
– Informal Proceedings –
33rd International Workshop on Unification

Dortmund, June 24, 2019



UNIF 2019 - Informal Proceedings

Preface

This volume contains the papers presented at UNIF 2019: 33rd International Workshop on Unification
held on June 24, 2019 in Dortmund, Germany.

UNIF 2019 was affiliated with the 4th International Conference on Formal Structures for
Computation and Deduction FSCD 2019. There were 9 submissions, each one was reviewed by at
least 3 Program Committee members and external reviewers. The committee decided to accept the 9
papers for presentation.

The program also includes 2 invited talks: Jörg Siekmann on “Rethinking Unification Theory”,
and Narciso Martı́ Oliet “Maude Strategies for Narrowing”.

We would like to thank all members of the Program Committee and the subreviewers for their high
quality reviews and discussion held on the EasyChair platform that assured thescientific standard of
UNIF in its 33rd edition. Finally, we would like to thank the UNIF Steering Committee and the FSCD
scientific and organising team for the support before and during the workshop.

December 12, 2019
Dallas
Brası́lia

Serdar Erbartur
Daniele Nantes-Sobrinho



UNIF 2019 - Informal Proceedings

Program Committee

Serdar Erbatur LMU Munich
Daniele Nantes Universidade de Brası́lia
Takahito Aoto Niigata University
Alexander Baumgartner University of Chile
Mauricio Ayala Rincón Universidade de Brası́lia
Evelyne Contejean LRI, CNRS, Univ Paris-Sud, Orsay
Kimberly Cornell The College of Saint Rose
Santiago Escobar Universitat Politècnica de València
Maribel Fernández King’s College London
Temur Kutsia RISC- Johannes Kepler University Linz
Jordy Levy IIIA - CSIC
Hai Lin Shenyang Normal University
Christopher Lynch Clarkson University
Andrew M. Marshall University of Mary Washington
Catherine Meadows US Naval Research Laboratory
Paliath Narendran University at Albany–SUNY
Christophe Ringeissen INRIA
David Sabel Ludwig Maximilian University of Munich
René Thiemann University of Innsbruck
Manfred Schmidt-Schauss Goethe-University Frankfurt am Main
Ralf Treinen IRIF- Université Paris-Diderot
Daniel Lima Ventura Universidade Federal de Goiás

Additional Reviewers

Veena Ravishankar University of Mary Washington



UNIF 2019 - Informal Proceedings

List of Accepted Papers

Rethinking Unification Theory .................................................................................................. 5
Jörg Siekmann

Maude Strategies for Narrowing ................................................................................................ 8
Narciso Martı́ Oliet

A Coq Formalization of Boolean Unification ............................................................................. 9
Daniel J. Dougherty

Nominal Unification with Letrec and Environment-Variables .................................................... 17
Manfred Schmidt-Schauβ and Yunus David Kerem Kutz

Parameters for Associative and Commutative Matching ............................................................ 25
Luis Bustamante, Ana Teresa Martins and Francicleber Ferreira

On Asymmetric Unification for the Theory of XOR with a Homomorphism ............................. 31
Christopher Lynch, Andrew M Marshall, Catherine Meadows,
Paliath Narendran and Veena Ravishankar

On Forward-closed and Sequentially-closed String Rewriting Systems ..................................... 37
Yu Zhang, Paliath Narendran and Heli Patel

Unification of Multisets with Multiple Labelled Multiset Variables ........................................... 43
Zan Naeem and Giselle Reis

Formalising Nominal AC-Unification ......................................................................................... 51
Mauricio Ayala-Rincon, Maribel Fernandez and Gabriel Ferreira Silva

Solving Proximity Constraints ..................................................................................................... 57
Temur Kutsia and Cleo Pau

Asymmetric Unification and Disunification for the theory of Abelian Groups ............................ 66
with a homomorphism (AGh)

Veena Ravishankar, Paliath Narendran and Kimberly Cornell



Rethinking UnificationTheory

Jörg Siekmann
Saarland University/DFKI

Stuhlsatzenhausweg 3, D-66123 Saarbrücken

June 5, 2019

Let us lean back for a minute and reflect on the motivation for our field.
Apart from its theoretical interest, i.e. the structural relationships among and
within equational theories, there is the practical motivation, most clearly ex-
pressed in Gordon Plotkin�s seminal paper from 1972 [10]: we want to take
certain troublesome axioms, like associativity or commutativity, out of the ax-
iom set for an automated deduction system that may lead the system to go
astray. Instead - so the proposal - they should be “built-in”.

Now the past 30 years - the first workshop in Val D‘Ajol was in 1987 -
have revealed an astonishing complexity even for those simple axioms - not so
astonishing after all, for someone familiar with semigroup theory [3] and more
generally the results about equational theories [7, 6].

Historically, the development of unification theory began with the central
notion of a most general unifier based on the subsumption order. A unifier � is
most general, if it subsumes any other unifier ⌧ , that is, if there is a substitution
� with ⌧ =E ��, where E is an equational theory and =E denotes equality under
E. Since there is in general more than one most general unifier for a unification
problem under an equational theory E, called E-Unification, we have the notion
of a complete and minimal set of unifiers under E for a unification problem � ,
denoted as µU⌃E(�). This set is still the basic notion in unification theory
today.

But, unfortunately, the subsumption quasi order is not a well founded quasi
order, which is the reason why for certain equational theories there are solvable
E-unification problems, but the set µU⌃E(�) does not exist. We say these prob-
lems are of type nullary in the unification hierarchy [11]. In order to overcome
this problem and also to substantially reduce the number of most general unifiers
in nonnullary theories, we introduced the notion of essential unification. An es-
sential unifier, as introduced by Hoche and Szabo [2], generalizes the notion of
a most general unifier with a most pleasant effect: the set of essential unifiers is
often much smaller than the set of most general unifiers. Essential unification
may even reduce an infinitary theory to an essentially finitary theory. For ex-
ample the one variable string unification problem is essentially finitary whereas
it is infinitary in the usual sense [1]. A most drastic reduction is obtained for
idempotent semigroups, or bands as they are called in computer science, which

1



are of type nullary: there exist two unifiable terms s and t, but the set of most
general unifiers does not exist. This is in stark contrast to essential unification:
the set of essential unifiers for bands always exists and it is finite [2].

The key idea for essential unification is to base the notion of generality not
on the standard subsumption order for terms with the associated subsumption
order for substitutions, but on the well known encompassment order for terms.
We also extended this ordering for terms to an order for substitutions and
proposed the encompassment order as a more natural relation for minimal and
complete sets of E-unifiers, calling them essential unifiers, denoted as eU⌃E(�).
If µU⌃E(�) exists, then eU⌃E(�) ✓ µU⌃E(�), i.e. it is always a subset. An
interesting effect is, that there are cases of an equational theory E, for which the
complete set of most general unifiers does not exist, the minimal and complete
set of essential unifiers however does exist.

Unfortunately again, the encompassment order is not a well founded quasi
ordering, that is, there are still theories with a solvable unification problem, for
which a minimal and complete set of essential unifiers can not be obtained.

In a more recent paper [8][9] we therefore proposed a third approach, namely
the extension of the well known homeomorphic embedding of terms to a homeo-
morphic embedding of substitutions (modulo E), known as equational embedding
in the literature, and examined the set of E-unifiers under this ordering using
the seminal tree embedding theorem or Kruskal’s Theorem [4, 5] as it is called.

The main result of this latest approach is, that for any solvable E-unification
problem the minimal and complete set of E-unifiers always exists and it is even
smaller than the set of essential unifiers. Under some additional conditions,
called pure equational embedding, it is always finite.

Our main observation is that for unification theory subsumption is just a
special case of encompassment, which in turn is a special case of homeomorphic
embedding.

References
[1] M. Hoche, J. Siekmann, and P. Szabo. String unification is essentially

infinitary. IFCoLog Journal of Logics and their Applications, 2016.

[2] M. Hoche and P. Szabo. Essential unifiers. Journal of Applied Logic, 4(1):1–
25, 2006.

[3] J. M. Howie. An Introduction to Semigroup Theory. Academic Press, 1976.

[4] J. B. Kruskal. Well-quasi-ordering, the tree theorem and Vázsonyi’s con-
jecture. Trans. Amer. Math. Soc., 95:210–225, 1960.

[5] J. B. Kruskal. The theory of well-quasi-ordering: A frequently discovered
concept. Journal of Combinatorial Theory, 13:297–305, 1972.

2



[6] M. Lothaire. Combinatorics on words, volume 17 of Encyclopedia of Math-
ematics. Addison-Wesley1997, reprinted in: Cambridge University Press,
Cambridge mathematical library, 1983.

[7] M. Lothaire. Algebraic combinatorics on words. Cambridge University
Press, 2002.

[8] Szabo P. and Siekmann J. Unification based on generalised embedding. In
Proceedings of UNIF 18, 2018.

[9] Szabo P. and Siekmann J. Unification based on generalized embedding.
Mathematical Structures in Computer Science, submitted 2019.

[10] G. Plotkin. Building-in equational theories. In B. Meltzer and D. Michie,
editors, Machine Intelligence, volume 7, pages 73–90. Edinburgh University
Press, 1972.

[11] P. Szabo, J. Siekmann, and M. Hoche. What is essential unification? In
Martin Davis on Computability, Computation, and Computational Logic.
Springer’s Series "Outstanding Contributions to Logic", 2016.

3



Maude strategies for narrowing

Narciso Mart́ı-Oliet

Universidad Complutense Madrid,
Department of Informatic Systems and Programming,

Madrid, Spain
narciso@sip.ucm.es

Abstract

Strategies allow modular separation between the rules that specify a system and the
way that these rules are applied. They can be used both to implement and test different
algorithms over a given specification or to drive the search of solutions to reachability
problems reducing the state space. A strategy language for rewriting using Maude has
been developed and implemented during the last years. The language controls when a
basic step of rewriting is taken, by using sequences, tests, and other combinators. The
next Maude release will include full support for this strategy language.

The ongoing work that we present extends the use of this strategy language to nar-
rowing, which is a more general method than rewriting and may have a much larger state
space for a given problem, because whereas rewriting uses matching for solving reachability
problems, narrowing uses unification. The application of a basic narrowing step is con-
trolled in this case by means of a subset of the strategy combinators defined for rewriting.
Narrowing strategies can turn an infinite state space into a finite one, as it has already
been shown in an example using the prototype that we have developed. This prototype is a
proof of concept to settle the basis of what can be achieved using strategies in a narrowing
environment.



A Coq Formalization of Boolean Unification
Daniel J. Dougherty

Worcester Polytechnic Institute, Worcester, MA, U.S.A.
dd@wpi.edu

Abstract

We report on a verified implementation of two (well-known) algorithms for unification modulo the
theory of Boolean rings: Löwenheim’s method and the method of Successive Variable Elimination.
The implementations and proofs of correctness were done in the Coq proof assistant; we view this
contribution as an early step in a larger project of developing a suite of verified implementations of
equational unification algorithms.

1 Introduction
There is a significant emerging body of work devoted to formalizing mathematics and to specifying
and verifying algorithms and systems using proof assistants such as Coq, Isabelle, HOL, and others. In
this paper we report on first steps in a project of developing—in the proof assistant Coq—a library of
verified E-unification algorithms. Our long-term goal is to build a resource of reusable data structures,
algorithms, and theorems that will be a resource to researchers in mathematics and computer science.

Boolean unification is an attractive choice for a first theory to formalize. Boolean rings arise in
many contexts, in connection with satisfiability, with circuit synthesis, and with logic programming,
[BS87], and play a role in general topology, algebra, lattice theory. Boolean unification has a well-
behaved theory (it is decidable and unitary) and there are interesting algorithms suitable for “native”
implementation (as opposed to, for example, AC-unification, which naturally involves passing to
reasoning about Diophantine equations).

To date we have implemented and proved correct two well-known algorithms for unification modulo
the theory of Boolean rings, in the absence of free function symbols: Löwenheim’s method and the
method of Successive Variable Elimination. The code comprises about 1600 lines of definitions (of
concepts and algorithms) and about 2900 lines of proof. It is available at http://web.cs.wpi.
edu/˜dd/unif.pdf. We have not made the Coq source available because, as described below, our
development is being actively refined.

Our main goal in the present paper is to generate feedback from the unification community about
the usefulness of a project like this and a discussion about future directions to pursue.

2 Related Work
There have been several verified implementations of syntactic unification, too many to attempt to list
here. But we do note that in last year’s UNIF (2018) Kasper Fabæch Brandt, Anders Schlichtkrull, and
Jøorgen Villadsen present [BSV18] an Isabelle coding of syntactic unification, with a formal proof of
termination though not of correctness. The related work section of that paper cites a selection of other
verified developments of syntactic unification in various tools. The problem of formalizing unification
modulo theories has received much less attention. A notable exception is the Coq formalization of
associative-commutative matching by Evelyne Contejean in [Con04].

There are many examples of formal development of algebraic theories, again, far too many to
summarize here, but there are relatively few treatments of equational logic in a general, universal-algebra
sense.



Two early examples are [Cap99, Dom08], but the example most relevant to the current project is the
CoLoR system [BK11], part of a family of tools also including CiME [CCF+11] and Coccinelle [Con].
CoLoR is primarily a (Coq) library for analyzing termination of rewrite relations. Although it does not
treat semantic unification, it has an extensive infrastructure for reasoning about term-rewriting generally,
and has been a valuable resource for the current project.

During the 2018-19 academic a WPI undergraduate project team (Spyridon Antonatos, Matthew
McDonald, Dylan Richardson, and Joseph St. Pierre) worked on Boolean unification in parallel with the
author, with some differences in data structures and outcomes.

3 Preliminaries
We assume familiarity with standard notions of equational logic and unification [BS01, BN98].

A Boolean ring is a ring in which every element x is idempotent, that is, x2 = x. The specific set B
of axioms we use in our development is the following.

0+ x = x 1∗ x = x (x+ y)+ z = x+(y+ z)

(x∗ y)∗ z = x∗ (y∗ z) x+ y = y+ x x∗ (y+ z) = (x∗ y)+(x∗ z)

(y+ z)∗ x = (y∗ x)+(z∗ x) x+ x = 0 x∗ x = x

In what follows we will use s =B t to mean that s and t are provably equal modulo B; we use s ?
=B t to

denote a unification problem modulo B.
The axioms other than the last are precisely the axioms for a ring, with the omission of an additive

inverse and the inclusion of the axiom x + x = 0. But in the presence of an additive inverse, the
omnipotence axiom x2 = x entails x+ x = 0, and so the additive inverse operator is in fact the identity.
[Proof: expand x + x as (x + x)(x + x) =B xx + xx + xx + xx =B x + x + x + x. Cancellation yields
0 =B x+ x. ] Presenting the theory as above, with x+ x = 0 as an axiom, rather than using a separate
additive inverse operator, thus simplifies a formal development: there is one fewer function symbol in
the signature.

Two easy but significant consequences of the axioms are (i) commutativity of multiplication:
xy =B yx [Proof: x+ y =B (x+ y)(x+ y) =B xx+ xy+ yx+ yy =B x+ xy+ yx+ y. Cancellation yields
0 =B xy+yx] and (ii) the fact that every element is a 0-divisor [since x(1+x) =B x+xx =B x+x =B 0].

Since an equation u =B v is equivalent to the equation u+ v =B 0,
As usual in the presence of a “inverse” operator, unification problems u ?

=B v reduce to matching
problems of the form t =B 0. So in the rest of the paper, instead of speaking of unifying two terms u and
v, we will often speak of solving a term t, meaning finding a substitution σ such that σt =B 0.

There is a well-known translation between Boolean rings and Boolean algebras, under which
multiplication corresponds to conjunction and addition to exclusive-or. Any field of sets yields a
Boolean ring under intersection and symmetric difference. In fact, by the Stone Representation Theorem
(and the relationship between Boolean rings and Boolean algebras) every Boolean ring is isomorphic to
a field of sets [Sto36].

Unification Of course unification modulo the theory of rings is undecidable (by reduction to Hilbert’s
10th problem). By contrast, there are several well-known algorithms for B-unification. The decision
problem for B-unification (without free constants) is essentially the satisfiability problem, and so NP-
complete, since, as noted in [BN98], s=B t under B if and only if s and t are equal terms over the boolean
ring B2. The decision problem for B-unification is Πp

2 -complete for a signature with free constants and
is PSPACE-complete for a signature with free non-constant function symbols [Baa98] (by reduction to
the validity of sentences of quantified boolean formulas).

2



Space considerations preclude a full discussion here of the history of algorithms for B-unification
(see [BN98] for an introduction) but we do note that B-unification over the basic signature even in the
presence of free constants is unitary; it is finitary when arbitrary free function symbols are allowed.
Algorithms for constructing unifiers in the basic case can be found in [Löw08, BS87]; Martin and
Nipkow [MN89] treat the case of free constants. Our formalizations treat the methods of Löwenheim
[Löw08] and of Variable Elimination [Boo47, BS87]. It is not hard to show that simultaneous B-
unification reduces to B-unification of single equation, even in the absence of auxiliary function
symbols.

4 The Development
Coq is simultaneously a functional programming language and an environment for constructing proofs.
The programming language of Coq closely resembles OCaml; the chief differences are the richer type
system and the requirement that every function be terminating.

We do not have space here to discuss both algorithms in detail, and even so we can only hint at what
the implementation and verification look like.

We represent terms by the following inductive data type. T0, T1, A, and M denote 0, 1, addition, and
multiplication, respectively.

Inductive bterm : Type :=
| T0 : bterm | T1 : bterm | V : var→ bterm
| A : bterm→ bterm→ bterm | M : bterm→ bterm→ bterm

Using Coq’s Notation facility we use x +’ y and x ∗’ y as syntactic sugar for A x y and M x y and (the
quotes are added because symbols + and ∗ have standard-library meanings in Coq).

The equational theory B is captured by the inductive relation eqv below; we introduce a Coq
Notation (s == t) as infix syntactic sugar for (eqv s t). To save space, only a selection of the axioms
are given here.

Inductive eqv : bterm→ bterm→ Prop :=
| assocA : forall x y z, x +’ y == y +’ x
...
|eqv ref : forall x , x == x
...
| A compat : forall x x’, x == x’→ forall y y’, y == y’→ x +’ y == x’ +’ y’

The cases not shown capture the other rules of B and a set of equations expressing that eqv is an
equivalence relation compatible with respect to the ring operations.

4.1 Löwenheim’s Method
The algorithm has two stages. To solve t ?

=B 0, (i) first search for any substitution γ with γ(t) = 0; (ii) if
such a γ is found, return the substitution

σ def
= {v := (t +1)∗ v+(t)∗ γ(v) | v ∈Vars(t)}.

Remarkably, this will be a most general solution. To ensure that part (i) terminates, we search through
the finitely many substitutions γ defined on Vars(t) that only take on values T 0 or T 1. Of course, a key
part of the verification is that this restriction is complete. If no such γ is found we report that t is not
solvable.

3



For example, to solve xy ?
=B 0, we can start with γ = [x := 0;y := 1]; then σ is, after simplification,

x := xy+ x y := y

Note that σ is more general than γ, indeed, γ◦σ = γ. It is, perhaps, not obvious that σ is actually most
general.

Löwenheim’s method in Coq The most we can do in this limited space is to show three functions
that correspond to the algorithm outlined above, and the corresponding shape of the correctness proof.
The functions below, respectively (i) compute an initial solution (returning “None” if none found); (ii)
build a new substitution, the “lowenheim lift,” out of a given substitution and a given term, and (iii)
bundle these together as a constructive decision procedure.

Definition ground soln (t: bterm) : option sub :=
find (fun s ⇒ eqvb (s ’ t) T0) (all 01subs bterm t).

Definition lowenheim lift (t: bterm) (tau: sub) (x: var) : bterm :=
if inb x (vars bterm t)
then ((t +’ T1) ∗’ (V x) +’ t ∗’ (apply sub tau (V x)) )
else (V x).

Definition solve lowenheim (t: bterm) :=
option map (lowenheim lift t) (ground soln t).

To prove correctness we must show that if ground soln t returns None then t is not solvable,
and otherwise, lowenheim lift constructs a most general solution from the substitution returned by
ground soln t. The structure of the correctness claim is the same as the structure of solve lowenheim
itself.

Theorem lowenheim correct (t: bterm) :
match (solve lowenheim t) with
| None ⇒∼(solvable t)
| Some sigma ⇒ mgu strong sigma t
end .

4.2 Successive Variable Elimination
This algorithm depends the fact that for any bterm t and any variable x we can compute quotient term
q and remainder term r such that (t =B qx + r). Using this, the variable elimination algorithm for
solvability of a term t is as follows:

1. choose a variable x from among the variables of t, and compute q and r such that t == q x + r.

2. set t ′ to be (q+1)r

3. compute a most general substitution σ′ solving t ′

4. then the following substitution is a most general solution for t

σ def
= {x 7→ x∗ ((σ′q)+1)+(σr) | x ∈ vars t}

4



Correctness Argument The correctness argument proceeds by induction on the number of variables
in the original term t. Then each of the claims below is captured by a lemma in the formalization.

• Any ground term can be reduced to either 1 or 0, and so is either unsolvable or has the identity as
a most general solution.

• As we go from t down through the recursive calls, if t is solvable then each derived bterm
t ′ def
= (q+1)r is solvable.

• If σ′ is a most general solution for a derived bterm t ′, then the updated substitution computed from
σ′ is a most general solution for the original bterm .

A few words about the factorization of a term t into the form qx+ r give some glimpse into the
kind of considerations that arise in a formalization in a proof assistant. The construction as described in
[BN98] relies on the fact that any term can be represented in polynomial form, as a set of monomials,
each of which is a set a variables. Extracting q and r from t is very simple under this representation.
But as described in the next section, polynomial form is not the most convenient representation for us.
So we construct recursive functions to compute q and r given x and the standard representation of t. For
example when t is t1t2 (the most interesting case) and is recursively factored as q1x+ r1 and q2x+ r2,
then

t1t2 =B (q1x+ r1)(q2x+ r2)

=B q1q2xx+q1r2x+q2r1x+ r1r2

=B (q1q2 +q1 +q2)x+(r1r2)

This is mathematically straightforward, and as a programming task it is easy to code a pair of mutually
recursive functions handling cases on the form of t. But there is a wrinkle: in Coq all functions must
provably terminate, and Coq’s automatic techniques for verifying termination do not suffice for the
mutual recursion suggested by the above. There are techniques for supplying Coq with a termination
justification developed by the user, though this is sometimes a non-trivial task. But luckily in the present
case, we can disentangle the calculations: a function computing the remainder r of a term t after division
by x can be computed directly, first, and then used in computing the quotient q.

5 Design Choices and Lessons Learned
B-equality as an Inductive Predicate We might have, naively, captured each of the B-equations as a
Coq Axiom, such as

Axiom invA : forall x, x +’ x = T0

where we have used the primitive Coq equality predicate = instead of eqv. But this would be a mistake:
the resulting theory would be logically inconsistent. A fundamental principle of inductively defined
data (such as terms) is that if C1 and C2 are distinct constructors (such as +’ and T0), then any equation
C1~s =C2~t entails falsehood.

This is why we represent equality under B as a Inductive Predicate. When eqv is defined inductively
it means that (eqv s t) holds precisely when it follows from the rules in the inductive definition. (And
Coq provides tactics, such as inversion, to exploit this fact.) It follows that eqv really does precisely
capture provable equality under B.

By the way, this inductive-predicate approach differs from systems such as CoLoR or treatments
of algebraic structure in, e.g., the Mathematical Component Library. The difference is that we are not
interested in deriving just those theorems that hold in all B-structures, we are interested in one particular
structure, the term model for B. So for example, we can prove the proposition ∼(T0 == T1), which is
not a theorem of B.

5



Terms and Polynomials (The discussion in this paragraph is specific to the theory B.) For any term t
there is a B-equivalent term p in polynomial form: monomials are sets of variables and polynomials are
set of monomials. If we totally order variables and—then, lexicographically—monomials, every term
can be reduced to a unique polynomial normal form modulo B. This is very convenient theoretically, and
is exploited in several places in [BN98], and so it suggests a representation for terms in the formalization.
But as my undergraduate team grew to realize, this is not a particularly easy representation to work with.
Arithmetic operations are not easily directly described as operations on these sets-of-sets; there is post-
processing to be done to restore the required invariants. In turn, these repairs must be proven correct,
for each operation, and the verification effort grows burdensome out of proportion with the intellectual
convenience of having unique normal forms. Eschewing this approach meant that certain techniques
and results, such as (i) the fact that s =B t is B-provable if and only if s and t are equal polynomials over
2-element Boolean rings, and (ii) the factoring lemma crucial to the Variable Elimination algorithm, had
to be defined and verified without recourse to the most mathematically-natural data structure, which is
polynomial form.

Terms as a Signature-specific Inductive Data Type The data structure shown in Section 4 is what
the current development uses, and it has much to recommend it. It is direct, it supports programming
by pattern-matching, and Coq automatically computes an induction principle that makes tactic-based
reasoning convenient. But a significant drawback to this approach is the fact that it is not generic across
signatures. Much of the infrastructure of the verification effort comprises standard results about variable
occurrences, substitutions, and so forth. Conceptually the definitions of, and proofs about, these notions
are the same for any signature, but with the signature-specific approach this infrastructure would, in a
formal development, have to be constructed anew for each signature. To see a very simple example of
this lack of robustness, note that for a theory E we often want to explore E-unification between terms
that may have free function symbols, symbols not occurring in the signature of E. Specifying terms as
a signature-specific type obviously precludes anything but an ad-hoc approach to such an analysis.

