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Recall (Basic) Logic Programming

Computation = Proof Search
Basics Program (T'), query (3X. ¢), provability relation ().
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Recall (Basic) Logic Programming

Computation = Proof Search
Basics Program (T'), query (3X. ¢), provability relation ().
Execution Find a proof of I' - 3X. ¢.
Output Witnesses a for X. Possibly fresh variables in a!

Example

add(0, X, X). (VX)
add(X+1, Y, Z+1) <- add(X, Y, Z). (VXYZ)
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Recall (Basic) Logic Programming

Computation = Proof Search
Basics Program (T'), query (3X. ¢), provability relation ().
Execution Find a proof of I' - 3X. ¢.
Output Witnesses a for X. Possibly fresh variables in a!

Example

add(0, X, X). (VX)
add(X+1, Y, Z+1) <- add(X, Y, Z). (VXYZ)

?7- add(3, X, 4).
X=1} 7 ;
no more
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Recall (Basic) Logic Programming

Computation = Proof Search

Basics Program (T'), query (3X. ¢), provability relation ().
Execution Find a proof of I' - 3X. ¢.

Output Witnesses a for X. Possibly fresh variables in a!

Example
add(0, X, X). (VX)
add(X+1, Y, Z+1) <- add(X, Y, Z). (VXY2)
?- add(3, X, 4). ?- add(X, Y, Z).
{X =1} ? ; {X=0,2=Y ?} ;
no more {X = s(o), Z=5s(Y) ? } [more]

Constraints: primitive class of formulas solved externally.
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Combinatorial Logic Programming

What is our goal?

To reason about logic programming equationally. (“Point-free style”)
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Combinatorial Logic Programming

proof search
What is our goal?

To reason about logic programming equationally. (“Point-free style”)

v

Example

nat(o) < T V X .nat(s(X)) < nat(X)

Point-free means no variables:

nat = {0} Us- nat
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Combinatorial Logic Programming

proof search
What is our goal?

To reason about logic programming equationally. (“Point-free style”)

v

Example

nat(o) < T V X .nat(s(X)) < nat(X)

Point-free means no variables:
nat = {o0,s(0)}Us-s- nat

and equational program reasoning
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Combinatorial Logic Programming

proof search
What is our goal?

To reason about logic programming equationally. (“Point-free style”)

v

Example

nat(o) < T V X .nat(s(X)) < nat(X)

Point-free means no variables:
nat = {0, s(0),s(s(0))}Us-s-s-nat

and equational program reasoning
and proof search: s(s(0)) N nat
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An Existential Problem

Why this is hard?
m Point-free programming is well studied, what is the problem here?

v
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m Point-free programming is well studied, what is the problem here?

m Existential variables have global scope in LP.
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An Existential Problem
Why this is hard?

m Point-free programming is well studied, what is the problem here?
m Existential variables have global scope in LP.

p(s(Y)). %% p(X)

- 3Y, X =5s(Y)
?7 p(X).

v
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An Existential Problem
Why this is hard?

m Point-free programming is well studied, what is the problem here?
m Existential variables have global scope in LP.
p(s(Y)). %% p(X) :- Y, X =5(Y)
?7 p(X).

{ X = s(_X13) }

v
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An Existential Problem
Why this is hard?

m Point-free programming is well studied, what is the problem here?
m Existential variables have global scope in LP.
p(s(Y)). %% p(X) :- Y, X =5(Y)
?7 p(X).
{ X = s(_X13) }

m Two proof withesses for p may not be equal, given it has the “power”
to generate a fresh variable every time it has to be proved.
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An Existential Problem
Why this is hard?
m Point-free programming is well studied, what is the problem here?
m Existential variables have global scope in LP.
p(s(Y)). %% p(X) - Y, X =5(Y)
? p(X)
{ X = s(_X13) }

m Two proof withesses for p may not be equal, given it has the “power”
to generate a fresh variable every time it has to be proved.

m Quantifiers capture this, but use variables! Also, operational
reasoning involves tricky renaming apart, etc. ..
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An Existential Problem
Why this is hard?

m Point-free programming is well studied, what is the problem here?
m Existential variables have global scope in LP.

. %% p(X) - Y, X =5(Y)
?7 p(X).
{ X = s(_X13) }

m Two proof withesses for p may not be equal, given it has the “power”
to generate a fresh variable every time it has to be proved.

m Quantifiers capture this, but use variables! Also, operational
reasoning involves tricky renaming apart, etc. ..

m Use an algebraic theory of logic and
quantification!

4
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Relation Algebra to the Rescue!

Distributive Relation Algebras

Operations N, U, (+)°, -; - satisfying the intended laws of binary relations.
Introduced by Peirce-Schréder in the 19" century, and further
developed by Tarski and his students in mid 20t century.
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developed by Tarski and his students in mid 20t century.

Relations and Logic

N as A and U as V; limited to formulas with at most 3 variables!
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Relation Algebra to the Rescue!

