
Verification of Mechanism Design with
Approximate Relational Refinement Types

Gilles Barthe, Marco Gaboardi, Emilio Jesús Gallego Arias,
Justin Hsu, Aaron Roth, Pierre-Yves Strub

Dundee, IMDEA Software Institute, Mines ParisTech, UPenn

Avril 16 2015, Rennes

Motivation

Software Verification

I Reason formally about programs and their behavior.
I Increase trust in software, help programmers/designers.
I Has important practical and economical utility.
I Expressiveness? Automation?

Today:

I Verification of probabilistic programs.
I Mechanisms: inputs controlled by strategic agents.
I Truthfulness: An agent gets best utility when telling the truth.
I Privacy: An agent’s information leak is bounded.

Motivation

Software Verification

I Reason formally about programs and their behavior.
I Increase trust in software, help programmers/designers.
I Has important practical and economical utility.
I Expressiveness? Automation?

Today:

I Verification of probabilistic programs.
I Mechanisms: inputs controlled by strategic agents.
I Truthfulness: An agent gets best utility when telling the truth.
I Privacy: An agent’s information leak is bounded.

The Main Challenges

Relational Reasoning
Properties of interest are relational, that is, defined over two runs
of the same program:

I Truthfulness: agent telling the truth vs not.
I Privacy: include agent’s data vs not.

Probabilistic Reasoning
Interesting mechanisms are randomized, properties rely on:

I Expected values.
I Distance on distributions.

The Main Challenges

Relational Reasoning
Properties of interest are relational, that is, defined over two runs
of the same program:

I Truthfulness: agent telling the truth vs not.
I Privacy: include agent’s data vs not.

Probabilistic Reasoning
Interesting mechanisms are randomized, properties rely on:

I Expected values.
I Distance on distributions.

HOARE2:

Higher-Order Approximate Relational Refinement Types!

Types: Functional programs, properties as types.
Refinements: We can build more precise types using formulas:
Higher-Order: We can refine over functions:
Relational: Types are relations over two runs.

Approximate: Primitive relations over two runs.

Gluing everything together is not easy!

Our Approach:

Related/Precursor Work:

I Relational logics.
I F∗, RF∗.
I CertiCrypt/CertiPriv.
I Fuzz/DFuzz.

Our Contributions
I Extended type system:

I Support for Higher-Order refinements.
I Embedding of logical relations! DFuzz soundness proof.
I Probabilistic approximate types.

I New application domain and examples.
I Prototype implementation.

Our Approach:

Related/Precursor Work:

I Relational logics.
I F∗, RF∗.
I CertiCrypt/CertiPriv.
I Fuzz/DFuzz.

Our Contributions
I Extended type system:

I Support for Higher-Order refinements.
I Embedding of logical relations! DFuzz soundness proof.
I Probabilistic approximate types.

I New application domain and examples.
I Prototype implementation.

Mechanism Design

Mechanism design is the study of algorithm design where the
inputs to the algorithm are controlled by strategic agents, who
must be incentivized to faithfully report them.

Formally

I n agents, with type for actions Ai , i ∈ {1, . . . ,n}.
I A mechanism M : An → O.
I A payoff for every agent Pi : O → R+.
I Probabilistic algorithms are common!

Payoff becomes expected payoff.

Verification
Incentives are not enough, the agents need to believe them.
Verification is an attractive way to convince them.

Mechanism Design

Mechanism design is the study of algorithm design where the
inputs to the algorithm are controlled by strategic agents, who
must be incentivized to faithfully report them.

Formally

I n agents, with type for actions Ai , i ∈ {1, . . . ,n}.
I A mechanism M : An → O.
I A payoff for every agent Pi : O → R+.
I Probabilistic algorithms are common!

Payoff becomes expected payoff.

Verification
Incentives are not enough, the agents need to believe them.
Verification is an attractive way to convince them.

Mechanism Design

Mechanism design is the study of algorithm design where the
inputs to the algorithm are controlled by strategic agents, who
must be incentivized to faithfully report them.

Formally

I n agents, with type for actions Ai , i ∈ {1, . . . ,n}.
I A mechanism M : An → O.
I A payoff for every agent Pi : O → R+.
I Probabilistic algorithms are common!

Payoff becomes expected payoff.

Verification
Incentives are not enough, the agents need to believe them.
Verification is an attractive way to convince them.

Mechanism Examples

Auctions

I Buyers (agents), bids (actions), seller (mechanism).
I Outcome: price, goods assignation.
I An auction is truthful if the buyer gets maximal payoff when

she reports her true valuation.

Nash Equilibrium Computation

I n players, action type A.
I Payoff for i ,Pi : An → R+, depends on others actions.
I The mechanism suggests an action profile (a1, . . . ,an).
I If all the other players follow the suggestion, player i gets

the best payoff by following too.

Mechanism Examples

Auctions

I Buyers (agents), bids (actions), seller (mechanism).
I Outcome: price, goods assignation.
I An auction is truthful if the buyer gets maximal payoff when

she reports her true valuation.

Nash Equilibrium Computation

I n players, action type A.
I Payoff for i ,Pi : An → R+, depends on others actions.
I The mechanism suggests an action profile (a1, . . . ,an).
I If all the other players follow the suggestion, player i gets

the best payoff by following too.

Example: Truthful Auctions for Digital Goods

I Price a good with infinite supply. (i.e: Digital goods)

I Bidders and seller.
I Bidders have a secret true value for the item vi , and make a

public bid bi before the price is known.
I The seller knows the bids, but not the real values. Sets the

price p after the bids.
I If bi ≥ p, the bidder i gets the item, with utility vi − p.

Otherwise she doesn’t get it, and utility is 0.

The auction is truthful if buyers have optimal utility when they
reports the true value vi as their bids bi .
In general, an auction cannot be truthful if it depends on the
bidder’s price!

Example: Truthful Auctions for Digital Goods

I Price a good with infinite supply. (i.e: Digital goods)
I Bidders and seller.

I Bidders have a secret true value for the item vi , and make a
public bid bi before the price is known.