A Generic Inductive Data Type for Terms A better approach, the object of the work on the project
at the time of this writing, is to work with a single definition of term that can be parameterized by
signatures. Indeed this is the approach taken by Coccinelle and CoLoR.

Given a definition of Signature (a set of function symbols with arities) and a declaration of Sig, a
variable of type Signature, the following (taken from the CoLoR distribution) is the definition of term:

Inductive term : Type :=
| Var : variable→ term
| Fun : forall f : Sig, vector term (arity f)→ term .

A term is given a function symbol f from Sig and a vector of terms whose length is the arity of
f . In fact there is a design choice reflected here: Coccinelle, for example, uses a list of terms to hold
the arguments to f . Lists have better library support than do vectors in Coq, but we then incur either
the stain of accepting that ill-formed terms can be built or the burden of maintaining and verifying
well-formedness after each operation, reminiscent of the polynomial-form discussion above.

One small cost to this choice is that, because term occurs recursively inside the vector data structure,
the induction principle automatically generated by Coq for these terms is not as strong as it could be.
(This drawback applies to the list-based approach as well.) This is a remark about the current strength
of Coq’s algorithm for constructing induction principles, not about the existence of a useful induction
principle. In fact it is straightforward to generate by hand the proper induction principles and tell Coq
to use these: this is exactly what Coccinelle and CoLoR do. A slightly greater cost to this approach is

6



simply that dependent types such as vectors can be awkward to work with and reason about compared
to direct inductive types.

6 Future Work

The current development is rather naive, from a Coq perspective: there are doubtless many unrealized
opportunities for proof automation (including an adaptation of Coq’s built-in ring tactic to incorporate
Boolean-ring specific simplifications). The most immediate future, indeed ongoing, work is to address
the challenge described in Section 5 of finding the best data structure for terms. This will be crucial
to maintaining a flexible set of libraries that admit free function symbols and work across a variety
of equational theories. Coq has facilities for extraction of functional programs; we expect this to be
straightforward to incorporate into our libraries. Of course the most significant goal for the future is
to treat other equational theories. Any number of specific theories E are natural candidates but it will
perhaps be even more interesting to formalize “generic” E-unification approaches such as those based
on transformations, combining algorithms, and narrowing (see [Mes18] for a discussion)

Acknowledgments It was very helpful to do this work in parallel with the work of the WPI
undergraduate project team of Spyridon Antonatos, Matthew McDonald, Dylan Richardson, and Joseph
St. Pierre. Although the development described here differs in many ways from theirs, their project led
to many useful discussions about design choices for implementation and verification. It also generated
a useful succession of deadlines to be met. The extremely clear introduction to Boolean unification
in chapter 4 of [BN98] was a crucial element in making this topic suitable for introducing Coq to an
undergraduate project team.

We benefited greatly from utility code in the library “Base Library for ICL” written by Gert Smolka.
https://www.ps.uni-saarland.de/courses/cl-ss15/coq/ICL.Base.html

References
[Baa98] Franz Baader. On the complexity of boolean unification. Information Processing Letters, 67(4):215–

220, 1998.
[BK11] Frédéric Blanqui and Adam Koprowski. Color: a coq library on well-founded rewrite relations and

its application to the automated verification of termination certificates. Mathematical Structures in
Computer Science, 21(4):827–859, 2011.

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and all That. Cambridge University Press, 1998.
[Boo47] George Boole. The mathematical analysis of logic. Philosophical Library, 1847.
[BS87] Wolfram Buttner and Helmut Simonis. Embedding boolean expressions into logic programming.

Journal of Symbolic Computation, 4(2):191–205, 1987.
[BS01] Franz Baader and Wayne Snyder. Unification theory. Handbook of automated reasoning, 1:445–532,

2001.
[BSV18] Kasper Fabæch Brandt, Anders Schlichtkrull, and Jørgen Villadsen. Formalization of first-order

syntactic unification. In 32nd International Workshop on Unification (UNIF), Informal Proceedings,
2018.

[Cap99] V. Capretta. Universal algebra in type theory. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and
L. Théry, editors, TPHOLs 1999, volume 1690 of LNCS, pages 131–148. Springer, 1999.

[CCF+11] Evelyne Contejean, Pierre Courtieu, Julien Forest, Olivier Pons, and Xavier Urbain. Automated
certified proofs with CiME3. In Manfred Schmidt-Schauß, editor, Proceedings of the 22nd International
Conference on Rewriting Techniques and Applications, RTA 2011, May 30 - June 1, 2011, Novi Sad,
Serbia, volume 10 of LIPIcs, pages 21–30. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011.

7



[Con] Evelyne Contejean. The Coccinelle library for rewriting. http://www.lri.fr/˜contejea/
Coccinelle/coccinelle.html.

[Con04] Evelyne Contejean. A certified AC matching algorithm. In Vincent van Oostrom, editor, Rewriting
Techniques and Applications, 15th International Conference, RTA 2004, Aachen, Germany, June 3-5,
2004, Proceedings, volume 3091 of Lecture Notes in Computer Science, pages 70–84. Springer, 2004.

[Dom08] C. Domınguez. Formalizing in Coq Hidden Algebras to Specify Symbolic Computation Systems. In
AISC, pages 270–284. Springer, 2008.

[Löw08] Leopold Löwenheim. Über das Auflösungsproblem im logischen Klassenkalkul. Sitzungsberichte
Berliner Math. Gesell., 7:89–94, 1908.

[Mes18] José Meseguer. Variant-based satisfiability in initial algebras. Science of Computer Programming,
154:3–41, 2018.

[MN89] Urusula Martin and Tobias Nipkow. Boolean unification—the story so far. Journal of Symbolic
Computation, 7(3-4):275–293, 1989.

[Sto36] Marshall H Stone. The theory of representation for boolean algebras. Transactions of the American
Mathematical Society, 40(1):37–111, 1936.

8



Nominal Unification with Letrec and

Environment-Variables∗

Manfred Schmidt-Schauß1 and Yunus Kutz2

Goethe-University, Frankfurt am Main, Germany

1 Goethe-University Frankfurt am Main, Germany, schauss@ki.informatik.uni-frankfurt.de
2 Goethe-University Frankfurt am Main, Germany, kutz@ki.informatik.uni-frankfurt.de

Abstract

Abstract. We extend nominal unification to higher-order expressions including letrec
such that besides expression-variables, also atom- and environment-variables are permit-
ted. In unification problems, the occurrences of environment- and expression-variables are
restricted such that they occur at most once in the equations. A terminating and complete
unification algorithm is described that computes at most an exponential number of unifiers
of polynomial size. A restricted variant of the unification algorithm is provided as decision
algorithm. The complexity of the problem is determined to be NP-complete.

Keywords: nominal unification, letrec-expressions, abstract environments

1 Introduction

The goal of this paper is to extend the expressive power of nominal unification such that it
can be used in reasoning algorithms in call-by-need functional programming languages that
employ letrec-environments as for example Haskell [5, 3]. Nominal techniques [7, 6] support
machine-oriented reasoning on the syntactic level for higher-order languages and support alpha-
equivalence. An algorithm for nominal unification was first described in [15], which outputs
unique most general representations. More efficient algorithms are given in [1, 4], also exhibit-
ing a quadratic algorithm. The approach is also used in higher-order logic programming [2] and
in automated theorem provers like nominal Isabelle [13, 14]. Nominal unification was general-
ized to permit also atom-variables [11] where also in the generalization, unique most general
representations are computed, while the decision problem is NP-complete.

An extension of nominal unification to languages with a recursive let was worked out in
[9], however, without atom-variables, and where it was shown that the nominal unification and
matching problems are NP-complete. The nominal unification algorithm for letrec was extended
to atom-variables in [10]. Also, a nominal matching algorithm for letrec with environment
variables, but without atom-variables is proposed in [10], however, how to extend or adapt the
matching algorithm with environment-variables to nominal unification was left open.

A simple example to motivate the use of environment-variables is the rule (cp) in the calculus
LR [12] pletr x � λz.S,Env in px λy.yqq Ñ pletr x � λz.S,Env in ppλz.Sq λy.yqq, which
has an abstract environment Env . Nominal unification of an overlap with a transformation
like (lbeta) would require that environment-variables are permitted in the nominal unification
algorithm. In this rule the occurrence of atom-variables is not linear, which is not a problem
for the presented nominal unification algorithm. Another example is a variant of a rule for
common subexpression elimination, which could be written as pletr x � S, y � S,Env in S1q Ñ
pletr x � S, y � x,Env in S1q, and which requires the same expression-variable twice in the

∗The authors are supported by the Deutsche Forschungsgemeinschaft (DFG) under grant SCHM 986/11-1



Nominal Unification with Letrec Environments,June 5, 2019 M. Schmidt-Schauß and Y. Kutz

left hand side. An equation between the left hand side and another expression with linear
occurrences could be the input of our nominal unification algorithm.

The results in this paper are a nominal unification algorithm for a higher-order calculus with
letrec and atom-, expression- and environment-variables where expression- and environment-
variables occur linearly in the set of equations (Theorem 3.5). The complexity of the problem
is shown to be NP-complete (see Theorem 4.7).

2 Nominal Terms

We first introduce some notation [11]. Let F be a set of function symbols f P F , s.t. each
f has a fixed arity arpfq ¥ 0. Let At be the set of atoms ranged over by a, b, c. The ground
language NLa is defined by the grammar:
e ::� a | pf e1 . . . earpfqq | λa.e | letr a1.e1, . . . , an.en in e

where λ is a binder for atoms, and letr . . . in . . . is the recursive let, where the atoms ai in the
letrec-environment must be pairwise different.
The basic constraint a#e is valid if a is not free in e and a set of constraints ∇ is valid if all
constraints are valid. LV pEnvq is the multiset of binders in a letrec-environment Env .

As a reminder, the α-equivalence relation � on NLa is defined as the equivalence closure of
iterated (capture-free) renaming of atoms. For a better treatment of α-equivalence with letrec,
we show a decomposition principle for letrec-expression modulo α:

Lemma 2.1. Let e1 � letr a1.s1, . . . , an.sn in r and e2 � letr b1.t1, . . . , bn.tn in r1 be
NLa-expressions. Then e1 � e2 is equivalent to the following conditions:

1. ϕ is a permutation on atoms, such that dompϕq � ta1, . . . , anu Y tb1, . . . , bnu, and it
extends the mapping tbi ÞÑ aρpiq | i � 1, . . . , nu, where ρ is a permutation on the set
t1, . . . , nu.

2. For M :� ta1, . . . , anuztb1, . . . , bnu, we have ϕpMq � tb1, . . . , bnuzta1, . . . , anu.

3. M#pletr b1.t1, . . . , bn.tn in r1q.

4. r � ϕpr1q and si � ϕptρpiqq for i � 1, . . . ,m hold.

This leads to the following decomposition principle for all constructs w.r.t �, which can also
be seen as a definition of α-equivalence on NLa:

Lemma 2.2. Syntactic α-equivalence � in NLa is characterized by the following rules:

a � a

@i : ei � e1i
pf e1 . . . earpfqq � pf e11 . . . e

1
arpfqq

e � e1

λa.e � λa.e1
a#e1 ^ e � pa bq�e1

λa.e � λb.e1

The conditions of Lemma 2.1 hold.

letr a1.s1, . . . , an.sn in r � letr b1.t1, . . . , bn.tn in r1

Definition 2.3 (Extensions of NLa.). Let S be a set of expression-variables ranged over by S, T ;
let A be the set of atom-variables ranged over by A,B, let E be a set of variables standing for
letrec-environments ranged over by E, and let P be a set of permutation-variables ranged over

2



Nominal Unification with Letrec Environments,June 5, 2019 M. Schmidt-Schauß and Y. Kutz

by P . The grammar of the nominal language NLaASPE with atoms, atom-variables, expression-
variables, permutation-variables and environment-variables is:

e ::� W | π�S | pf e1 . . . earpfqq | λW.e | letr env in e
π ::� H | pW W 1q � π1 | P � π1

env ::� H | π�env | pπ�a.e; envq | pπ�A.e; envq | pπ�E; envq
W ::� π�a | π�A

where π is a permutation and H denotes the identity.
We will also use sublanguages like NLAS � NLaASPE and NLASE � NLaASPE, where only

the components mentioned in the index are used in the grammar.

Note that we permit nested permutation expressions. The expression ppπ�Aq pπ1�A1qq is a
single nested swapping. The inverse π�1 of a permutation π � sw1� . . . �swn with swappings
sw i is the expression swn� . . . �sw1.
AtVarpeq are the atom-variables contained in e, ExVarpeq the expression-variables contained in
e and Varpeq � AtVarpeq Y ExVarpeq.

The language of interest in this paper is NLASPE . The ground language of NLASPE is NLa,
i.e. a ground substitution replaces atom-variables by atoms, expression-variables by ground
expressions; permutation variables by permutations, and environment-variables by ground envi-
ronments. The language NLaASPE serves as an intermediate language during the interpretation
of NLASPE expressions.

We will use further constraint primitives and constraint expressions in sets of constraints,
like LV penvq, dompπq, and #LV penvqq, where the latter means that an instance is only valid,
if all atom expressions as binders in a let-binding in env are different.

3 Nominal Unification with Environments

In this section we construct a unification algorithm for expressions of NLASE where E-variables
and S-variables occur linearly.

As data structure we use a set Γ of (symmetric) equations between expressions, general
constraints ∇, and a substitution θ.

Definition 3.1 (Constraints). A freshness constraint has the form A#e. A general constraint
is either a freshness constraint or is of the form:

#env | dom � LV penv1q Y LV penv2q | P � LV penv2q � LV penv1q
P �pLV penv1qzLV pienv2qq � pLV pienv2qzLV pienv1qq | LV pienv1qzLV pienv2q#e

A solution of set of constraints is a ground substitution γ, s.t. all constraints hold in NLa.

For technical reasons we restrict the scope of unification problems. This may not be neces-
sary, especially the linearity of expression-variables looks like it could be relaxed. However, we
do not have complete proofs for general problems at the moment.

Definition 3.2. A set of equations Γ over NLASPE is admissible, if environment-variables and
expression-variables occur at most once in Γ and it does not contain permutation-variables.

Definition 3.3. [Decomposing letrec.] Let pletr env1 in e1q
.
� pletr env2 in e2q be the equa-

tion to be decomposed, where env j for j � 1, 2 consists of a list of bindings bj,i and environment-
variables Ej,i. The decomposition is non-deterministic and proceeds as follows:
There is a single guess of a relation R consisting of pairs pk1, k2q where kj is a component of
env j for j � 1, 2, such that

3



Nominal Unification with Letrec Environments,June 5, 2019 M. Schmidt-Schauß and Y. Kutz

(E1)
pΓ �Yte

.
� eu,∇, θq

pΓ,∇, θq (E2)
pΓ Y tπ�S

.
� eu,∇, θq

pΓrS ÞÑ π�1�es,∇rS ÞÑ π�1�es, θ �YtS ÞÑ π�1�euq

(E3)
pΓ �Ytπ1�A

.
� π2�Bu,∇, θq

pΓ,∇Y tA �# π�1
1 �π2�Bu, θq

(E4)
pΓ �Ytpf e1 . . . earpfqq

.
� pf e11 . . . e

1
arpfqqu,∇, θq

pΓ �Yte1
.
� e11, . . . , earpfq

.
� e1arpfqu,∇, θq

(E5)
pΓ �YtpW1.e1

.
�W2.e2u,∇, θq

pΓ �YtW1
.
�W2, e1

.
� e2u,∇, θq

(E6)
pΓ �Ytλπ1�A1.e1

.
� λπ2�A2.e2u,∇, θq

pΓ �Ytppπ1�A1q pπ2�A2qq�e1
.
� e2u,∇Y tpA1#π�1

1 �pλπ2�A2.e2qqu, θq

(E7)
pΓ �Ytletr env1 in e1

.
� letr env2 in e2u,∇, θq

pΓ �YΓres,∇Y∇res, θ � θresq
guess according to Def. 3.3

Figure 1: Rules of NomEnv1

1. Every binding b1,j is related to exactly one component of the right hand side.

2. Every binding b2,j is related to exactly one component of the left hand side.

Let P be a fresh permutation-variable. The resulting equations Γres consist of e1
.
� P � e2 and

equations K
.
� P �K 1 for single-binding components K,K 1, if these are related by R .

The resulting substitution components θres are as follows:
Create fresh environment-variables Ei,j,k,h which (roughly) represent the intersection of Ei,j
and Ek,h. There are substitution components for every environment-variable on the left hand
side:
E1,j ÞÑ P �pE1,j,2,1, . . . E1,j,2,m, B2,jq for an appropriate m and where B2,j are the single bindings
on the right hand side that are related by R to E1,j.
There are substitution components for every environment-variable on the right hand side:
E2,j ÞÑ P�1�pE1,1,2,j , . . . E1,m1,2,j , B1,jq for an appropriate m1 and where B1,j are the single
bindings on the left hand side that are related by R to E2,j.

The resulting constraints ∇res are:

1. dompP q � LV penv1q Y LV penv2q.

2. P �pLV penv2qq � LV penv1q

3. pLV penv1qzLV penv2qq#letr env2 in e2

4. P �pLV penv1qzLV penv2qq � pLV penv2qzLV penv1qq.

The effects of applying the rule is to remove the equation, and to add Γres; ∇res and θres.

Definition 3.4. The algorithm NomEnv1 is defined by the rules in Fig. 1 on Γ,∇, where the
input Γ0,∇0 is admissible.

The set ∇ may contain constraints. Since binders in a letrec must be different, ∇ must
contain constraints which ensure for every environment env that all variables bound by the
environment are different, i.e. #LV penvq.

4



Nominal Unification with Letrec Environments,June 5, 2019 M. Schmidt-Schauß and Y. Kutz

(RemoveEl)

pΓ �Y

"
letr W1.s1; . . . ;Wk.sk;E1 in s
.
� letr W 1

1.s
1
1; . . . ;W 1

k1 .s1k1 in s1

*
,∇, θq

pΓ �Y

"
letr W1.s1; . . . ;Wk.sk;A1.S1; . . . ;Ak1�k.Sk1�k in s
.
� letr W 1

1.s
1
1; . . . ;W 1

k1 .s1k1 in s1

*
,∇θE , θ � θEq

where θE � tE1 ÞÑ A1.S1; . . . ;Ak1�k.Sk1�k, u. Ai, Si are fresh.

(RemoveEr)

pΓ �Y

"
letr W1.s1; . . . ;Wk.sk in s
.
� letr W 1

1.s
1
1; . . . ;W 1

k1 .s1k1 ;E1
1 in s1

*
,∇, θq

pΓ �Y

"
letr W1.s1; . . . ;Wk.sk in s
.
� letr W 1

1.s
1
1; . . . ;W 1

k1 .s1k1 ;A1.S1; . . . ;Ak�k1 .Sk�k1 in s1

*
,∇θE , θ � θEq

where θE � tE1
1 ÞÑ A1

1.S
1
1; . . . ;A1

k�k1 .S1
k�k1u. Ai, Si are fresh.

(RemoveElr)

pΓ �Y

"
letr W1.s1; . . . ;Wk.sk;E1 in s
.
� letr W 1

1.s
1
1; . . . ;W 1

k1 .s1k1 ;E1
1 in s1

*
,∇, θq

pΓ �Y

"
letr W1.s1; . . . ;Wk.sk;A1.S1; . . . ;Ah.Sh in s
.
� letr W 1

1.s
1
1; . . . ;W 1

k1 .s1k1 ;A1
1.S

1
1; . . . ;A1

h.S
1
h1 in s1

*
,∇θE , θ � θEq

where θE � tE1 ÞÑ A1.S1; . . . ;Ah.Sh, E
1
1 ÞÑ A1

1.S
1
1; . . . ;A1

h1 .S1
h1u

and Ai, Si, A
1
i, S

1
i are fresh

and k1�h1 � k�h � k� k1�N2; where N2 � |AtPosps1, . . . , sk, s, s
1
1, . . . , s

1
k1 , s1q|

Rule RemoveE is defined as the union of RemoveEl, RemoveEr and RemoveElr.

(DecompLet)
pΓ �Ytletr W1.e1, . . . ,Wn.en in r

.
� letr W 1

1.e
1
1, . . . ,W

1
n.e

1
n in r1u,∇, θq

pΓ �Yte1
.
� ξ�e1ρp1q, . . . , en

.
� ξ�e1ρpnq, r

.
� ξ�r1u,∇Y∇1, θq

ρ is a (guessed) permutation on t1, . . . , nu, ξ :� ξpW 1
ρp1q,W1, . . . ,W

1
ρpkq,Wkq

∇1 :� ptWi | i � 1, . . . nuztW 1
i | i � 1, . . . nuq#pletr W 1

1.e
1
1, . . . ,W

1
n.e

1
n in r1q.

Figure 2: Extra Rules for NomEnv1D

Theorem 3.5. The algorithm NomEnv1 is terminating and complete for admissible unifi-
cation problems, i.e. for every solution the algorithm computes a unifier consisting only of a
substitution θ and general constraints ∇. A single run takes polynomial time. The collection
version of the algorithm will generate at most exponentially many unifiers.

However, algorithm NomEnv1 does not decide solvability, since we do not know whether the
constraints forbid all instances of the resulting substitution. To show decidability and to argue
on the complexity, we will show that the algorithm NomEnv1D will find a (small) solution if
there is any solution.

4 A Decision Algorithm

In this section we describe a decision algorithm for the nominal unification algorithm with
letrec and environment-variables. We want to keep the description simple and also as close to
potential applications as possible. Thus we describe the decision algorithm for the case that in
letrec environments at most one environment-variable occurs. The advantage is that this is the
variant that is required in most applications, and in addition the rule RemoveE is deterministic.
Later we describe the necessary extensions and additional non-determinism for the general case.

5



Nominal Unification with Letrec Environments,June 5, 2019 M. Schmidt-Schauß and Y. Kutz

Permutation-variables introduced by DecompLet can be so strongly restricted, that their
instantiation can be completely determined from the other instantiations. Hence we introduce
an extra notation to avoid permutation-variables. The benefit of this variant is that no new
constraint concepts are required and thus is compatible with [11].

Definition 4.1. Let Γ be an admissible set of equations. We say Γ is a 1E-problem, if in every
letrec-environment in Γ, there is at most one environment-variable.

Definition 4.2. In order to denote permutations that come from mappings, we denote with
ξpW1,W2,W3,W4 . . . ,W2k�1,W2kq a permutation that obeys the following: W1 ÞÑ W2, W3 ÞÑ
W4, . . . , W2k�1 ÞÑ W2k and the domain is contained in tW1, . . . ,W2ku. This is not a unique
definition of the permutation, but the omitted parts will have no effect, when it is applied, due to
freshness constraints. Furthermore, a representation as a list of swappings can be constructed
from W1, . . . ,W2k by using a recursion scheme.

Definition 4.3. The function AtPospeq returns all positions of atom suspensions (W -variables)
in e, where also the arguments of ξpW1,W2, . . . ,W2k�1,W2kq count as positions.

Definition 4.4. The algorithm NomEnv1D is defined for 1E-problem and uses the rules in
Fig. 1 on the input Γ0,∇0, with the following exception: The rule E7 is replaced by the rules
RemoveE and DecompLet in Fig. 2.
Let pΓ1,∇1, θ1q be the output of the algorithm. It succeeds if Γ1 � H and ∇1θ1 is satisfiable using
a constraint-test of freshness-constraints, e.g. the test defined in [10].

Note that the rules can be applied in any order. All rules are deterministic with the exception
of DecompLet, which requires a guess on the permutation of the let-variables.

Note also that the substitution θ is intended to be an instantiation of the input problem. The
necessary instantiations of the current Γ,∇ are done by the rules. However, it is necessary to
assume a directed graph implementation of expressions in order to exploit sharing, in particular
in the representation of permutations.
Note that the algorithm NomEnv1D is probably not complete, since by intention, its rules do
not cover all solutions. However, we will show that it is sufficient for a decision algorithm, since
the algorithm will find a (small) solution if there is one at all.

Lemma 4.5. Given an 1E-problem Γ,∇ as input or during the run of the Algorithm
NomEnv1D, then rule RemoveE of NomEnv1D is correct, complete and deterministic, i.e.
Γ1,∇1 is solvable if and only if the input Γ,∇ is solvable.

Lemma 4.6. All rules of NomEnv1D are correct and complete, where only DecompLet is
non-deterministic.

Theorem 4.7. Given a admissible nominal unification problem Γ,∇ without permutation-
variables such that Γ is 1E. Then the Algorithm NomEnv1D is a decision algorithm, which
runs in NP time, under the assumption that sharing is used in the representation of expressions
and permutations.

Remark 4.8 (Decision Algorithm for the General Case). We concentrate on the case that
multiple environment-variables E1, . . . , En are in the same letrec environment.
The generalization is that the rule(s) RemoveE has to try all possibilities of distributing the
single bindings into the environment-variables. This makes the generalized rule(s) RemoveE

non-deterministic. It is obvious how to transfer the correctness proof to this case.

6



Nominal Unification with Letrec Environments,June 5, 2019 M. Schmidt-Schauß and Y. Kutz

This nondeterminism could be omitted if the environment-variables are not restricted by
freshness constraints, or if the freshness constraints contain them such that the environment-
variables can ne interchanged. This determinism can be achieved by selecting a single
environment-variable per environment, say E1, and put all instantiation into E1, end instanti-
ate other environment-variables by H.