Distributive Relation Algebras

Operations N, U, (+)°, -; - satisfying the intended laws of binary relations.
Introduced by Peirce-Schréder in the 19" century, and further
developed by Tarski and his students in mid 20t century.

Relations and Logic
N as A and U as V; limited to formulas with at most 3 variables!

Extended Relation Algebras

QRA: add (quasi) projections hd, tl; no limit on variables.
Freyd-Maddux-Tarski: QRA capture set theory (“equipollent”).

Allegories
Due to Freyd. We use it as a typed RA, better for our purposes.
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The Plan

Compile, interpret and execute CLP to a QRA:
m Semantics (set of true instances):
] QRAZ
m X-allegories.
m Translation, logical meta-aspects and variables formalized at the
relational level.
m Program to theory between ground terms.
m Program to allegory. Sharing and memory is captured.
m Execution: Two notions of rewriting. Executable semantics. Many
extensions and optimizations possible declaratively: partial
evaluation, abstract interpretation, different search strategies. . .
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m Program to allegory. Sharing and memory is captured.
m Execution: Two notions of rewriting. Executable semantics. Many
extensions and optimizations possible declaratively: partial
evaluation, abstract interpretation, different search strategies. . .

Logic Without Variables + Logic Programming

Formula = Relation
Proof = Equational Derivation

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 6/35



The Plan

Compile, interpret and execute CLP to a QRA:
m Semantics (set of true instances):
] QRAZ
m X-allegories.
m Translation, logical meta-aspects and variables formalized at the
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m Program to theory between ground terms.
m Program to allegory. Sharing and memory is captured.
m Execution: Two notions of rewriting. Executable semantics. Many
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Logic Without Variables + Logic Programming
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Computation = Proof Search = Equational Derivation
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The Plan

Compile, interpret and execute CLP to a QRA:
m Semantics (set of true instances):
] QRAZ
m X-allegories.
m Translation, logical meta-aspects and variables formalized at the
relational level.
m Program to theory between ground terms.
m Program to allegory. Sharing and memory is captured.
m Execution: Two notions of rewriting. Executable semantics. Many
extensions and optimizations possible declaratively: partial
evaluation, abstract interpretation, different search strategies. . .

Logic Without Variables + Logic Programming

Program = Relation
Computation =  Equational Derivation
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The Relational Theory
Assume a signature ¥ = {C, F,CP, P} and Constr. Dom. D.
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The Relational Theory
Assume a signature ¥ = {C, F,CP, P} and Constr. Dom. D.

Generate the relational language:

Rc:{(a,a)|a€Cz} R}-:{Rf|f€f'z,}
Rep = {rlreCPz} Rp = {p|pePs}
Ratom = Rc|Rz[Rep [Rp [id|di[1]0]hd |1
RZ = Ratom‘RZO|R2UR2|R20R2|R2RZ

Interpretation
[]:Rs — P(D x D), where Dt = U,D".

Example
<] = {({m,n)t,(m n)T') | m< nmneR, 0 U €D}
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The Relational Theory
Assume a signature ¥ = {C, F,CP, P} and Constr. Dom. D.

Generate the relational language:

Rc:{(a,a)|a€Cz} R}‘Z{Rf|f€.72,}
Rep = {rlreCPz} Rp = {p|pePs}
Ratom = Rc|[Rr|Rep [Rp |id|di|1]0]hd |1
RZ = Ratom‘RZO’RzLJRleZmR):‘RzRZ

Interpretation
[]:Rs — P(D x D), where Dt = U,D".

Example
<] = {{m,n)a, (m )| m<nmnecR, 0t D}
[add] = {({m, n,0)u, (m,n,0)T') | m+n=o0;m,no0cN,u,0 € D
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Translation Overview: Helpers

Projections and Permutations

P; is the relation projecting the i-th component of a vector; given a
permutation 7r, W is the associated relation.

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 8/35



Translation Overview: Helpers

Projections and Permutations

P; is the relation projecting the i-th component of a vector; given a
permutation 7r, W is the associated relation.

Partial Identity and Existential Quantification

The quasi-identity relation Q; is such that (4, v) € [Qj] if the all but i-th
component of U and v agree.

EJGA (CRI-Mines) Allegories and CLP 09/22/2013 8/35



Translation Overview: Helpers

Projections and Permutations

P; is the relation projecting the i-th component of a vector; given a
permutation 7r, W is the associated relation.

Partial Identity and Existential Quantification

The quasi-identity relation Q; is such that (4, v) € [Qj] if the all but i-th
component of U and Vv agree.
Wrapping a relation R in Q;RQ; has the logical effect of existentially
quantifying /!

Q. R---S ;Q

N——
i—private forR---S
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Translation Overview: Helpers

Projections and Permutations

P; is the relation projecting the i-th component of a vector; given a
permutation 7r, W is the associated relation.

Partial Identity and Existential Quantification

The quasi-identity relation Q; is such that (4, v) € [Qj] if the all but i-th
component of U and Vv agree.
Wrapping a relation R in Q;RQ; has the logical effect of existentially
quantifying /!