I The seller knows the bids, but not the real values. Sets the
price p after the bids.

I If bi ≥ p, the bidder i gets the item, with utility vi − p.
Otherwise she doesn’t get it, and utility is 0.

The auction is truthful if buyers have optimal utility when they
reports the true value vi as their bids bi .
In general, an auction cannot be truthful if it depends on the
bidder’s price!

Example: Truthful Auctions for Digital Goods

I Price a good with infinite supply. (i.e: Digital goods)
I Bidders and seller.
I Bidders have a secret true value for the item vi , and make a

public bid bi before the price is known.

I The seller knows the bids, but not the real values. Sets the
price p after the bids.

I If bi ≥ p, the bidder i gets the item, with utility vi − p.
Otherwise she doesn’t get it, and utility is 0.

The auction is truthful if buyers have optimal utility when they
reports the true value vi as their bids bi .
In general, an auction cannot be truthful if it depends on the
bidder’s price!

Example: Truthful Auctions for Digital Goods

I Price a good with infinite supply. (i.e: Digital goods)
I Bidders and seller.
I Bidders have a secret true value for the item vi , and make a

public bid bi before the price is known.
I The seller knows the bids, but not the real values. Sets the

price p after the bids.

I If bi ≥ p, the bidder i gets the item, with utility vi − p.
Otherwise she doesn’t get it, and utility is 0.

The auction is truthful if buyers have optimal utility when they
reports the true value vi as their bids bi .
In general, an auction cannot be truthful if it depends on the
bidder’s price!

Example: Truthful Auctions for Digital Goods

I Price a good with infinite supply. (i.e: Digital goods)
I Bidders and seller.
I Bidders have a secret true value for the item vi , and make a

public bid bi before the price is known.
I The seller knows the bids, but not the real values. Sets the

price p after the bids.
I If bi ≥ p, the bidder i gets the item, with utility vi − p.

Otherwise she doesn’t get it, and utility is 0.

The auction is truthful if buyers have optimal utility when they
reports the true value vi as their bids bi .
In general, an auction cannot be truthful if it depends on the
bidder’s price!

Example: Truthful Auctions for Digital Goods

I Price a good with infinite supply. (i.e: Digital goods)
I Bidders and seller.
I Bidders have a secret true value for the item vi , and make a

public bid bi before the price is known.
I The seller knows the bids, but not the real values. Sets the

price p after the bids.
I If bi ≥ p, the bidder i gets the item, with utility vi − p.

Otherwise she doesn’t get it, and utility is 0.

The auction is truthful if buyers have optimal utility when they
reports the true value vi as their bids bi .
In general, an auction cannot be truthful if it depends on the
bidder’s price!

The Fixed Price Auction

Fixed Price Auctions
The simplest truthful auction is the fixed price auction. The seller
will set p independently of the bid b for a seller with true value v .
If b ≥ p, then utility v − p, else 0. Note the bad revenue
properties.

Informal proof of truthfulness
The price p is fixed, we compare b/ = v vs b. 6= v . The
interesting cases are when the bidder gets the item in one run
and doesn’t in the other:

I If b. got the item, utility is negative, thus less than 0 for the
b/ case (remember b/ didn’t get the item).

I If b/ got the item, utility will be greater or equal than 0, thus
better or equal than b.’s utility (0).

The Fixed Price Auction

Fixed Price Auctions
The simplest truthful auction is the fixed price auction. The seller
will set p independently of the bid b for a seller with true value v .
If b ≥ p, then utility v − p, else 0. Note the bad revenue
properties.

Informal proof of truthfulness
The price p is fixed, we compare b/ = v vs b. 6= v . The
interesting cases are when the bidder gets the item in one run
and doesn’t in the other:

I If b. got the item, utility is negative, thus less than 0 for the
b/ case (remember b/ didn’t get the item).

I If b/ got the item, utility will be greater or equal than 0, thus
better or equal than b.’s utility (0).

Verifying the Fixed Price Auction

Verifying that the fixed price auction is truthful goes in two steps:
I We write a program that runs the auction and computes the

utility of the buyer.

I We encode truthfulness in the types of the utility function.

utility : (price : R)→ (val : R)→
{bid : R

| bid/ = val

} → {u : R

| u/ = u.

}

Verifying the Fixed Price Auction

Verifying that the fixed price auction is truthful goes in two steps:
I We write a program that runs the auction and computes the

utility of the buyer.
I We encode truthfulness in the types of the utility function.

utility : (price : R)→ (val : R)→
{bid : R | bid/ = val} → {u : R | u/ = u.}

The System: Relational Refinement Types

Variables
Relational variables, x ∈ XR; left/right instances x/, x. ∈ XRon.

Expressions
em ::= C | x ∈ Xm | e e | λx .e | case e with [ε⇒ e | x :: x ⇒ e]

| letrec↑ f x = e | letrec↓ f x = e
| e↑ | let↑ x = e in e | unitM e | bindM x = e in e

Regular Types
τ̃ , σ̃, . . . ∈ CoreTy ::= • | B | N | R | R+ | L[τ̃]

τ, σ, . . . ∈ Ty ::= τ̃ |M[τ] | C[τ] | τ → σ

Relational Refinement Types
T ,U ∈ T ::= τ̃ |Mε,δ[T] | C[T] | Π(x :: T).T | {x :: T | φ}
φ, ψ ∈ A ::= Q (x : τ). φ | Q (x :: T). φ

| C(φ1, . . . , φn) | eon = eon | eon ≤ eon

C = {>/0,⊥/0, ¬/1, ∨/2, ∧/2, ⇒/2}

Relational Refinement Types: Example

Regular refinement types no enough to capture some properties.

k -sensitive function

f

∀x1, x2.|f (x1)− f (x2)| ≤ k · |x1 − x2|

What should the type for f be?

Relational Refinement Types: Example

Regular refinement types no enough to capture some properties.

k -sensitive function

f

∀x1, x2.|f (x1)− f (x2)| ≤ k · |x1 − x2|

What should the type for f be?

