Relation Algebra, Allegories, and Logic
Programming

Emilio Jesus Gallego Arias
[ioint work with J. Lipton, J. Marifio]

CRI-Mines ParisTech

Deducteam Seminar
17/10/2014 — Paris

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 1/35

Recall (Basic) Logic Programming

Computation = Proof Search
Basics Program (T'), query (3X. ¢), provability relation ().

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 2/35

Recall (Basic) Logic Programming

Computation = Proof Search
Basics Program (T'), query (3X. ¢), provability relation ().
Execution Find a proof of I' - 3X. ¢.

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 2/35

Recall (Basic) Logic Programming

Computation = Proof Search
Basics Program (T'), query (3X. ¢), provability relation ().
Execution Find a proof of I' - 3X. ¢.
Output Witnesses a for X. Possibly fresh variables in a!

EJGA (CRI-Mines) Allegories and CLP 09/22/2013

2/35

Recall (Basic) Logic Programming

Computation = Proof Search
Basics Program (T'), query (3X. ¢), provability relation ().
Execution Find a proof of I' - 3X. ¢.
Output Witnesses a for X. Possibly fresh variables in a!

Example

add(0, X, X). (VX)
add(X+1, Y, Z+1) <- add(X, Y, Z). (VXYZ)

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 2/35

Recall (Basic) Logic Programming

Computation = Proof Search
Basics Program (T'), query (3X. ¢), provability relation ().
Execution Find a proof of I' - 3X. ¢.
Output Witnesses a for X. Possibly fresh variables in a!

Example

add(0, X, X). (VX)
add(X+1, Y, Z+1) <- add(X, Y, Z). (VXYZ)

?7- add(3, X, 4).
X=1} 7 ;
no more

EJGA (CRI-Mines) Allegories and CLP 09/22/2013

2/35

Recall (Basic) Logic Programming

Computation = Proof Search

Basics Program (T'), query (3X. ¢), provability relation ().
Execution Find a proof of I' - 3X. ¢.

Output Witnesses a for X. Possibly fresh variables in a!

Example
add(0, X, X). (VX)
add(X+1, Y, Z+1) <- add(X, Y, Z). (VXY2)
?- add(3, X, 4). ?- add(X, Y, Z).
{X =1} ? ; {X=0,2=Y ?} ;
no more {X = s(o), Z=5s(Y) ? } [more]

Constraints: primitive class of formulas solved externally.

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 2/35

Combinatorial Logic Programming

What is our goal?

To reason about logic programming equationally. (“Point-free style”)

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 3/ 35

Combinatorial Logic Programming

proof search
What is our goal?

To reason about logic programming equationally. (“Point-free style”)

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 3/ 35

Combinatorial Logic Programming

proof search
What is our goal?

To reason about logic programming equationally. (“Point-free style”)

V.

Example

nat(o) < T nat(s(X)) < nat(X)

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 3/ 35

Combinatorial Logic Programming

proof search
What is our goal?

To reason about logic programming equationally. (“Point-free style”)

V.

Example

nat(o) < T V X .nat(s(X)) < nat(X)

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 3/ 35

Combinatorial Logic Programming

proof search
What is our goal?

To reason about logic programming equationally. (“Point-free style”)

v

Example

nat(o) < T V X .nat(s(X)) < nat(X)

Point-free means no variables:

nat = {0} Us- nat

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 3/ 35

Combinatorial Logic Programming

proof search
What is our goal?

To reason about logic programming equationally. (“Point-free style”)

v

Example

nat(o) < T V X .nat(s(X)) < nat(X)

Point-free means no variables:
nat = {o0,s(0)}Us-s- nat

and equational program reasoning

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 3/ 35

Combinatorial Logic Programming

proof search
What is our goal?

To reason about logic programming equationally. (“Point-free style”)

v

Example

nat(o) < T V X .nat(s(X)) < nat(X)

Point-free means no variables:
nat = {0, s(0),s(s(0))}Us-s-s-nat

and equational program reasoning

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 3/ 35

Combinatorial Logic Programming

proof search
What is our goal?

To reason about logic programming equationally. (“Point-free style”)

v

Example

nat(o) < T V X .nat(s(X)) < nat(X)

Point-free means no variables:
nat = {0, s(0),s(s(0))}Us-s-s-nat

and equational program reasoning
and proof search: s(s(0)) N nat

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 3/ 35

An Existential Problem

Why this is hard?
m Point-free programming is well studied, what is the problem here?

v

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 4/35

An Existential Problem
Why this is hard?

m Point-free programming is well studied, what is the problem here?

m Existential variables have global scope in LP.

v

EJGA (CRI-Mines) Allegories and CLP

09/22/2013

4/35

An Existential Problem
Why this is hard?

m Point-free programming is well studied, what is the problem here?
m Existential variables have global scope in LP.

p(s(Y)). %% p(X)

- 3Y, X =5s(Y)
?7 p(X).

v

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 4/35

An Existential Problem
Why this is hard?

m Point-free programming is well studied, what is the problem here?
m Existential variables have global scope in LP.
p(s(Y)). %% p(X) :- Y, X =5(Y)
?7 p(X).

{ X = s(_X13) }

v
EJGA (CRI-Mines) Allegories and CLP 09/22/2013 4/35

An Existential Problem
Why this is hard?

m Point-free programming is well studied, what is the problem here?
m Existential variables have global scope in LP.
p(s(Y)). %% p(X) :- Y, X =5(Y)
?7 p(X).
{ X = s(_X13) }

m Two proof withesses for p may not be equal, given it has the “power”
to generate a fresh variable every time it has to be proved.

v
EJGA (CRI-Mines) Allegories and CLP 09/22/2013 4/35

An Existential Problem
Why this is hard?
m Point-free programming is well studied, what is the problem here?
m Existential variables have global scope in LP.
p(s(Y)). %% p(X) - Y, X =5(Y)
? p(X)
{ X = s(_X13) }

m Two proof withesses for p may not be equal, given it has the “power”
to generate a fresh variable every time it has to be proved.

m Quantifiers capture this, but use variables! Also, operational
reasoning involves tricky renaming apart, etc. ..

v
EJGA (CRI-Mines) Allegories and CLP 09/22/2013 4/35

An Existential Problem
Why this is hard?

m Point-free programming is well studied, what is the problem here?
m Existential variables have global scope in LP.