Q. R---S ;Q

N —
i—private forR---S

We’ll also use a variation of Qj, I, that “hides” all the elements greater
than n.
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Translation Overview [1/3]: Terms

Key Idea

Aterm t[X] € Tx(X) is translated to a relation between all its ground
instances and instantiations for X:
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Key Idea

Aterm t[X] € Tx(X) is translated to a relation between all its ground
instances and instantiations for X:

(b, @0) € [K(tX)]? < b= tP[a/X]
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Translation Overview [1/3]: Terms

Key Idea

Aterm t[X] € Tx(X) is translated to a relation between all its ground
instances and instantiations for X:

(b, @0) € [K(tX)]? < b= tP[a/X]

Formally:

(c,c)1 ift=c
K(t): Te(X) =Ry = { P? if t = x;

1

ﬂign fIrK(t,) if t = f(t1 ..... tn)
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Translation Overview [1/3]: Terms

Key Idea

Aterm t[X] € Tx(X) is translated to a relation between all its ground
instances and instantiations for X:

(b, @0) € [K(tX)]? < b= tP[a/X]

Formally:
(c,c)1 ift=c
K(t): Te(X) = Ry = ¢ P} if t = x;
Ni<n FTK(E) ift=1f(ty,... )
Example

K(f(x1,9(x2, a h(x1)))) = f2; Py N 2 (97; Ps N g%: (2, @); 1N g5; h; PY)

v
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Translation Overview [2/3]: Constraints

Key Idea

A constraint ¢[X] € Lp is translated to the set of all its ground solutions,
encoded as a coreflexive relation:
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Key Idea

A constraint ¢[X] € Lp is translated to the set of all its ground solutions,
encoded as a coreflexive relation:

(30, 30 € [K(9[X])]” <= D | g[a/%]

Formally:

K(Beip K@) it = p(d)
K(t): Lp — Ry = ((p)ﬁK(G) ifop=9pA0
Q:K(p):; Q ife=3x.0¢
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Translation Overview [2/3]: Constraints

Key Idea

A constraint ¢[X] € Lp is translated to the set of all its ground solutions,
encoded as a coreflexive relation:

(30, 30 € [K(9[X])]” <= D | g[a/%]

Formally:

K(Beip K@) it = p(d)
K(t): Lp — Ry = (go)ﬁK(G) ifop=9pA0
Q:K(p):; Q ife=3x.0¢

Example

K(3X1X2.S(X1) < X2) = 0102 (PO s° P1 ﬂP P2) (P1 S; Poﬂpg );01 02

v
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Translation Overview [3/3]: Predicates

Key Idea
Defined predicates p are translated to equations p = R.
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Translation Overview [3/3]: Predicates

Key Idea
Defined predicates p are translated to equations p = R.

Theorem (Adequacy)

(3w, at’) € [p]°" < p(@) € TY
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Translation Overview [3/3]: Predicates

Key Idea
Defined predicates p are translated to equations p = R.

Theorem (Adequacy)

(3w, at’) € [p]°" < p(@) € TY

The Procedure
Purify clause’ heads, canonical renaming, Clark completion.

The Relational Step!
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Translation Overview [3/3]: Predicates

Key Idea
Defined predicates p are translated to equations p = R.

Theorem (Adequacy)

(3w, at’) € [p]°" < p(@) € TY

The Procedure
Purify clause’ heads, canonical renaming, Clark completion.
The Relational Step!
add(xy, X2, X3) < X; =0, X2 = X3.
add(xy, X2, X3) <« X1 = S(X4), X3 = S(X5), add (x4, X2, X5).
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Translation Overview [3/3]: Predicates

Key Idea
Defined predicates p are translated to equations p = R.

Theorem (Adequacy)

(3w, at’) € [p]°" < p(@) € TY

The Procedure

Purify clause’ heads, canonical renaming, Clark completion.

The Relational Step!
add(xy, X2, X3) < X; =0, X2 = X3.

add K(X1:O/\X2=X3)

Iy K(x1 = 8(x4) A x3 = s(x5)); W; add; W°; I

add(xq, X2, X3) X = S(x4), X3 = S(x5), add(xy, X2, X5).
U

v
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Program Execution

Relations and Computation

rAN(sVit) < rAsVrAt RN (SUT)=(RNS)U(RNT)

EJGA (CRI-Mines) Allegories and CLP



Program Execution

Relations and Computation

rn(sVt)<rAsvVrAt RN (SUT)=(RNS)U(RNT)
Computation rule RN(SUT)— (RNS)U(RNT)
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Program Execution

Relations and Computation

rn(sVt)<rAsvVrAt RN (SUT)=(RNS)U(RNT)
Computation rule RN(SUT)— (RNS)U(RNT)
Cut rule SUT>S SUT—S
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Program Execution