Relational Refinement Types: Example

Regular refinement types no enough to capture some properties.

k -sensitive function

f
d < k d

∀x1, x2.|f (x1)− f (x2)| ≤ k · |x1 − x2|

What should the type for f be?

Relational Refinement Types: Example

Regular refinement types no enough to capture some properties.

k -sensitive function

f
d < k d

∀x1, x2.|f (x1)− f (x2)| ≤ k · |x1 − x2|

What should the type for f be?

Relational Refinement Types: Example

Regular refinement types no enough to capture some properties.

k -sensitive function

f
d < k d

∀x1, x2.|f (x1)− f (x2)| ≤ k · |x1 − x2|

What should the type for f be?

Relational Refinement Types: Example

For the property:

∀x1, x2.|f (x1)− f (x2)| ≤ k · |x1 − x2|

we can do a refinement at a higher type:

{f : R→ R | ∀x :: R.|f (x/)− f (x.)| ≤ k · |x/ − x.|}

or we can refer to two copies of the input:

f : Π(x :: R). {r :: R | k · |r/ − r.| ≤ |x/ − x.|}

Both types are equivalent in our system, but the pre/post style
more convenient for reasoning.

Relational Refinement Types: Example

For the property:

∀x1, x2.|f (x1)− f (x2)| ≤ k · |x1 − x2|

we can do a refinement at a higher type:

{f : R→ R | ∀x :: R.|f (x/)− f (x.)| ≤ k · |x/ − x.|}

or we can refer to two copies of the input:

f : Π(x :: R). {r :: R | k · |r/ − r.| ≤ |x/ − x.|}

Both types are equivalent in our system, but the pre/post style
more convenient for reasoning.

Relational Refinement Types: Example

For the property:

∀x1, x2.|f (x1)− f (x2)| ≤ k · |x1 − x2|

we can do a refinement at a higher type:

{f : R→ R | ∀x :: R.|f (x/)− f (x.)| ≤ k · |x/ − x.|}

or we can refer to two copies of the input:

f : Π(x :: R). {r :: R | k · |r/ − r.| ≤ |x/ − x.|}

Both types are equivalent in our system, but the pre/post style
more convenient for reasoning.

The System: Semantics

Semantic subytping for non-relational types:

` e : T Γ |= φ[x/e]

` e : {x : T | φ}

` e : T ⇒ e ∈ JT K
v ∈ JT K |= φ(v)

v ∈ J{x : T | φ(x)}K

Our types are relations over values:

LT Mθ ⊆ J|T |K× J|T |K

(d1,d2) ∈ JτK× JτK
(d1,d2) ∈ LτMθ

(d1,d2) ∈ LT Mθ JφK
θ
{x/ 7→ d1

x. 7→ d2

}
(d1,d2) ∈ L{x :: T | φ}Mθ

(f1, f2) ∈ J|T | → |U|K ∀(d1,d2) ∈ LT Mθ. (f1(d1), f2(d2)) ∈ LUM
θ
{x/ 7→ d1

x. 7→ d2

}
(f1, f2) ∈ LΠ(x :: T).UMθ

The System: Semantics

Semantic subytping for non-relational types:

` e : T Γ |= φ[x/e]

` e : {x : T | φ}
` e : T ⇒ e ∈ JT K

v ∈ JT K |= φ(v)

v ∈ J{x : T | φ(x)}K

Our types are relations over values:

LT Mθ ⊆ J|T |K× J|T |K

(d1,d2) ∈ JτK× JτK
(d1,d2) ∈ LτMθ

(d1,d2) ∈ LT Mθ JφK
θ
{x/ 7→ d1

x. 7→ d2

}
(d1,d2) ∈ L{x :: T | φ}Mθ

(f1, f2) ∈ J|T | → |U|K ∀(d1,d2) ∈ LT Mθ. (f1(d1), f2(d2)) ∈ LUM
θ
{x/ 7→ d1

x. 7→ d2

}
(f1, f2) ∈ LΠ(x :: T).UMθ

The System: Semantics

Semantic subytping for non-relational types:

` e : T Γ |= φ[x/e]

` e : {x : T | φ}
` e : T ⇒ e ∈ JT K

v ∈ JT K |= φ(v)

v ∈ J{x : T | φ(x)}K

Our types are relations over values:

LT Mθ ⊆ J|T |K× J|T |K

(d1,d2) ∈ JτK× JτK
(d1,d2) ∈ LτMθ

(d1,d2) ∈ LT Mθ JφK
θ
{x/ 7→ d1

x. 7→ d2

}
(d1,d2) ∈ L{x :: T | φ}Mθ

(f1, f2) ∈ J|T | → |U|K ∀(d1,d2) ∈ LT Mθ. (f1(d1), f2(d2)) ∈ LUM
θ
{x/ 7→ d1

x. 7→ d2

}
(f1, f2) ∈ LΠ(x :: T).UMθ

The System: Semantics

Semantic subytping for non-relational types:

` e : T Γ |= φ[x/e]

` e : {x : T | φ}
` e : T ⇒ e ∈ JT K

v ∈ JT K |= φ(v)

v ∈ J{x : T | φ(x)}K

Our types are relations over values:

LT Mθ ⊆ J|T |K× J|T |K

(d1,d2) ∈ JτK× JτK
(d1,d2) ∈ LτMθ

(d1,d2) ∈ LT Mθ JφK
θ
{x/ 7→ d1

x. 7→ d2

}
(d1,d2) ∈ L{x :: T | φ}Mθ

(f1, f2) ∈ J|T | → |U|K ∀(d1,d2) ∈ LT Mθ. (f1(d1), f2(d2)) ∈ LUM
θ
{x/ 7→ d1

x. 7→ d2

}
(f1, f2) ∈ LΠ(x :: T).UMθ

The System: Semantics

Semantic subytping for non-relational types:

` e : T Γ |= φ[x/e]

` e : {x : T | φ}
` e : T ⇒ e ∈ JT K

v ∈ JT K |= φ(v)

v ∈ J{x : T | φ(x)}K

Our types are relations over values:

LT Mθ ⊆ J|T |K× J|T |K

(d1,d2) ∈ JτK× JτK
(d1,d2) ∈ LτMθ

(d1,d2) ∈ LT Mθ JφK
θ
{x/ 7→ d1

x. 7→ d2

}
(d1,d2) ∈ L{x :: T | φ}Mθ

(f1, f2) ∈ J|T | → |U|K ∀(d1,d2) ∈ LT Mθ. (f1(d1), f2(d2)) ∈ LUM
θ
{x/ 7→ d1

x. 7→ d2

}
(f1, f2) ∈ LΠ(x :: T).UMθ

SubTyping

SUB-REFL
G ` T

G ` T � T
SUB-TRANS

G ` T � U G ` U � V
G ` T � V

SUB-LEFT
G ` {x :: T | φ}

G ` {x :: T | φ} � T

SUB-RIGHT

G ` T � U
‖G, x :: U‖ ` φ ∀θ. θ ` G, x :: T ⇒ JφKθ

G ` T � {x :: U | φ}

SUB-PROD
G ` T2 � T1 G, x :: T2 ` U1 � U2

G ` Π(x :: T1).U1 � Π(x :: T2).U2

The System: Typing

The typing judgment relates two programs to a type:

G ` e1 ∼ e2 :: T

Soundness

G ` e1 ∼ e2 :: T ⇒ ∀G ` θ, (Je1Kθ, Je2Kθ) ∈ LT Mθ

Synchronicity
In most cases programs are synchronous, so we use:

G ` e :: T ≡ G ` e/ ∼ e. :: T

with e/,e. projecting the variables in e.

The System: Typing

The typing judgment relates two programs to a type:

G ` e1 ∼ e2 :: T

Soundness

G ` e1 ∼ e2 :: T ⇒ ∀G ` θ, (Je1Kθ, Je2Kθ) ∈ LT Mθ

Synchronicity
In most cases programs are synchronous, so we use:

G ` e :: T ≡ G ` e/ ∼ e. :: T

with e/,e. projecting the variables in e.

The System: Typing

The typing judgment relates two programs to a type:

G ` e1 ∼ e2 :: T

Soundness

G ` e1 ∼ e2 :: T ⇒ ∀G ` θ, (Je1Kθ, Je2Kθ) ∈ LT Mθ

Synchronicity
In most cases programs are synchronous, so we use:

G ` e :: T ≡ G ` e/ ∼ e. :: T

with e/,e. projecting the variables in e.

Base Typing Rules

VAR
x :: T ∈ dom(G)

G ` x :: T
ABS

G, x :: T ` e :: U
G ` λx .e :: Π(x :: T).U

APP
G ` ef :: Π(x :: T).U G ` ea :: T

G ` ef ea :: U{x 7→ ea}

CASE

G ` e :: L[τ̃] ∀θ. θ ` G ⇒ skeleton(e/,e.)
G, {e/ = e. = ε} ` e1 :: T

G, x :: τ̃ , y :: L[τ̃], {e/ = x/ :: y/ ∧ e. = x. :: y.} ` e2 :: T
G ` case e with [ε⇒ e1 | x :: y ⇒ e2] :: T

Base Typing Rules

VAR
x :: T ∈ dom(G)

G ` x :: T
ABS

G, x :: T ` e :: U
G ` λx .e :: Π(x :: T).U

APP
G ` ef :: Π(x :: T).U G ` ea :: T

G ` ef ea :: U{x 7→ ea}

CASE

G ` e :: L[τ̃] ∀θ. θ ` G ⇒ skeleton(e/,e.)
G, {e/ = e. = ε} ` e1 :: T

G, x :: τ̃ , y :: L[τ̃], {e/ = x/ :: y/ ∧ e. = x. :: y.} ` e2 :: T
G ` case e with [ε⇒ e1 | x :: y ⇒ e2] :: T

Typing Rules for Recursion

To ensure consistency at higher-types, we must embed
non-terminating computations in the partiality monad:

LETRECSN

G, f :: Π(x :: T).U ` λx .e :: Π(x :: T).U
G ` Π(x :: T).U SN -guard

G ` letrec↓ f x = e :: Π(x :: T).U

LETREC

G ` Π(x :: T).C[U]
G, f :: Π(x :: T).C[U] ` λx .e :: Π(x :: T).C[U]

G ` letrec f x = e :: Π(x :: T).C[U]

UNITC
G ` e :: T
G ` e↑ :: C[T]

BINDC

G ` e1 :: C[T1] G ` C[T2]
G, x :: T1 ` e2 :: C[T2]

G ` let↑ x = e1 in e2 :: C[T2]

Typing Rules for Recursion

To ensure consistency at higher-types, we must embed
non-terminating computations in the partiality monad:

LETRECSN

G, f :: Π(x :: T).U ` λx .e :: Π(x :: T).U
G ` Π(x :: T).U SN -guard

G ` letrec↓ f x = e :: Π(x :: T).U

LETREC

G ` Π(x :: T).C[U]
G, f :: Π(x :: T).C[U] ` λx .e :: Π(x :: T).C[U]

G ` letrec f x = e :: Π(x :: T).C[U]

UNITC
G ` e :: T
G ` e↑ :: C[T]

BINDC

G ` e1 :: C[T1] G ` C[T2]
G, x :: T1 ` e2 :: C[T2]

G ` let↑ x = e1 in e2 :: C[T2]

Typing Rules for Recursion

To ensure consistency at higher-types, we must embed
non-terminating computations in the partiality monad:

LETRECSN

G, f :: Π(x :: T).U ` λx .e :: Π(x :: T).U
G ` Π(x :: T).U SN -guard

G ` letrec↓ f x = e :: Π(x :: T).U

LETREC

G ` Π(x :: T).C[U]
G, f :: Π(x :: T).C[U] ` λx .e :: Π(x :: T).C[U]

G ` letrec f x = e :: Π(x :: T).C[U]

UNITC
G ` e :: T
G ` e↑ :: C[T]

BINDC

G ` e1 :: C[T1] G ` C[T2]
G, x :: T1 ` e2 :: C[T2]

G ` let↑ x = e1 in e2 :: C[T2]