5 Examples

As a simple example to illustrate the algorithms presented, consider the following unification
problem:

Example 5.1. The algorithm NomEnv1 runs on ptA#Bu, tletr E1 in A
.
� letr E2 in Buq

as follows:
At first, as the only possible result of rule E7, the substitution θres � tE1 Ñ P � E2u is

computed . The resulting equation is A
.
� P �B and the resulting constraints are:

∇res �

$''&
''%

dompP q � LV pE1q Y LV pE2q,
P �LV pE2q � LV pE1q,

LV pE1qzLV pE2q#letr E1 in B,
P �pLV pE1qzLV pE2qq � pLV pE2qzLV pE1qq

,//.
//-

The final result of the algorithm and most-general unifier of the problem is then:
p∇res Y tA#B,A �# P �Bu, tE1 Ñ P � E2uq.

Until the are decision algorithms for these more complex constraints, solvability can be
checked using NomEnv1D, which would run as follows:

There are 2 atom position in subexpressions of letr E1 in A
.
� letr E2 in B. Therefore,

the rule RemoveElr applies the substitution θE � tE1 ÞÑ tC1.S1;C2.S2u, E2 ÞÑ tD1.T1;D2.T2uu
to the unification problem, resulting in letr C1.S1;C2.S2 in A

.
� letr D1.T1;D2.T2 in B and

tC1#C2, D1#D2u.
The algorithm then guesses the identity as a first possible relation between bindings, resulting

in:
tS1

.
� ξ � T1, S2

.
� ξ � T2, A

.
� ξ �Bu

with ξ � ξpC1, D1, C2, D2q where ξ � pC1 ppC1 D2q �D1qq � pC2 D2q is a possible representation.
The unifier (of this first run) is:

ptA#B,C1#C2, D1#D2, A �# ξ �Bu, θE � tS1 ÞÑ ξ � T1, S2 ÞÑ ξ � T2uq

which has a solvable constraint set. Thus, the probem is solvable.

6 Conclusion

Future work is to extend the algorithms NomEnv1 and NomEnv1D such that also non-linear
input, in particular several occurrences of the same expression-variable can be in the input.
Also extending this to context variables as in [8] would extend the expressibility.

Potential applications of nominal unification are overlapping the rules of functional call-by-
need calculi with transformations, since several of these rules and transformation have abstract
variables for parts of the environment, and where usually the occurrences of the environment-
variables are linear.

7



Nominal Unification with Letrec Environments,June 5, 2019 M. Schmidt-Schauß and Y. Kutz

References

[1] C. Calvès and M. Fernández. A polynomial nominal unification algorithm. Theor. Comput.
Sci., 403(2-3):285–306, 2008.

[2] J. Cheney. Nominal Logic Programming. PhD thesis, Cornell University, Ithaca, NY,
August 2004.

[3] H. Community. Haskell, an advanced, purely functional programming language, 2019.

[4] J. Levy and M. Villaret. An efficient nominal unification algorithm. In C. Lynch, editor,
Proc. 21st RTA, volume 6 of LIPIcs, pages 209–226. Schloss Dagstuhl, 2010.

[5] S. Marlow, editor. Haskell 2010 – Language Report. 2010.

[6] A. Pitts. Nominal techniques. ACM SIGLOG News, 3(1):57–72, Feb. 2016.

[7] A. M. Pitts. Nominal Sets: Names and Symmetry in Computer Science. Cambridge
University Press, New York, NY, USA, 2013.

[8] M. Schmidt-Schauß and D. S. and. Nominal unification with atom and context variables.
In H. Kirchner, editor, Proc. 3rd FSCD 2018), volume 108 of LIPIcs, pages 28:1–28:20.
Schloss Dagstuhl, 2018.

[9] M. Schmidt-Schauß, T. Kutsia, J. Levy, and M. Villaret. Nominal unification of higher
order expressions with recursive let. In M. V. Hermenegildo and P. López-Garćıa, edi-
tors, Logic-Based Program Synthesis and Transformation - 26th International Symposium,
LOPSTR 2016, Edinburgh, UK, September 6-8, 2016, Revised Selected Papers, volume
10184 of LNCS, pages 328–344. Springer, 2016.

[10] M. Schmidt-Schauß, T. Kutsia, J. Levy, M. Villaret, and Y. Kutz. Nominal unification of
higher order expressions with recursive let. Fundamenta Informaticae, 2019. submitted.

[11] M. Schmidt-Schauß, D. Sabel, and Y. Kutz. Nominal unification with atom-variables. J.
Symb. Comput., pages 42–64, 2019.

[12] M. Schmidt-Schauß, M. Schütz, and D. Sabel. Safety of Nöcker’s strictness analysis. J.
Funct. Programming, 18(04):503–551, 2008.

[13] C. Urban. Nominal techniques in Isabelle/HOL. J. Autom. Reasoning, 40(4):327–356,
2008.

[14] C. Urban and C. Kaliszyk. General bindings and alpha-equivalence in nominal Isabelle.
Log. Methods Comput. Sci., 8(2), 2012.

[15] C. Urban, A. M. Pitts, and M. Gabbay. Nominal unification. In 17th CSL, 12th EACSL,
and 8th KGC, volume 2803 of LNCS, pages 513–527. Springer, 2003.

8



Parameters for Associative and Commutative Matching∗

Luis Henrique Bustamante, Ana Teresa Martins, and Francicleber Martins
Ferreira

Department of Computing, Federal University of Ceará, Fortaleza, Ceará, Brazil
lhbusta@lia.ufc.br; ana@dc.ufc.br; francicleber@dc.ufc.br

Abstract

We apply parameterized complexity theory to classify the associative, commutative,
and associative-commutative matching problems ({A, C, AC}-MATCHING) with respect
to different parameters. We primarily consider the number of variables, the size of the
substitution, and the size of the vocabulary as parameters. We establish, for a combination
of the size of the substitution, and the size of the vocabulary, that these matching problems
are fixed-parameter tractable. For the other cases, we show membership in W[P] for C-
MATCHING when considering the number of variables, and for {A, AC}-MATCHING,
with respect to the size of the substitution.

1 Introduction

The NP-completeness of the term matching problem for associative (A), commutative (C),
and associative-commutative (AC) terms of first-order logic are well-known results [5]. Here
we consider the decision version of the matching problem that asks, given a term s and a
ground term t using a set of function symbols F , if there exists a substitution θ such that
sθ =E t modulo an equational theory E ∈ {A, C, AC}. The aim of this paper is to analyze
the parameterized complexity of the matching problem with respect to the number of variables
|var(s)|, the size of substitution |θ|, and the size of the vocabulary |F|.

We evoke parameterized complexity theory [4] as a framework able to distinguish the fine-
grained complexity of these matching problems with respect to different parameters and, in some
sense, to detect the source of their hidden complexity. In this theory, the measure of complexity
is not restricted to the input size |x|, but it is also expressed in terms of an additional parameter
k. A central notion of parameterized complexity theory is the relaxed idea of tractability, fixed-
parameter tractability (fpt), which allows an algorithm that runs in time f(k) · |x|O(1) for
some arbitrarily computable function f . The class FPT is the class of problems decidable in
“fpt-time”. The parameterized intractability is described by a diversified collection of classes,
and it is best represented by the classes W[1] and W[2] (see [4] for a precise definition), the
lower level of the W-Hierarchy. On top of this, we have the class W[P] which is the class of
problems decidable by a non-deterministic algorithm in FPT but with at most h(k) · log |x|
non-deterministic steps for some arbitrary function h.

In [1], the parameterized complexity of {A, C, AC}-unification/matching was studied with
respect to |var(s)|. They obtained that |var(s)|-{A, AC}-MATCHING are W[1]-hard, and they
conjecture that |var(s)|-C-MATCHING is in FPT via a dynamic Programming algorithm as-
suming an additional hypothesis. In Section 3, we give an algorithm in W[P] for C-MATCHING
when parameterized by |var(s)|. Although, for {A, AC}-MATCHING, we would like to answer

∗This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior −
Brasil (CAPES) − Finance Code 001, and by the Brazilian National Council for Scientific and Technological
Development (CNPq) under the grant number 424188/2016-3.



Parameters for Associative and Commutative Matching L. H. Bustamante et al.

if these problems are within W[1] concluding their W[1]-completeness, we could only show the
W[P] membership with |θ| as the parameter. The relevance to locate a problem within W[1] is
related the possibility of algorithms with running time faster than exhaustive search over all

(
n
k

)

subsets. For example, k-CLIQUE, a W[1]-complete problem, has an algorithm that runs in time
O(n(ω/3)k) [7], achieved with the use of an n× n matrix multiplication algorithm with running
time in O(nω) (the best known value for ω is 2.3728639 [6]). For k-DOMINATING-SET, a
W[2]-complete problem, we cannot do anything better than an algorithm running in O(n1+k)
unless CNF satisfiability has a 2δn time algorithm for some δ < 1 [8].

It seems that the size of the substitution |θ| = k+
∑k
i=1 |ti|, for a finite substitution {x1 7→

t1, . . . , xk 7→ tk} (see Section 2), represents a more natural parameter since it represents the
size of the solution. In this case, we may also provide membership in W[P] for |θ|-{A, AC}-
MATCHING. In Section 4, we observe that with |F| + |θ| as the parameter we can construct
a fixed-parameter tractable brute-force algorithm. This idea is applied in [3] to the string
morphism problem, with respect to different parameters. In the last section, we summarize the
results and point out the open problems.

2 Preliminaries

For a complete picture of parameterized complexity theory, we refer to the textbook [4]. We
adopt the notation in [2, 5] for unification theory.

2.1 Parameterized complexity

A parameterized problem is a pair (Q, κ) over the alphabet Σ, such that Q ⊆ Σ∗ is a decision
problem and κ is a polynomial time computable function from Σ∗ to natural numbers N, called
the parameterization. For an instance x ∈ Σ∗ of Q or (Q, κ), κ(x) = k is the parameter of x. A
slice of a parameterized problem (Q, κ) is the decision problem (Q, κ)` := {x ∈ Q | κ(x) = `}.

We say that a problem (Q, κ) is fixed-parameter tractable if there is an algorithm that decides
x ∈ Q in time f(κ(x)) · |x|O(1) for some computable function f . The class of all fixed-parameter
tractable problems is called FPT. We can extend the notion of polynomial time reductions to
fpt-reductions and, in the same way, we can handle the notions of hardness and completeness.

A parameterized problem (Q, κ) is in W[P] if there exists a non-deterministic Turing machine
M with input alphabet Σ that decides Q in at most f(κ(x))·|x|O(1) steps for input x and at most
h(κ(x)) · log |x| non-deterministic steps for some computable functions f, h : N→ N. Let (Q, κ)
be a parameterized problem. Then, (Q, κ) is in paraNP, if there is a non-deterministic algorithm
that decides if x ∈ Q in at most f(κ(x)) · |x|O(1) steps, such that f is a computable function. The
class XP is the parameterized version of the exponential time class. A parameterized problem
(Q, κ) is in XP, if there is an algorithm that decides if x ∈ Q in at most f(κ(x)) · |x|g(κ(x)) steps,
for some computable functions f, g : N→ N.

2.2 The {A, C, AC}-MATCHING problems

Let F be a countable set of function symbols with some arity, and V a countable set of variables.
A term t is inductively defined from variables in V closed under functions f ∈ F . A function
symbol with arity 0 is called a constant. We denote by T (F ,V) the set of terms build up
from F and V. A ground term is a term without variables, and the set of ground terms is
denoted by T (F). For a term s, Fs is the set of function symbols occurring in s, var(s) is
the set of variables occurring in s, the size |s| is the number of symbols in s, and |s|var is the

2



Parameters for Associative and Commutative Matching L. H. Bustamante et al.

maximum number of occurrences of a variable in s. A function f is associative if it satisfies
f(f(x, y), z) = f(x, f(y, z)), and it is commutative if it satisfies f(x, y) = f(y, x).

A substitution θ is a mapping from the set of variables V to the set of terms T (F). We are
interested in finite substitutions, and we explicitly represent by {x1 7→ t1, . . . , xk 7→ tk}. The

size of a substitution |θ| is given by k +
∑k
i=1 |ti|. The domain of a substitution θ is extended

to the set of all terms by inductively defining θ(f(t1, . . . , tn)) to be f(θ(t1), . . . , θ(tn)). A
substitution θ is said to match a term s with a term t if and only if sθ = t. We can extend the
notion of matching considering a set of equations E, an equational theory, taking into account
the congruence classes of the congruence relation generated by E .

Here we consider the parameterized version of the matching problem. In this case, given
two terms s ∈ T (F ,V) and t ∈ T (F), the problem asks if there exists a substitution θ such that
sθ =E t for some equational theory E ∈ {A, C, AC}. For a list of parameters P , we define [P ]-
E-MATCHING as parameterized E-matching for E ∈ {A, C, AC}, where the parameterization
is the sum of the parameters in P . We formalize this parameterized problem by

[P ]-E-MATCHING
Instance: A first-order term s ∈ T (F ,V), and first-order term

t ∈ T (F), and a natural number k.
Parameter: k such that k =

∑
κ∈P κ(x).

Problem: Does there exist a θ such that sθ =E t?

For example, [|F|, |θ|]-A-MATCHING is associative matching with parameterization κ(s, t) =
|F|+ |θ|. With respect to the set F , we consider general matching where some function symbols
may be uninterpreted, meaning that they are function symbols not appearing in E.

We will consider the equivalence of ground terms with respect to the associative, commuta-
tive and associative-commutative functions in the subsequent results.

Lemma 2.1 ([1, 2]). Associative, commutative, and associative-commutative equality can be
done in polynomial time.

3 W[P] membership

The class W[P] is defined using algorithms with bounded non-determinism. Essentially, it
contains problems that can be decided in FPT by an algorithm using at most h(κ(x)) · log |x|
non-deterministic steps.

3.1 |var(s)|-C-MATCHING

In [1], C-MATCHING is conjectured to be in FPT. Here, we show that C-MATCHING is in
W[P] by a non-deterministic algorithm with a limited number of non-deterministic steps in
terms of the number of variables.

Theorem 3.1. |var(s)|-C-MATCHING is in W[P].

Proof. Given two terms s ∈ T (F ,V) and t ∈ T (F) with |var(s)| = k. We design a Turing
machine with running time f(k) · |(s+ t)|O(1) and at most h(k) · log |(s+ t)| non-deterministic
steps for the input (s, t). For each variable xi, it guesses a position vi in t. To encode these
positions in a Turing machine, it needs k log |t| non-deterministic steps. The machine apply the
substitution θ to s producing sθ, and then check if sθ =C t. For every variable, the process

3



Parameters for Associative and Commutative Matching L. H. Bustamante et al.

corresponds to the detection of its encoding in the term s and a shift on the tape of the machine
on the size of the sub-term ti from t in the position vi. The substitution and the equality modulo
commutativity are made in polynomial time. This algorithm leads to a definition in W[P].

If we consider a parameter that it is greater than the number of variables, membership in
W[P] remains for commutativity. One step further, considering the size of the substitution |θ| =
k +

∑k
i=1 |ti|, we can verify membership in W[P] for the |θ|-{A, AC}-MATCHING problems.

3.2 |θ|-{A, AC}-MATCHING

Now, considering |θ| as the parameter, we can build up a non-deterministic Turing machine that
behaves like the previous one. It guesses a substitution θ and then checks if the equivalence
holds.

Theorem 3.2. The |θ|-{A, AC}-MATCHING problems are in W[P].

Proof. This proof is similar to the previous one. Given two terms s ∈ T (F ,V) and t ∈ T (F),
some natural number k, the parameter, and with |var (s)| = `. It guesses ` terms ti ∈ T (F) with
size bounded by k, instantiate them in s and check if s θ =E t. Let m = max{|ti| : 1 ≤ i ≤ `}.
Again, the substitution and the equality modulo E are made in polynomial time observing the
same procedure in the proof of Theorem 3.1. In both cases, we obtain an algorithm in W[P]
for |θ|-{A, AC}-MATCHING.

If we consider |s|var, the number of occurrences of variables, as a parameter, it is unlikely
that E-MATCHING is in FPT. Moreover, it is unlikely to be within XP assuming P 6= NP,
once the problem with |s|var = 2 is already a NP-complete problem [9] and, from the definition
of XP, all slices of a problem in XP are polynomial time decidable. The size of the vocabulary
F is not a good parameter for the same reasons. The {A, C, AC}-MATCHING problems are
NP-complete with fixed vocabulary [2]. But if we add the size of the vocabulary to the size of
the substitution, we can obtain fixed-parameter tractability.

4 Fixed-parameter tractability

From the perspective of parameterized complexity theory, the parameter is expected to be
smaller than the input size. If we consider, for example, the size of the ground term |t|, it
will lead to the case where the parameterized complexity is uninteresting, or trivially fixed-
parameter tractable. In such conditions where the parameter increases monotonically with the
size of the input, the problem is in FPT [4, Chapter 1]. However, this is not the case for the
parameters |F| and |θ|, and we will describe an algorithm in FPT for the matching problems
considered here.

4.1 [|F|, |θ|]-{A, C, AC}-MATCHING

We show a brute-force algorithm that solves these matching problems and takes time in FPT
when parameterized by |F|+ |θ|. The solution enumerates of all possible substitutions checking
whether it corresponds to a match.

Algorithm 1 follows the same idea that was described in [3]. First, it constructs the set of
ground terms T (Ft) with size at most k, for the natural number k. Then, for every (|var(s)|)-
tuple of terms in T (Ft), we build a substitution θ, apply it into s, i.e., for every variable

4



Parameters for Associative and Commutative Matching L. H. Bustamante et al.

occurrence, we remove its encoding from s inserting the encoding of a term, and evaluate
whether sθ is equal to t modulo E ∈ {A, C, AC}. The equivalence of terms with respect to
associative, commutative, and associative-commutative terms implemented in Step 5 can be
computed in polynomial time (via Lemma 2.1).

Algorithm 1 {A, C, AC}-MATCHING via brute force

INPUT: A term s in T (F ,V), a term t in T (F), and a natural number k.
OUTPUT: Yes iff there exists a substitution θ s.t. sθ = t, and |θ| ≤ k.

1: T (Ft)← GENERATE(t, k) . It constructs all terms in Ft with size bounded by k.
2: for every tuple of terms (t1, . . . t|var(s)|) in T (Ft) do
3: for i = 1 to |var(s)| do
4: θ ← θ ∪ {xi 7→ ti}
5: if s θ =E∈{A, C, AC} t then return Yes;

return No;

Proposition 4.1. The running time of Algorithm 1 is |F|k2 · p(|s| · |t| · k) for some polinomial
p.

Proof. Let |Ft| be the number of symbols in t. The number of terms in T (Ft) with size at most
k is O(|Ft|k+1), k comes from the input, and it is an upper bound for |θ|. Then, the main loop
will take at most O((|F|k+1)|var(s)|) iterations. The construction of θ in Step 4 is bounded by
a polynomial in k. The application of θ into s is obtained in time polynomial in |s| · k. The
equality modulo E can be done in time polynomial in |sθ| · |t| by Lemma 2.1. Then, the whole
computational complexity of the algorithm is (|F|k+1)|var(s)| · p(|s| · |t| · k) for some polinomial
p.

Theorem 4.2. The [|F|, |θ|]-E-MATCHING problem is in FPT for E ∈ {A, C, AC}.

Proof. Algorithm 1 is an algorithm that solves these matching problems in time f(|F|, |θ|)·(|s|+
|t|)O(1) for some computable function f . Then, we can conclude that they are in FPT.

5 Conclusion

We provide some parameterized complexity results for the matching problem of first-order terms
concerning associative, commutative, and associative-commutative functions. Fixed-parameter
tractability for these problems is achieved when considering the number of function symbols
and the size of the substitution as the parameters.

With respect to the number of variables, we show that the C-MATCHING problem is in
W[P] by an algorithm with a limited number of non-deterministic steps. Then, the conjecture
stated in [1] remains, and it is open if this problem is in W[1]. For the other two problems, we
cannot say anything better than the membership in para-NP, and we wonder if it is the case
that |var(s)|-{A, AC}-MATCHING is in W[1].

Considering the size of the substitution, we show that the |θ|-{A, AC}-MATCHING prob-
lems are in W[P], and the previous open question can be restated for this parameterization.
Can we locate this problem in a finite level of the W-Hierarchy?

5



Parameters for Associative and Commutative Matching L. H. Bustamante et al.

References

[1] Tatsuya Akutsu, Jesper Jansson, Atsuhiro Takasu, and Takeyuki Tamura. On the parameterized
complexity of associative and commutative unification. Theoretical Computer Science, 660:57–74,
2017.

[2] Dan Benanav, Deepak Kapur, and Paliath Narendran. Complexity of matching problems. Journal
of symbolic computation, 3(1-2):203–216, 1987.

[3] Henning Fernau, Markus L Schmid, and Yngve Villanger. On the parameterised complexity of
string morphism problems. Theory of Computing Systems, 59(1):24–51, 2016.

[4] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer Verlag, Berlin, 2006.

[5] Deepak Kapur and Paliath Narendran. Complexity of unification problems with associative-
commutative operators. Journal of Automated Reasoning, 9(2):261–288, 1992.

[6] François Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings of the 39th
international symposium on symbolic and algebraic computation, pages 296–303. ACM, 2014.

[7] Jaroslav Nešetřil and Svatopluk Poljak. On the complexity of the subgraph problem. Commenta-
tiones Mathematicae Universitatis Carolinae, 26(2):415–419, 1985.

[8] Mihai Pătraşcu and Ryan Williams. On the possibility of faster sat algorithms. In Proceedings of
the twenty-first annual ACM-SIAM symposium on Discrete Algorithms, pages 1065–1075. SIAM,
2010.

[9] Rakesh M Verma and IV Ramakrishnan. Tight complexity bounds for term matching problems.
Information and Computation, 101(1):33–69, 1992.

6



On Asymmetric Unification for the Theory of XOR with a
Homomorphism

Christopher Lynch1, Andrew M. Marshall2, Catherine Meadows3, Paliath
Narendran4, and Veena Ravishankar2

1 Clarkson University, Potsdam, NY, U.S.A.
clynch@clarkson.edu

2 University of Mary Washington, Fredericksburg, VA, U.S.A.
marshall@umw.edu, vravisha@umw.edu

3 Naval Research Laboratory, Washington, D.C., U.S.A.
catherine.meadows@nrl.navy.mil

4 University at Albany-SUNY, Albany, NY, U.S.A.
pnarendran@albany.edu

1 Introduction

We examine the newly developed paradigm of asymmetric unification in the theory of xor with a homo-
morphism. Asymmetric unification is motivated by requirements arising from symbolic cryptographic
protocol analysis [4]. These symbolic analysis methods require unification-based exploration of a space
in which the states obey equational theories expressible as a decomposition R]∆ , where R is a set of
rewrite rules. But in order to apply state space reduction techniques, it is usually necessary for at least
part of this state to remain in normal form after unification is performed. This can be expressed as an
asymmetric unification problem {s1 =↓ t1, . . . , sn =↓ tn} where the =↓ denotes a unification problem
with the restriction that any unifier leaves the right-hand side of each equation irreducible.

The most commonly used algorithm is one based on variant unification [6], which turns an R]∆-
problem into a set of ∆-problems. Variant unification requires satisfaction of a number of conditions
on the decomposition. Unfortunately, there is a class of theories important for cryptographic protocol
analysis with no suitable decompositions: theories with an operator h homomorphic over an Abelian
group operator +, that is AGh. In addition, for the usual decomposition of AGh with ∆=AC, asymmetric
unification has recently been shown to be undecidable [9]. Thus alternative approaches are called for.

In this paper we concentrate on asymmetric unfication for a special case of AGh: the theory of xor
with homomorphism, or ACUNh, using a decomposition of the form R]ACh. We first develop an
automata-based asymmetric decision procedure for R]ACh with free function symbols. Note that it
is known that unification modulo ACh is undecidable [8], so our result also yields the first asymmetric
decision procedure for which ∆ does not have a decidable finitary unification algorithm. We also con-
sider the problem of producing complete sets of asymmetric unifiers modulo R]ACh. We define an
automaton that generates a (possibly infinite) complete set of solutions, and prove via an example that
asymmetric unification modulo R]ACh is infinitary.

Outline: Section 2 provides a brief description of preliminaries. Section 3 develops an automaton
based decision procedure for the ACUNh-theory. In Section 4 an automaton approach that produces
substitutions is outlined. Section 5 develops the modified combination method needed to obtain general
asymmetric algorithms.



Asymmetric ACUNh Unification Lynch, Marshall, Meadows, Narendran, Ravishankar

2 Preliminaries

We use the standard notation of equational unification [2] and term rewriting systems [1]. Due to space
considerations we only give a few definitions here.

Definition 1. Let R be a term rewriting system and E be a set of identities. We say (R,E) is R,E-
convergent if and only if→R,E is terminating, and for all terms s, t, if s ≈R∪E t, there exist terms s′, t ′

such that s →!
R,E s′, t →!

R,E t ′, and s′ ≈E t ′

Definition 2. We call (Σ, E, R) a weak decomposition of an equational theory ∆ over a signature
Σ if ∆ = R]E and R and E satisfy the following conditions: Matching modulo E is decidable, R is
terminating modulo E, i.e., the relation →R/E is terminating, The relation →R,E is confluent and E-
coherent, i.e., ∀t1, t2, t3 if t1 →R,E t2 and t1 =E t3 then ∃ t4, t5 such that t2 →∗R,E t4, t3 →+

R,E t5, and
t4 =E t5.

This is a modification of the definition in [4] where asymmetric unification and the corresponding
theory decomposition are first defined. These conditions ensure that s→!

R/E t iff s→!
R,E t (see [6, 4]).

Definition 3 (Asymmetric Unification). Given a weak decomposition (Σ,E,R) of an equational theory,
a substitution σ is an asymmetric R,E-unifier of a set S of asymmetric equations {s1 =↓ t1, . . . , sn =↓
tn} iff for each asymmetric equation si =↓ ti, σ is an (E∪R)-unifier of the equation si =

? ti and (ti ↓R,E)σ
is in R,E-normal form.