Relations and Computation

rn(sVt)<rAsvVrAt RN (SUT)=(RNS)U(RNT)
Computation rule RN (SUT)— (RNS)U(RNT)
Cut rule SUTD>S SUT~—S
Queries

For executing a query, we just intersect and rewrite, for instance for
add(o, 0,0):

K(xi = Xop = X3 = 0) N add
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Rewriting and the Modular Law

Some Sample Rules

OUR™R O0NR+>=0 (RUSSNTZ (RNT)U(SNT)

v

Meta Rules
Calls to the constraint solver are modeled by meta-rewriting rules:

K(ip1) N K (2) = K(1 A o)

Procedure Call: The Modular Law

K() N Im(R) == In(Im(K ()) N R) N K ()

We hide variables in i that may be in conflict with variables in R, but we
need to “unhide” them later.

v
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Example Execution

Query: add(o,s(0),X)

1 kK(o,s(0),x3)k N add
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Example Execution

Query: add(o,s(0),X)

1 kK(o,s(0), x3)k N add —
2 kK(o,s(0),x3)k N (K(0, X2, X2) U
(I3[K(S( 4),X2,S(X5),X4,X5) N W% WO]I3)) —
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Example Execution

Query: add(o,s(0),X)

1 kK(o,s(0), x3)k N add —
2 /3K(O S( ) X3)/3 N (K(O, X2,X2) U
(13[ ( ( )Xg,S(Xs),X4,X5) N W add WO]I3)) —
h[K(o,s(0),x3) NK(0, X2, X2)] I3 U
l3(K(o s(0), x3) N K(S(xa), X2, $(Xs5), X4, X5)
W add W°) I —
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Example Execution

Query: add(o,s(0),X)

1 kK(o,s(0), x3)k N add —
/3K(O,S(O ,X3)/3 N (K(O, X2,X2) U
(b[K(s(Xa), X2, 5(x5), Xa, Xs) N W add W°l3)) —

3 /3[K(O, S(O), X3) N K(O, Xo, Xg)]/3 U
l(K(0,5(0), x3) NK(s(xa), X2, S(X5), Xa, X5)N
W add W°)ls

4 K(o,s(0),s(0))Uk[0NWadd W]l

Ll
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Example Execution

Query: add(o,s(0),X)

1 kK(o,s(0), x3)k N add —
/3K(O,S(O ,X3)/3 N (K(O, X2,X2) U
(b[K(s(Xa), X2, 5(x5), Xa, Xs) N W add W°l3)) —

3 /3[K(O, S(O), X3) N K(O, Xo, Xg)]/3 U

l(K(0,5(0), x3) NK(s(xa), X2, S(X5), Xa, X5)N

W add W°)ls

K(o,s(0),s(0))Uk[0N W add W°]l;

K(0.5(0),s(0))

5 IEN
14
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Why move to Categories?

An old thought (2004)

“We need types to run fast and allocate memory for the relations.”
Just a implementor’s intuition.
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Why move to Categories?

An old thought (2004)

“We need types to run fast and allocate memory for the relations.”
Just a implementor’s intuition.

Problems of the Pure Relational Approach

m Terms and substitution are complex. Duplicity of relational terms
everywhere. 6 months of research just for unification.

m Difficult to implement. AT = Tz U TZ U (75)*U... is a hell of a
data type.

m Renaming apart is difficult to model and understand. Crucial
information is missing the number of variables currently in use.
Combinatorial approach: bad for performance.

m Efficiency is difficult due to duplicity.
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Allegories versus RA

What is the domain for the relations?

Signature?

How are variables represented?
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Allegories versus RA

What is the domain for the relations?
QRA A single domain 73z U 75 U (T5)* U . ...
Allegory Types represent fixed-length sequences of terms.

Signature?

How are variables represented?

v
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Allegories versus RA

What is the domain for the relations?
QRA A single domain 7z U 75 U (7T5)*U....
Allegory Types represent fixed-length sequences of terms.

Signature?

QRA New relations for every constant and term former.
Allegory Freely adjoined arrows.

How are variables represented?

v
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Allegories versus RA

What is the domain for the relations?
QRA A single domain 7z U 75 U (7T5)*U....
Allegory Types represent fixed-length sequences of terms.

Signature?

QRA New relations for every constant and term former.
Allegory Freely adjoined arrows.

How are variables represented?
QRA Untyped projections.
Allegory We use categorical projections.

In essence, we replace typed projections n,N : N — 1 for untyped
quasiprojections P; : A" «++ Af. A small change with big implications.

v
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Categories of Syntax (Lawvere Categories)

Defining the Category

For a signature X, we define a Lawvere Category C:
m Objects are the natural numbers. Terminal object 0, the rest of the
objects are powers of 1, 1x1x1 =2x1 = 1x2 = 3.
m For every constant a € Ty, we freely adjoin an arrow a: 0 — 1.
m For every function symbol f € Ty, with arity a(f) = N, we freely
adjoin an arrow f: N — 1.