. %% p(X) - Y, X =5(Y)
?7 p(X).
{ X = s(_X13) }

m Two proof withesses for p may not be equal, given it has the “power”
to generate a fresh variable every time it has to be proved.

m Quantifiers capture this, but use variables! Also, operational
reasoning involves tricky renaming apart, etc. ..

m Use an algebraic theory of logic and
quantification!

4
EJGA (CRI-Mines) Allegories and CLP 09/22/2013 4/35

Relation Algebra to the Rescue!

Distributive Relation Algebras

Operations N, U, (+)°, -; - satisfying the intended laws of binary relations.
Introduced by Peirce-Schréder in the 19" century, and further
developed by Tarski and his students in mid 20t century.

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 5/ 35

Relation Algebra to the Rescue!

Distributive Relation Algebras

Operations N, U, (+)°, -; - satisfying the intended laws of binary relations.
Introduced by Peirce-Schréder in the 19" century, and further

developed by Tarski and his students in mid 20t century.

Relations and Logic

N as A and U as V; limited to formulas with at most 3 variables!

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 5/ 35

Relation Algebra to the Rescue!

Distributive Relation Algebras

Operations N, U, (+)°, -; - satisfying the intended laws of binary relations.
Introduced by Peirce-Schréder in the 19" century, and further
developed by Tarski and his students in mid 20t century.

Relations and Logic
N as A and U as V; limited to formulas with at most 3 variables!

Extended Relation Algebras

QRA: add (quasi) projections hd, tl; no limit on variables.
Freyd-Maddux-Tarski: QRA capture set theory (“equipollent”).

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 5/ 35

Relation Algebra to the Rescue!

Distributive Relation Algebras

Operations N, U, (+)°, -; - satisfying the intended laws of binary relations.
Introduced by Peirce-Schréder in the 19" century, and further
developed by Tarski and his students in mid 20t century.

Relations and Logic
N as A and U as V; limited to formulas with at most 3 variables!

Extended Relation Algebras

QRA: add (quasi) projections hd, tl; no limit on variables.
Freyd-Maddux-Tarski: QRA capture set theory (“equipollent”).

Allegories
Due to Freyd. We use it as a typed RA, better for our purposes.

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 5/ 35

The Plan

Compile, interpret and execute CLP to a QRA:
m Semantics (set of true instances):
] QRAZ
m X-allegories.
m Translation, logical meta-aspects and variables formalized at the
relational level.
m Program to theory between ground terms.
m Program to allegory. Sharing and memory is captured.
m Execution: Two notions of rewriting. Executable semantics. Many
extensions and optimizations possible declaratively: partial
evaluation, abstract interpretation, different search strategies. . .

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 6/35

The Plan

Compile, interpret and execute CLP to a QRA:
m Semantics (set of true instances):
] QRAZ
m X-allegories.
m Translation, logical meta-aspects and variables formalized at the
relational level.
m Program to theory between ground terms.
m Program to allegory. Sharing and memory is captured.
m Execution: Two notions of rewriting. Executable semantics. Many
extensions and optimizations possible declaratively: partial
evaluation, abstract interpretation, different search strategies. . .

Logic Without Variables + Logic Programming

Formula = Relation
Proof = Equational Derivation

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 6/35

The Plan

Compile, interpret and execute CLP to a QRA:
m Semantics (set of true instances):
] QRAZ
m X-allegories.
m Translation, logical meta-aspects and variables formalized at the
relational level.
m Program to theory between ground terms.
m Program to allegory. Sharing and memory is captured.
m Execution: Two notions of rewriting. Executable semantics. Many
extensions and optimizations possible declaratively: partial
evaluation, abstract interpretation, different search strategies. . .

Logic Without Variables + Logic Programming

Program = Formula = Relation
Computation = Proof Search = Equational Derivation

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 6/35

The Plan

Compile, interpret and execute CLP to a QRA:
m Semantics (set of true instances):
] QRAZ
m X-allegories.
m Translation, logical meta-aspects and variables formalized at the
relational level.
m Program to theory between ground terms.
m Program to allegory. Sharing and memory is captured.
m Execution: Two notions of rewriting. Executable semantics. Many
extensions and optimizations possible declaratively: partial
evaluation, abstract interpretation, different search strategies. . .

Logic Without Variables + Logic Programming

Program = Relation
Computation = Equational Derivation

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 6/35

The Relational Theory
Assume a signature ¥ = {C, F,CP, P} and Constr. Dom. D.

EJGA (CRI-Mines) Allegories and CLP

The Relational Theory
Assume a signature ¥ = {C, F,CP, P} and Constr. Dom. D.

Generate the relational language:

RC:{(a,a)|a€Cz} R}-:{Rf|f€f2,}
Rep = {rlreCPz} Rp = {p|pePs}
Ratom == Re|Rr|Rep |Rp|id|di|1]0]| hd |t
Rx == Rawom|Rs’ [RzURs [RzNRs | ReRs

EJGA (CRI-Mines) Allegories and CLP 09/22/2013

7/35

The Relational Theory
Assume a signature ¥ = {C, F,CP, P} and Constr. Dom. D.