Example 1: Let R = {x⊕0→ x, x⊕x→ 0, x⊕x⊕y→ y} and E be the AC theory for ⊕. Consider the
equation y⊕x =↓ x⊕a. The substitution {y 7→ a} is an asymmetric solution, but {x 7→ 0, y 7→ a} is not.
The instances of asymmetric unifiers need not be asymmetric unifiers.

Definition 4 (Asymmetric Unification with Linear Constant Restriction). Let S be a set of asymmetric
equations with linear constant restriction (LCR) [2]. A substitution σ is an asymmetric R,E-unifier of
S with LCR iff σ is an asymmetric solution to S and σ satisfies the LCR.

3 An Asymmetric ACUNh-unification Decision Procedure
In this section we develop a new asymmetric unification algorithm for the theory ACUNh. Following

the definition of asymmetric unification, the theory ACUNh is decomposed into a set of rewrite rules, R,
modulo a set of equations, ∆. The decomposition has associativity, commutativity and the distributive
homomorphism identity as ∆, i.e., ∆ = ACh. Let R2= {x+x→ 0, x+0→ x, x+(y+x)→ y, h(0)→ 0}

Lemma 3.1. −→R2,ACh is ACh-convergent.

Another decomposition keeps associativity and commutativity as identities ∆ and the rest as rewrite
rules. This decomposition has the following AC-convergent term rewriting system R1: R1 = R2 ∪Rh,
where Rh = h(x+ y)→ h(x)+h(y)

Decidability of asymmetric unification for the theory R2,ACh can be shown by automata-theoretic
methods analogous to the method used for deciding the Weak Second Order Theory of One successor
(WS1S) [3] i.e., by reduction to the Weak Second Order Theory of One successor (WS1S). In WS1S
we consider quantification over finite sets of natural numbers, along with one successor function. All
equations or formulas are transformed into finite-state automata that accept the strings that correspond
to a model of the formula [7]. This automata-based approach is key to showing decidability of WS1S,

2



Asymmetric ACUNh Unification Lynch, Marshall, Meadows, Narendran, Ravishankar

q0start q1

q3 q2

(0
0
0

)

(
1
0
1

)

(
1
1
0

)

(0
0
0

)
,
(

1
1
0

)

(
1
0
1

)

(0
0
0

)
,
(

1
0
1

)
,
(

1
1
0

)(0
0
0

)
,
(

1
0
1

)

(
1
1
0

)

(a) Automaton for P=↓ Q+R

q0start q1

q2

(
1
0

)

(
0
0

)

(
0
1

)

(
1
1

)

(
0
0

)

(
1
0

)

(b) Automaton for X=↓ h(Y)

Figure 1: Automata construction

since the satisfiability of WS1S formulas reduces to the automata intersection-emptiness problem. We
follow the same approach here.

For ease of exposition, let us consider the case where there is only one constant a. Thus every
ground term can be represented as a set of natural numbers. The homomorphism h is treated as a
successor function. Just as in WS1S, the input to the automata are column vectors of bits. The length of

each column vector is the number of variables in the problem. Σ =








0
0
...
0


, . . . ,




1
1
...
1







The deterministic finite automata (DFA) for the equation P=↓ Q+R is illustrated in Figure 1a. The
+ operator behaves like the symmetric set difference operator. To preserve asymmetry on the right-hand
side of this equation, Q+R should be irreducible. If either Q or R is empty, or if they have any term in
common, then a reduction will occur. For example, if Q = h(a) and R = h(a)+a, there is a reduction,
whereas if R = h(a) and Q = a, irreducibility is preserved, since there is no common term and neither
one is empty. Since neither Q nor R can be empty, any accepted string should have one occurrence of(

1
0
1

)
and one occurrence of

(
1
1
0

)
.
( P

Q
R

)
is the ordering of variables.

Fig. 1b: In this equation, h(Y) should be in normal form. So Y cannot be 0, but can contain terms of
the form u+v. (Y

X ) is the ordering of variables. Therefore the bit vector
(

1
0

)
should be succeeded by(

0
1

)
, with possible occurrences of the bit vector

(
1
1

)
in between. Thus the string either ends with

(
0
1

)
or(

0
0

)
. For example, if Y = h(a)+a, then X = h2(a)+h(a). The string

(
1
0

)(
1
1

)(
0
1

)
gets accepted.

Once we have automata constructed for all the equations, we take the intersection and check if there
exists a string accepted by all automata. If the intersection is not empty, then we have a solution or an
asymmetric unifier for set of equations. We omit the details here due to space considerations.

4 Automaton to find a complete set of unifiers
We create automata to find all solutions of an ACUNh asymmetric unification problem with constants.

Definition 5. Let t be a term whose Rh normal form is t1+ · · ·+ ·tn. Then we define mset(t)= {t1, · · · , tn}.
Inversely, if T = {t1, · · · , tn} then ΣT = t1 + · · ·+ tn. We define the maximum degree of a term t in Rh

3



Asymmetric ACUNh Unification Lynch, Marshall, Meadows, Narendran, Ravishankar

normal form to be i if i is the largest number such that hi(s) is in mset(t) and s does not have an h at the
root. Let ζ be a substitution and X be a set of variables. Then ζ is a zero substitution on X if Dom(ζ )⊆
X and xζ = 0 for all x ∈Dom(ζ ). Let t be an object. Define loseh(t) = Σ{hi(t) | hi+1(t) ∈mset(t ↓Rh)}.

Definition 6. Let P be a set of ACUNh asymmetric equations. Let m be the maximum degree of terms in
P. Let Θ be the set of all substitutions θ such that Dom(θ)⊆Var(P) and for all x ∈ Dom(θ), xθ = ΣT
where T is a nonempty set containing constants from P and h(x). Let u =?

↓ v be an ACUNh asymmetric
equation. The automaton M(u =?

↓ v,P) = (Q,qu=?
↓v
,F,Θ,δ ), where Q is the set of states, qu=?

↓v
is the

start state, F is the set of accepting states, Θ is the alphabet, and δ is the transition function:

• Q is a set of states of the form qs=?
↓t

, where s = ΣS and t = ΣT , for some S and T which are sets

containing terms of at most degree m.

• F = {qs=?
↓t
∈ Q | mset(s) = mset(t)}

• δ : Q×Θ −→ Q such that δ (qs=?
↓t
,θ) = qloseh(sθ)↓R1=

?
↓loseh(tθ) if Dom(θi) = Var(s =?

↓ t), the

mulitset of constants and variables in mset((sθ) ↓R1) is the same as the multiset of constants and
variables in mset(tθ), and mset(tθ) contains no duplicates.

Now we show that these automata can be used to find all asymmetric ACUNh unifiers.

Theorem 4.1. Let P be a set of asymmetric ACUNh equations, such that all terms in P are reduced
by R1. Let θ be a substitution which is reduced by R1. Then θ is a solution to P if and only if there
exists a zero substitution ζ on P where all right hand sides in Pζ are irreducible, and a sequence of
substitutions θ0, · · · ,θm such that θ is more general than ζ θ0 · · ·θm and the string θ0 · · ·θm is accepted
by M((u =?

↓ v)ζ ) ↓R1 ,P
′ζ ) for all u =?

↓ v ∈ P, where P′ = P∪{c =?
↓ c} for a fresh constant c.

Thus the set of solutions can be represented by a regular language (we could add linear constant
restrictions and disequalities). If we only want to decide asymmetric unification, we check if there is
an accepting state reachable from an initial state. We can enumerate all the solutions by finding all
accepting states reachable in 1 step, 2 steps, etc. If there is a cycle on a path to an accepting state, then
there are an infinite number of solutions, otherwise there are only a finite number of solutions. This will
find all the ground substitutions. To find all substitutions, we generalize the solutions that we find and
check them, and there are only a finite number of them. We only have to generalize terms containing c.

Figure 2 shows the automaton created for h(x)+ b =?
↓ x+ y, where P = {h(x)+ b =?

↓ x+ y}. The
only valid zero substitution here is the identity. Note that c never appears in the domain of a substitution,
because no such substitution satisfies the conditions for the transition function. This example shows that
asymmetric ACUNh unification with constants is not finitary.

5 Combining with the Free Theory
In order to obtain a general asymmetric ACUNh-unification decision procedure we need to add free

function symbols. We can do this by using disjoint combination. The problem of asymmetric unification
in the combination of disjoint theories was studied in [5]. However, this algorithm does not immediately
apply. For the automata approach it’s not always possible to check solutions for theory preserving
and injectivity properties since the automata may not actually produce a substitution. However, it is
possible to build constraints into the automata that enforce these conditions. Therefore, the algorithm
of [5] can be modified with the following properties. For each ACUNh-pure problem, partition, and

4



Asymmetric ACUNh Unification Lynch, Marshall, Meadows, Narendran, Ravishankar

theory index, an automata is constructed enforcing the injective and theory preserving restrictions. Since
these restrictions are built into the automata, the only ACUNh solutions produced will be both theory
preserving and injective. These can then be combined with solutions from the free theory which can be
easily checked.

h(x)+b =?
↓ x+ ystart b =?

↓ y

h(x) =?
↓ x+ y 0 =?

↓ 0

{x 7→ h(x)+b, y 7→ h(y)}

{x 7→ h(x),
y 7→ h(y)+b}

{x 7→ b,
y 7→ h(y)}

{y 7→ b}

{x 7→ h(x), y 7→ h(y)}

Figure 2: Substitution producing automaton

References
[1] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University Press, 1999.

[2] Franz Baader and Wayne Snyder. Unification theory. Handbook of Automated Reasoning, 1:445–
532, 2001.

[3] Calvin C. Elgot. Decision problems of finite automata design and related arithmetics. Transactions
of the American Mathematical Society, 98(1):21–51, 1961.

[4] Serdar Erbatur, Santiago Escobar, Deepak Kapur, Zhiqiang Liu, Christopher A. Lynch, Catherine
Meadows, José Meseguer, Paliath Narendran, Sonia Santiago, and Ralf Sasse. Asymmetric Unifica-
tion: A New Unification Paradigm for Cryptographic Protocol Analysis. In Automated Deduction,
(CADE-24), volume 7898 of LNCS, pages 231–248. 2013.

[5] Serdar Erbatur, Deepak Kapur, Andrew M. Marshall, Catherine A. Meadows, Paliath Narendran,
and Christophe Ringeissen. On asymmetric unification and the combination problem in disjoint
theories. In Foundations of Software Science and Computation (FOSSACS-17), volume 8412 LNCS,
pages 274–288, 2014.

[6] Santiago Escobar, José Meseguer, and Ralf Sasse. Variant narrowing and equational unification.
Electr. Notes in Theoretical Computer Science, 238(3):103–119, 2009.

[7] Felix Klaedtke and Harald Ruess. Parikh automata and monadic second-order logics with linear
cardinality constraints. Technical Report 177, Universität Freiburg, 2002.

[8] Paliath Narendran. Solving linear equations over polynomial semirings. In Proceedings, 11th
Annual IEEE Symposium on Logic in Computer Science, New Brunswick, New Jersey, USA, July
27-30, 1996, pages 466–472. IEEE Computer Society, 1996.

5



Asymmetric ACUNh Unification Lynch, Marshall, Meadows, Narendran, Ravishankar

[9] Veena Ravishankar. Asymmetric Unification and Disunification. PhD thesis, University at Albany–
SUNY, 2018.

6



On Forward-closed and Sequentially-closed String
Rewriting Systems

Yu Zhang1, Paliath Narendran2, and Heli Patel3

1 University at Albany–SUNY (USA),
e-mail: {yzhang20,pnarendran,hhpatel}@albany.edu

Abstract

In this paper we introduce the new concept of sequentially-closed string rewriting systems which
generalizes the concept of forward-closed systems. We also investigate subclasses and properties of
finite sequentially-closed systems and regular forward-closed systems.

The motivation for defining this new class comes from investigating the reachability problem for
what we define as Ô3 systems. (A subclass of these were studied earlier in relation to the accessibility
problem.) We prove that the reachability problem is undecidable by a reduction from the halting prob-
lem for Intercell Turing Machines. We show that checking whether a given string rewriting system is
sequentially-closed is a decidable problem. We also show that every congruence class modulo a con-
vergent, sequentially-closed string rewriting system is a context-free language (extending a similar
result for forward-closed systems).

We also investigate the properties of infinite regular string rewriting systems. We show that check-
ing whether a regular string rewriting system is forward-closed and confluent is decidable.

Keywords: string rewriting system, forward-closed, sequentially-closed

1 Introduction

The current work is inspired by the paper [6], which introduces a novel, intriguing class of string rewrit-
ing systems. The accessibility problem (in their formulation) is defined as follows:

Let G = (V,E) be a directed graph. Let τ be a type function mapping vertices to a set
of types T . Two operations Get and Insert are defined in terms of two ternary relations
RI ,RE ⊆ T × T × T : Get(a,b,c): Add edge a→ c, if edges a→ b and b→ c already
exist and (τ(a),τ(b),τ(c)) ∈ RE . Insert(a,x,c): If a→ c is an edge in the graph, then add
node x and edges a→ x and x→ c if (τ(a),τ(x),τ(c)) ∈ RI . A node p can access a node
d iff there exists a graph G1 and a finite sequence of operations f1, f2, . . . , fk [6] such that
G1 = G◦ f1 ◦ f2 ◦ . . .◦ fk and p→ d ∈ E(G1).

In this paper we investigate the properties of various classes of string rewriting systems. Our mo-
tivation partly comes from [6] where undecidability of the accessibility problem for the above system,
which we call Ô3, is mentioned. However, the proof of undecidability is not given in [6]; it has not been
published anywhere to the best of our knowledge. We show that the problem is indeed undecidable. The
undecidability proof is done by a reduction from the halting problem for Intercell Turing Machines.

We also propose a new class of string rewriting systems, sequentially-closed string rewriting sys-
tems, which generalizes the notion of a forward-closed string rewriting system [4, 5]. We show that
checking whether a given string rewriting system is sequentially-closed is a decidable problem. We



On Forward-closed and Sequentially-closed String Rewriting Systems Zhang, Narendran, Patel

also show that every congruence class modulo a convergent, sequentially-closed string rewriting sys-
tem is a context-free language (extending a similar result for forward-closed systems). Two cases of
sequentially-closed string rewriting systems are considered: length-reducing Ô3 systems and monadic
systems.

We also investigate the properties of infinite regular string rewriting systems. Our motivation comes
from [7] where it was shown that confluence of regular monadic Thue systems is decidable. We show
that checking whether a regular string rewriting system is forward-closed and confluent is decidable.

In the interest of brevity we have omitted many details and most of the proofs of the results that
appear in this short paper. The interested reader can find all of the details in the papers (in preparation)
uploaded at https://www.albany.edu/~YZ719878/ .

In the future, we plan to further explore the relation between forward-closed and sequentially-closed
systems, especially in the regular case.

2 Definitions

We present here some essential definitions of string rewriting systems. For more details, we refer the
reader to [1] for term rewriting systems, and to [3] for string rewriting systems.

A string is irreducible with respect to string rewriting system T if and only if no rule of T can be
applied to it. The set of strings that are irreducible (i.e., in normal form) modulo T is denoted by IRR(T ).
Note that this set is a regular language, since IRR(T ) = Σ∗r{Σ∗l1Σ∗ ∪ . . .∪ Σ∗lmΣ∗}, where l1, . . . , lm
are the left-hand side of the rules in T . A string w′ is a T-normal form (or a normal form if the rewrite
system is obvious from the context) of a string w for a string rewriting system T if and only if w→∗T w′

and w′ is irreducible. We write this as w→!
T w′. Let wrev denotes w’s reversal.

A string of the form wl where w ∈ Σ∗ and l is a left-hand side is called a redex. A redex is innermost
if no proper prefix of it is a redex. The set of innermost redexes is denoted by INNER(T ). A string
rewriting system is said to be forward-closed if every innermost redex can be reduced to its normal
form in one step. A rewrite step xly → xry is leftmost-innermost-smallest if and only if (a) xl is an
innermost redex, (b) xr is in normal form, and (c) if l → r′ is another rule in the rewrite system and
xr′ is irreducible, then r′ �LL r (� is a given total ordering on the alphabet Σ and �LL is its length-
+-lexicographic extension). We denote this rewrite relation by →`is. If w→!

`is w′, then w′ is said to
be a leftmost-innermost-smallest normal form and is denoted as `isT (w). Clearly if T is terminating
and forward-closed, then `isT (w) exists and is unique for every string w. For a language L0, we define
T !

lis(L0) =
{

x | w→!
lis x, for some w ∈ L0

}
.

A string rewriting system is said to be regular if and only if it can be represented as
{

R1→α1, R2→
α2, . . . , Rn→ αn

}
where the Ri is a regular set and αi is a string (1≤ i≤ n). In this paper, we focus on

infinite regular systems, i.e., at least one of the Ri contains an infinite number of strings.

We call a string rewriting system an Ô3 system if and only if every rule is either of the form τ1τ3→
τ1τ2τ3 or τ1τ2τ3→ τ1τ3 where τ1,τ2 and τ3 are symbols in the alphabet.

2



On Forward-closed and Sequentially-closed String Rewriting Systems Zhang, Narendran, Patel

3 Undecidability of the Accessibility Problem for Ô3 System

We will prove that the accessibility problem for Ô3 system is undecidable by a reduction from the halting
problem for Intercell Turing Machines.

Theorem 3.1. Given an Intercell Turing Machine M, an Ô3 string rewriting system T can be constructed
such that the acceptance problem for M is reducible to a reachability problem for T .

Proof. Let q1, ...,qm be the states of M including an accepting state qaccept and a rejecting state qre ject .
Let Σ be its input alphabet and Γ its tape alphabet including the blank symbol t. The alphabet of T is a
superset of the tape alphabet Γ: it includes symbols for each state of M, additional symbols such as #,
$, ¢ etc., and a mirror alphabet Γ such that for every a ∈ Γ, we have ā ∈ Γ. Symbols in Γ are used to
represent symbols in the cells to the left of the tape head.

We represent a configuration of M by a string of the form ¢#a1#a2# . . .#q#ai# . . .#an#t$ where the
state is q and the tape head is reading the symbol ai. ¢ and $ stand for the left and right endmarkers for
the portion of the tape that has been “in action” (Note that the symbols of the tape alphabet will be the
vertices of our accessibility system S.). We formulate rules for T based on the quintuples of the Intercell
Turing machine. Each quintuple is given a distinct label l or r with subscripts, depending on whether
the move is to the left or to the right. For label l and r, we also introduce new symbol #l and #r. We
now show how rules are created for right-moving quintuple, similar for the left-moving quintuple.

For instance, a right-moving quintuple r1 = (ai,qx,a j,R,qy) represents changing part of the config-
uration from #qx#ai# to #a j#qy#. The corresponding productions are:

step1 :

qx#ai → qxai

qxai → qx#r1ai

step2 :

#qx#r1 → ##r1

##r1 → #a j#r1

step3 :

#r1ai# → #r1#

#r1# → #r1qy#

step4 :

a j#r1qy → a jqy

a jqy → a j#qy

Once the accepting or rejecting state is reached we erase all symbols in Γ ∪ {#}, i.e., all symbols
except ¢, $, the state symbols and the symbols associated with transition labels (e.g., #r) using the rules
qacceptxy → qaccepty, xyqaccept → xqaccept , ¢qaccept$ → ¢$.

Claim 3.1.1. If C = ¢#q1#a1#a2# . . .#an#t $ is the string representing a given initial configuration
of M, the string ¢$ is derivable from the accessibility rules if and only if M halts when started from
configuration C.

Since the halting problem of M is undecidable, the accessibility problem is undecidable as well.

4 Sequentially-closed String Rewriting Systems

An innermost redex is said to be sequential if and only if it can be reduced in one step to either an-
other innermost redex or to a normal form. If ω → ω ′ and both ω and ω ′ are innermost redexes, then
we call ω ′ the successor innermost redex (or simply the successor) of ω . A string rewriting system

3



On Forward-closed and Sequentially-closed String Rewriting Systems Zhang, Narendran, Patel

is sequentially-closed if every innermost redex is sequential. All the forward-closed string rewriting
systems are sequentially-closed. Let L be the length of a system’s longest left-hand side. The following
lemma shows that checking whether a given string rewriting system is sequentially-closed is a decidable
problem.

Lemma 4.1. A string rewriting system T is sequentially-closed if and only if every innermost redex of
length 2L or less is sequential.

Lemma 4.2. Let T be a sequentially-closed string rewriting system and L be the length of its longest
left-hand side. Let x, y1, y2 be strings such that xy1 ∈ IRR(T ) and |y1| = |y2| = L. Then xy1y2 is an
innermost redex if and only if y1y2 is an innermost redex.

Theorem 4.1. Every congruence class modulo a convergent sequentially-closed string rewriting system
T is a context-free language.

The above theorem can be proved by creating a Pushdown automata (PDA) M that recognize the
congruence class of $χ , where χ ∈ IRR(T ). M will carry out the transitions by pushing symbols of
the input string, and reducing each redex that appears on the stack. The string in the stack is either an
innermost redex, or in normal form. Before pushing another symbol, the string on the stack should be
in normal form. After pushing all the symbols of the input string, the contents of the stack must be $χ .
By Lemma 4.2, the PDA only needs to consider the top 2L symbols in the stack in order to determine a
successor innermost redex.

We also prove that length-reducing Ô3 systems and monadic systems are sequentially-closed. The
congruence class over them can be not regular. Here we use length-reducing Ô3 system as example.

Lemma 4.3. Every length-reducing Ô3 system T is sequentially-closed.

We now show that there is a length-reducing and convergent Ô3 system which has a non-regular
congruence class. Let TÔ3

=
{

abc→ ac,dac→ dc,dcb→ db,adb→ ab
}

which is confluent. Now
consider the congruence class of ab, i.e., [ab] =

{
w | w →∗TÔ3

ab
}

. [ab] is not regular can be proved

by letting L1 = [ab]∩ (α∗abβ ∗) = {αmabβ m|m≥ 0} and L1 is not regular.

5 Forward Closure and Confluence of Regular Forward-closed Sys-
tems are Decidable

The following lemma can prove the foward closure of regular SRS is decidable.

Lemma 5.1. Let T =
{

R1→ α1, R2→ α2, . . . , Rn→ αn
}

be a regular string rewriting system. Then
T is forward-closed if and only if INNER(T ) is an equivalent of

(IRR(T )/α1) ·R1 ∪ (IRR(T )/α2) ·R2 ∪ . . . ∪ (IRR(T )/αn) ·Rn

where (IRR(T )/αi) ·Ri =
{

wx | wαi ∈ IRR(T ) and x ∈ Ri
}

, 1≤ i≤ n.

Our proof of the decidability of confluence of regular forward-closed string rewriting system is based
on the following criteria from Section 3 of [7]. If β1,β2 are the left-hand side of the rules in T , then:

ACLASH(β1, β2) =
{
(β1w, uβ2) ∈ Σ∗×Σ∗

∣∣ ∃v 6= ε :
(
(uv→ β1) ∈ T and (vw→ β2) ∈ T

)}

BCLASH(β1, β2) =
{

uβ2w ∈ Σ∗
∣∣ ∃v :

(
(v→ β2) ∈ T and (uvw→ β1) ∈ T

)}

4



On Forward-closed and Sequentially-closed String Rewriting Systems Zhang, Narendran, Patel

A regular string rewriting system T is confluent if and only if the following criteria hold:

(A) for every right-hand side β1,β2: ACLASH(β1,β2) ∩
{
(x,y)

∣∣ x↓T 6= y↓T
}
= /0;

(B) for every right-hand side β1,β2: BCLASH(β1,β2) ∩
{

w
∣∣ w↓T 6= β1↓T

}
= /0;

From Lemma 3.2.1 in [7], we know BCLASH(β1,β2) is always regular. If we can prove that{
w
∣∣ w↓T 6= β1↓T

}
is a context-free language, then that shows that criterion (B) is decidable, since

it is decidable if the intersection of a regular set and a context-free language is empty.

Lemma 5.2. If T is a regular forward-closed string rewriting system and χ ∈ IRR(T ), then L2 ={
u#χrev | u→!

`is v, v 6= χ
}

is a context-free language, and a nondeterministic pushdown automaton
(NPDA) recognizing L2 can be constructed from T and χ .

We can see that the language recognized by the NPDA in the above lemma is
{

w
∣∣ w↓T 6= β1↓T

}
.

To prove criterion (A) is decidable and make the decision procedure less complicated, we handle
subsets of Σ∗#Σ∗ rather than subsets of Σ∗×Σ∗. We define:

ACLASH ′(β1,β2) =
{

β1w#uβ2 |(β1w,uβ2) ∈ ACLASH(β1,β2)}
T !
`is
(
ACLASH ′(β1,β2)

)
=

{
y1#y2 |(β1w,uβ2) ∈ ACLASH(β1,β2),β1w→!

`is y1,uβ2→!
`is y2}

It is decidable if all the members of a finite set are in certain format. If we can decide whether
T !
`is

(
ACLASH ′(β1,β2)

)
is finite and T !

`is

(
ACLASH ′(β1,β2)

)
⊆ {y#y | y ∈ Σ∗}, then criterion (A) is de-

cidable. The proof of this section will depend on the following claim from [2]:

Claim 5.0.1. Let L ⊆ Σ∗{#}Σ∗ be a context-free language, where # /∈ Σ. Suppose that for each x ∈ Σ∗,
{y | x#y ∈ L} is finite. Then {y | for some x ∈ Σ∗, x#y ∈ L} is a regular set.