Example

For instance, for £ = ({0}, {s/1,+/2}), C has all the terminal and
product arrows plus0:0 —1,s:1 —>1and +:2 — 1.

Initial Model

The initial model is a functor C — Set which preserves finite products
and pullbacks. It maps the object 1 to 7x.

v
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Regular Categories, Tabular Relations

Regular Category
Category with products, pullbacks and certain exactness conditions.

Categories of Relations

f:C— Aand g: C — Bis a monic pair iff (f,g) : C — A x Bis monic,
informally, a subset of A x B, thus, (f, g) represent a relation from A to

B:
C
DR
A B
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Allegories

Allegories and Distributive Allegories

An (distributive) allegory is a category with added structure, such that if
f,.g: A— Barearrows, (fUg)fNng: A— Band f°: B— Aare
arrows and obey the appropriate relational laws. Typed version of
relational algebras.

Tabular Allegories

An allegory is tabular if for each morphism R there is a pair of maps f, g,
such that R = f°; g. We say that (f, g) tabulate R. Regular categories
are categories of maps for tabular allegories, thus they generate them.
Diagrammatically:

C C

v
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Regular Lawvere Categories

Pullbacks in Syntax Categories
m In C, arrows are freely added.
m No way of equalizing constants a,b: 0 — 1.
m C is not a regular category, it lacks pullbacks.
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Regular Lawvere Categories

Pullbacks in Syntax Categories
m In C, arrows are freely added.
m No way of equalizing constants a,b: 0 — 1.
m C is not a regular category, it lacks pullbacks.

Regular Completion of C
m Adjoin an initial object L

m Freely adjoin the corresponding initial arrows ?4 : 1 — A for every
object A. Apply the quotient ?4; f =?g for any arrow f : A — B.

m Now every arrow can be made equal to another, L;a= 1, b.
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Regular Lawvere Categories: Examples

Renaming Apart

In the case of a pullback, every term feeds from a different set of
variables, so unification module renaming apart is guaranteed.

id <7'[1

2 p A 72)
704 id 74 |
2 1
qs|

3

L

(4, 3)

1 —

T

So each clause will be translated to feed from the same set of variables.,
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>.-Allegories

>-Allegories

>-Allegories are distributive allegories generated from a Regular
Lawvere Category for the signature £ and thus partially tabular. They
are the target of our translation.
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Term Translation

For a sequence of terms X = f[y], K(f[y]) is the coreflexive relation:

Reqisters
If we look at a completed clause:

p(X') X = {[y], p1 (w1 (X)), ..., Pn(Wn(X)).

itis clearthat X = xq,..., Xp plays the role of parameter registers.
Names are eliminated by using (ti, ..., tn).

EJGA (CRI-Mines) Allegories and CLP 09/22/2013
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Encoding terms and registers

Correspondence of concepts:

Arrows (tabulations, f, g) Arrays of terms
Projections (7t;) Pointers

Domain of tabulations Free (heap) variables (Yi)
Target of tabulations Registers (Xi)
Composition of tabulations (f; g) | Substitution

Intersection Term Unification

Example (Term Storage in Registers)

X1 = f(Y1,Y3) 3

fi = (mq, m3); f O 1%
X2 =g(Y2 a) & &
fo = (mp,12;a); g 0% (f, f)°; (fy, )

v
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The Relational Step

Step 1: Local Storage
We previously translated the clause:

P(¥) < X = T[7], p1 (W (%), ... Pa(Wn(%)).

to
p=K(>{@NW;pr Wyn--- 0 Wy b Wiy

but now the number of arguments of |X|, | X’| may not be the same.
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The Relational Step
Step 1: Local Storage

We previously translated the clause:
p(X') % =1y}, p1 (w4 (X)), ... Po(Wn(X)).

to
[_JZK(_I")HW1;[T1; Wy n---n Wy pn W,

but now the number of arguments of |X|, | X’| may not be the same.

Step 2: Environments

We introduce environment creation (and its reciprocal, destruction)
relations Iyy = (71, ..., tm)° : M — N. Now the clause is translated to:

Ian; (K (F) O Wi oy WY 01 -0 W B W) gy

M are parameters, N — M is the number of local variables.

v
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Environment Management

Environments: Iyn
We introduce an environment creation

(and its reciprocal, destruction) relation ~ <
_ o . <\‘}, A
/MN = <7‘L’1 ..... 7'(m> M — N. A %’
¢
(72)° : 1 — 2 is the canonical “new” 5 I3 5
variable creation relation. |
Example (Compile time optimization)
2./3
Let two registers in . q\ />,-
R= (my;f,my;9) 11— 2. ‘
Compute R°; R; bp3. \4\\‘ &
R; R°; I3 >
2 3
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Intersection and Procedure Call

Coreflexive Arrows

If R, S are coreflexive then RN S = R; S. This is highly convenient, and
we may eliminate N and simplify our machine.

v

Procedure Call

The previous translation is semantically correct translation, but

Wi Ink; Pi; Inge; W 2 N — N is not in general a coreflexive relation, so
we cannot apply N elimination.