Generate the relational language:

RC:{(a,a)|a€Cz} R}-:{Rf|f€f2,}
Rep = {rlreCPz} Rp = {p|pePs}
Ratom == Re|Rr|Rep |Rp|id|di|1]0]| hd |t
Rx == Rawom|Rs’ [RzURs [RzNRs | ReRs

Interpretation
[]:Rs — P(D x D), where Dt = U,D".

EJGA (CRI-Mines) Allegories and CLP 09/22/2013

7/35

The Relational Theory
Assume a signature ¥ = {C, F,CP, P} and Constr. Dom. D.

Generate the relational language:

Rc:{(a,a)|a€Cz} R}-:{Rf|f€f'z,}
Rep = {rlreCPz} Rp = {p|pePs}
Ratom = Rc|Rz[Rep [Rp [id|di[1]0]hd |1
RZ = Ratom‘RZO|R2UR2|R20R2|R2RZ

Interpretation
[]:Rs — P(D x D), where Dt = U,D".

Example
<] = {({m,n)t,(m n)T') | m< nmneR, 0 U €D}

EJGA (CRI-Mines) Allegories and CLP 09/22/2013

7/35

The Relational Theory
Assume a signature ¥ = {C, F,CP, P} and Constr. Dom. D.

Generate the relational language:

Rc:{(a,a)|a€Cz} R}‘Z{Rf|f€.72,}
Rep = {rlreCPz} Rp = {p|pePs}
Ratom = Rc|[Rr|Rep [Rp |id|di|1]0]hd |1
RZ = Ratom‘RZO’RzLJRleZmR):‘RzRZ

Interpretation
[]:Rs — P(D x D), where Dt = U,D".

Example
<] = {{m,n)a, (m)| m<nmnecR, 0t D}
[add] = {({m, n,0)u, (m,n,0)T') | m+n=o0;m,no0cN,u,0 € D

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 7135

Translation Overview: Helpers

Projections and Permutations

P; is the relation projecting the i-th component of a vector; given a
permutation 7r, W is the associated relation.

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 8/35

Translation Overview: Helpers

Projections and Permutations

P; is the relation projecting the i-th component of a vector; given a
permutation 7r, W is the associated relation.

Partial Identity and Existential Quantification

The quasi-identity relation Q; is such that (4, v) € [Qj] if the all but i-th
component of U and v agree.

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 8/35

Translation Overview: Helpers

Projections and Permutations

P; is the relation projecting the i-th component of a vector; given a
permutation 7r, W is the associated relation.

Partial Identity and Existential Quantification

The quasi-identity relation Q; is such that (4, v) € [Qj] if the all but i-th
component of U and Vv agree.
Wrapping a relation R in Q;RQ; has the logical effect of existentially
quantifying /!

Q. R---S ;Q

N——
i—private forR---S

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 8/35

Translation Overview: Helpers

Projections and Permutations

P; is the relation projecting the i-th component of a vector; given a
permutation 7r, W is the associated relation.

Partial Identity and Existential Quantification

The quasi-identity relation Q; is such that (4, v) € [Qj] if the all but i-th
component of U and Vv agree.
Wrapping a relation R in Q;RQ; has the logical effect of existentially
quantifying /!

Q. R---S ;Q

N —
i—private forR---S

We’ll also use a variation of Qj, I, that “hides” all the elements greater
than n.

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 8/35

Translation Overview [1/3]: Terms

Key Idea

Aterm t[X] € Tx(X) is translated to a relation between all its ground
instances and instantiations for X:

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 9/35

Translation Overview [1/3]: Terms

Key Idea

Aterm t[X] € Tx(X) is translated to a relation between all its ground
instances and instantiations for X:

(b, @0) € [K(tX)]? < b= tP[a/X]

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 9/35

Translation Overview [1/3]: Terms

Key Idea

Aterm t[X] € Tx(X) is translated to a relation between all its ground
instances and instantiations for X:

(b, @0) € [K(tX)]? < b= tP[a/X]

Formally:

(c,c)1 ift=c
K(t): Te(X) =Ry = { P? if t = x;

1

ﬂign fIrK(t,) if t = f(t1 tn)

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 9/35

Translation Overview [1/3]: Terms

Key Idea

Aterm t[X] € Tx(X) is translated to a relation between all its ground
instances and instantiations for X:

(b, @0) € [K(tX)]? < b= tP[a/X]

Formally:
(c,c)1 ift=c
K(t): Te(X) = Ry = ¢ P} if t = x;
Ni<n FTK(E) ift=1f(ty,...)
Example

K(f(x1,9(x2, a h(x1)))) = f2; Py N 2 (97; Ps N g%: (2, @); 1N g5; h; PY)

v

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 9/35

Translation Overview [2/3]: Constraints

Key Idea

A constraint ¢[X] € Lp is translated to the set of all its ground solutions,
encoded as a coreflexive relation:

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 10/35

Translation Overview [2/3]: Constraints

Key Idea

A constraint ¢[X] € Lp is translated to the set of all its ground solutions,
encoded as a coreflexive relation:

(30, 30 € [K(9[X])]” <= D | g[a/%]

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 10/35

Translation Overview [2/3]: Constraints

Key Idea

A constraint ¢[X] € Lp is translated to the set of all its ground solutions,
encoded as a coreflexive relation:

(30, 30 € [K(9[X])]” <= D | g[a/%]

Formally:

K(Beip K@) it = p(d)
K(t): Lp — Ry = ((p)ﬁK(G) ifop=9pA0
Q:K(p):; Q ife=3x.0¢

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 10/35

Translation Overview [2/3]: Constraints

Key Idea

A constraint ¢[X] € Lp is translated to the set of all its ground solutions,
encoded as a coreflexive relation:

(30, 30 € [K(9[X])]” <= D | g[a/%]

Formally:

K(Beip K@) it = p(d)
K(t): Lp — Ry = (go)ﬁK(G) ifop=9pA0
Q:K(p):; Q ife=3x.0¢

Example

K(3X1X2.S(X1) < X2) = 0102 (PO s° P1 ﬂP P2) (P1 S; Poﬂpg);01 02

v

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 10/35

Translation Overview [3/3]: Predicates

Key Idea
Defined predicates p are translated to equations p = R.