Asynchronous Rules

ASYM
G ` e1 ∼ e2 :: T

G↔ ` e2
↔ ∼ e1

↔ :: T↔

AREDLEFT
e1 → e′1 G ` e1 ∼ e2 :: T

G ` e′1 ∼ e2 :: T

ACASE

|G| ` e : L[τ̃] |G| ` e′ : |T |
G, {e/ = ε} ` e1 ∼ e′ :: T

G, x :: τ̃ , y :: L[τ̃], {e/ = x/ :: y/} ` e2 ∼ e′ :: T
G ` case e with [ε⇒ e1 | x :: y ⇒ e2] ∼ e′ :: T

Asynchronous Rules

ASYM
G ` e1 ∼ e2 :: T

G↔ ` e2
↔ ∼ e1

↔ :: T↔

AREDLEFT
e1 → e′1 G ` e1 ∼ e2 :: T

G ` e′1 ∼ e2 :: T

ACASE

|G| ` e : L[τ̃] |G| ` e′ : |T |
G, {e/ = ε} ` e1 ∼ e′ :: T

G, x :: τ̃ , y :: L[τ̃], {e/ = x/ :: y/} ` e2 ∼ e′ :: T
G ` case e with [ε⇒ e1 | x :: y ⇒ e2] ∼ e′ :: T

The Fixed Price Auction

We model the utility as a program:
let fp_utility (v : R) {b :: R | b/ = v} (p : R)

: { u :: R | u/ >= u. } =
if b >= p then v - p

else 0.0

We use asynchronous reasoning. The interesting case is:

{b/ = v ,b/ ≥ p,b. < p} ` v − p ∼ 0.0 :: {u :: R | u/ ≥ u.}

substituting [v − p/u/,0.0/u.] we get the proof obligation:

v ≥ p ⇒ v − p ≥ 0.0

The Fixed Price Auction

We model the utility as a program:
let fp_utility (v : R) {b :: R | b/ = v} (p : R)

: { u :: R | u/ >= u. } =
if b >= p then v - p

else 0.0

We use asynchronous reasoning. The interesting case is:

{b/ = v ,b/ ≥ p,b. < p} ` v − p ∼ 0.0 :: {u :: R | u/ ≥ u.}

substituting [v − p/u/,0.0/u.] we get the proof obligation:

v ≥ p ⇒ v − p ≥ 0.0

The Fixed Price Auction

We model the utility as a program:
let fp_utility (v : R) {b :: R | b/ = v} (p : R)

: { u :: R | u/ >= u. } =
if b >= p then v - p

else 0.0

We use asynchronous reasoning. The interesting case is:

{b/ = v ,b/ ≥ p,b. < p} ` v − p ∼ 0.0 :: {u :: R | u/ ≥ u.}

substituting [v − p/u/,0.0/u.] we get the proof obligation:

v ≥ p ⇒ v − p ≥ 0.0

The Fixed Price Auction

We model the utility as a program:
let fp_utility (v : R) {b :: R | b/ = v} (p : R)

: { u :: R | u/ >= u. } =
if b >= p then v - p

else 0.0

We use asynchronous reasoning. The interesting case is:

{b/ = v ,b/ ≥ p,b. < p} ` v − p ∼ 0.0 :: {u :: R | u/ ≥ u.}

substituting [v − p/u/,0.0/u.] we get the proof obligation:

v ≥ p ⇒ v − p ≥ 0.0

The Distribution Type

We didn’t specify the semantics of relational distribution types.

A first approach to lifting

?? (d1,d2) ∈ LT Mθ

(µ1, µ2) ∈M[|T |]×M[|T |]
(µ1, µ2) ∈ LM[T]Mθ

We need to relate (d1,d2) to (µ1, µ2)! Informally, we have to
respect the relation on the base type.
Solution: define a lifting of the relation LT Mθ through a witness
distribution µ = M[|T | × |T |], such that:

Pr
x←µ1

x ∈ JT K =
∑
y∈T

Pr
(x ,y)←µ

(x , y) ∈ LT Mθ

The Distribution Type

We didn’t specify the semantics of relational distribution types.

A first approach to lifting

??

(d1,d2) ∈ LT Mθ (µ1, µ2) ∈M[|T |]×M[|T |]
(µ1, µ2) ∈ LM[T]Mθ

We need to relate (d1,d2) to (µ1, µ2)! Informally, we have to
respect the relation on the base type.
Solution: define a lifting of the relation LT Mθ through a witness
distribution µ = M[|T | × |T |], such that:

Pr
x←µ1

x ∈ JT K =
∑
y∈T

Pr
(x ,y)←µ

(x , y) ∈ LT Mθ

The Distribution Type

We didn’t specify the semantics of relational distribution types.

A first approach to lifting

?? (d1,d2) ∈ LT Mθ (µ1, µ2) ∈M[|T |]×M[|T |]
(µ1, µ2) ∈ LM[T]Mθ

We need to relate (d1,d2) to (µ1, µ2)! Informally, we have to
respect the relation on the base type.
Solution: define a lifting of the relation LT Mθ through a witness
distribution µ = M[|T | × |T |], such that:

Pr
x←µ1

x ∈ JT K =
∑
y∈T

Pr
(x ,y)←µ

(x , y) ∈ LT Mθ

The Distribution Type

We didn’t specify the semantics of relational distribution types.

A first approach to lifting

?? (d1,d2) ∈ LT Mθ (µ1, µ2) ∈M[|T |]×M[|T |]
(µ1, µ2) ∈ LM[T]Mθ

We need to relate (d1,d2) to (µ1, µ2)! Informally, we have to
respect the relation on the base type.

Solution: define a lifting of the relation LT Mθ through a witness
distribution µ = M[|T | × |T |], such that:

Pr
x←µ1

x ∈ JT K =
∑
y∈T

Pr
(x ,y)←µ

(x , y) ∈ LT Mθ

The Distribution Type

We didn’t specify the semantics of relational distribution types.