Lemma 5.3. Let T be a regular terminating and forward-closed string rewriting system, and R be a
regular language. Then T !

`is(R) is regular.

ACLASH ′(β1,β2) is a regular language can be proved by using the similar proof of the Lemma 3.3.2
in [7]. It follows that T !

`is

(
ACLASH ′(β1,β2)

)
is a regular language too.

Lemma 5.4. Let L = {w#w | w ∈ Σ∗,# /∈ Σ}. If L3 ⊆ L and L3 is regular, then L3 is finite.

Thus if a regular forward-closed string rewriting system T is confluent, T !
`is

(
ACLASH ′(β1,β2)

)
will

be a finite subset of {w#w | w ∈ Σ∗,# /∈ Σ} for all β1 and β2. Hence the confluence of T can be verified.

References

[1] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge University Press, 1998.
[2] Ronald V. Book, Matthias Jantzen and Celia Wrathall. Monadic Thue systems. Theoretical Computer Sci-

ence 19:231–251, 1982.
[3] Ronald V. Book and Friedrich Otto. String-rewriting systems. Texts and Monographs in Computer Science,

Springer, 1993.
[4] Daniel S. Hono II and Paliath Narendran. On forward closed string rewriting systems. In preparation.
[5] Daniel S. Hono II, Paliath Narendran, and Rafael Veras. Lynch-Morawska systems on strings. CoRR,

abs/1604.06509, 2016.

5



On Forward-closed and Sequentially-closed String Rewriting Systems Zhang, Narendran, Patel

[6] Rajeev Motwani, Rina Panigrahy, Vijay A. Saraswat, and Suresh Venkatasubramanian. On the decidability of
accessibility problems (extended abstract). In F. Frances Yao and Eugene M. Luks, editors, Proceedings of
the Thirty-Second Annual ACM Symposium on Theory of Computing, May 21-23, 2000, Portland, OR, USA,
pages 306–315. ACM, 2000.

[7] Colm Ó’Dúnlaing. Infinite regular Thue systems. Theoretical Computer Science 25:171–192, 1983.

6



Unification of Multisets with Multiple

Labelled Multiset Variables ∗

Zan Naeem1 and Giselle Reis1

Carnegie Mellon University, Doha, Qatar
znaeem@andrew.cmu.edu, giselle@cmu.edu

Abstract

We look into the problem of unifying multisets containing (first-order) terms and mul-
tiple multiset variables. The variables are labelled, meaning that a unifier that places a
term in a multiset variable Mi is different from another that places a term in a multiset
variable Mj , for i 6= j. We describe a sound, complete, and terminating algorithm for
computing the set of all possible unifiers, and analyse its complexity. We also prove an
input pre-processing step that avoids the computation of less general unifiers.

1 Introduction

Multiset is an important data-structure that is used to specify various object systems. Our
motivation stems mostly from proof theory, where logical entailment is encoded as sequents
Γ ` ∆, where both Γ and ∆ are typically considered as multisets. When reasoning about such
objects, one might need to use an implementation of sets/multisets based on lists, since most
reasoning tools (i.e., logical frameworks, proof assistants, and logic programming languages)
do not have built-in support for these data structures [2, 3, 6, 7]. Adding this kind of support
requires, among other things, a unification algorithm.

Multiset unification was studied in [1, 4], where the authors propose solutions for the problem
of unifying multisets with at most one multiset variable. We extend those results for multisets
with multiple multiset variables. In our setting, each multiset variable is labelled, meaning that
assigning a term to either a multiset Mi or Mj , where i 6= j, should be considered different
solutions. We describe a terminating algorithm and analyse its complexity. Moreover, we prove
that a simple modification of our algorithm avoids the computation of less general unifiers.

The need for labelled multiset variables emerged when reasoning with multiplicative rules
in sequent calculi, such as:

Γ1 ` A Γ2, B ` C

Γ1,Γ2, A → B ` C
→l

To apply this rule to, e.g., the sequent Γ, D,A→ B ` C, where A, B, C, and D are formulas,
we need to unify its antecedent Γ, D,A→ B with Γ1,Γ2, A→ B. Assigning formula D to Γ1 or
Γ2 should be considered two different solutions, since they result in two different applications
of the rule.

1.1 Preliminaries

A multiset M with multiple labelled multiset variables is denoted by {|t1, ..., tn|M1, ...,Mk|}.
Each ti is a term ranging over a first-order language L = 〈Σ,V〉, where Σ is a set of constants

∗This publication was made possible by the support of Qatar Foundation through Carnegie Mellon University
in Qatar’s Seed Research program. The statements made herein are solely the responsibility of the authors.



Unification of Multisets with Multiple Labelled Multiset Variables Naeem and Reis

and function symbols, and V is a denumerable set of term variables. Each Mi is a multiset
variable ranging over a denumerable set VM of multiset variables. When n and k are not
relevant, we abbreviate t1, ..., tn as t and M1, ...,Mk as M . When k = 0, we write the multiset
as {|t1, ..., tn|}. Henceforth, we refer to multisets with multiple labelled multiset variables as
mmsets for brevity.

Definition 1 (Substitution). An mmset substitution σ is a finite mapping of term variables
to terms, and of multiset variables to mmsets. The application of a substitution σ to an mmset
{|t1, ..., tn|M1, ...,Mk|} is defined as:

{|t1, ..., tn|M1, ...,Mk|}σ = {|t1σ, ..., tnσ|} ]M1σ ] ... ]Mkσ

where each tiσ is the usual first-order substitution and ] is left-associative and defined as:

{|t1, ..., tn|M1, ...,Mk|} ] {|s1, ..., sm|N1, ..., Nl|} = {|t1, ..., tn, s1, ..., sm|M1, ...,Mk, N1, ..., Nl|}

Definition 2 (Equality). Mmsets M = {|t1, ..., tn|M1, ...,Mk|} and N = {|s1, ..., sm|N1, ..., Nl|}
are considered equal modulo a constraint theory T , written M =T N iff: n = m and t1, ..., tn
is a permutation of s1, ..., sm; and T `M1 ∪ ... ∪Mk ≡ N1 ∪ ... ∪Nl.

2 Mmsets Unification

The mmset unification problem of mmsetsM1 andM2 consists of finding a substitution σ and
constraint theory Tσ such that M1σ =Tσ M2σ. The theory Tσ consists of an equality over
unions of multiset variables, and it is computed a posteriori for each unifier σ.

2.1 Algorithm

In what follows, we use σ to denote a single substitution, Σs to denote sets of substitutions, ×
for the Cartesian product of two sets (or lists), and \ for multiset difference. The pseudo code
for all algorithms are listed in Appendix A, and an implementation in SML can be found at
https://github.com/meta-logic/mmset-unif.

The main function for mmset unification is implemented by Algorithm 1. In the most
general case (lines 11 to 17), the unifiers of {|t|M |} and {|s|N |} are computed by choosing a
subset of terms (of the same size) from t and s to be unified, and distributing the rest among
the multiset variables M and N . The number of terms chosen to be unified can vary from 0
to the minimum length of t and s. Two other cases are considered separately for efficiency
purposes. The first one is when there are no multiset variables (line 1). Here a unification is
only possible if |t| = |s|. The second case is when one of the mmsets does not have multiset
variables (lines 4 and 7). If M is empty, then all terms in s must be unified with a term from
t. The remaining terms in t can be allocated in N .

Function unify c (Algorithm 2) chooses c terms from the multisets t and s to be unified, and
distributes the rest of the terms among the multiset variables. The function choose(F, c) returns
a set of tuples (Fc, Fr), where Fc is the multiset with the chosen c elements (thus |Fc| = c),
and Fr = F\Fc. Unifiers for the chosen terms are computed by unify terms and stored in
Σt. Substitutions for each context variable, containing the remaining terms, are computed by
unify distribute and stored in ΣM . The final set of unifiers consists of the composition σMσt for
each (σM , σt) ∈ ΣM×Σt. Note that, since the image of σM may contain terms, the composition
needs to be in this order.

2



Unification of Multisets with Multiple Labelled Multiset Variables Naeem and Reis

Function unify terms (Algorithm 3) finds all unifiers of two multisets of terms (without
multiset variables) of equal length. This is done by testing all possible pairings of the two
multisets, obtained by pairing some order of the first multiset with all possible permutations of
the second one. For each pairing, the function unify lists computes the most general unifier.

Function unify distribute (Algorithm 4) computes unifiers for the mmsets {|t|M |} and {|s|N |}
considering that all t occurs in N and all s occurs in M . Let ΣN denote the substitutions
that distribute t into N , and ΣM the substitutions that distribute s into M . The resulting
substitutions are σM ∪ σN for each (σM , σN ) ∈ ΣM × ΣN . A simple union can be used in the
case, as the image of σM is disjoint from the domain of σN (see below).

Function distribute (Algorithm 5) is used by unify distribute and that is where the afore-
mentioned ΣN and ΣM are computed. It computes substitutions for the multiset variables
N1, ..., Nl such that all terms t1, ..., tn occur in one of the multisets. This is done by calculating
all ordered l-partitions of the multiset {|t1, ..., tn|}. For example, the ordered 2-partitions of the
multiset {|a, b, c|} are:

[{|a, b, c|}, {||}] [{|a, b|}, {|c|}] [{|a|}, {|b, c|}] [{|a, c|}, {|b|}]
[{||}, {|a, b, c|}] [{|c|}, {|a, b|}] [{|b, c|}, {|a|}] [{|b|}, {|a, c|}]

Each computed substitution corresponds to an l-ordered partition. If there are no terms
(n = 0), then there is only the trivial partition of l empty multisets. In this case, the algorithm
returns a list with one substitution, which maps every multiset variable Ni to the mmset with
no terms. If there are no multiset variables (l = 0), then there are no partitions, and thus no
possible substitutions. The exceptional case is when there are no terms nor multiset variables
(l = n = 0). In this case, the solution is the set containing only the empty substitution ({}).

The last parameter of distribute indicates whether the multiset variables should contain
exactly the terms t1, ..., tn. If set to true, then there is no more space for other terms, and
Ni is mapped to an mmset with the appropriate terms and no multiset variables. Otherwise
it is mapped to an mmset with a set of terms and a fresh multiset variable. If there are no
terms to place in the multiset variable, it is mapped to itself (to avoid unecessary renamings).
This is needed to compute the constraint theory, after which such identity substitutions can be
eliminated.

Constraint theory For a unifier σ, the constraint theory Tσ is defined as:

⋃
{M ′i |Mi 7→ {|ts|M ′i |} ∈ σ} ≡

⋃
{N ′i | Ni 7→ {|ts|N ′i |} ∈ σ}

Soundness and completeness of the algorithm are straightforward, since it exhaustively
checks all possibilities for unifying multisets.

Theorem 1. Soundness If unify(M,N ) 7→ {σ1, ..., σn} then ∀σi.Mσi =Tσi Nσi

Theorem 2. Completeness If ∃σ.Mσ =Tσ Nσ then unify(M,N ) 7→ {σ1, ..., σn} and ∃σi such
that σ = σiσ

′.

Note that the use of a substitution σ′ is needed even if the set of computed unifiers is not
the minimal one.

3



Unification of Multisets with Multiple Labelled Multiset Variables Naeem and Reis

2.2 Complexity

The most expensive part of the unification algorithm is the one between lines 11 and 17 in
Algorithm 1, so we concentrate our complexity analysis to that case. For each i from 0 to the
minimum number of terms, unify c is called. This function has two nested loops over the sets
Tc and Sc (Alg. 2, lines 4, 5), which contain all possible ways of choosing i elements from n and
m, respectively. Thus |Tc| =

(
n
i

)
and |Sc| =

(
m
i

)
. In the inner part of the loops, unify terms

is called, which finds all possible unifiers for two multisets of size i. Since all possible pairings
of elements must be tried, and for each order unify lists runs in i2, the function (Alg. 3) has
complexity i2i!. The function unify distribute (Alg. 4) computes all possible ways of partitioning
n− i elements into l parts, and m− i elements into k parts, and returns the Cartesian product
of these sets. Therefore, its complexity is ln−i km−i.

Putting those together, we get to the cost for the unification of mmsets {|t1, ..., tn|M1, ...,Mk|}
and {|s1, ..., sm|N1, ..., Nl|}:

min(n,m)∑

i=0

(
n

i

)(
m

i

)
i2 i! ln−i km−i

After some arithmetic manipulation, we can conclude that, on the worst case, unify runs
in O(n! m! ln km). For the special case where the multisets have only one multiset variable:
l = k = 1, and the unification algorithm runs in O(n! m!).

2.3 Removing Less General Unifiers

The algorithm described in Section 2.1 does not compute the set of minimal unifiers. For
example, given multiset {|a, a|M |} and {|a|N |}, unify computes three unifiers with constraint:
{N 7→ {|a|N ′|}}, whereM ≡ N ′, twice (once for each occurrence of a), and {M 7→ {|a|M ′|} ; N 7→
{|a, a|N ′|}}, where M ′ ≡ N ′. These are the same unifiers obtained by the non-deterministic
algorithm from [5].

In order to reduce the number of less general unifiers, we can remove every pair of equal
terms ti and sj from the mmsets (i.e., ti and sj unify with the empty substitution). The
rationale behind this is that, every other unifier that is obtained by unifying these terms with
something else, or placing them in a multiset variable, can be recovered from the set of unifiers
obtained when this pair is not in the mmset.

We start by showing that it is safe to eliminate pairs of equal terms from the problem of
unifying multisets without multiset variables.

Theorem 3. Let t and s be two multisets of terms such that ta ∈ t and sb ∈ s are equal, for
some a and b. Let Σall = unify terms(t, s), and Σ = unify terms(t\{|ta|}, s\{|sb|}). Then for every
σ ∈ Σall, there exists µ ∈ Σ s.t. σ = µσ′ for some substitution σ′.

The proof for this theorem can be found in Appendix B. The overall idea is as follows. σ
was obtained by some pairing of terms in t and s. We choose µ as the unifier that used a
pairing that is as close as possible as the one used for σ. Those pairings differ only for the
terms involving ta and sb. Suppose ta is paired with sx and sb is paired with ty. Using the
most general unifiers of ty and sx, we can conclude the existence of σ′ such that σ = µσ′.

Theorem 4. Let {|t|M |} and {|s|N |} be two mmsets such that ta ∈ t is equal to sb ∈ s for some
a and b. Moreover, let Σall = unify({|t|M |}, {|s|N |}), and Σ = unify({|t\{|ta|}|M |}, {|s\{|sb|}|N |}).
Then for every σ ∈ Σall there exists µ ∈ Σ such that σ = µσ′ for some σ′.

4



Unification of Multisets with Multiple Labelled Multiset Variables Naeem and Reis

The proof for this theorem can be found in Appendix B. We proceed by a case analysis on
whether ta and sb were chosen to be unified, or to be placed in a multiset variable. There are
four cases. The case in which both are chosen to be unified is solved using Theorem 3. For
the case in which both are placed in a multiset variable, we can construct σ′. The other two
(dual) cases are the more involved ones. They use a combination of the two strategies of the
first cases.

This modification is implemented in the algorithm available online, and extensive testing has
shown that all less general unifiers are eliminated. In particular, only the unifier {N 7→ {|a|N ′|}},
where M ≡ N ′ is computed for mmsets {|a, a|M |} and {|a|N |}.

3 Conclusion

We have developed a sound and complete algorithm for finding unifiers of multisets with multiple
multiset variables. The algorithm is deterministic and terminating. It is implemented in SML,
and we also provide the pseudo code for reproducibility. The same algorithm can be used for
the particular case where there is only one multiset variable.

The complexity of the unification procedure is analysed, and its cost is high. This is inherent
to the problem, since it is of combinatorial nature. It may be possible to improve this result
by using the right data-structures and heuristics, but for our purposes, since the numbers are
quite small, it runs fast enough.

We have also tried to eliminate all sources of redundancy, so that the set of computed
unifiers is as close as possible to the minimal one. In particular, we have shown that a simple
pre-processing of the input problem will produce fewer unifiers, and all those that are no longer
produced can be recovered. We conjecture that this optimization leads to the computation of
the minimal set of unifiers, but we leave this investigation as future work.

References

[1] I. Cervesato. Solution Count for Multiset Unification with Trailing Multiset Variables. In C. Ringeis-
sen, C. Tinelli, F. Trinen, and R. Verma, editors, Sixteenth International Workshop on Unification
— UNIF’02, pages 64–68, 2002.

[2] K. Chaudhuri, L. Lima, and G. Reis. Formalized Meta-Theory of Sequent Calculi for Substructural
Logics. Electronic Notes in Theoretical Computer Science, 332:57 – 73, 2017. LSFA 2016 - 11th
Workshop on Logical and Semantic Frameworks with Applications (LSFA).

[3] J. E. Dawson and R. Goré. Generic Methods for Formalising Sequent Calculi Applied to Prov-
ability Logic. In Logic for Programming, Artificial Intelligence, and Reasoning - 17th International
Conference, LPAR-17, 2010. Proceedings, pages 263–277, 2010.

[4] A. Dovier, A. Policriti, and G. Rossi. Integrating Lists, Multisets, and Sets in a Logic Program-
ming Framework. In F. Baader and K. U. Schulz, editors, Frontiers of Combining Systems: First
International Workshop, Munich, March 1996, pages 303–319. Springer Netherlands, 1996.

[5] A. Dovier, A. Policriti, and G. Rossi. A uniform axiomatic view of lists, multisets, and sets, and
the relevant unification algorithms. Fundam. Inf., 36(2-3):201–234, 1998.

[6] H. Tews. Formalizing Cut Elimination of Coalgebraic Logics in Coq. In Automated Reasoning
with Analytic Tableaux and Related Methods: 22nd International Conference, TABLEAUX 2013,
Proceedings, pages 257–272. Springer, 2013.

[7] B. Xavier, C. Olarte, G. Reis, and V. Nigam. Mechanizing Linear Logic in Coq. In Proceedings of
the 12th Workshop on Logical and Semantics Frameworks with Applications (LSFA), pages 60–77,
2017.

5



Unification of Multisets with Multiple Labelled Multiset Variables Naeem and Reis

A Algorithms

Algorithm 1 unify({|t1, ..., tn|M1, ...,Mk|}, {|s1, ..., sm|N1, ..., Nl|})
1: if k = 0 ∧ l = 0 then
2: if n = m then return unify terms([t1, ..., tn], [s1, ..., sm])
3: else return []
4: else if k = 0 then
5: if m ≤ n then return unify c(m, {|t1, ..., tn|M1, ...,Mk|}, {|s1, ..., sm|N1, ..., Nl|})
6: else return []
7: else if l = 0 then
8: if n ≤ m then return unify c(n, {|t1, ..., tn|M1, ...,Mk|}, {|s1, ..., sm|N1, ..., Nl|})
9: else return []

10: else
11: c← min(n,m)
12: Σ← []
13: for i = 0 to c do
14: Σ′ ← unify c(i, {|t1, ..., tn|M1, ...,Mk|}, {|s1, ..., sm|N1, ..., Nl|})
15: Σ← Σ ∪ Σ′

16: end for
17: return Σ
18: end if

Algorithm 2 unify c(c, {|t1, ..., tn|M1, ...,Mk|}, {|s1, ..., sm|N1, ..., Nl|})
1: Σ← []
2: Tc ← choose({|t1, ..., tn|}, c)
3: Sc ← choose({|s1, ..., sm|}, c)
4: for ({|t′1, ..., t′c|}, {|t′c+1, ..., t

′
n|}) ∈ Tc do

5: for ({|s′1, ..., s′c|}, {|s′c+1, ..., s
′
m|}) ∈ Sc do

6: Σt ← unify terms([t′1, ..., t
′
c], [s

′
1, ..., s

′
c])

7: if Σt 6= [] then
8: ΣM ← unify distribute(({|t′c+1, ..., t

′
n|}, {M1, ...,Mk}), ({|s′c+1, ..., s

′
m|}, {N1, ..., Nl}))

9: Σ′ ← map(λ(σt, σM ).σMσt)(Σt × ΣM )
10: Σ← Σ ∪ Σ′

11: end if
12: end for
13: end for
14: return Σ

Algorithm 3 unify terms([t1, ..., tn], [s1, ..., sn])

1: Σ← []
2: Ps ← permutations([s1, ..., sn])
3: P ← [[t1, ..., tn]]× Ps
4: for (T, S) ∈ P do
5: σ ← unify lists(T, S)
6: if σ 6= None then Σ← {σ} ∪ Σ
7: end for

6



Unification of Multisets with Multiple Labelled Multiset Variables Naeem and Reis

Algorithm 4 unify distribute(({|t1, ..., tn|}, {M1, ...,Mk}), ({|s1, ..., sm|}, {N1, ..., Nl}))
1: ΣN ← distribute({|t1, ..., tn|}, {N1, ..., Nl}, k = 0) {List of substitutions for Ni}
2: ΣM ← distribute({|s1, ..., sm|}, {M1, ...,Mk}, l = 0) {List of substitutions for Mi}
3: Σ← map(λ(σM , σN ).σM ∪ σN )(ΣM × ΣN )
4: return Σ

Algorithm 5 distribute({|t1, ..., tn|}, {M1, ...,Mk}, exact)

1: if n = 0 ∧ k = 0 then
2: return [{}]
3: end if
4: Σ← []
5: Pt ← ordered partitions({|t1, ..., tn|}, k)
6: for p ∈ Pt do
7: σ ← {}
8: for i = 1 to k do
9: ts← p[i]

10: if exact then σ ← σ{Mi 7→ {|ts| · |}}
11: if ¬exact ∧ ts = ∅ then σ ← σ{Mi 7→ {| · |Mi|}}
12: if ¬exact ∧ ts 6= ∅ then σ ← σ{Mi 7→ {|ts|M ′i |}}
13: end for
14: Σ← {σ} ∪ Σ
15: end for
16: return Σ

B Proofs

Proof for Theorem 3. We know that Σall contains at most n! unifiers, one for each way of
pairing elements of t with elements of s. Analogously, Σ contains at most (n− 1)! unifiers. Let:
Σall = {σ1, ..., σn!} and Σ = {µ1, ..., µ(n−1)!}. Then each σi can be obtained from some µj .

If σi is a unifier resulting from pairing ta with sb, then there exists µj = σi and we are done.
Let σi be a unifier resulting from pairing ta with some sx, sb with some ty, and some

permutation Pt of t\{|ta, ty|} with some permutation Ps of s\{|sb, sx|}. There exists a unifier
µj ∈ Σ that is the result of unifying the same permutations Pt and Ps, and ty with sx. We
show how σi can be reconstructed from µj . Since the order in which terms are unified does not
matter, we assume that σi and µj are obtained as follows:

1. Computation of σi:

(a) mgu σax of ta and sx
(b) mgu σby of tyσax and sbσax
(c) mgu σPi of Ptσaxσby and Ptσaxσby

2. Computation of µj :

(a) mgu σxy of ty and sx
(b) mgu σPj of Ptσxy and Psσxy

Therefore σi = σaxσbyσPi and µj = σxyσPj . We know that:

taσax = sxσax from 1a (1)

tyσaxσby = sbσaxσby from 1b (2)

tyσaxσby = taσaxσby because ta = sb (3)

tyσaxσby = sxσaxσby from 3 and 1 (4)

7



Unification of Multisets with Multiple Labelled Multiset Variables Naeem and Reis

Thus, σaxσby is a unifier of ty and sx. But from 2a we have that σxy is the most general
unifiers of these terms, which means that there exists a σ′ such that σaxσby = σxyσ

′ (5).
From 5 and 1c, we know that Ptσxyσ

′σPi = Psσxyσ
′σPi , meaning that σ′σPi is a unifier of

Ptσxy and Psσxy. But from 2b, σPj is the most general unifier of these two lists, therefore,
there exists σ′′ such that σ′σPi = σPjσ

′′ (6).
Using 5, 6, and associativity of substitution composition: σi = σaxσbyσPi = σxyσPjσ

′′ = µjσ
′′

Proof for Theorem 4. We case on how ta and sb were used to compute σ. Let
−→
tc and −→sc denote

the terms and order chosen from t and s, respectively, to be unified. Let tr and sr denote the
rest of the terms in t and s that will be distributed to N and M , respectively.

We know that σ = σMσt (Alg. 2, line 9), where σt is the unifier of
−→
tc and −→sc , and σM is

obtained from partitions denoted as πt(tr) and πs(sr).

1. ta ∈ −→tc and sb ∈ −→sc
Take µ = µMµt such that µM = σM is obtained from the same partitions πt(tr) and πs(sr),
and µt is such that σt = µtσ

′ for some σ′. The existence of such µt is guaranteed by
Theorem 3. Therefore, σ = σMσt = µMµtσ

′ = µσ′.

2. ta ∈ tr and sb ∈ sr
Let tpa , ta be the part from πt(tr) with ta, and spb , sb the part from πs(sr) with sb.

Take µ = µMµt such that µt = σt is the unifier of
−→
tc and −→sc , and µM is obtained from par-

titions πt(tr) where tpa , ta is replaced by tpa and analogously for πs(sr). Thus the mappings
in σM and µM are the same, except for two multiset variables Na and Mb:
{Mb 7→ spb , sb,M

′
b;Na 7→ tpa , ta, N

′
a} ⊂ σM and {Mb 7→ spb ,M

′
b;Na 7→ tpa , N

′
a} ⊂ µM .

Since M ′b and N ′a are fresh multiset variable names: σM = µM{M ′b 7→ sb,M
′
b ; N ′a 7→ ta, N

′
a}.

And since σt = µt: σMσt = µM{M ′b 7→ sb,M
′
b ; N ′a 7→ ta, N

′
a}µt. The image of µt does

not contain M ′b nor N ′a, therefore: σMσt = µMµt{M ′b 7→ sb,M
′
b ; N ′a 7→ ta, N

′
a}µt. Thus:

σ = µ{M ′b 7→ sb,M
′
b ; N ′a 7→ ta, N

′
a}µt.