EJGA (CRI-Mines) Allegories and CLP

Translation Overview [3/3]: Predicates

Key Idea
Defined predicates p are translated to equations p = R.

Theorem (Adequacy)

(3w, at’) € [p]°" < p(@) € TY

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 11/35

Translation Overview [3/3]: Predicates

Key Idea
Defined predicates p are translated to equations p = R.

Theorem (Adequacy)

(3w, at’) € [p]°" < p(@) € TY

The Procedure
Purify clause’ heads, canonical renaming, Clark completion.

The Relational Step!

EJGA (CRI-Mines) Allegories and CLP 09/22/2013

11/35

Translation Overview [3/3]: Predicates

Key Idea
Defined predicates p are translated to equations p = R.

Theorem (Adequacy)

(3w, at’) € [p]°" < p(@) € TY

The Procedure
Purify clause’ heads, canonical renaming, Clark completion.
The Relational Step!
add(xy, X2, X3) < X; =0, X2 = X3.
add(xy, X2, X3) <« X1 = S(X4), X3 = S(X5), add (x4, X2, X5).

EJGA (CRI-Mines) Allegories and CLP 09/22/2013

11/35

Translation Overview [3/3]: Predicates

Key Idea
Defined predicates p are translated to equations p = R.

Theorem (Adequacy)

(3w, at’) € [p]°" < p(@) € TY

The Procedure

Purify clause’ heads, canonical renaming, Clark completion.

The Relational Step!
add(xy, X2, X3) < X; =0, X2 = X3.

add K(X1:O/\X2=X3)

Iy K(x1 = 8(x4) A x3 = s(x5)); W; add; W°; I

add(xq, X2, X3) X = S(x4), X3 = S(x5), add(xy, X2, X5).
U

v

EJGA (CRI-Mines) Allegories and CLP

09/22/2013

11/35

Program Execution

Relations and Computation

rAN(sVit) < rAsVrAt RN (SUT)=(RNS)U(RNT)

EJGA (CRI-Mines) Allegories and CLP

Program Execution

Relations and Computation

rn(sVt)<rAsvVrAt RN (SUT)=(RNS)U(RNT)
Computation rule RN(SUT)— (RNS)U(RNT)

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 12/35

Program Execution

Relations and Computation

rn(sVt)<rAsvVrAt RN (SUT)=(RNS)U(RNT)
Computation rule RN(SUT)— (RNS)U(RNT)
Cut rule SUT>S SUT—S

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 12/35

Program Execution

Relations and Computation

rn(sVt)<rAsvVrAt RN (SUT)=(RNS)U(RNT)
Computation rule RN (SUT)— (RNS)U(RNT)
Cut rule SUTD>S SUT~—S
Queries

For executing a query, we just intersect and rewrite, for instance for
add(o, 0,0):

K(xi = Xop = X3 = 0) N add

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 12/35

Rewriting and the Modular Law

Some Sample Rules

OUR™R O0NR+>=0 (RUSSNTZ (RNT)U(SNT)

v

Meta Rules
Calls to the constraint solver are modeled by meta-rewriting rules:

K(ip1) N K (2) = K(1 A o)

Procedure Call: The Modular Law

K() N Im(R) == In(Im(K ()) N R) N K ()

We hide variables in i that may be in conflict with variables in R, but we
need to “unhide” them later.

v

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 13/35

Example Execution

Query: add(o,s(0),X)

1 kK(o,s(0),x3)k N add

EJGA (CRI-Mines) Allegories and CLP

Example Execution

Query: add(o,s(0),X)

1 kK(o,s(0), x3)k N add —
2 kK(o,s(0),x3)k N (K(0, X2, X2) U
(I3[K(S(4),X2,S(X5),X4,X5) N W% WO]I3)) —

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 14 /35

Example Execution

Query: add(o,s(0),X)

1 kK(o,s(0), x3)k N add —
2 /3K(O S() X3)/3 N (K(O, X2,X2) U
(13[(()Xg,S(Xs),X4,X5) N W add WO]I3)) —
h[K(o,s(0),x3) NK(0, X2, X2)] I3 U
l3(K(o s(0), x3) N K(S(xa), X2, $(Xs5), X4, X5)
W add W°) I —

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 14 /35

Example Execution

Query: add(o,s(0),X)

1 kK(o,s(0), x3)k N add —
/3K(O,S(O ,X3)/3 N (K(O, X2,X2) U
(b[K(s(Xa), X2, 5(x5), Xa, Xs) N W add W°l3)) —

3 /3[K(O, S(O), X3) N K(O, Xo, Xg)]/3 U
l(K(0,5(0), x3) NK(s(xa), X2, S(X5), Xa, X5)N
W add W°)ls

4 K(o,s(0),s(0))Uk[0NWadd W]l

Ll

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 14 /35

Example Execution

Query: add(o,s(0),X)

1 kK(o,s(0), x3)k N add —
/3K(O,S(O ,X3)/3 N (K(O, X2,X2) U
(b[K(s(Xa), X2, 5(x5), Xa, Xs) N W add W°l3)) —

3 /3[K(O, S(O), X3) N K(O, Xo, Xg)]/3 U

l(K(0,5(0), x3) NK(s(xa), X2, S(X5), Xa, X5)N

W add W°)ls

K(o,s(0),s(0))Uk[0N W add W°]l;

K(0.5(0),s(0))

5 IEN
14

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 14 /35

Why move to Categories?