A first approach to lifting

?? (d1,d2) ∈ LT Mθ (µ1, µ2) ∈M[|T |]×M[|T |]
(µ1, µ2) ∈ LM[T]Mθ

We need to relate (d1,d2) to (µ1, µ2)! Informally, we have to
respect the relation on the base type.
Solution: define a lifting of the relation LT Mθ through a witness
distribution µ = M[|T | × |T |], such that:

Pr
x←µ1

x ∈ JT K =
∑
y∈T

Pr
(x ,y)←µ

(x , y) ∈ LT Mθ

Lifting

More formally, for a relation Φ : T1 × T2, the predicate
L(Φ) µ1 µ2 holds iff there exists a distribution µ ∈M[T1 × T2]
such that for every H ⊆ T1, we have

Pr
x←µ1

[H(x)] =
∑
y∈T2

Pr
(x ,y)←µ

[H(x) ∧ Φ(x , y)]

and symmetrically for T2.
“Probability of events in µ1 µ2 must respect the relation”.

Semantics of the Distribution Type

We can now interpret the relational distribution type as all the
distributions satisfying the lifting:

µ1, µ2 ∈M[|T |] L(LT Mθ) µ1 µ2

(µ1, µ2) ∈ LM[T]Mθ

In particular, the type M[{x :: T | x/ = x.}] forces equal
distributions.

Examples of Lifting

As an example, for Φ ≡ {(F ,F), (F ,T), (T ,T)} we have liftings:

µ1(F) = 2/3 µ(F ,F) = 1/3
µ1(T) = 1/3 µ(F ,T) = 1/3
µ2(F) = 1/3 µ(T ,F) = 0
µ2(T) = 2/3 µ(T ,T) = 1/3

µ1(F) = 1 µ(F ,F) = 1
µ1(T) = 0 µ(F ,T) = 0
µ2(F) = 1 µ(T ,F) = 0
µ2(T) = 0 µ(T ,T) = 0

Higher-Order Refinements and Probability

Expectation
Expectation of a function f over µ is:

E µ f :=
∑
x∈D

(f x) · (µ x)

We capture monotonicity of expectation as:

I := [0,1]
IBF := {f :: D → I | ∀d : D. f/ d ≥ f. d}

E : Π(µ :: M[{x :: D | x/ = x.}]).Π(f :: IBF). {e :: I | e/ ≥ e.}

Sound as a primitive; other types are possible.

Higher-Order Refinements and Probability

Expectation
Expectation of a function f over µ is:

E µ f :=
∑
x∈D

(f x) · (µ x)

We capture monotonicity of expectation as:

I := [0,1]
IBF := {f :: D → I | ∀d : D. f/ d ≥ f. d}

E : Π(µ :: M[{x :: D | x/ = x.}]).Π(f :: IBF). {e :: I | e/ ≥ e.}

Sound as a primitive; other types are possible.

Randomized Auctions

I Using the probabilistic primitives, we can now define and
verify randomized auctions, which have much better
revenue properties than the fixed price one.

I The price a bidder gets won’t still depend on her bid,
however:

I we randomly split the bidders in two groups, ga,gb, we
compute the revenue-maximizing price for each group,
pa,pb, and sell to ga using pb and conversely.

I This auction is truthful on the expected utility.

Universal truthfulness:
A bidder will be never able to gain from lying, even knowing the
random coins of the mechanism.

The Competitive Auction

let utility (v : real)
(bid :: { b :: R | b/ = v })
(otherbids : L[R])
(g, groups) : (B * L[B])

: { u :: real | u/ >= u. } =
match split g bid others otherbids with
| (g1, g2) →
if g then fixedprice v bid (prices g2)

else fixedprice v bid (prices g1)

let auction (n : N) (v : R)
(bid :: { b :: R | b/ = v })
(otherbids : L[R])

: { u :: real | u/ >= u. } =
let grouping :: M{ r :: (B * B list) | r/ = r.} =

mlet mycoin = flip in
mlet coins = flipN n in
munit (mycoin, coins)

in E grouping (utility v bid otherbids)

The Competitive Auction

let E (mu : M[r : α | r/ = r.])
(f : α →real | ∀ x : α, f/ x >= f. x)

: { r :: real | r/ >= r. } =

let utility (v : real)
(bid :: { b :: R | b/ = v })
(otherbids : L[R])
(g, groups) : (B * L[B])

: { u :: real | u/ >= u. } = ...

let auction (n : N) (v : R)
(bid :: { b :: R | b/ = v })
(otherbids : L[R])

: { u :: real | u/ >= u. } =
let grouping :: M{ r :: (B * B list) | r/ = r.} = ...
in E grouping (utility v bid otherbids)

Differential Privacy

Contribution of a single individual to the output of a mechanism
cannot be effectively distinguished by an attacker under
worst-case assumptions.

Differential Privacy

Formal Definition
A probabilistic function F : T → S is (ε, δ)-Differentially Private if
for all pairs of adjacent t1, t2 ∈ T and for every E ⊆ S:

Pr
x←F t1

[x ∈ E] ≤ exp(ε) Pr
x←F t2

[x ∈ E] + δ

Example: The Laplace Mechanism:

I Compute the sensitivity k of f .
I For input t , release f (t) + random noise, scaled by k .

Many algorithms are DP: private database release, counters,
analytics, strong connection to Mechanism Design!

Differential Privacy

Formal Definition
A probabilistic function F : T → S is (ε, δ)-Differentially Private if
for all pairs of adjacent t1, t2 ∈ T and for every E ⊆ S:

Pr
x←F t1

[x ∈ E] ≤ exp(ε) Pr
x←F t2

[x ∈ E] + δ

Example: The Laplace Mechanism:

I Compute the sensitivity k of f .
I For input t , release f (t) + random noise, scaled by k .

Many algorithms are DP: private database release, counters,
analytics, strong connection to Mechanism Design!

Differential Privacy

Formal Definition
A probabilistic function F : T → S is (ε, δ)-Differentially Private if
for all pairs of adjacent t1, t2 ∈ T and for every E ⊆ S:

Pr
x←F t1

[x ∈ E] ≤ exp(ε) Pr
x←F t2

[x ∈ E] + δ

Example: The Laplace Mechanism:

I Compute the sensitivity k of f .
I For input t , release f (t) + random noise, scaled by k .