3. ta ∈ −→tc and sb ∈ sr
Let sk be the term from −→sc that is paired with ta and spb , sb be the part from πs(sr)

containing sb. Assume that ta is unified with sk with mgu σak, and that (
−→
tc \{|ta|})σak

unifies with (−→sc\{|sk|})σak with mgu σc. Thus σt = σakσc. Let Mb be the variable to which
partition spb , sb is assigned. Thus:

{Mb 7→ spb , sb,M
′
b} ⊂ σM By definition (1)

{Mb 7→ spbσak, sbσak,M
′
b} ⊂ σMσak Composition with σak (2)

{Mb 7→ spbσak, taσak,M
′
b} ⊂ σMσak ta = sb (3)

{Mb 7→ spbσak, skσak,M
′
b} ⊂ σMσak taσak = skσak (4)

Take µ = µMµt such that the terms
−→
tc \{|ta|} and −→sc\{|sk|} are unified with mgu µt, and

µM is computed using partition πt(tr) and πs(sr) where part spb , sb is replaced by spb , sk.
Therefore, {Mb 7→ spb , sk,M

′
b} ⊂ µM (5). Because µt is the mgu of the two lists, we have

that: σt = σakσc = µtσ
′
t for some σ′t. And from 4 and 5 we can also conclude: σMσak =

µMσak. Using these equalities: σ = σMσt = σMσakσc = µMσakσc = µMµtσ
′
t = µσ′t.

4. ta ∈ tr and sb ∈ −→sc Analogous to the previous case.

8



Formalising Nominal AC-Unification

Mauricio Ayala-Rincón1,3∗, Maribel Fernández2, and Gabriel Ferreira Silva3†

1 Department of Computer Science, Universidade de Braśılia
ayala@unb.br

2 Department of Informatics, Kings College London
maribel.fernandez@kcl.ac.uk

3 Department of Mathematics, Universidade de Braśılia
gabrielfsilva1995@gmail.com

Abstract

The nominal setting extends first-order syntax and represents smoothly systems with
variable bindings, using instead of variables, nominal atoms and atom permutations for
renaming them. Nominal unification adapts first-order unification modulo α-equivalence by
taking into account this nominal approach. Nominal AC-unification is then simply nominal
unification with associative-commutative function symbols. In this paper, we present a
functional specification of a nominal AC-unification algorithm and discuss relevant aspects
of current work on formalising its soundness and completeness. The algorithm explores
the combinatory of the problem without taking into consideration efficiency, simplifying,
in this manner, the formalisation.

1 Introduction

The nominal setting allows us to extend first-order syntax and represent smoothly systems with
bindings, which are frequent in mathematics and computer science. Nevertheless, to represent
these bindings correctly, α-equivalence must be taken into account. For instance, despite their
syntactical difference, the formulas ∃y : y > 0 and ∃z : z > 0 should be considered equivalent.
The nominal theory allows us to deal with these bindings in a natural way, instead of using
indices as in explicit substitutions à la de Bruijn (e.g. [8], [7]).

1.1 Related Work

Nominal Unification was originally solved by Urban, Pitts and Gabbay [10], who proposed a
set of inference rules to compute the most general unifier of a (solvable) nominal unification
problem. The rules were formalised and proved to be correct and complete with the help of
the proof assistant Isabelle/HOL [9]. A functional nominal unification algorithm was later
formalised in PVS and proved correct and complete [4]. Nominal unification was extended
to take into account commutative axioms [1]: a nominal C-unification algorithm given as a
set of inference rules was proposed and formalised sound and complete in Coq. Based on
the previous two papers, a functional algorithm for nominal C-unification was specified and
verified in PVS [2]. In the standard first-order syntax, the first formalisation of AC-matching,
introduced in [6], opens the way for formalisations of AC-unification, which is (to the best of
our knowledge) yet to come.

∗Author partially funded by CNPq research grant number 307672/2017-4.
†Author partially funded by CNPq scholarship scholarship number 139271/2017-1.



Formalising Nominal AC-Unification M. Ayala-Rincón, M. Fernández, and G. F. Silva

1.2 Contributions and Possible Applications

In this extended abstract, we discuss a functional specification of a nominal AC-unification
algorithm pointing out interesting aspects of its formalisation in PVS. Although the formali-
sation is not yet complete, the specification of the algorithm is finished and fully available at:
www.github.com/gabriel951/ac-unification. The work here presented, when completed,
would not only give the first formalisation of nominal AC-unification but also, as far as we
know, the first formalisation of first-order AC-unification, since the nominal theory encom-
passes first-order theory.

Since unification has applications in logic programming systems, type inference algorithms,
theorem provers and so on, a nominal AC-unification algorithm has interesting potential uses.
It could, for instance, be used in a logic programming language that employs the nominal
setting, such as α-Prolog (see [5]). Another possibility is to translate the algorithm into an
AC-matching algorithm. Since matching two terms t and s can be seen as unification where
one of the terms (suppose t, without loss of generality) is not affected by a substitution, the
translation to AC-matching would be performed by marking all variables that occur in t as
“protected” variables at the beginning of the matching process and adapting the algorithm to
prohibit the instantiation of “protected” variables. These AC algorithms could then be used to
extend nominal rewriting [7] or nominal narrowing [3].

2 Preliminaries

Only the part of nominal theory relevant to unifying AC function symbols is explained. For a
complete account, one can check, for instance, [4] or [3].

2.1 Nominal Terms, Permutations and Substitutions

In nominal theory, we have a countable set of atoms A = {a, b, c, ...} and a countable set of
variables X = {X,Y, Z, ...}, which are disjoint. A permutation π is a bijection of the form
π : A → A such that the set of atoms that are modified by π is finite.

Definition 1 (Nominal Terms). Let Σ be a signature with function symbols and AC function
symbols. The set T (Σ,A,X ) of nominal terms is generated according to the grammar:

s, t ::= 〈〉 | a | π ·X | [a]t | 〈s, t〉 | f t | fAC t

where 〈〉 is the unit, a is an atom term, π · X is a suspended variable (the permutation π is
suspended on the variable X), [a]t is an abstraction (a term with the atom a abstracted), 〈s, t〉
is a pair, f t is a function application and fAC t is an AC function application.

Remark. Although the function application has arity one, this is not a limitation, for we can
use the pair to encode tuples with an arbitrary number of arguments. For instance, the tuple
(t1, t2, t3) could be constructed as 〈t1, 〈t2, t3〉〉.

Finally, a substitution σ in the nominal setting is analogous to the concept in first-order
theory: a mapping that sends a finite amount of variables in X to terms in T .

2.2 Freshness and α-Equality

Two key notions in nominal theory are freshness and α-equality, represented, respectively, by
the predicates # and ≈α:

2



Formalising Nominal AC-Unification M. Ayala-Rincón, M. Fernández, and G. F. Silva

• a#t means that if a occurs in t then it does so under an abstractor [a].

• s ≈α t means that s and t are α-equivalent.

After explaining the ideas behind these two concepts, we define them formally for AC function
symbols.

Definition 2 (Freshness). A freshness context ∇ is a set of constraints of the form a#X. An
atom a is said to be fresh on t under a context ∇ (which we denote by ∇ ` a#t) if it is possible
to build a proof using the rules for freshness, in accordance with the type of t (see [7]). The
rule for freshness of an AC function application is the same for a function application.

Definition 3 (α-equality with AC operators). Two terms t and s are said to be α-equivalent
under the context ∆, written as ∆ ` t ≈α s, if it is possible to build a proof using the rules for
α-equivalence, in accordance with the type of t (see [7]). The rule for an AC function symbol
is:

∆ ` S1(fs) ≈α Si(ft) ∆ ` D1(fs) ≈α Di(ft)
(≈αac-app)

∆ ` fs ≈α ft
for some i. Here f is an AC function symbol, Sn(f∗) is an operator that selects the nth
argument of the flattened subterm f∗ and Dn(f∗) is an operator that deletes the nth argument
of the flattened subterm f∗.
Remark. If the flattened subterm f∗ contains only two arguments, then Dn(f∗) will contain
only one argument. Also, if the flattened subterm f∗ contains only one argument, then Dn(f∗)
returns the unit. For instance, D1(f〈a, b〉) = fb and D1(fb) = 〈〉.
Example 1. Let f be an AC-function symbol. In the above definition,
S2(f〈f〈a, b〉, f〈[a]X,π · Y 〉〉) is b, and D2(f〈f〈a, b〉, f〈[a]X,π · Y 〉〉〉) is f〈fa, f〈[a]X,π · Y 〉〉〉).

2.3 Nominal AC-Unification

Definition 4 (Unification Problem). A unification problem is a pair 〈∆, P 〉 where ∆ is a
freshness context and P is a finite set of equations and freshness constraints of the form s ≈? t
and a#?t, respectively, with s and t terms and a an atom.

Example 2. An example of a unification problem with an empty context and one equation
constraint: 〈∆, P 〉 = 〈∅, fAC〈fAC〈X,Y 〉, c〉〉 ≈? fAC〈c, fAC〈a, b〉〉〉
Remark. Let ∇ and ∇′ freshness contexts and σ and σ′ substitutions. In order to define a
solution to a unification problem, we need the following notation:

• ∇′ ` ∇σ denotes that ∇′ ` a#Xσ holds for each (a#X) ∈ ∇.

• ∇ ` σ ≈ σ′ denotes that ∇ ` Xσ ≈α Xσ′ for all X in dom(σ) ∪ dom(σ′).

Definition 5 (Solution for a Triple or Problem). A solution for a triple P = 〈∆, δ, P 〉 is a pair
〈∇, σ〉 that fulfills the following four conditions:

• ∇ ` ∆σ

• ∇ ` a#tσ, if a#?t ∈ P
• ∇ ` sσ ≈α tσ, if s ≈? t ∈ P

• There exist λ such that ∇ ` δλ ≈ σ
Then, a solution for a unification problem 〈∆, P 〉 is a solution for the associated triple

〈∆, id, P 〉.

3



Formalising Nominal AC-Unification M. Ayala-Rincón, M. Fernández, and G. F. Silva

Remark. As in C-Unification, in AC-unification equations of the form π ·X ≈α π′ ·X, called
fixed point equations, are not solved because there is an infinite number of solutions to them.
Instead, they are carried on, as part of the solution to the unification problem [1].

Example 3. Consider the unification problem of Example 2: 〈∆, id, P 〉 =
〈∅, id, fAC〈fAC〈X,Y 〉, c〉 ≈? fAC〈c, fAC〈a, b〉〉〉. A possible solution is 〈∅, {X → a, Y → b}〉

3 Specification

We specified a functional nominal AC-unification algorithm for unifying two terms t and s. The
algorithm is recursive, calling itself on progressively simpler versions of the problem until it has
finished. It is an extension of the algorithm in [2], in order to deal with the case of t or s being
rooted by an AC function symbol. See also Appendix A.

When one of t or s is rooted by an AC function symbol and the other term is a suspended
variable, the algorithm instantiates the suspended variable term appropriately and solves the
problem. Alternatively, when one of the terms is rooted by an AC function symbol and the
other is not a suspended variable or rooted by the same AC function symbol, the algorithm
recognises it is a situation where no solution is possible. The interesting case is, therefore, when
both t and s are rooted by the same AC function symbol.

In this situation, the algorithm first extracts all arguments of t and then generates all
pairings of those arguments, in any order. After that, the algorithm extracts all arguments of
s and then generates all pairings of these arguments, again in any order. Finally, the algorithm
tries to unify every pairing of arguments of t with every pairing of arguments of s.

Example 4. Suppose we are trying to unify the terms in Example 2.

• The two pairings generated for the term fAC〈fAC〈X,Y 〉, c〉 in the order (X,Y, c) are:
〈X, 〈Y, c〉〉 and 〈〈X,Y 〉, c〉. Two pairings would be generated for every order and the
possible orders are: (X,Y, c), (X, c, Y ), (Y,X, c), (Y, c,X), (c,X, Y ) and (c, Y,X).

• The twelve pairings generated for the term fAC〈c, fAC〈a, b〉〉 include, for instance:
〈c, 〈a, b〉〉, 〈〈c, a〉, b〉, 〈〈b, c〉, a〉 and 〈a, 〈b, c〉〉.

Remark. Our first idea to deal with the pairings of the arguments of t and s was to generate
all pairings of the arguments of t, preserving the order and all pairings of the arguments of s,
in any order. This approach, however, is not complete.

To see that, consider f an AC function symbol, t = f〈a, 〈b, c〉〉 and s = f〈X, b〉. The
substitution σ = {X → 〈a, c〉} would not be found if we had generated only the pairings of
the arguments in t preserving the order, but it can be found by our approach. That is because
the substitution σ is found when trying to unify 〈〈a, c〉, b〉 with 〈X, b〉 and the arguments of the
pairing 〈〈a, c〉, b〉 are not in the same order that they are in t.

4 Formalisation

Theorems 1 and 2 formalise soundness and completeness of unifying AC functions. The function
gen unif prb(ft, fs), for f AC, generates all pairings of ft (in any order) and all pairings of
fs (in any order) and then combines them to generate a list of unification problems.

Theorem 1 (Soundness of Unifying AC functions). Let ft and fs be AC function applications.
Suppose that (t1, s1) ∈ gen unif prb(ft, fs) and that ∇ ` t1σ ≈α s1σ. Then, ∇ ` (ft)σ ≈α
(fs)σ.

4



Formalising Nominal AC-Unification M. Ayala-Rincón, M. Fernández, and G. F. Silva

Theorem 2 (Completeness of Unifying AC functions). Let ft and fs be AC function appli-
cations. Suppose that ∇ ` (ft)σ ≈α (fs)σ. Then, there exists (t1, s1) ∈ gen unif prb(ft, fs)
such that ∇ ` t1σ ≈α s1σ.

The natural way of proving the theorem of soundness would be by induction on the size
of the term. If we had decided to prove the theorem directly, we would find the i that makes
∇ ` S1((ft)σ) ≈α Si((fs)σ) and then try to use the induction hypothesis to prove that ∇ `
D1((ft)σ) ≈α Di((fs)σ). We would not, however, be able to apply the induction hypothesis,
since the term being deleted of tσ could be the first term of t but it could have also being
introduced by the substitution σ. A similar problem could happen for s. To get around this
problem, we must first eliminate the substitutions from our problem, and then solve a version of
the problem without substitutions by induction. As explained next, Lemmas 1 and 2, together
with a convenient renaming of variables, are used to eliminate the substitution, while Lemma
3 solves a simplified version of the problem.

For taking substitutions out of the equation, we will need the operator FAO, which generates
all possible flattened versions of a term, in any order. Therefore, after applying this operator,
we get a term that is not an AC function application.

Lemma 1. Let ft and fs be AC applications. Suppose that (t1, s1) ∈ gen unif prb(ft, fs).
Then, ∀t′1 ∈ FAO(t1σ), s′1 ∈ FAO(s1σ): (t′1, s

′
1) ∈ gen unif prb(ftσ, fsσ).

Remark. The operator FAO is needed in the Lemma 1 because, although we have the guarantee
that t1 and s1 are pairings of ft and fs, the substitution σ may reintroduce the AC function
symbol f into the terms t1σ and s1σ. Since an output of gen unif prb((ft)σ, (fs)σ) cannot
contain the AC function symbol, we must apply the flattener operator FAO to t1σ and s1σ. A
case where this reintroduction of the AC function symbol occurs is illustrated in Example 5.

Example 5. Let f be an AC function symbol. Consider ft = fX, fs = fY and σ = {X →
f〈a, b〉, Y → f〈b, a〉}. Then, t1 = X and s1 = Y do not indeed contain the AC function
symbol f . However, the substitution σ given reintroduces this AC function symbol and we have
t1σ = f〈a, b〉 and s1σ = f〈b, a〉.
Lemma 2. Let ft and fs be AC applications. Suppose that (t1, s1) ∈ gen unif prb(ft, fs)
and that ∇ ` t1σ ≈α s1σ. Then, ∃t′1 ∈ FAO(t1σ), s′1 ∈ FAO(s1σ) : ∇ ` t′1 ≈α s′1.

Using Lemmas 1 and 2 we can obtain, from our original hypothesis of soundness, the ex-
istence of t′1 and s′1 such that (t′1, s

′
1) ∈ gen unif prb((ft)σ, (fs)σ) and ∇ ` t′1 ≈α s′1 and we

must prove that ∇ ` (ft)σ ≈α (fs)σ. Then, with a convenient renaming of variables, this is
equivalent to proving Lemma 3, which can be done by induction on the size of the term t.

Lemma 3. Let ft and fs be AC function applications, with the same function symbol. Suppose
that (t1, s1) ∈ gen unif prb(ft, fs) and that ∇ ` t1 ≈α s1. Then, ∇ ` ft ≈α fs.

A similar analysis could be applied to prove the lemma of completeness.

Remark. We have not yet fully formalised any of the stated lemmas or theorems.

5 Conclusion

We commented on the specification of a functional algorithm that has been developed for doing
nominal AC-unification and highlighted important points of the formalisation we are working
on. We opted for a simple and inefficient algorithm in order to simplify the formalisation. Since

5



Formalising Nominal AC-Unification M. Ayala-Rincón, M. Fernández, and G. F. Silva

nominal AC-unification extends first-order AC-unification, completing this work is significant
also to provide a formalisation of first-order AC-unification, which to the best of our knowledge
does not yet exist.

References

[1] Mauricio Ayala-Rincón, Washington de Carvalho-Segundo, Maribel Fernández, and Daniele
Nantes-Sobrinho. Nominal C-unification. In 27th International Symposium on Logic-Based Pro-
gram Synthesis and Transformation (LOPSTR 2017), Revised Selected Papers, volume 10855 of
Lecture Notes in Computer Science, pages 235–251. Springer, 2018.

[2] Mauricio Ayala-Rincón, Maribel Fernández, Gabriel Ferreira Silva, and Daniele Nantes-Sobrinho.
Soundness and completeness in PVS of a functional nominal C-unification algorithm. Available
at http://ayala.mat.unb.br/publications.html, 2019.

[3] Mauricio Ayala-Rincón, Maribel Fernández, and Daniele Nantes-Sobrinho. Nominal narrowing.
In 1st International Conference on Formal Structures for Computation and Deduction (FSCD),
volume 52 of LIPIcs, pages 11:1–11:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

[4] Mauricio Ayala-Rincón, Maribel Fernández, and Ana Rocha-Oliveira. Completeness in PVS of
a nominal unification algorithm. Electronic Notes in Theoretical Computer Science, 323:57–74,
2016.

[5] James Cheney and Christian Urban. α-prolog: A logic programming language with names, binding
and α-equivalence. In 20th International Conference on Logic Programming (ICLP), volume 3132
of Lecture Notes in Computer Science, pages 269–283. Springer, 2004.

[6] Evelyne Contejean. A certified AC matching algorithm. In Rewriting Techniques and Applications,
15th International Conference, RTA 2004, Aachen, Germany, June 3-5, 2004, Proceedings, volume
3091 of Lecture Notes in Computer Science, pages 70–84. Springer, 2004.

[7] Maribel Fernández and Murdoch Gabbay. Nominal rewriting. Information and Computation,
205(6):917–965, 2007.

[8] Andrew Pitts. Nominal sets: Names and symmetry in computer science. Cambridge University
Press, 2013.

[9] Christian Urban. Nominal techniques in Isabelle/HOL. Journal of Automated Reasoning,
40(4):327–356, 2008.

[10] Christian Urban, Andrew Pitts, and Murdoch Gabbay. Nominal unification. Theoretical Computer
Science, 323(1-3):473–497, 2004.

6



Formalising Nominal AC-Unification M. Ayala-Rincón, M. Fernández, and G. F. Silva

A Nominal AC-unification algorithm

The algorithm is specified in the functional PVS language and is available at www.github.com/
gabriel951/ac-unification, as mentioned in the introduction. For brevity, we present here
a partial description emphasising the elements related with AC functions. The treatment given
to the other nominal elements can be checked in [2], where the case of nominal C-unification is
treated.

Algorithm 1 is recursive and keeps track of the current context (∆), the substitu-
tions made so far (σ), the remaining terms to unify (PrbLst) and the current fixed
point equations (FPEqLst). Therefore, the algorithm receives as input the quadruple
(∆, σ, PrbLst, FPEqLst).

Although extense, the algorithm is straightforward. It starts by analysing PrbLst, the list
of terms it needs to unify. If it is an empty list, then it has finished and can return the answer
computed so far, which is the list: [(∆, σ, FPEqLst)]. If PrbLst is not empty, then there are
terms to unify, and the algorithm proceeds by trying to unify the terms t and s that are in the
head of the list. Only after that it goes to the tail of the list.

When the algorithm is unifying two AC function symbols t and s, the first step is to generate
all pairings of t and s. As mentioned before, this is done by function gen unif prb. The
result is a list of unification problems (each of these unification problems corresponds to an
attempt of unifying a pairing for t and a pairing for s), stored in variable NewPrbLst. The
algorithm will call the function unify recursively, with the same ∆, σ and FPEqLst, but
with a new list of unification problems, consisting of one unification problem from NewPrbLst
concatenated with the list of remaining problems PrbList′. The algorithm will do this for every
unification problem in NewPrbLst. The algorithm does that in two steps. In the first step, the
function get lst quad is called, constructing a list of quadruples, which are stored in variable
LstQuad. Each quadruple in LstQuad is of the form (∆, σ, PrbLst, FPEqLst). Next, the map

function applies recursively the function unify to every quadruple in LstQuad and since every
application of unify generates a list of solutions, the returned value of the map function is a
list of lists of solutions, stored in variable LstLstSol. The algorithm then returns a flattened
version of this list, via the use of the flatten function.

7



Formalising Nominal AC-Unification M. Ayala-Rincón, M. Fernández, and G. F. Silva

Algorithm 1 Functional Nominal AC-Unification

1: procedure unify(∆, σ, PrbLst, FPEqLst)
2: if null(PrbLst) then
3: return list((∆, σ, FPEqLst))
4: else
5: (t, s) + PrbLst′ = PrbLst
6: if (s == π ·X) and (X not in t) then
7: check [2]
8: else
9: if t == a then

10: check [2]
11: else if t == π ·X then
12: check [2]
13: else if t == 〈〉 then
14: check [2]
15: else if t == 〈t1, t2〉 then
16: check [2]
17: else if t == [a]t1 then
18: check [2]
19: else if t == f t1 then
20: check [2]
21: else if t == fC〈t1, t2〉 then
22: check [2]
23: else . t is of the form fACt′

24: if s != fACs′ then return null
25: else
26: NewPrbLst = gen unif prb(t, s)
27: LstQuad = get lst quad(NewPrb,∆, σ, PrbList′, FPEqLst)
28: LstLstSol = map(unify, LstQuad)
29: return flatten(LstLstSol)
30: end if
31: end if
32: end if
33: end if
34: end procedure

8



Solving Proximity Constraints?

Temur Kutsia and Cleo Pau

RISC, Johannes Kepler University Linz, Austria

Abstract. Proximity relations are binary fuzzy relations, which satisfy reflexivity and symmetry proper-
ties, but are not transitive. This relation induces the notion of distance between function symbols, which
is further extended to terms. For two given terms we aim at bringing them ”sufficiently close” to each
other, by finding an appropriate substitution. A similar problem has been addressed by Julian-Iranzo and
Rubio-Manzano. Unlike their work, we consider unrestricted proximal candidates, by allowing them to
be close to two terms that themselves are not close to each other. We present an algorithm which works
in two phases: first reducing the unification problem to constraints over sets of function symbols, and
then solving the obtained constraints. The problem is decidable and finitary.

1 Introduction

Proximity relations are reflexive and symmetric fuzzy binary relations. They generalize similarity relations,
which are a fuzzy version of equivalence. Proximity relations help to represent fuzzy information in situations,
where similarity is not adequate. For unification, working modulo proximity or similarity means to treat
different function symbols as if they were the same when the given relation asserts they are “close enough” to
each other.

Unification for similarity relations was studied in [2] in the context of fuzzy logic programming. This
work was generalized for proximity relations in [1], where the authors introduced the notion of proximity-
based unification under a certain restriction imposed on the proximity relation. The restriction requires that
the same symbol can not be close to two symbols at the same time, when those symbols are not close to
each other. One should choose one of them as the proximal candidate to the given symbol. Looking at the
proximity relation as an undirected graph, this restriction implies that cliques in the graph are disjoint. From
the unification point of view, it means that p(x, x) can not be unified with p(a, c) when a and c are not close
to each other, even if there exists a b which is close both to a and c.

In this paper we consider the general case: unification for a proximity relation without any restriction, and
develop an algorithm which computes a compact representation of the set of solutions.

2 Preliminaries

Proximity relations. We define basic notions about proximity relations following [1]. A binary fuzzy relation
on a set S is a mapping from S × S to the real interval [0, 1]. If R is a fuzzy relation on S and λ is a
number 0 ≤ λ ≤ 1, then the λ-cut of R on S, denoted Rλ, is an ordinary (crisp) relation on S defined as
Rλ := {(s1, s2) | R(s1, s1) ≥ λ}. In the role of T-norm ∧ we take the minimum.

A fuzzy relation R on a set S is called a proximity relation on S iff it is reflexive and symmetric. The
proximity class of level λ of s ∈ S (a λ-neighborhood of s) is a set pc(s,R, λ) = {s′ | R(s, s′) ≥ λ}. When R
and λ are fixed, we simply write pc(s).

