We use the finite Z -transform, plus some caveats,
mainly about the bounds.

§ C.f: Algebraic Signal Processing [Puesel, Moura]

Paper with our adventures coming end
of month.

Conclusions

§ It was an interesting exercise; we learned a lot!
§ The full Faust language is basically done.
§ So far verification has been about math verification.
§ Floating point issues ignored. . .
§ Help from audio people. What are important things to

certify?
§ Non-Linear systems.
§ We are investigating a different approaches to

certification beyond program logics.
§ Verified FFT/DSP computation. Trying CoqEAL.
§ Improving the language for spectral processing.
§ Non-linear Wave Filter, Scattered Delays Networks.