Many algorithms are DP: private database release, counters,
analytics, strong connection to Mechanism Design!

Approximately Reasoning over Distributions

We can capture DP with a refinement over the type of probability
distributions using the definition of ∆-distance:

∆ε(µ1, µ2) = max
E⊆U

(
Pr

x←µ2
[x ∈ E]− exp(ε) Pr

x←µ1
[x ∈ E]

)

Then, f is (ε, δ) differentially private if it has type:

{d :: T | Adj(d/,d.)} → {r :: M[R] | ∆ε(r/, r.) ≤ δ}

However, verification conditions involving ∆ are quite hard.

Approximately Reasoning over Distributions

We can capture DP with a refinement over the type of probability
distributions using the definition of ∆-distance:

∆ε(µ1, µ2) = max
E⊆U

(
Pr

x←µ2
[x ∈ E]− exp(ε) Pr

x←µ1
[x ∈ E]

)
Then, f is (ε, δ) differentially private if it has type:

{d :: T | Adj(d/,d.)} → {r :: M[R] | ∆ε(r/, r.) ≤ δ}

However, verification conditions involving ∆ are quite hard.

The Relational Distribution Type

Our solution: Internalize distribution distance in the types:

µ1, µ2 ∈M[|T |] Lε,δ(LT Mθ) µ1 µ2

(µ1, µ2) ∈ LMε,δ[T]Mθ

Lifting is extended from p = p1 to p ≤ p1 ≤ exp(p) + δ.

Capturing DP
The interpretation of Mε,δ[{r :: R | r/ = r.}] is the set of pairs of
probability distributions that are (ε, δ)-apart, capturing DP.
DP algorithms are typed as:

f : {d :: T | Adj(d/,d.)} →Mε,δ[{r :: R | r/ = r.}]

The Relational Distribution Type

Our solution: Internalize distribution distance in the types:

µ1, µ2 ∈M[|T |] Lε,δ(LT Mθ) µ1 µ2

(µ1, µ2) ∈ LMε,δ[T]Mθ

Lifting is extended from p = p1 to p ≤ p1 ≤ exp(p) + δ.

Capturing DP
The interpretation of Mε,δ[{r :: R | r/ = r.}] is the set of pairs of
probability distributions that are (ε, δ)-apart, capturing DP.

DP algorithms are typed as:

f : {d :: T | Adj(d/,d.)} →Mε,δ[{r :: R | r/ = r.}]

The Relational Distribution Type

Our solution: Internalize distribution distance in the types:

µ1, µ2 ∈M[|T |] Lε,δ(LT Mθ) µ1 µ2

(µ1, µ2) ∈ LMε,δ[T]Mθ

Lifting is extended from p = p1 to p ≤ p1 ≤ exp(p) + δ.

Capturing DP
The interpretation of Mε,δ[{r :: R | r/ = r.}] is the set of pairs of
probability distributions that are (ε, δ)-apart, capturing DP.
DP algorithms are typed as:

f : {d :: T | Adj(d/,d.)} →Mε,δ[{r :: R | r/ = r.}]

The Probability Polymonad

Reasoning about distance is compositional:

SUB-M
G ` T � U ∀θ. θ ` G, x :: T ⇒ Jε1 ≤ ε2 ∧ δ1 ≤ δ2Kθ

G `Mε1,δ1 [T] �Mε2,δ2 [U]

UNITM
G ` e :: T

G ` unitM e :: Mε,δ[T]

BINDM
G ` e1 :: Mε1,δ1 [T1] G, x :: T1 ` e2 :: Mε2,δ2 [T2]

G ` bindM x = e1 in e2 :: Mε1+ε2,δ1+δ2 [T2]

Bind is distance-adjusting sampling.

Type for the Laplace Mechanism

Recall the Laplace Mechanism:
For a k -sensitive f , f plus k/ε-scaled Laplacian noise is DP. This
is captured by the type:

lap : Π(ε :: R).Π(x :: R).Mε∗|x/−x.|,0[{r :: R | r/ = r.}]

Note that the actual distance ε ∗ |x/ − x.| depends on the
distance of the inputs. This is a better alternative than using a
precondition on x .
Using the bind rule, we can sample from laplace and assume the
sampled value equal in both runs.

Type for the Laplace Mechanism

Recall the Laplace Mechanism:
For a k -sensitive f , f plus k/ε-scaled Laplacian noise is DP. This
is captured by the type:

lap : Π(ε :: R).Π(x :: R).Mε∗|x/−x.|,0[{r :: R | r/ = r.}]

Note that the actual distance ε ∗ |x/ − x.| depends on the
distance of the inputs. This is a better alternative than using a
precondition on x .

Using the bind rule, we can sample from laplace and assume the
sampled value equal in both runs.

Type for the Laplace Mechanism

Recall the Laplace Mechanism:
For a k -sensitive f , f plus k/ε-scaled Laplacian noise is DP. This
is captured by the type:

lap : Π(ε :: R).Π(x :: R).Mε∗|x/−x.|,0[{r :: R | r/ = r.}]

Note that the actual distance ε ∗ |x/ − x.| depends on the
distance of the inputs. This is a better alternative than using a
precondition on x .
Using the bind rule, we can sample from laplace and assume the
sampled value equal in both runs.

Example: Private Histogram

We add noise to an histogram to make it private.
let rec histogram {l :: L(R) | Adj x/ x.) }

: M[e * d(l/,l.)] { r :: L(R) | r/ = r. } =
match l with
| [] → unit []
| x :: xs →

mlet y = lap eps x in
mlet ys = histogram xs in
munit (y :: ys)

The main proof obligation is:

e ∗ d(x/ :: xs/, x. :: xs.) ≥ e ∗ (d(x/, x.) + d(xs/, xs.))

which is implied by the adjacency precondition.