Terms. Given a set of variables V and a fixed arity signature Σ, terms over Σ and V are defined as usual, by
the grammar t := x | f(t1, . . . , tn), where x ∈ V and f ∈ Σ is n-ary. We assume to have Σ partitioned into a
set of function symbols F and a set of names N , having symbols of each arity in each of them.

The set of terms over V and Σ (resp. over F , N ), is denoted by T (Σ,V) (resp. T (F ,V), T (N ,V)). We
denote variables by x, y, z, arbitrary function symbols by f, g, h, constants by a, b, c, names by N,M,K, and
terms by s, t, r. The elements of T (F ,V) are called F-terms. The elements of T (N ,V) are N -terms.

The head of an F-term is defined as head(x) := x and head(f(t1, . . . , tn)) := f .
F-Substitutions (resp. N -substitutions) are mappings from variables to F-terms (resp. to N -terms), where

all but finitely many variables are mapped to themselves. The letters σ, ϑ, ϕ are used for F-substitutions, and

? Supported by Austrian Science Fund (FWF) under project 28789-N32.



2 T. Kutsia and C. Pau

their upright versions σ, ϑ,ϕ for N -substitutions. The identity substitution is denoted by Id . We use the usual
set notation for substitutions, writing, e.g., σ as σ = {x 7→ σ(x) | x 6= σ(x)}. Substitution application and
composition are defined in the standard way.

For simplicity, below we refer to F-terms and F-substitutions just by terms and substitutions, and only
mention N -terms and N -substitutions explicitly.

A name-class mapping Φ is a finite mapping from names to sets of function symbols such that if N ∈ dom(Φ)
(where dom is the domain of mapping), then N and each f ∈ Φ(N) have the same arity.

Proximity relations over terms and substitutions. Each proximity relationR we consider in this paper obeys the
following restrictions: (a) It is defined on F ∪V; (b) R(f, g) = 0 if arity(f) 6= arity(g); (c) R(f, x) = 0 if f ∈ F
and x ∈ V, (d) R(x, y) = 0 if x 6= y, for all x, y ∈ V. We extend such a relation R to terms: (i) R(s, t) := 0 if
R(head(s), head(t)) = 0. (ii) R(s, t) := 1 if s = t and s, t ∈ V. (iii) R(s, t) := R(f, g)∧R(s1, t1)∧· · ·∧R(sn, tn),
if s = f(s1, . . . , sn), t = g(t1, . . . , tn).

Two terms s and t are (R, λ)-close to each other, written s 'R,λ t, if R(s, t) ≥ λ. We say that s is (R, λ)-
more general than t and write s -R,λ t, if there exists a substitution σ such that sσ 'R,λ t. This relation is
defined for substitutions as well: σ -R,λ ϑ iff there exists ϕ such that xσϕ 'R,λ xϑ for all x.

The relation -R,λ is not a quasi-order: it is reflexive, but not transitive.

Definition 1 (Approximate unification problem). Given a proximity relation R and a cut value λ,
an (R, λ)-unification problem Γ is a finite set of approximate equations (i.e., pairs) of terms, written as
Γ := {s1 '?

R,λ t1, . . . , sn '?
R,λ tn}. The question mark indicates that it is supposed to be solved. An unifier of

Γ is a substitution σ such that siσ 'R,λ tiσ for all 1 ≤ i ≤ n.

Instead of writing “a unifier of an (R, λ)-unification problem Γ”, we often shortly say “an (R, λ)-unifier of
Γ”. If σ is an (R, λ)-unifier of Γ and σ �R,λ ϑ, it might be that ϑ is not an (R, λ)-unifier of Γ . For instance,
if Rλ = {(a, b), (b, c)}, then σ = {x 7→ b} is an (R, λ)-unifier of {x '?

R,λ a}. Besides, σ �R,λ ϑ = {x 7→ c}, but

ϑ is not an (R, λ)-unifier of {x '?
R,λ a}.

However, if σ is an (R, λ)-unifier of Γ , then σϕ is also an (R, λ)-unifier of Γ for any ϕ.
It might happen that a minimal complete set of (R, λ)-unifiers (defined by using -R,λ and 'R,λ) of some

Γ contains two substitutions σ and ϑ such that σ 'R,λ ϑ, but it is forbidden that ϑ = σϕ for some ϕ.

Definition 2. Given R and λ, an (R, λ)-neighborhood equation has one of the following forms: f ≈?
R,λ g,

N ≈?
R,λ g, g ≈?

R,λ N, or N ≈?
R,λ M, where f, g ∈ F and N,M ∈ N . The question mark indicates that they have

to be solved.
We say that a name-class mapping Φ is a solution of an (R, λ)-neighborhood equation if

– the equation is f ≈?
R,λ g and f ≈R,λ g holds (in this case any Φ would be a solution), or

– the equation is N ≈?
R,λ g or g ≈?

R,λ N and f ≈R,λ g holds for all f ∈ Φ(N), or

– the equation is N ≈?
R,λ M and f ≈R,λ g holds for all f ∈ Φ(N) and g ∈ Φ(M).

An (R, λ)-neighborhood constraint is a finite set of (R, λ)-neighborhood equations. A name-class mapping Φ is
a solution of an (R, λ)-neighborhood constraint C if it is a solution of every (R, λ)-neighborhood equation in C.

We shortly write “an (R, λ)-solution to C” instead of “a solution to an (R, λ)-neighborhood constraint C”.
Given a name-class mapping Φ and an N -term t, we define a set of terms Φ(t) as

Φ(x) := {x}, Φ(N(t1, . . . , tn)) := {f(s1, . . . , sn) | f ∈ Φ(N), si ∈ Φ(ti), 1 ≤ i ≤ n}.
The notation extends to N -substitutions as well: Φ(σ) := {σ | xσ ∈ Φ(xσ) for all x ∈ V}.

Definition 3. We say that a set of term equations {x '?
R,λ t} ] P contains an occurrence cycle for the

variable x if t /∈ V and either

– x ∈ var(t), or
– there exist term-pairs (x1, t1[x2]), . . . , (xn, tn[x]) such that x1 ∈ var(t) and for each 1 ≤ i ≤ n, P contains

an equation xi '?
R,λ ti or ti '?

R,λ xi. (The notation t[x] means that x occurs in t.)

Lemma 1. If a set of term equations contains an occurrence cycle for some variable, then it has no (R, λ)-
approximate unifier for any proximity relation R and cut value λ.

Given an approximate unification problem Γ , our goal is to obtain a compact representation of its (minimal)
complete set of unifiers as a pair of an N -substitution σ and a name-class mapping Φ, so that Φ(σ) (restricted
to the variables of Γ ) gives the desired set. The algorithms below construct such a representation.



Solving Proximity Constraints 3

3 The Algorithms

In the rules below we will use the renaming function ρ : T (Σ,V)→ T (N ,V). Applied to a Σ-term, ρ gives its
fresh copy, an N -term, obtained by replacing each occurrence of a symbol from Σ by a new name and each
variable occurrence by a fresh variable. For instance, if the term is f(N(a, x, x, f(a))), where f, a ∈ F and
N ∈ N , then ρ(f(N(a, x, x, f(a))) = N1(N2(N3, x1, x2,N4(N5))), where N1,N2,N3,N4,N5 ∈ N are new names
and x1, x2 are new variables.

The algorithm consists of two phases: pre-unification and constraint solving. In the pre-unification phase
we either obtain a pre-unifier together with neighborhood constraints which have to be solved in the second
phase, or get a failure which indicates that the problem does not have a solution.

3.1 Pre-Unification Rules

An equational configuration is a triple P ;C;σ, where

– P is the unification problem to be solved. It is initialized with the equation between the original terms;
– C is a neighborhood constraint;
– σ is the pre-unifier computed so far, initialized by Id .

The pre-unification algorithm takes given terms s and t, creates the initial configuration {s '?
R,λ t}; ∅; Id

and applies the rules given below exhaustively.
The rules are very similar to the syntactic unification algorithm with the difference that here the function

symbol clash does not happen unless their arities differ, and variables are not replaced by other variables until
the very end. (The notation expn in the rules below abbreviates the sequence exp1, . . . , expn.)

(Tri) Trivial: {x '?
R,λ x} ] P ; C; σ =⇒ P ; C; σ.

(Dec) Decomposition: {F (sn) '?
R,λ G(tn)} ] P ; C; σ =⇒ {sn '?

R,λ tn} ∪ P ; {F ≈?
R,λ G} ∪ C; σ,

where F,G ∈ Σ.

(VE) Var. Elim.: {x '?
R,λ t} ] P ; C; σ =⇒ {t′ '?

R,λ t} ∪ P{x 7→ t′}; C; σ{x 7→ t′},
where t /∈ V, there is no occurrence cycle for x in {x '?

R,λ t} ] P , and t′ = ρ(t).

(Ori) Orient: {t '?
R,λ x} ] P ; C; σ =⇒ {x '?

R,λ t} ∪ P ; C; σ, if t /∈ V.

(Cla) Clash: F (sn) '?
R,λ G(tm)} ] P ; C; σ =⇒ ⊥, where F,G ∈ Σ and n 6= m.

(Occ) Occur Check: {x '?
R,λ t} ] P ; C; σ =⇒ ⊥,

if there is an occurrence cycle for x in {x '?
R,λ t} ] P .

(VO) Vars Only: {x '?
R,λ y, xn '?

R,λ yn}; C; σ =⇒ {xn '?
R,λ yn}{x 7→ y}; C; σ{x 7→ y}.

It is easy to see that the pre-unification algorithm terminates either with ⊥ or with ∅;C;σ, where C is
a neighborhood constraint and σ is an N -substitution. When the result is ⊥, there is no unifier of s and t:
terms of different number of arguments can not be unified (Clash), and a system with occurrence cycle (Occur
Check) has no solutions (Lemma 1).

Theorem 1 (Soundness of pre-unification). Let s and t be two terms, such that the pre-unification algo-
rithm gives {s '?

R,λ t}; ∅; Id =⇒∗ ∅;C;σ. Let Φ be an (R, λ)-solution of C. Then any substitution in the set
Φ(σ) is an (R, λ)-unifier of s and t.

Theorem 2 (Completeness of pre-unification). Let ψ be an (R, λ)-unifier of s and t. Then there exists
a derivation {s '?

R,λ t}; ∅; Id =⇒∗ ∅;C;σ such that ϕ �R,λ ψ for some ϕ ∈ Φ(σ|var(s)∪var(t)), where Φ is an
(R, λ)-solution of C.

For solving neighborhood constraints, we will introduce an algorithm in the next section. But before that
we illustrate the pre-unification rules with a couple of examples:



4 T. Kutsia and C. Pau

Example 1. Let s = p(x, y, x) and t = q(f(a), g(d), y). Then the pre-unification algorithm stops with the con-
figuration ∅;C,σ, where C = {p ≈?

R,λ q, N1 ≈?
R,λ f, N2 ≈?

R,λ a, N3 ≈?
R,λ g, N4 ≈?

R,λ d, N1 ≈?
R,λ N3, N2 ≈?

R,λ
N4} and σ = {x 7→ N1(N2), y 7→ N3(N4)}.

Assume that for the given λ-cut, the proximity relation consists of pairs Rλ = {(a, b), (b, c), (c, d), (a, b′),
(b′, c′), (c′, d), (f, g), (p, q)}. The obtained constraint can be solved, e.g., by the name-class mappings Φ =
[N1 7→ {f, g}, N2 7→ {b},N3 7→ {f, g}, N4 7→ {c}] and Φ′ = [N1 7→ {f, g}, N2 7→ {b′},N3 7→ {f, g}, N4 7→ {c′}].
From them and σ we can get the sets Φ(σ) and Φ′(σ) of (R, λ)-unifiers of s and t. Each of them consists of 4
substitutions.

If we did not have the VO rule and allowed the use of VE rule instead, we might have ended up with the
unification problem {y '?

R,λ f(a), y '?
R,λ g(d)}, which does not have a solution, because the neighborhoods

of a and d do not have a common element. Hence, we would have lost a solution.

Example 2. Let s = p(x, x) and t = q(f(y, y), f(a, c)). The pre-unification algorithm stops with the config-
uration ∅;P ;σ, where P = {p ≈?

R,λ q, N1 ≈?
R,λ f, N2 ≈?

R,λ a, N3 ≈?
R,λ c, M ≈?

R,λ N2, N3 ≈?
R,λ M} and

σ = {x 7→ N1(N2,N3), y1 7→ N2, y2 7→ N3, y 7→ M}. Let Rλ = {(a, a1), (a1, b), (b, c1), (c1, c), (p, q)}. Then
C is solved by Φ = [N1 7→ {f}, N2 7→ {a1}, M 7→ {b}, N3 7→ {c1}] and Φ(σ|var(s)∪var(t)) contains only one
element, an (R, λ)-unifier σ = {x 7→ f(a1, c1), y 7→ b} of s and t. Indeed, sσ = p(f(a1, c1), f(a1, c1)) 'R,λ
q(f(b, b), f(a, c)) = tσ.

This example illustrates the necessity of introducing a fresh variable for each occurrence of a variable
by the renaming function in the VE rule. If we used the same new variable, say y′, for both occurrences of
y in f(y, y) (instead of using y1 and y2 as above), we would get the configuration ∅; {p ≈?

R,λ q, N1 ≈?
R,λ

f, N2 ≈?
R,λ a, N3 ≈?

R,λ c, N3 ≈?
R,λ N2}; {x 7→ N1(N2,N2), y′ 7→ N2, y 7→ N2}. But for the given Rλ, the

constraint {p ≈?
R,λ q, N1 ≈?

R,λ f, N2 ≈?
R,λ a, N3 ≈?

R,λ c, N3 ≈?
R,λ N2} does not have a solution (because the

neighborhoods of a and c are not close to each other). Hence, we would lose a unifier.

3.2 Rules for Neighborhood Constraints

Let Φ be a name-class mapping. Then the function of updating Φ by a mapping N→ S for N ∈ N and S ⊂ F ,
where N and the elements of S have the same arity, is defined as

update(Φ,N 7→ S) =

{
Φ ∪ [N 7→ S], if N /∈ dom(Φ),
(Φ \ [N 7→ Φ(N)]) ∪ [N 7→ S ∩ Φ(N)], otherwise.

We write update(Φ,N1 → S1, . . . ,Nn → Sn) for update(· · · update(Φ,N1 → S1), . . . ,Nn → Sn).
A constraint configuration is a pair C; Φ, where C is a set of (R, λ)-neighborhood constraints to be solved,

and Φ is a name-class mapping (as a set of rules), representing the (R, λ)-solution computed so far. It is
initialized by the empty set. The constraint simplification algorithm CS transforms constraint configurations,
exhaustively applying the following rules:

(FFS) Function Symbols: {f ≈?
R,λ g} ] C; Φ; =⇒ C; Φ, if R(f, g) ≥ λ.

(NFS) Name vs Function Symbol: {N ≈?
R,λ g} ] C; Φ =⇒ C; update(Φ,N 7→ pc(g,R, λ)).

(FSN) Function Symbol vs Name: {g ≈?
R,λ N} ] C; Φ =⇒ {N ≈?

R,λ g} ∪ C; Φ.

(NN1) Name vs Name 1: {N ≈?
R,λ M} ] C; Φ =⇒ C; update(Φ,N 7→ {f},M 7→ pc(f,R, λ)),

where N ∈ dom(Φ), f ∈ Φ(N).

(NN2) Name vs Name 2: {M ≈?
R,λ N} ] C; Φ =⇒ {N ≈?

R,λ M} ∪ C; Φ,

where M /∈ dom(Φ), N ∈ dom(Φ).

(Fail1) Failure 1: {f ≈?
R,λ g} ] C; Φ =⇒ ⊥, if R(f, g) < λ.

(Fail2) Failure 2: C; Φ =⇒ ⊥, if there exists N ∈ dom(Φ) such that Φ(N) = ∅.

The NN1 rule causes branching, generating n branches where n is the number of elements in Φ(N) (assuming
that the proximity class of each symbol is finite). When the derivation does not fail, the terminal configuration
has the form {N1 ≈?

R,λ M1, . . . ,Nn ≈?
R,λ Mn}; Φ, where for each 1 ≤ i ≤ n, Ni,Mi /∈ dom(Φ). Such a

constraint is trivially solvable.



Solving Proximity Constraints 5

Theorem 3 (Soundness of CS). Let C be an (R, λ)-neighborhood constraint such that CS produces a max-
imal derivation C; ∅ =⇒∗ C ′; Φ. Then Φ is an (R, λ)-solution of C \C ′, and C ′ is a set of constraints between
names which is trivially (R, λ)-satisfiable.

Theorem 4 (Completeness of CS). Let C be an (R, λ)-neighborhood constraint and Φ be its solution
such that every name from dom(Φ) appears in C. Let dom(Φ) = {N1, . . . ,Nn}. Then for each n-tuple
c1 ∈ Φ(N1), . . . , cn ∈ Φ(Nn) there exists a maximal CS-derivation C; ∅ =⇒∗ C ′; Φ′ such that for each 1 ≤ i ≤ n,
either ci ∈ Φ′(Ni), or there exists 1 ≤ j ≤ n such that ci ∈ Φ(Nj) and Ni ≈?

R,λ Nj ∈ C ′.
Remark 1. When a neighborhood constraint C is produced by the pre-unification algorithm, then every max-
imal CS-derivation starting from C; ∅ ends either in ⊥ or in the pair of the form ∅; Φ. This is due to the fact
that the VE rule, which introduces names in pre-unification problems, and the subsequent decomposition steps
necessarily produce neighborhood equations of the form N ≈R,λ f for each introduced N and for some f .

Example 3. The pre-unification derivation in Example 1 gives the neighborhood constraint C = {p ≈?
R,λ q,

N1 ≈?
R,λ f, N2 ≈?

R,λ a, N3 ≈?
R,λ g, N4 ≈?

R,λ d, N1 ≈?
R,λ N3, N2 ≈?

R,λ N4}. For Rλ = {(a, b), (b, c), (c, d),
(a, b′), (b′, c′), (c′, d), (f, g), (p, q)}, the constraint C can be solved by CS as follows:

{p ≈?
R,λ q, N1 ≈?

R,λ f, N2 ≈?
R,λ a, N3 ≈?

R,λ g, N4 ≈?
R,λ d, N1 ≈?

R,λ N3, N2 ≈?
R,λ N4}; ∅ =⇒FFS

{N1 ≈?
R,λ f, N2 ≈?

R,λ a, N3 ≈?
R,λ g, N4 ≈?

R,λ d, N1 ≈?
R,λ N3, N2 ≈?

R,λ N4}; ∅ =⇒NFS

{N2 ≈?
R,λ a, N3 ≈?

R,λ g, N4 ≈?
R,λ d, N1 ≈?

R,λ N3, N2 ≈?
R,λ N4}; [N1 7→ {f, g}] =⇒NFS

{N3 ≈?
R,λ g, N4 ≈?

R,λ d, N1 ≈?
R,λ N3, N2 ≈?

R,λ N4}; [N1 7→ {f, g}, N2 7→ {a, b, b′}] =⇒NFS

{N4 ≈?
R,λ d, N1 ≈?

R,λ N3, N2 ≈?
R,λ N4}; [N1 7→ {f, g}, N2 7→ {a, b, b′}, N3 7→ {f, g}] =⇒NFS

{N1 ≈?
R,λ N3, N2 ≈?

R,λ N4}; [N1 7→ {f, g}, N2 7→ {a, b, b′}, N3 7→ {f, g}, N4 7→ {d, c, c′}].
Here the algorithm branches, since the rule NN1 applies. Branch 1 continues with

{N1 ≈?
R,λ N3, N2 ≈?

R,λ N4}; [N1 7→ {f, g},N2 7→ {a, b, b′},N3 7→ {f, g},N4 7→ {d, c, c′}] =⇒NN1

{N2 ≈?
R,λ N4}; [N1 7→ {f},N2 7→ {a, b, b′},N3 7→ {f, g},N4 7→ {d, c, c′}].

Branching again by NN1 produces three subbranches. Branch 1.1 fails: ∅; [N1 7→ {f},N2 7→ {a},N3 7→
{f, g},N4 7→ ∅] =⇒Fail2 ⊥. Branch 1.2 and branch 1.3 give two solutions, respectively:

Φ1 = [N1 7→ {f},N2 7→ {b}, N3 7→ {f, g},N4 7→ {c}]
Φ2 = [N1 7→ {f},N2 7→ {b′},N3 7→ {f, g},N4 7→ {c′}].
Branch 2 also expands into three subbranches, the first of which fails. The other two return two more

solutions:

Φ3 = [N1 7→ {g},N2 7→ {b}, N3 7→ {f, g},N4 7→ {c}]
Φ4 = [N1 7→ {g},N2 7→ {b′},N3 7→ {f, g},N4 7→ {c′}].
Referring to the name-class mappings Φ and Φ′ and the substitution σ in Example 1, it is easy to observe

that Φ(σ) ∪ Φ′(σ) = Φ1(σ) ∪ Φ2(σ) ∪ Φ3(σ) ∪ Φ4(σ).

4 Final Remarks

We described our work in progress towards solving equational constraints over proximity relations. The imme-
diate next step is to incorporate the computation of unification degree into the procedure and use it to return
only those unifiers which bring the original terms as close as possible to each other.

References

1. P. Julián-Iranzo and C. Rubio-Manzano. Proximity-based unification theory. Fuzzy Sets and Systems, 262:21–43,
2015.

2. M. I. Sessa. Approximate reasoning by similarity-based SLD resolution. Theor. Comput. Sci., 275(1-2):389–426,
2002.



6 T. Kutsia and C. Pau

A Examples

The selected equations are underlined.

Example 4. Let s = p(x, y, x) and t = q(f(a), g(d), y). The following is a pre-unification derivation, which
shows how the neighborhood constraint and the substitution shown in Example 1 are computed:

{p(x, y, x) '?
R,λ q(f(a), g(d), y)}; ∅; Id =⇒Dec

{x '?
R,λ f(a), y '?

R,λ g(d), x '?
R,λ y}; {p ≈?

R,λ q}; Id =⇒VE

{N1(N2) '?
R,λ f(a), y '?

R,λ g(d), N1(N2) '?
R,λ y}; {p ≈?

R,λ q}; {x 7→ N1(N2)} =⇒Dec2

{y '?
R,λ g(d), N1(N2) '?

R,λ y}; {p ≈?
R,λ q, N1 ≈?

R,λ f, N2 ≈?
R,λ a}; {x 7→ N1(N2)} =⇒VE

{N3(N4) '?
R,λ g(d), N1(N2) '?

R,λ N3(N4)}; {p ≈?
R,λ q, N1 ≈?

R,λ f, N2 ≈?
R,λ a};

{x 7→ N1(N2), y 7→ N3(N4)} =⇒Dec2

{N1(N2) '?
R,λ N3(N4)}; {p ≈?

R,λ q, N1 ≈?
R,λ f, N2 ≈?

R,λ a, N3 ≈?
R,λ g, N4 ≈?

R,λ d};
{x 7→ N1(N2), y 7→ N3(N4)} =⇒Dec2

∅; {p ≈?
R,λ q, N1 ≈?

R,λ f, N2 ≈?
R,λ a, N3 ≈?

R,λ g, N4 ≈?
R,λ d, N1 ≈?

R,λ N3, N2 ≈?
R,λ N4};

{x 7→ N1(N2), y 7→ N3(N4)}.

Note that we could have chosen the second equation in {y '?
R,λ g(d), N1(N2) '?

R,λ y} to eliminate y, but the
obtained result would differ from the above computed one by the choice of names only.

Together with the output from Example 3, we report the solutions forRλ = {(a, b), (b, c), (c, d), (a, b′), (b′, c′),
(c′, d), (f, g), (p, q)},

Φ1 = [N1 7→ {f},N2 7→ {b}, N3 7→ {f, g},N4 7→ {c}],
Φ2 = [N1 7→ {f},N2 7→ {b′},N3 7→ {f, g},N4 7→ {c′}],
Φ3 = [N1 7→ {g},N2 7→ {b}, N3 7→ {f, g},N4 7→ {c}],
Φ4 = [N1 7→ {g},N2 7→ {b′},N3 7→ {f, g},N4 7→ {c′}],
σ = {x 7→ N1(N2), y 7→ N3(N4)}.

Example 5. Now we illustrate the steps made for computations in Example 2. Let s = p(x, x) and t =
q(f(y, y), f(a, c)). Then the pre-unification derivation looks as follows:

{p(x, x) '?
R,λ q(f(y, y), f(a, c))}; ∅; Id =⇒Dec

{x '?
R,λ f(y, y), x '?

R,λ f(a, c)}; {p ≈?
R,λ q}; Id =⇒VE

{N1(y1, y2) '?
R,λ f(y, y), N1(y1, y2) '?

R,λ f(a, c)}; {p ≈?
R,λ q}; {x 7→ N1(y1, y2)} =⇒Dec

{y1 '?
R,λ y, y2 '?

R,λ y, N1(y1, y2) '?
R,λ f(a, c)}; {p ≈?

R,λ q, N1 ≈?
R,λ f}; {x 7→ N1(y1, y2)} =⇒Dec

{y1 '?
R,λ y, y2 '?

R,λ y, y1 '?
R,λ a, y2 '?

R,λ c}; {p ≈?
R,λ q, N1 ≈?

R,λ f};
{x 7→ N1(y1, y2)} =⇒VE,Dec

{N2 '?
R,λ y, y2 '?

R,λ y, y2 '?
R,λ c}; {p ≈?

R,λ q, N1 ≈?
R,λ f, N2 ≈?

R,λ a};
{x 7→ N1(N2, y2), y1 7→ N2} =⇒VE,Dec

{N2 '?
R,λ y, N3 '?