An old thought (2004)

“We need types to run fast and allocate memory for the relations.”
Just a implementor’s intuition.

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 15/35

Why move to Categories?

An old thought (2004)

“We need types to run fast and allocate memory for the relations.”
Just a implementor’s intuition.

Problems of the Pure Relational Approach

m Terms and substitution are complex. Duplicity of relational terms
everywhere. 6 months of research just for unification.

m Difficult to implement. AT = Tz U TZ U (75)*U... is a hell of a
data type.

m Renaming apart is difficult to model and understand. Crucial
information is missing the number of variables currently in use.
Combinatorial approach: bad for performance.

m Efficiency is difficult due to duplicity.

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 15/35

Allegories versus RA

What is the domain for the relations?

Signature?

How are variables represented?

EJGA (CRI-Mines) Allegories and CLP

Allegories versus RA

What is the domain for the relations?
QRA A single domain 73z U 75 U (T5)* U
Allegory Types represent fixed-length sequences of terms.

Signature?

How are variables represented?

v

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 16/35

Allegories versus RA

What is the domain for the relations?
QRA A single domain 7z U 75 U (7T5)*U....
Allegory Types represent fixed-length sequences of terms.

Signature?

QRA New relations for every constant and term former.
Allegory Freely adjoined arrows.

How are variables represented?

v

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 16/35

Allegories versus RA

What is the domain for the relations?
QRA A single domain 7z U 75 U (7T5)*U....
Allegory Types represent fixed-length sequences of terms.

Signature?

QRA New relations for every constant and term former.
Allegory Freely adjoined arrows.

How are variables represented?
QRA Untyped projections.
Allegory We use categorical projections.

In essence, we replace typed projections n,N : N — 1 for untyped
quasiprojections P; : A" «++ Af. A small change with big implications.

v

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 16/35

Categories of Syntax (Lawvere Categories)

Defining the Category

For a signature X, we define a Lawvere Category C:
m Objects are the natural numbers. Terminal object 0, the rest of the
objects are powers of 1, 1x1x1 =2x1 = 1x2 = 3.
m For every constant a € Ty, we freely adjoin an arrow a: 0 — 1.
m For every function symbol f € Ty, with arity a(f) = N, we freely
adjoin an arrow f: N — 1.

Example

For instance, for £ = ({0}, {s/1,+/2}), C has all the terminal and
product arrows plus0:0 —1,s:1 —>1and +:2 — 1.

Initial Model

The initial model is a functor C — Set which preserves finite products
and pullbacks. It maps the object 1 to 7x.

v

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 17/35

Regular Categories, Tabular Relations

Regular Category
Category with products, pullbacks and certain exactness conditions.

Categories of Relations

f:C— Aand g: C — Bis a monic pair iff (f,g) : C — A x Bis monic,
informally, a subset of A x B, thus, (f, g) represent a relation from A to

B:
C
DR
A B

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 18/35

Allegories

Allegories and Distributive Allegories

An (distributive) allegory is a category with added structure, such that if
f,.g: A— Barearrows, (fUg)fNng: A— Band f°: B— Aare
arrows and obey the appropriate relational laws. Typed version of
relational algebras.

Tabular Allegories

An allegory is tabular if for each morphism R there is a pair of maps f, g,
such that R = f°; g. We say that (f, g) tabulate R. Regular categories
are categories of maps for tabular allegories, thus they generate them.
Diagrammatically:

C C

v

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 19/35

Regular Lawvere Categories

Pullbacks in Syntax Categories
m In C, arrows are freely added.
m No way of equalizing constants a,b: 0 — 1.
m C is not a regular category, it lacks pullbacks.

EJGA (CRI-Mines) Allegories and CLP 09/22/2013

20/35

Regular Lawvere Categories

Pullbacks in Syntax Categories
m In C, arrows are freely added.
m No way of equalizing constants a,b: 0 — 1.
m C is not a regular category, it lacks pullbacks.

Regular Completion of C
m Adjoin an initial object L

m Freely adjoin the corresponding initial arrows ?4 : 1 — A for every
object A. Apply the quotient ?4; f =?g for any arrow f : A — B.

m Now every arrow can be made equal to another, L;a= 1, b.

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 20/35

Regular Lawvere Categories: Examples

Renaming Apart

In the case of a pullback, every term feeds from a different set of
variables, so unification module renaming apart is guaranteed.

id <7'[1

2 p A 72)
704 id 74 |
2 1
qs|

3

L

(4, 3)

1 —

T

So each clause will be translated to feed from the same set of variables.,

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 21/35

>.-Allegories

>-Allegories

>-Allegories are distributive allegories generated from a Regular
Lawvere Category for the signature £ and thus partially tabular. They
are the target of our translation.

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 22/35

Term Translation

For a sequence of terms X = f[y], K(f[y]) is the coreflexive relation:

Reqisters
If we look at a completed clause:

p(X') X = {[y], p1 (w1 (X)), ..., Pn(Wn(X)).

itis clearthat X = xq,..., Xp plays the role of parameter registers.
Names are eliminated by using (ti, ..., tn).

EJGA (CRI-Mines) Allegories and CLP 09/22/2013

23/35

Encoding terms and registers

Correspondence of concepts:

Arrows (tabulations, f, g) Arrays of terms
Projections (7t;) Pointers

Domain of tabulations Free (heap) variables (Yi)
Target of tabulations Registers (Xi)
Composition of tabulations (f; g) | Substitution

Intersection Term Unification

Example (Term Storage in Registers)

X1 = f(Y1,Y3) 3

fi = (mq, m3); f O 1%
X2 =g(Y2 a) & &
fo = (mp,12;a); g 0% (f, f)°; (fy,)

v

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 24/35

The Relational Step

Step 1: Local Storage
We previously translated the clause:

P(¥) < X = T[7], p1 (W (%), ... Pa(Wn(%)).

to
p=K(>{@NW;pr Wyn--- 0 Wy b Wiy

but now the number of arguments of |X|, | X’| may not be the same.