Example: Private Histogram

We add noise to an histogram to make it private.
let rec histogram {l :: L(R) | Adj x/ x.) }

: M[e * d(l/,l.)] { r :: L(R) | r/ = r. } =
match l with
| [] → unit []
| x :: xs →

mlet y = lap eps x in
mlet ys = histogram xs in
munit (y :: ys)

The main proof obligation is:

e ∗ d(x/ :: xs/, x. :: xs.) ≥ e ∗ (d(x/, x.) + d(xs/, xs.))

which is implied by the adjacency precondition.

Combining MD and DP: Aggregative Games

I We verify the computation of an approximate
Nash-equilibrium.

I n agents choose over a space of actions ai ∈ A.

I (a1, . . . ,an) is an α-approximate Nash-equilibrium if no
single agent i can gain more than α payoff by unilateral
deviation: For all agents i and actions a′i :

E[Pi(a1, . . . ,ai , . . .aN)] ≥ E[Pi(a1, . . . ,a′i , . . .aN)]− α.

I Assumption: Payoff for i depends only on ai plus a signal, a
positive (bounded) real number depending on the
aggregated actions of all players.

Combining MD and DP: Aggregative Games

I We verify the computation of an approximate
Nash-equilibrium.

I n agents choose over a space of actions ai ∈ A.
I (a1, . . . ,an) is an α-approximate Nash-equilibrium if no

single agent i can gain more than α payoff by unilateral
deviation: For all agents i and actions a′i :

E[Pi(a1, . . . ,ai , . . .aN)] ≥ E[Pi(a1, . . . ,a′i , . . .aN)]− α.

I Assumption: Payoff for i depends only on ai plus a signal, a
positive (bounded) real number depending on the
aggregated actions of all players.

Combining MD and DP: Aggregative Games

I We verify the computation of an approximate
Nash-equilibrium.

I n agents choose over a space of actions ai ∈ A.
I (a1, . . . ,an) is an α-approximate Nash-equilibrium if no

single agent i can gain more than α payoff by unilateral
deviation: For all agents i and actions a′i :

E[Pi(a1, . . . ,ai , . . .aN)] ≥ E[Pi(a1, . . . ,a′i , . . .aN)]− α.

I Assumption: Payoff for i depends only on ai plus a signal, a
positive (bounded) real number depending on the
aggregated actions of all players.

Combining MD and DP: Aggregative Games

I The key: use differential privacy to compute the equilibria.
I Mediator: The mechanism suggests the equilibria action ai .
I We prove that the player gets optimal utility if she does ai .
I We reason over a deviation function devi for player i .

In types:
let aggregative_utility (...)

{ dev :: act → act | ∀ a : act. dev/ a = a) }
: { u :: real | u/ >= u. - alpha }

Relate expectation to distance on the distributions:

E : Π(µ :: Mε,δ[{x :: I | x/ ≤ x. + c}]). {e :: I | e/ ≤ e. + ε+ c + δe−ε}

Combining MD and DP: Aggregative Games

I The key: use differential privacy to compute the equilibria.
I Mediator: The mechanism suggests the equilibria action ai .
I We prove that the player gets optimal utility if she does ai .
I We reason over a deviation function devi for player i .

In types:
let aggregative_utility (...)

{ dev :: act → act | ∀ a : act. dev/ a = a) }
: { u :: real | u/ >= u. - alpha }

Relate expectation to distance on the distributions:

E : Π(µ :: Mε,δ[{x :: I | x/ ≤ x. + c}]). {e :: I | e/ ≤ e. + ε+ c + δe−ε}

Combining MD and DP: Aggregative Games

I The key: use differential privacy to compute the equilibria.
I Mediator: The mechanism suggests the equilibria action ai .
I We prove that the player gets optimal utility if she does ai .
I We reason over a deviation function devi for player i .

In types:
let aggregative_utility (...)

{ dev :: act → act | ∀ a : act. dev/ a = a) }
: { u :: real | u/ >= u. - alpha }

Relate expectation to distance on the distributions:

E : Π(µ :: Mε,δ[{x :: I | x/ ≤ x. + c}]). {e :: I | e/ ≤ e. + ε+ c + δe−ε}

HKM: Bayesian Incentive Compatibility

I Non trivial mechanism and property.
I Given algorithm A that takes agent’s reported types and

produces an outcome, RSM turns A into a Bayesian
Incentive compatible mechanism.

I Uses Vickrey-Clarkes-Grove auction.
I Program equivalence a significant challenge for our system:

Use EasyCrypt.

{om : list(T → M T) | ∀j ∈ [n].(ot ← µ in om[j](ot)) = µ}

I HO proof obligations a challenge for SMT, solve 4 of them
manually in Coq.

The Implementation

I Hybrid SMT/Bidirectional type checking.
I Why3 as the SMT backend, multiple solvers required.
I Verification using top-level annotations (+2 cuts).
I Top-level types act as the specification.
I Support for debug of type-checking failures important.

Benchmarks

Example # Lines Verif. time
histogram 25 2.66 s.
dummysum 31 11.95 s.
noisysum 55 3.64 s.

two-level-a 38 2.55 s.
two-level-b 56 3.94 s.

binary 95 18.56 s.
idc 73 27.60 s.

dualquery 128 27.71 s.
competitive-b 81 2.80 s.
competitive 75 4.19 s.
fixedprice 10 0.90 s.

summarization 471 238.42 s.

Table: Benchmarks

Future work and Conclusions:

Future Work:

I More examples from algorithms/security/cryptography.
I More properties: accuracy, fancier distributions.
I Extensions to the language.

Conclusions

I Higher-Order Approximate Probabilistic Relational
Refinement Types: HOARe2

I Built-in support for approximate reasoning.
I Logic seems to capture many examples.
I Automatic verification worked reasonably well.
I SMT interaction is still a challenge.

Future work and Conclusions:

Future Work:

I More examples from algorithms/security/cryptography.
I More properties: accuracy, fancier distributions.
I Extensions to the language.

Conclusions

I Higher-Order Approximate Probabilistic Relational
Refinement Types: HOARe2

I Built-in support for approximate reasoning.
I Logic seems to capture many examples.
I Automatic verification worked reasonably well.
I SMT interaction is still a challenge.