R,λ y}; {p ≈?
R,λ q, N1 ≈?

R,λ f, N2 ≈?
R,λ a, N3 ≈?

R,λ c};
{x 7→ N1(N2,N3), y1 7→ N2, y2 7→ N3} =⇒Ori,VE

{N3 '?
R,λ M}; {p ≈?

R,λ q, N1 ≈?
R,λ f, N2 ≈?

R,λ a, N3 ≈?
R,λ c, M ≈?

R,λ N2};
{x 7→ N1(N2,N3), y1 7→ N2, y2 7→ N3, y 7→ M} =⇒Dec

∅; {p ≈?
R,λ q, N1 ≈?

R,λ f, N2 ≈?
R,λ a, N3 ≈?

R,λ c, M ≈?
R,λ N2, N3 ≈?

R,λ M};



Solving Proximity Constraints 7

{x 7→ N1(N2,N3), y1 7→ N2, y2 7→ N3, y 7→ M}.
If Rλ = {(a, a1), (a1, b), (b, c1), (c1, c), (p, q)}, then the obtained constraint is satisfied by the assignment [N1 7→
{f}, N2 7→ {a1}, M 7→ {b}, N3 7→ {c1}], computed by CS as follows (where NN1 causes branching, we display
only the success branch):

{p ≈?
R,λ q, N1 ≈?

R,λ f, N2 ≈?
R,λ a, N3 ≈?

R,λ c, M ≈?
R,λ N2, N3 ≈?

R,λ M}; ∅ =⇒FFS

{N1 ≈?
R,λ f, N2 ≈?

R,λ a, N3 ≈?
R,λ c, M ≈?

R,λ N2, N3 ≈?
R,λ M}; ∅ =⇒NFS

{N2 ≈?
R,λ a, N3 ≈?

R,λ c, M ≈?
R,λ N2, N3 ≈?

R,λ M}; [N1 7→ {f}] =⇒NFS

{N3 ≈?
R,λ c, M ≈?

R,λ N2, N3 ≈?
R,λ M}; [N1 7→ {f},N2 7→ {a, a1}] =⇒NFS

{M ≈?
R,λ N2, N3 ≈?

R,λ M}; [N1 7→ {f},N2 7→ {a, a1},N3 7→ {c, c1}] =⇒NN2

{N2 ≈?
R,λ M, N3 ≈?

R,λ M}; [N1 7→ {f},N2 7→ {a, a1},N3 7→ {c, c1}] =⇒NN1

{N3 ≈?
R,λ M}; [N1 7→ {f},N2 7→ {a1},N3 7→ {c, c1},M 7→ {b}] =⇒NN1

∅; [N1 7→ {f},N2 7→ {a1},N3 7→ {c1},M 7→ {b}].
Hence, the computed solution is

Φ = [N1 7→ {f},N2 7→ {a1},N3 7→ {c1},M 7→ {b}],
σ = {x 7→ N1(N2,N3), y1 7→ N2, y2 7→ N3, y 7→ M}.
σ|var(s)∪var(t) = {x 7→ N1(N2,N3), y 7→ M}.

If we used the same new variable, say y′, for both occurrences of y in f(y, y) (instead of using y1 and y2 as
above), we would get the following pre-unification derivation:

{p(x, x) '?
R,λ q(f(y, y), f(a, c))}; ∅; Id =⇒Dec

{x '?
R,λ f(y, y), x '?

R,λ f(a, c)}; {p ≈?
R,λ q}; Id =⇒VE

{N1(y′, y′) '?
R,λ f(y, y), N1(y′, y′) '?

R,λ f(a, c)}; {p ≈?
R,λ q}; {x 7→ N1(y′, y′)} =⇒Dec

{y′ '?
R,λ y, N(y′, y′) '?

R,λ f(a, c)}; {p ≈?
R,λ q, N1 ≈?

R,λ f}; {x 7→ N1(y′, y′)} =⇒Dec

{y′ '?
R,λ y, y

′ '?
R,λ a, y

′ '?
R,λ c}; {p ≈?

R,λ q, N1 ≈?
R,λ f}; {x 7→ N1(y′, y′)} =⇒VE,Dec

{N2 '?
R,λ y, N2 '?

R,λ c}; {p ≈?
R,λ q, N1 ≈?

R,λ f, N2 ≈?
R,λ a}; {x 7→ N1(N2,N2), y′ 7→ N2} =⇒VE,Dec

{N2 '?
R,λ N3}; {p ≈?

R,λ q, N1 ≈?
R,λ f, N2 ≈?

R,λ a, N3 ≈?
R,λ c};

{x 7→ N1(N2,N3), y′ 7→ N2, y 7→ N2} =⇒Dec

∅; {p ≈?
R,λ q, N1 ≈?

R,λ f, N2 ≈?
R,λ a, N3 ≈?

R,λ c, N3 ≈?
R,λ N2}; {x 7→ N1(N2,N2), y′ 7→ N2, y 7→ N2}.

If Rλ = {(a, a1), (a1, b), (b, c1), (c1, c), (p, q)}, the obtained neighborhood constraint does not have a solution:

{p ≈?
R,λ q, N1 ≈?

R,λ f, N2 ≈?
R,λ a, N3 ≈?

R,λ c, N3 ≈?
R,λ N2}; ∅ =⇒FFS

{N1 ≈?
R,λ f, N2 ≈?

R,λ a, N3 ≈?
R,λ c, N3 ≈?

R,λ N2}; ∅ =⇒NFS

{N2 ≈?
R,λ a, N3 ≈?

R,λ c, N3 ≈?
R,λ N2}; [N1 7→ {f}] =⇒NFS

{N3 ≈?
R,λ c, N3 ≈?

R,λ N2}; [N1 7→ {f},N2 7→ {a, a1}] =⇒NFS

{N3 ≈?
R,λ N2}; [N1 7→ {f},N2 7→ {a, a1},N3 7→ {c, c1}]

From here, NN1 generates two branches. First:

{N3 ≈?
R,λ N2}; [N1 7→ {f},N2 7→ {a, a1},N3 7→ {c, c1}] =⇒NN1

∅; [N1 7→ {f},N2 7→ {a},N3 7→ ∅] =⇒Fail2 ⊥.
Second:

{N3 ≈?
R,λ N2}; [N1 7→ {f},N2 7→ {a, a1},N3 7→ {c, c1}] =⇒NN1

∅; [N1 7→ {f},N2 7→ {a1},N3 7→ ∅] =⇒Fail2 ⊥.



Asymmetric Unification and Disunification for the theory
of Abelian groups with a homomorphism (AGh)

Veena Ravishankar1, Paliath Narendran2, and Kimberly A. Cornell3

1 University of Mary Washington
vravisha@umw.edu

2 University at Albany-SUNY
pnarendran@albany.edu

3 The College of Saint Rose
cornellk@strose.edu

1 Introduction and Motivation

We compare asymmetric unification [6] and disunification [3, 5] in terms of decidability with respect
to the theory of Abelian groups with a homomorphism. Asymmetric unification is a new paradigm
comparatively, which requires one side of the equation to be irreducible [6]. Asymmetric Unification is
a type of equational unification where the right-hand sides of the equations have to be in normal form
with respect to the given term rewriting system. Asymmetric unification is used heavily in symbolic
cryptographic protocol analysis. For example, it is used in protocol analyzers, such as Maude-NPA,
as a technique for state space reduction by eliminating infeasible states [6]. Methods for reducing
this exponential search space are crucial in protocol analysis. In disunification [5] we solve equations
and disequations with respect to an equational theory. Disequations allows additional contraints to
be imposed such as a variable is not equivalent to a term by our equational theory E (e.g., x 6≈E a).
Disunification has applications in Logic Programming and Artificial Intelligence [4].

Time complexity analysis has been performed on both asymmetric unification and disunification
separately [3, 4] and more recently it was shown that they are incomparable [10] with respect to time
complexity, but not much work has been done on contrasting the two paradigms in terms of decidability.
In [6], it was shown that there are theories which are decidable for symmetric unification but are unde-
cidable for asymmetric unification, so here we investigate this further. Asymmetric unification over the
rewrite theory of Abelian groups with a homomorphism (AGh) is also of special interest in the field of
cryptographic protocol analysis.

2 Preliminaries

Definition 1. Asymmetric unification: Given a decomposition [6] (Σ,E,R) of an equational theory, a
substitution σ is an asymmetric R,E-unifier of a set Q of asymmetric equations {s1 ≈?

↓ t1, . . . , sn ≈?
↓ tn}

iff for each asymmetric equation si ≈?
↓ ti, σ is an (E ∪R)-unifier of the equation si ≈? ti, and σ(ti) is in

R,E-normal form. In other words, σ(si) →!
R,E σ(ti).

Example 1: Let R = {x+ a→ x} be a rewrite system. An asymmetric unifier θ for {u+ v ≈?
↓ v+w}

modulo this system is θ = {u 7→ v, w 7→ v}. However, another unifier ρ = {u 7→ a, v 7→ a, w 7→ a} is
not an asymmetric unifier, since a+ a reduces to a. But note that θ �E ρ , i.e., ρ is an instance of θ ,



Asymmetric Unification and Disunification for AGh Ravishankar, Narendran, Cornell

or, alternatively, θ is more general than ρ . This shows that instances of asymmetric unifiers need not be
asymmetric unifiers.

Definition 2. Disunification: For an equational theory E, a disunification problem is a set of equations
and disequations L = {s1 ≈?

E t1, . . . ,sn ≈?
E tn}

⋃ {sn+1 6≈?
E tn+1, . . . ,sn+m 6≈?

E tn+m}. A solution to this
problem is a substitution σ , known as a disunifier, such that: σ(si) ≈E σ(ti) (i = 1, . . . ,n) and
σ(sn+ j) 6≈E σ(tn+ j) ( j = 1, . . . ,m).

Example 2: Given E = {x+a≈ x}, a disunifier θ for {u+ v 6≈E v+u} is θ = {u 7→ a, v 7→ b}.
If a+ x ≈ x is added to the identities E, then θ = {u 7→ a, v 7→ b} is clearly no longer a disunifier

modulo this equational theory.

The ground disunification problem [3] for an equational theory ∆, denoted as (Γ,C) consists of a
set of constants C and a set Γ of equations and disequations over terms from T (Sig(Γ)∪C,V ). For any
solution σ , VRan(σ) ⊂ T (Σ∪C).

3 Decidability Results

Consider the following rewrite system R1 for AGh modulo associativity and commutativity:

i(i(x))→ x, i(x+ y)→ i(x)+ i(y), x+0→ x, h(i(x))→ i(h(x)), h(0)→ 0,
i(0)→ 0, x+(i(x)+ y)→ y, x+ i(x)→ 0, h(x+ y)→ h(x)+h(y)

Lemma 3.1. −→R1, AC is AC-convergent.

We show disunification is decidable for AGh and asymmetric unification for (R1, AC) is undecidable.

3.1 Disunification is Decidable

Disunification modulo AGh can be reduced to solving linear equations over a ring of polynomials with
integer coefficients [2, 9]. Solutions to these linear equations is known as first modules of Syzygy [1, 7]
from which we can obtain a set of generators. Once we have a particular solution and a set of generators,
we check whether there is a solution that also satisfies the disequations. Particularly, we solve the
ground disunification problem where no new constants are allowed, except for the ones specified in
input already. We show that the ground disunification problem for AGh is decidable.

Consider a set of equations and disequations over a set of variables
{

x1, . . . ,xm
}

. Let the disequations
be of the form {xi1 6≈?

R1
0, xi2 6≈?

R1
0, · · · , xik 6≈?

R1
0}. We express the general solution of the set of

equations using a matrix where each column is a generator of the syzygy module. Let n be the number of

generators. Thus the general solution can be expressed as follows:

r1 r2 · · · rn



Q




z1
z2
...

zn




We have the solution represented as:




c1...
cm


 + z1

r1[ ]
+ z2

r2[ ]
+ · · · + zn

rn[ ]
where




c1
...

cm


 is a

2



Asymmetric Unification and Disunification for AGh Ravishankar, Narendran, Cornell

particular solution and the rest the general solution.

Thus, the set of solutions can be represented as:

r1 r2 · · · rn





c1

...

cm




1
z1
z2
...

zn




If x j 6≈?
R1

0 is the disequation to be satisfied, either c j must be non-zero or the specific value or
component rk j in some generator rk must be non-zero, i.e., the jth component in the generator rk must
be non-zero. This check is repeated for each of the disequations.

The following technique will produce a substitution that satisfies all disequations. The key idea is
to pick a large enough number and use that to instantiate z1, . . . ,zn. Pick the largest coefficient (in terms
of absolute value) l from both the particular solution and the generators and set L = |l|+ 1. Now the

substitution is




c1...
cm


 + L

r1[ ]
+ L2

r2[ ]
+ · · · + Ln

rn[ ]
i.e., we set z1 = L, z2 = L2, . . . , zn = Ln.

Lemma 3.2. Let a0,a1, · · · ,ak be any sequence of integers, where at least one of the ai’s is non-zero
and let L = 1 + max{ |ai| }. Then a0 +a1M+a2M2 + · · ·+anMn 6= 0 for any M ≥ L.

Corollary 1. Let a0,a1, · · · ,ak be any sequence of integers where a0 6= 0. Let L = 1 + max{ |ai| }.
Then a0 +a1M+a2M2 + · · ·+anMn 6= 0 for any M ≥ L.

Proof. Suppose x j 6≈?
R1

0 is a disequation to be satisfied. Our substitution for x j, say θ(x j), is c j +

L r1 j
+L2 r2 j

+ · · ·+Ln rn j
where each c j, ri j is a univariate polynomial, with h as the indeterminate,

of the form c j = ∑n
l=0 alh

l . For example if c j = 2−3h2 +h5, r1 j = 0 and r2 j =−2+3h−h5 +h6, then
L = 4. After applying our substitution θ(x j) we obtain the solution −30+ 48h− 3h2− 15h5 + 16h6,
which satisfies all the disequations.

We now have to show that if at least one of
{

c j,r1 j
, . . . , rn j

}
is non-zero, then θ(x j) 6= 0. Let hk be a

term which has a non-zero coefficient in one of the polynomials
{

c j,r1 j
, . . . , rn j

}
. Then the coefficient

of hk in θ(x j) is ak + L a1 j + L2 a2 j + · · ·+ Ln an j , where ak is the coefficient of hk in c j and ai j is
the coefficient of hk in ri j . Since the sequence ak,a1 j , . . . ,an j has at least one non-zero element and
L≥ 1+max{ak,a1 j , . . . ,an j}, ak +L a1 j +L2 a2 j + · · ·+Ln an j 6= 0 by Lemma 3.2. Hence θ(x j) 6= 0.

Theorem 3.1. Disunification modulo AGh is decidable.

Proof. Decidability of disunification modulo −→R1,AC follows from the construction provided above.

3.2 Asymmetric Unification is Undecidable

We show that asymmetric unification is undecidable for −→R1,AC.

3



Asymmetric Unification and Disunification for AGh Ravishankar, Narendran, Cornell

Lemma 3.3. Let θ be any solution to the set of asymmetric equations
{

h(X)+ b ≈?
↓ X +Y, Z ≈?

↓

h(Y )
}

. Then θ =
{

Y 7→ hk(b), Z 7→ hk+1(b), X 7→ b+h(b)+ · · ·+hk−1(b)
}

for some k ≥ 1.

Proof. Y cannot contain any +-terms or 0 since this will result in a reduction. Y cannot be equal to b
either for the same reason since the only solution of h(X) ≈? X is X = 0. Y also cannot be a term of the
form hk(c) since the equation h(X)+b≈↓ X +hk(c) has no solution. Hence Y 7→ hk(b) for some k≥ 0 is
the only possibility. Then Z = hk+1(b). For any k≥ 1, the only solution of the equation h(X)+ i(X) ≈?

hk(b)+ i(b) is X = b+h(b)+ · · ·+hk−1(b) since (hk−1)/(h−1) = 1+h+h2 + · · ·+hk−1.

Lemma 3.4. Every solution to the set of asymmetric equations
{

hd(X)+b ≈?
↓ X +Y, Z ≈?

↓ h(Y )
}

where d is a positive integer, is of the form θ =
{

Y 7→ hdk(b), Z 7→ hd(k+1)(b), X 7→ b+hd(b)+ · · ·+
hd(k−1)(b)

}
for some k ≥ 1.

We call a term simple if it is of the form h j(b) or i(h j(b)) where j ≥ 0; j is called the degree of the
term. A simple term is called negative if it is of the form i(h j(b)) and positive otherwise.

Lemma 3.5. Let Z = hk(b) for some k > 0. Let θ be any solution of the set of asymmetric equations{
h(U)≈?

↓ U
′
, U

′
+Y ≈?

↓ U +U +Z, U +U +Z ≈?
↓ U

′
+Y
}

. Then θ(Y ) contains no negative simple
terms, the highest degree in θ(Y ) is less than k, and the highest degree in θ(U ′) is k.

Proof. We first show that neither U
′

nor Y can contain a negative simple term.

If Y has a simple negative term, then it cannot get cancelled by a simple positive term in U
′

because
of asymmetry. Similarly if U contains terms with negative coefficients they will not get cancelled out
either. Let i(hm(b)) be a negative term of the highest degree that occurs in U

′
+Y . Since cancellation is

not possible, this term must also occur in U . But then U ′ contains a term of degree m+1, i.e., one more
than U . This leads to a contradiction.

Next we show the highest degree of θ(Y ) is less than k and the highest degree of θ(U ′) is k.

First we show that the highest degree of a term in U
′
+Y is not greater than k. Let l be the highest

degree in U
′
+Y . We prove that l cannot be greater than k. If l > k, i.e., U

′
+Y contains hl(b), then

hl(b) must also be in U to cancel out the term. If l is the highest degree of U , then the highest degree
in U

′
is l +1, which is a contradiction. Hence k is the highest degree of a term in U

′
+Y .

Suppose k is the highest degree of a term in Y . Let Y ≈? Y
′
+hk(b). Then we have U

′
+Y

′ ≈? U +U ,
which has no solution, since U

′ ≈? h(U). Hence the highest degree of a term in Y has to be less than k.
Since the highest degree of a term in U

′
+Y is no more than k, the highest degree possible for a term in

U
′

is k as well.

We represent terms using polynomials over N as done in [2]: for example, b+b+b is represented
as 3(b) and h4(b)+b+b+b+b+b is represented as (h4+5)(b). We call terms of the form n(b) where
n is a natural number (i.e., a summation of n b′s) as b-sum-terms.

One of the solutions for the asymmetric equations in the above lemma is
{

Y 7→ 2k(b), U 7→ (hk−1 +

2hk−2 +4hk−3 +8hk−4 · · ·+2k−1)(b),U
′ 7→ (hk +2hk−1 +4hk−2 + · · ·+2k−1)(b)

}

Next we have a couple of lemmas about equations over polynomials.

Lemma 3.6. Let x be an indeterminate and let W1,W2,X1,X2,X3 be variables. Suppose W1 = xm and
W2 = x2n. Then the set of equations

{(x−1)X1 =
? W1−1, (x2−1)X2 =

? W2−1, (x−1)X3 =
? X1−X2}

4



Asymmetric Unification and Disunification for AGh Ravishankar, Narendran, Cornell

is solvable iff m = n.

Proof. In the first equation X1 = (1+ x+ · · ·+ xm−1) and in the second equation X2 = (1+ x2 + · · ·+
x2(n−1)). X2−X1 is divisible by x−1 if and only if m = n, since evaluating X1 and X2 at x = 1 results in
1+1+ · · ·+1m−1− (1+12 + · · ·+12(n−1)).

Corollary 2. Let W1 = hm(b) and W2 = h2n(b). Then the set of equations {h(X1) + b ≈?
↓ W1 +X1,

Y1 ≈?
↓ h(W1), h2(X2)+b≈?

↓W2 +X2, Y2 ≈?
↓ h(W2), h(X3)+X2 ≈?

↓ X3 +X1} is solvable iff m = n.

Lemma 3.7. Let W1 = xn, W2 = x2n and P ∈ N[x]. Then the equations (x−2)Y =? W1−P, (x2−2)Z =?

W2−P has a solution iff P = 2n.

Proof. Evaluating P at x = 2 and x =
√

2 gives us the same value 2n and since P cannot have any
negative coefficients, this is possible only if P = 2n.

Corollary 3. Let W1 = hn(b), W2 = h2n(b) and P be a term that contains no negative simple terms. Then
the equations h(Y )+P≈?

↓ Y +Y +W1, h2(Z)+P≈?
↓ Z +Z +W2 has a solution iff P = 2n(b).

Lemma 3.8. Let Z = xn and v1, v2 ∈ N, then the equations (x− 1)Y1 =? Z− 1, (x− 1)Y2 =? Y1− v1,
(x−1)Y3 =

? Y2− v2 have a solution if and only if v1 = n and v2 = n(n−1)/2.

Proof. The proof follows from Lemma 3.5 in [8].

Corollary 4. Let V1 = v1(b) and V2 = v2(b) where v1, v2 are natural numbers, then the equations
h(Y1)+b≈?

↓ Y1 +Z, Z3 ≈?
↓ h(Z), h(Y2)+V1 ≈?

↓ Y1 +Y2, h(Y3)+V2 ≈?
↓ Y2 +Y3 have a solutio-

n if and only if v2 = v1(v1−1)/2.

Putting all equations together we can see that the following set of asymmetric equations forces V1 and
V2 to be b-sum-terms: h(X1)+b ≈?

↓W1 +X1, Z1 ≈?
↓ h(W1), h2(X2)+b ≈?

↓W2 +X2, Z2 ≈?
↓ h(W2),

h(X3)+X2 ≈?
↓ X1 +X3, h(Y1)+P≈?

↓ Y1 +Y1 +W1, h2(Y2)+P≈?
↓ Y2 +Y2 +W2, P≈?

↓ V1 +V2 +V

Theorem 3.2. Asymmetric Unification modulo −→R1,AC is undecidable.

Proof. We reduce Hilbert’s Tenth Problem to our asymmetric unification problem in the following man-
ner. We represent natural numbers by b-sum-terms. For example natural number 3 is represented as
b+b+b. Addition can be simulated in a straightforward way using the + symbol, since v1(b)+ v2(b)
is the same as (v1 + v2)(b). Multiplication can be simulated using the identity

xy = (x+y)(x+y−1)
2 − x(x−1)

2 − y(y−1)
2

We now illustrate this with an example. Suppose we have a diophantine equation z = x2 + y. This
can be ‘decomposed’ into a set of simple equations as follows: z1 = x∗ x , z = z1 + y. Clearly these
two equations have a solution if and only if the original equation has a solution.

The first equation can be transformed into z1 = (x+x)(x+x−1)
2 − x(x−1)

2 − x(x−1)
2 and further into

z2 = x+ x, z3 =
z2(z2−1)

2 , z4 =
x(x−1)

2 , z3 = z1 + z4 + z4

We represent the second equation using Corollary 4 in the following manner: h(Y1)+b ≈?
↓ Y1 +Z,

Z1 ≈?
↓ h(Z), h(Y2)+Z2 ≈?

↓ Y1 +Y2, h(Y3)+Z3 ≈?
↓ Y2 +Y3 where Z2 = z2(b) and Z3 = z3(b).

5



Asymmetric Unification and Disunification for AGh Ravishankar, Narendran, Cornell

4 Conclusion and Future Work

We proved that asymmetric unification is undecidable for −→R1,AC and disunification is decidable for
AGh. We are interested in finding theories for which asymmetric unification is decidable and disunifi-
cation is undecidable. Another future direction is finding a different decomposition of the identities in
AGh to obtain an asymmetric decision procedure.

References
[1] Matthias Aschenbrenner. Ideal membership in polynomial rings over the integers. Journal of the

American Mathematical Society, 17(2):407–441, 2004.

[2] Franz Baader. Unification in Commutative Theories, Hilbert’s Basis Theorem, and Gröbner Bases.
Journal of the ACM, 40(3):477–503, July 1993.

[3] Franz Baader and Klaus U. Schulz. Combination techniques and decision problems for disunifica-
tion. Theoretical Computer Science, 142(2):229–255, 1995.

[4] Wray L. Buntine and Hans-Jürgen Bürckert. On solving equations and disequations. J. ACM,
41(4):591–629, 1994.

[5] Hubert Comon. Disunification: A survey. In Jean-Louis Lassez and Gordon D. Plotkin, editors,
Computational Logic - Essays in Honor of Alan Robinson, pages 322–359. The MIT Press, 1991.

[6] Serdar Erbatur, Santiago Escobar, Deepak Kapur, Zhiqiang Liu, Christopher A. Lynch, Cather-
ine Meadows, José Meseguer, Paliath Narendran, Sonia Santiago, and Ralf Sasse. Asymmetric
Unification: A New Unification Paradigm for Cryptographic Protocol Analysis. In Automated
Deduction, (CADE-24), volume 7898 of LNCS, pages 231–248. 2013.

[7] Zhiping Lin. On syzygy modules for polynomial matrices. Linear Algebra and its Applications,
298(1):73 – 86, 1999.

[8] Paliath Narendran. Solving linear equations over polynomial semirings. In Proceedings, 11th
Annual IEEE Symposium on Logic in Computer Science, New Brunswick, New Jersey, USA, July
27-30, 1996, pages 466–472. IEEE Computer Society, 1996.

[9] Werner Nutt. Unification in monoidal theories. In Mark E. Stickel, editor, 10th International
Conference on Automated Deduction, pages 618–632, Berlin, Heidelberg, 1990. Springer.

[10] Veena Ravishankar, Kimberly A. Cornell, and Paliath Narendran. Asymmetric Unification and
Disunification. Springer, June 2019. To be published in LNCS Festshrift Series.

6