We fix this using a correflexive version: (idy_y(p,) < Pi)N — N. Then, if
A; = N — «(p;) the final translation is:

D = Iun; (K(1); Wy; (ida, x P1); Wy;...; Wa; (ida, % Pn)i Wi);: Iyn
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Example: Partial Evaluation

Translation of add

add(x1, X, X3) < X1 =0,X2= Y1, X = 1.
add(x1, X2, X3) < x1=58(y1), X2 = y2,X3 = 5(¥3), Xa = y1, X5 = 3,
add(x4,x2,x5).
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Example: Partial Evaluation

Translation of add

add(xq, X2, X3) <
add(x1 , Xo, X3) =

add

X1 =0,X2=Y1,X3 = V1.

X1 =8(¥1), X2 = Y2,X3 = S(¥3), Xa = Y1, X5 = Y3,
add(x4,x2,x5).

(0,711, 71)°; {0, 771, 7T1) L
135; <7'L'1 S, 7tg, 7T3S, 7T, 7T3>; W; (idg X add); Wwe: /§5
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Example: Partial Evaluation

Translation of add

add(xq, X2, X3)
add(x1 , Xo, X3) =

add

X1 =0, X2=V1,X3 = J1.

X1 =8(y1), X2 = Y2, X3 = S(¥3), Xa = Y1, X5 = Y3,
add(x4,x2,x5).

(0,711, 71)°; {0, 771, 7T1) L
I35; <7T1 S, Tto, 713 S, 71, 7'(3>; W; (idg X add); WO; /§5

Unfold

Execute add without a query!

add

etc. ..

= <O, 7T1,7T1>°;<O, 7T1,7'(1>
U (os, 1y, 118)°; (08, 111, 711 S) -
U ks <7'C1 SS, 7To, 713 SS, T4, 7'[3); w; (Idg X add); we; /§5

EJGA (CRI-Mines)

v
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Composition of tabular relations: the core

PV
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Composition of tabular relations: the core

M /C\N ]
e N
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Composition of tabular relations: the core

T—=0

IN,
e
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Composition of tabular relations: the core

TvT—=0

/v\ -
NN
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Composition of tabular relations: the core

TvT—=0

/v\ -
NN

Composition captures unification, parameter passing, renaming apart,
variable allocation and (a form of) garbage collection. J
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The Pullback Algorithm

Definition (Arrow Normalization)

We write — for the associated normalizing relation based on —g:
R

h;{f,.g) —r (hf h9g)
(f.g);my —p f

(f,g);m —p g

f;!N —Rr m f:M— N

Definition (Starting Diagram)
For a pullback problem, build the pre-starting diagram P:

NxN - M

TT2; g

EJGA (CRI-Mines) Allegories and CLP
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The Pullback Algorithm

The starting diagram is:

f/
N+ N/ d - <7T1 ..... 7TN+N/> N+ N/ _:_ M
gl
ff=_,..., fw), g ={g1,..., av), S={fi~g,..., f =~ gu}. Initial
state (S| (mq, ..., ninen))- Proceed iteratively:
'via =~ 'w:b = Fail
'va ~ hf = Fail
gf = g;f = Fai
i o~ m = (S|S( mh)
T ~ gf = (8]8S(, g f, h))
ma =~ m = (S]S(i'miah))
'wia = Wa = (S']|h
gf = gif = ({gr=gj}uU---U{gn=grtuS|h)

EJGA (CRI-Mines)

Allegories and CLP 09/22/2013
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Specification of the machine

Diagram Rewriting
Basic diagrams: (f | g), RiU---URpand (f | (g, [R])).

(f19): (' | @) B8 (mf| g
(f| (gk.gn)); (idk x pn) = (F| (gk.[gnip1])) U

: U

(F | (9K, [ow: o))
(f1€9.[(g" 1 g))) = (fl1(9.9))
(| (g, [E])) —  (hf|(hg[E]) WE=E
RUS —~ RUS iff R = R
ouUS = S
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The Machine: An Example

A query add(s(X), Y, Z) is translated to (711 s, 710, 713); add:

(7‘[13, 7[2,7'[3);% =
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The Machine: An Example

A query add(s(X), Y, Z) is translated to (711 s, 710, 713); add:

(7‘[1 S, Tto, 71.'3);%
((7‘(13, Tlo, 7'[3); (0, 7T1,7'C1>) U...

i
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The Machine: An Example

A query add(s(X), Y, Z) is translated to (711 s, 710, 713); add:

(7(13, 7[2,7'[3);%
((7‘[15,7‘[2,7'[3);(0,7‘[1,7‘[1>)U... .
ouU (71'1 S, Tto, 7'[3); /35; <7'L’1 S, 7tp, 7138, 714, 7'[3); W; (Id2 X add); Wo; /55

Ly
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The Machine: An Example

A query add(s(X), Y, Z) is translated to (711 s, 710, 713); add:

(118, 712, 113); add

((7‘[15,7‘[2,7'[3);(0,7‘[1,7‘[1>)U... L

ou (71'1 S, Tto, 7'[3); /35; <7T1 S, 7tp, 7138, 714, 7'[3); W; (Idz X add); Wo; /55
(1118, 02, 713); las; (7148, T2, 03, 714, 7U3); Wi (id x add); W°; Igg

Ly
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The Machine: An Example

A query add(s(X), Y, Z) is translated to (711 s, 710, 713); add:

(118, 712, 113); add

((7'[13,7'[2,7'[3);(0,7T1,7'C1>)U... -

ouU (71'1 S, Tto, 7'[3); /35; <7T1 S, 7tp, 7138, 714, 7'[3); W; (Idz X add); WO; /55

(7‘[1 S, 7o, 7'[3); /35; (7‘[1 S, 7o, 7138, 711, 7'[3); W; (Id2 X add); WO; /§5 o

((rtys, 72, 713) | (1118, 702, 713, M4, 75) ); (7148, 72, T3S, 714, 7M3); W (id x add); W°; I55

R
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The Machine: An Example

A query add(s(X), Y, Z) is translated to (711 s, 710, 713); add:

(118, 712, 113); add

((7‘[15,7‘[2,7'[3);(0,7‘[1,7‘[1>)U... .

ou (71'1 S, Tto, 7'[3); /35; <7T1 S, 7tp, 7138, 714, 7'[3); W; (Idz X add); WO; /§5

(1118, 02, 713); las; (7118, T2, 73S, 714, 7U3); Wi (ida x add); W°; Igg

({18, 110, 113) | (7118, T2, T3, TU4, TT5)); (718, TTo, T3S, 71, mtz); Wi, (idy x add); We; Iy
({18, 72, 7138) | (7118, M2, T3S, 71, 713) ); W (idh x add); We; I

R
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The Machine: An Example

A query add(s(X), Y, Z) is translated to (711 s, 710, 713); add:

(7‘[13 7o, 7'[3)'%

({18,112, m3); (0, 714, 7T1)) U .. o

ou (7‘[18 Tto, 7'[3) /35 <7T1S Ttp, 7138, 714, ) (Idz X add) we; /§5

(7‘[18 Tto, 7'[3) /35 (7‘[18 Ttp, 7138, 74, 7'[3) W (Id2 X add) we; /§5

({118, 110, 113) | (7118, M2, T3, U4, TT5)); (7'[13 T, 7138, 01, 713); W (ide x add); W°; I5g
((my8, 12, m3S) | (M1, M2, M3, 711, 3)); W, (ida x add); W°; I,

(<7T1 S, T2, 7'[3$> ‘ <7'[1 S, 7138, 711, T2, 71'3)) (Idz X add) we; /§5

R R
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The Machine: An Example

A query add(s(X), Y, Z) is translated to (711 s, 710, 713); add:

(7‘[13 7o, 7'[3)'%

({18,112, m3); (0, 714, 7T1)) U .. o

ou (7‘[18 Tto, 7'[3)'/35' <7T1S Ttp, 7138, 714, ) (Idz X add) we; /§5

(7‘[18, 7'[2,7'[3);/35 (7‘[18 Ttp, 7138, 74, 7'[3) W (Id2 X add) we; /§5

({118, 110, 113) | (7118, M2, T3, U4, TT5)); (7'[13 T, 7138, 01, 713); W (ide x add); W°; I5g
((my8, 12, m3S) | (M1, M2, M3, 711, 3)); W, (ida x add); W°; I,

(<7T1 S, T2, 7'[3$> ‘ <7'[1 S, 7138, 711, T2, 71'3)), (Idz X add) we; /§5

({18, 712, m38) | (118, 7138, [(71, 702, M3 )5 (0, 704, 7T1)]); we; I35 U

S 4
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The Machine: An Example

A query add(s(X), Y, Z) is translated to (711 s, 710, 713); add:

(7‘[13 7[2,7'[3)'% =
((7‘[15 7'[2,7'[3) (0,7‘[1,7‘(1>)U... . =
ou (7‘[18 Tto, 7'[3)'/35' <7T1S Ttp, 7138, 714, ) (Idz X add) we; l§5 =
(7‘[18, 7'[2,7'[3);/35 (7‘[18 Ttp, 7138, 74, 7'[3) W (Id2 X add) we; /§5 =
({118, 110, 113) | (7118, M2, T3, U4, TT5)); (7'[13 T, 7138, 7Ty, 7i3); Wi (ide x add); We; I5; =
(<7'L'1 S, Tto, 7T3$> ‘ <7'[1 S, 7o, 7138, 714, 7T3>) (Idg X add) we; /85 =
(<7T1 S, T2, 7'[3$> ‘ <7'[1 S, 7138, 711, T2, 71'3)) (Idz X add) we; /§5 =
((rty8, Mo, 1138) | (1118, 1138, [(7111, T2, TT3); (O, TT1, TT1)]); W° I35 U =
((os, 1, 18) | (08, 718, [(0, 711, 771)]); W°; I35 U =
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The Machine: An Example