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 25/35

The Relational Step
Step 1: Local Storage

We previously translated the clause:
p(X') % =1y}, p1 (w4 (X)), ... Po(Wn(X)).

to
[_JZK(_I")HW1;[T1; Wy n---n Wy pn W,

but now the number of arguments of |X|, | X’| may not be the same.

Step 2: Environments

We introduce environment creation (and its reciprocal, destruction)
relations Iyy = (71, ..., tm)° : M — N. Now the clause is translated to:

Ian; (K (F) O Wi oy WY 01 -0 W B W) gy

M are parameters, N — M is the number of local variables.

v

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 25/35

Environment Management

Environments: Iyn
We introduce an environment creation

(and its reciprocal, destruction) relation ~ <
_ o . <\‘}, A
/MN = <7‘L’1 7'(m> M — N. A %’
¢
(72)° : 1 — 2 is the canonical “new” 5 I3 5
variable creation relation. |
Example (Compile time optimization)
2./3
Let two registers in . q\ />,-
R= (my;f,my;9) 11— 2. ‘
Compute R°; R; bp3. \4\\‘ &
R; R°; I3 >
2 3

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 26/35

Intersection and Procedure Call

Coreflexive Arrows

If R, S are coreflexive then RN S = R; S. This is highly convenient, and
we may eliminate N and simplify our machine.

v

Procedure Call

The previous translation is semantically correct translation, but

Wi Ink; Pi; Inge; W 2 N — N is not in general a coreflexive relation, so
we cannot apply N elimination.

We fix this using a correflexive version: (idy_y(p,) < Pi)N — N. Then, if
A; = N — «(p;) the final translation is:

D = Iun; (K(1); Wy; (ida, x P1); Wy;...; Wa; (ida, % Pn)i Wi);: Iyn

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 27/35

Example: Partial Evaluation

Translation of add

add(x1, X, X3) < X1 =0,X2= Y1, X = 1.
add(x1, X2, X3) < x1=58(y1), X2 = y2,X3 = 5(¥3), Xa = y1, X5 = 3,
add(x4,x2,x5).

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 28/35

Example: Partial Evaluation

Translation of add

add(xq, X2, X3) <
add(x1 , Xo, X3) =

add

X1 =0,X2=Y1,X3 = V1.

X1 =8(¥1), X2 = Y2,X3 = S(¥3), Xa = Y1, X5 = Y3,
add(x4,x2,x5).

(0,711, 71)°; {0, 771, 7T1) L
135; <7'L'1 S, 7tg, 7T3S, 7T, 7T3>; W; (idg X add); Wwe: /§5

EJGA (CRI-Mines)

Allegories and CLP 09/22/2013 28/35

Example: Partial Evaluation

Translation of add

add(xq, X2, X3)
add(x1 , Xo, X3) =

add

X1 =0, X2=V1,X3 = J1.

X1 =8(y1), X2 = Y2, X3 = S(¥3), Xa = Y1, X5 = Y3,
add(x4,x2,x5).

(0,711, 71)°; {0, 771, 7T1) L
I35; <7T1 S, Tto, 713 S, 71, 7'(3>; W; (idg X add); WO; /§5

Unfold

Execute add without a query!

add

etc. ..

= <O, 7T1,7T1>°;<O, 7T1,7'(1>
U (os, 1y, 118)°; (08, 111, 711 S) -
U ks <7'C1 SS, 7To, 713 SS, T4, 7'[3); w; (Idg X add); we; /§5

EJGA (CRI-Mines)

v

Allegories and CLP 09/22/2013 28/35

Composition of tabular relations: the core

PV

EJGA (CRI-Mines) Allegories and CLP

Composition of tabular relations: the core

M /C\N]
e N

EJGA (CRI-Mines) Allegories and CLP

Composition of tabular relations: the core

T—=0

IN,
e

EJGA (CRI-Mines) Allegories and CLP

Composition of tabular relations: the core

TvT—=0

/v\ -
NN

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 29/35

Composition of tabular relations: the core

TvT—=0

/v\ -
NN

Composition captures unification, parameter passing, renaming apart,
variable allocation and (a form of) garbage collection. J

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 29/35

The Pullback Algorithm

Definition (Arrow Normalization)

We write — for the associated normalizing relation based on —g:
R

h;{f,.g) —r (hf h9g)
(f.g);my —p f

(f,g);m —p g

f;!N —Rr m f:M— N

Definition (Starting Diagram)
For a pullback problem, build the pre-starting diagram P:

NxN - M

TT2; g

EJGA (CRI-Mines) Allegories and CLP

09/22/2013

30/35

The Pullback Algorithm

The starting diagram is:

f/
N+ N/ d - <7T1 7TN+N/> N+ N/ _:_ M
gl
ff=_,..., fw), g ={g1,..., av), S={fi~g,..., f =~ gu}. Initial
state (S| (mq, ..., ninen))- Proceed iteratively:
'via =~ 'w:b = Fail
'va ~ hf = Fail
gf = g;f = Fai
i o~ m = (S|S(mh)
T ~ gf = (8]8S(, g f, h))
ma =~ m = (S]S(i'miah))
'wia = Wa = (S']|h
gf = gif = ({gr=gj}uU---U{gn=grtuS|h)

EJGA (CRI-Mines)

Allegories and CLP 09/22/2013

31/35

Specification of the machine

Diagram Rewriting
Basic diagrams: (f | g), RiU---URpand (f | (g, [R])).

(f19): (' | @) B8 (mf| g
(f| (gk.gn)); (idk x pn) = (F| (gk.[gnip1])) U

: U

(F | (9K, [ow: o))
(f1€9.[(g" 1 g))) = (fl1(9.9))
(| (g, [E])) — (hf|(hg[E]) WE=E
RUS —~ RUS iff R = R
ouUS = S

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 32/35

The Machine: An Example

A query add(s(X), Y, Z) is translated to (711 s, 710, 713); add:

(7‘[13, 7[2,7'[3);% =

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 33/35

The Machine: An Example

A query add(s(X), Y, Z) is translated to (711 s, 710, 713); add:

(7‘[1 S, Tto, 71.'3);%
((7‘(13, Tlo, 7'[3); (0, 7T1,7'C1>) U...

i

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 33/35

The Machine: An Example

A query add(s(X), Y, Z) is translated to (711 s, 710, 713); add:

(7(13, 7[2,7'[3);%
((7‘[15,7‘[2,7'[3);(0,7‘[1,7‘[1>)U... .
ouU (71'1 S, Tto, 7'[3); /35; <7'L’1 S, 7tp, 7138, 714, 7'[3); W; (Id2 X add); Wo; /55

Ly

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 33/35

The Machine: An Example

A query add(s(X), Y, Z) is translated to (711 s, 710, 713); add:

(118, 712, 113); add

((7‘[15,7‘[2,7'[3);(0,7‘[1,7‘[1>)U... L

ou (71'1 S, Tto, 7'[3); /35; <7T1 S, 7tp, 7138, 714, 7'[3); W; (Idz X add); Wo; /55
(1118, 02, 713); las; (7148, T2, 03, 714, 7U3); Wi (id x add); W°; Igg

Ly

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 33/35

The Machine: An Example

A query add(s(X), Y, Z) is translated to (711 s, 710, 713); add:

(118, 712, 113); add

((7'[13,7'[2,7'[3);(0,7T1,7'C1>)U... -

ouU (71'1 S, Tto, 7'[3); /35; <7T1 S, 7tp, 7138, 714, 7'[3); W; (Idz X add); WO; /55

(7‘[1 S, 7o, 7'[3); /35; (7‘[1 S, 7o, 7138, 711, 7'[3); W; (Id2 X add); WO; /§5 o

((rtys, 72, 713) | (1118, 702, 713, M4, 75)); (7148, 72, T3S, 714, 7M3); W (id x add); W°; I55

R

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 33/35

The Machine: An Example

A query add(s(X), Y, Z) is translated to (711 s, 710, 713); add:

(118, 712, 113); add

((7‘[15,7‘[2,7'[3);(0,7‘[1,7‘[1>)U... .

ou (71'1 S, Tto, 7'[3); /35; <7T1 S, 7tp, 7138, 714, 7'[3); W; (Idz X add); WO; /§5

(1118, 02, 713); las; (7118, T2, 73S, 714, 7U3); Wi (ida x add); W°; Igg

({18, 110, 113) | (7118, T2, T3, TU4, TT5)); (718, TTo, T3S, 71, mtz); Wi, (idy x add); We; Iy
({18, 72, 7138) | (7118, M2, T3S, 71, 713)); W (idh x add); We; I

R

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 33/35

The Machine: An Example

A query add(s(X), Y, Z) is translated to (711 s, 710, 713); add:

(7‘[13 7o, 7'[3)'%

({18,112, m3); (0, 714, 7T1)) U .. o

ou (7‘[18 Tto, 7'[3) /35 <7T1S Ttp, 7138, 714,) (Idz X add) we; /§5

(7‘[18 Tto, 7'[3) /35 (7‘[18 Ttp, 7138, 74, 7'[3) W (Id2 X add) we; /§5

({118, 110, 113) | (7118, M2, T3, U4, TT5)); (7'[13 T, 7138, 01, 713); W (ide x add); W°; I5g
((my8, 12, m3S) | (M1, M2, M3, 711, 3)); W, (ida x add); W°; I,

(<7T1 S, T2, 7'[3$> ‘ <7'[1 S, 7138, 711, T2, 71'3)) (Idz X add) we; /§5

R R

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 33/35

The Machine: An Example

A query add(s(X), Y, Z) is translated to (711 s, 710, 713); add:

(7‘[13 7o, 7'[3)'%

({18,112, m3); (0, 714, 7T1)) U .. o

ou (7‘[18 Tto, 7'[3)'/35' <7T1S Ttp, 7138, 714,) (Idz X add) we; /§5

(7‘[18, 7'[2,7'[3);/35 (7‘[18 Ttp, 7138, 74, 7'[3) W (Id2 X add) we; /§5

({118, 110, 113) | (7118, M2, T3, U4, TT5)); (7'[13 T, 7138, 01, 713); W (ide x add); W°; I5g
((my8, 12, m3S) | (M1, M2, M3, 711, 3)); W, (ida x add); W°; I,

(<7T1 S, T2, 7'[3$> ‘ <7'[1 S, 7138, 711, T2, 71'3)), (Idz X add) we; /§5

({18, 712, m38) | (118, 7138, [(71, 702, M3)5 (0, 704, 7T1)]); we; I35 U

S 4

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 33/35

The Machine: An Example

A query add(s(X), Y, Z) is translated to (711 s, 710, 713); add:

(7‘[13 7[2,7'[3)'% =
((7‘[15 7'[2,7'[3) (0,7‘[1,7‘(1>)U... . =
ou (7‘[18 Tto, 7'[3)'/35' <7T1S Ttp, 7138, 714,) (Idz X add) we; l§5 =
(7‘[18, 7'[2,7'[3);/35 (7‘[18 Ttp, 7138, 74, 7'[3) W (Id2 X add) we; /§5 =
({118, 110, 113) | (7118, M2, T3, U4, TT5)); (7'[13 T, 7138, 7Ty, 7i3); Wi (ide x add); We; I5; =
(<7'L'1 S, Tto, 7T3$> ‘ <7'[1 S, 7o, 7138, 714, 7T3>) (Idg X add) we; /85 =
(<7T1 S, T2, 7'[3$> ‘ <7'[1 S, 7138, 711, T2, 71'3)) (Idz X add) we; /§5 =
((rty8, Mo, 1138) | (1118, 1138, [(7111, T2, TT3); (O, TT1, TT1)]); W° I35 U =
((os, 1, 18) | (08, 718, [(0, 711, 771)]); W°; I35 U =

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 33/35

The Machine: An Example

A query add(s(X), Y, Z) is translated to (711 s, 710, 713); add:

(7‘[13 7[2,71’3)'% =
((7‘[15 7'[2,7'[3) (0,7‘[1,7‘(1))U... . =
ou (7‘[18 Tto, 7'[3)'/35' <7T1S Ttp, 7138, 714,) (Id2 X add) we; l§5 =
(7‘[18, 7'[2,7'[3);/35 (7‘[18 Ttp, 7138, 74, 7'[3) W (Idz X add) we; /§5 =
({118, 110, 113) | (7118, M2, T3, U4, TT5)); (7'[13 T, 7138, 7Ty, 7i3); Wi (ide x add); We; I5; =
(<7'L'1 S, Tto, 7T3$> ‘ <7'[1 S, 7o, 7138, 714, 7T3>) (Idg X add) we; /85 =
(<7T1 S, T2, 7'[3$> ‘ <7'[1 S, 7138, 711, T2, 71'3)) (Idz X add) we; /§5 =
((rty8, 1m0, 1138) | (7118, 1138, [(711, 72, T03); (O, 701, TT1)]); W° I35 U =
((os, 1, 18) | (08, 718, [(0, 711, 771)]); W°; I35 U =
({os, my, 18) | (08, 118, 0, 7U1, 71); W°; /35U... =

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 33/35

The Machine: An Example

A query add(s(X), Y, Z) is translated to (711 s, 710, 713); add:

(7‘[13 7[2,71’3)'% =
((7‘[15 7'[2,7'[3) (0,7‘[1,7‘(1))U... . =
ou (7‘[18 Tto, 7'[3)'/35' <7T1S Ttp, 7138, 714,) (Id2 X add) we; l§5 =
(7‘[18, 7'[2,7'[3);/35 (7‘[18 Ttp, 7138, 74, 7'[3) W (Idz X add) we; /§5 =
({118, 110, 113) | (7118, M2, T3, U4, TT5)); (7'[13 T, 7138, 7Ty, 7i3); Wi (ide x add); We; I5; =
(<7'L'1 S, Tto, 7T3$> ‘ <7'[1 S, 7o, 7138, 714, 7T3>) (Idg X add) we; /85 =
(<7T1 S, T2, 7'[3$> ‘ <7'[1 S, 7138, 711, T2, 71'3)) (Idz X add) we; /§5 =
((rt18, 72, 38) | (7118, 7038, [(774, 7Y2, 7U3); (O, T4,)]) we; I35 U =
({os, 71, m18) | (08, ™18, [(0, 7T1yﬂ1>]> we; /§5 =
((os, 71y, T18) | (08, 718, 0,711, 711)); W5 Ig5 =
((os, 1, 18) | {08, 71, 7118, O, 7r1>) BsU. =

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 33/35

The Machine: An Example

A query add(s(X), Y, Z) is translated to (711 s, 710, 713); add:

<7T1S 7[2,7'1’3> add =
((7‘[15 7'(2,7'[3) (0,7‘[1,7‘(1>)U... . =
ou <7I1S Tto, 7'[3) /35 <7T1S Ttp, 7138, 714,) (Id2 X add) we; /§5 =
(7‘[18 7o, 7'[3) /35 <7'L’1S Ttp, 7138, 74, 7'[3) W (Idz X add) we; /§5 - =
({118, 110, 113) | (7118, M2, T3, U4, TT5)); (7'[15 T, 7138, 7Ty, 7i3); Wi (ide x add); We; I5; =
(<7'L'1S TTo, 7T3S> ‘ <7'[1 S, 7o, 7138, 714, 7T3>) (Idg X add) we; I§5 =
(<7T1S TTo, 7'[33> ‘ <7'[1 S, 7138, 711, T2, 71'3)) (Idg X add) we; /§5 =
({18, M2, m38) | (1118, 738, [(71, 72, 713); (0, 704, 7T1)]); we; I35 U =
((os, 1, 18) | (08, 718, [(0, 711, 771)]); W°; I35 U =
((os, 7y, 18) | (08,718, 0,711, 71)); WO, I35 U ... =
((os, 1, m18) | (08, 71, 7148, 0,711)); g5 U =
(oS, 714, 7T1S>U...

then (os, 7r1, 7118) is translated back to the answer X = 0, Z = s(Y).

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 33/35

Future work

Not in this talk:
m Extensions: Monads, types, functions.
m Diagrams.
m Relational Unification.

Future Work:

Beyond logic logic programming? Other applications?
Higher-order types.

Coalgebraic derivations [Komendantskaya-Power2011]

Full formalization down to the instruction level.

Research algebraic optimization. [R; (SUT) = R;SUR,; T]
New Coq formalization and compiler: at 50%.

EJGA (CRI-Mines) Allegories and CLP 09/22/2013

34/35

The End

Merci pour votre attention.

Questions?

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 35/35