A query add(s(X), Y, Z) is translated to (711 s, 710, 713); add:

(7‘[13 7[2,71’3)'% =
((7‘[15 7'[2,7'[3) (0,7‘[1,7‘(1))U... . =
ou (7‘[18 Tto, 7'[3)'/35' <7T1S Ttp, 7138, 714, ) (Id2 X add) we; l§5 =
(7‘[18, 7'[2,7'[3);/35 (7‘[18 Ttp, 7138, 74, 7'[3) W (Idz X add) we; /§5 =
({118, 110, 113) | (7118, M2, T3, U4, TT5)); (7'[13 T, 7138, 7Ty, 7i3); Wi (ide x add); We; I5; =
(<7'L'1 S, Tto, 7T3$> ‘ <7'[1 S, 7o, 7138, 714, 7T3>) (Idg X add) we; /85 =
(<7T1 S, T2, 7'[3$> ‘ <7'[1 S, 7138, 711, T2, 71'3)) (Idz X add) we; /§5 =
((rty8, 1m0, 1138) | (7118, 1138, [(711, 72, T03); (O, 701, TT1)]); W° I35 U =
((os, 1, 18) | (08, 718, [(0, 711, 771)]); W°; I35 U =
({os, my, 18) | (08, 118, 0, 7U1, 71 ); W°; /35U... =
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The Machine: An Example

A query add(s(X), Y, Z) is translated to (711 s, 710, 713); add:

(7‘[13 7[2,71’3)'% =
((7‘[15 7'[2,7'[3) (0,7‘[1,7‘(1))U... . =
ou (7‘[18 Tto, 7'[3)'/35' <7T1S Ttp, 7138, 714, ) (Id2 X add) we; l§5 =
(7‘[18, 7'[2,7'[3);/35 (7‘[18 Ttp, 7138, 74, 7'[3) W (Idz X add) we; /§5 =
({118, 110, 113) | (7118, M2, T3, U4, TT5)); (7'[13 T, 7138, 7Ty, 7i3); Wi (ide x add); We; I5; =
(<7'L'1 S, Tto, 7T3$> ‘ <7'[1 S, 7o, 7138, 714, 7T3>) (Idg X add) we; /85 =
(<7T1 S, T2, 7'[3$> ‘ <7'[1 S, 7138, 711, T2, 71'3)) (Idz X add) we; /§5 =
((rt18, 72, 38) | (7118, 7038, [(774, 7Y2, 7U3); (O, T4, )]) we; I35 U =
({os, 71, m18) | (08, ™18, [(0, 7T1yﬂ1>]> we; /§5 =
((os, 71y, T18) | (08, 718, 0,711, 711) ); W5 Ig5 =
((os, 1, 18) | {08, 71, 7118, O, 7r1>) BsU. =
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The Machine: An Example

A query add(s(X), Y, Z) is translated to (711 s, 710, 713); add:

<7T1S 7[2,7'1’3> add =
((7‘[15 7'(2,7'[3) (0,7‘[1,7‘(1>)U... . =
ou <7I1S Tto, 7'[3) /35 <7T1S Ttp, 7138, 714, ) (Id2 X add) we; /§5 =
(7‘[18 7o, 7'[3) /35 <7'L’1S Ttp, 7138, 74, 7'[3) W (Idz X add) we; /§5 - =
({118, 110, 113) | (7118, M2, T3, U4, TT5)); (7'[15 T, 7138, 7Ty, 7i3); Wi (ide x add); We; I5; =
(<7'L'1S TTo, 7T3S> ‘ <7'[1 S, 7o, 7138, 714, 7T3>) (Idg X add) we; I§5 =
(<7T1S TTo, 7'[33> ‘ <7'[1 S, 7138, 711, T2, 71'3)) (Idg X add) we; /§5 =
({18, M2, m38) | (1118, 738, [(71, 72, 713 ); (0, 704, 7T1)]); we; I35 U =
((os, 1, 18) | (08, 718, [(0, 711, 771)]); W°; I35 U =
((os, 7y, 18) | (08,718, 0,711, 71) ); WO, I35 U ... =
((os, 1, m18) | (08, 71, 7148, 0,711)); g5 U . ... =
( oS, 714, 7T1S>U...

then (os, 7r1, 7118) is translated back to the answer X = 0, Z = s(Y).
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Future work

Not in this talk:
m Extensions: Monads, types, functions.
m Diagrams.
m Relational Unification.

Future Work:

Beyond logic logic programming? Other applications?
Higher-order types.

Coalgebraic derivations [Komendantskaya-Power2011]

Full formalization down to the instruction level.

Research algebraic optimization. [R; (SUT) = R;SUR,; T]
New Coq formalization and compiler: at 50%.
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The End

Merci pour votre attention.

Questions?
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