Certified, Efficient and Sharp Univariate Taylor Models in Coq

## Érik Martin-Dorel

http://erik.martin-dorel.org/

Postdoc in project-team Marelle, Inria Sophia Antipolis - Méditerranée, France

Joint work with Micaela Mayero, Ioana Pașca, Laurence Rideau, Laurent Théry

SYNASC'2013, Timișoara, Romania 26<sup>th</sup> September 2013





# Outline

Context and preliminary remarks

2 Taylor models for basic functions





# Context and Motivations

What? Compute polynomial approximations of univariate functions with certified error bounds: for a given function f over an interval<sup>1</sup> I, compute  $P, \epsilon$  and formally prove that  $\forall x \in I$ ,  $|f(x) - P(x)| \leq \epsilon$ 

<sup>1</sup>Intervals (and polynomials with interval coefficients) will be printed in bold. Erik Martin-Dorel Certified, Efficient and Sharp Univariate Taylor Models in Cog

# Context and Motivations

- What? Compute polynomial approximations of univariate functions with certified error bounds: for a given function f over an interval<sup>1</sup> I, compute  $P, \epsilon$  and formally prove that  $\forall x \in I$ ,  $|f(x) P(x)| \leq \epsilon$ 
  - Why? The correctness of such bounds is a key part of the reliability of numerical software implementing mathematical functions
  - How? Rely on Taylor models and interval arithmetic

<sup>1</sup>Intervals (and polynomials with interval coefficients) will be printed in bold. Erik Martin-Dorel Certified, Efficient and Sharp Univariate Taylor Models in Coq

# Overview of Interval Arithmetic (IA)

- Interval = pair of real numbers (or floating-point numbers)
- E.g.,  $[3.1415, 3.1416] \ni \pi$
- Operations on intervals, e.g., [2, 4] [0, 1] := [2 1, 4 0] = [1, 4], with the enclosure property:  $\forall x \in [2, 4], \ \forall y \in [0, 1], \ x y \in [1, 4]$ .
- Tool for bounding the range of functions
- Dependency problem: for  $f(x) = x \cdot (1 x)$  and X = [0, 1], a naive use of IA gives eval(f, X) = [0, 1] while the image of X by f is  $[0, \frac{1}{4}]$
- IA is not directly applicable to bound approximation errors e:=f-P which notably raise some cancellation issues

# Overview of Taylor Models (TMs)

The function f is replaced with  $(P, \Delta)$ , where  $P(x) = \sum_{i=0}^{n} P_i \cdot (x - x_0)^i$ and  $\Delta$  is an interval.

A Taylor Model  $(P, \Delta)$  over I approximates a whole set of functions:

$$\llbracket (P, \mathbf{\Delta}) \rrbracket_{I} = \{ f : I \to \mathbb{R} \mid \forall x \in I, \ f(x) - P(x) \in \mathbf{\Delta} \}.$$

## Theorem (Taylor-Lagrange formula)

If f is n+1 times derivable on I, then  $\forall x \in I$ ,  $\exists \xi$  between  $x_0$  and x s.t.:

$$f(x) = \underbrace{\left(\sum_{i=0}^{n} \frac{f^{(i)}(x_0)}{i!} (x - x_0)^i\right)}_{P(x)} + \underbrace{\frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}}_{\Delta_n(x_0, x, \xi)}.$$

## Theorem (Taylor-Lagrange formula)

If f is n+1 times derivable on I, then  $\forall x \in I$ ,  $\exists \xi$  between  $x_0$  and x s.t.:

$$f(x) = \underbrace{\left(\sum_{i=0}^{n} \frac{f^{(i)}(x_0)}{i!} (x - x_0)^i\right)}_{P(x)} + \underbrace{\frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}}_{\Delta_n(x_0, x, \xi)}.$$

Naive algorithm to compute an interval-based Taylor model

- Input: function f, intervals I and  $x_0$  (containing  $x_0$ ), integer  $n \ge 0$
- Output:  $(\mathbf{P}, \mathbf{\Delta})$ , where polynomial  $\mathbf{P}$  has interval coefficients  $\frac{f^{(i)}(\mathbf{x}_0)}{i!}$ and  $\mathbf{\Delta}$  is an enclosure of  $\Delta_n(x_0, x, \xi)$  for  $x, \xi \in \mathbf{I}$  and  $x_0 \in \mathbf{x}_0$

## Theorem (Taylor-Lagrange formula)

If f is n+1 times derivable on I, then  $\forall x \in I$ ,  $\exists \xi$  between  $x_0$  and x s.t.:

$$f(x) = \underbrace{\left(\sum_{i=0}^{n} \frac{f^{(i)}(x_0)}{i!} (x - x_0)^i\right)}_{P(x)} + \underbrace{\frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}}_{\Delta_n(x_0, x, \xi)}.$$

Naive algorithm to compute an interval-based Taylor model

- Input: function f, intervals I and  $x_0$  (containing  $x_0$ ), integer  $n \ge 0$
- Output:  $(\mathbf{P}, \mathbf{\Delta})$ , where polynomial  $\mathbf{P}$  has interval coefficients  $\frac{f^{(i)}(\mathbf{x}_0)}{i!}$ and  $\mathbf{\Delta}$  is an enclosure of  $\Delta_n(x_0, x, \xi)$  for  $x, \xi \in \mathbf{I}$  and  $x_0 \in \mathbf{x}_0$

### $\rightarrow\,$ Rounding errors are easily handled by interval arithmetic

Erik Martin-Dorel

Certified, Efficient and Sharp Univariate Taylor Models in Coq

## Theorem (Taylor-Lagrange formula)

If f is n+1 times derivable on I, then  $\forall x \in I$ ,  $\exists \xi$  between  $x_0$  and x s.t.:

$$f(x) = \underbrace{\left(\sum_{i=0}^{n} \frac{f^{(i)}(x_{0})}{i!} (x - x_{0})^{i}\right)}_{P(x)} + \underbrace{\frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_{0})^{n+1}}_{\Delta_{n}(x_{0}, x, \xi)}.$$

Naive algorithm to compute an interval-based Taylor model

- Input: function f, intervals I and  $x_0$  (containing  $x_0$ ), integer  $n \ge 0$
- Output:  $(\mathbf{P}, \mathbf{\Delta})$ , where polynomial  $\mathbf{P}$  has interval coefficients  $\frac{f^{(i)}(\mathbf{x}_0)}{i!}$ and  $\mathbf{\Delta}$  is an enclosure of  $\Delta_n(x_0, x, \xi)$  for  $x, \xi \in \mathbf{I}$  and  $x_0 \in \mathbf{x}_0$
- $\rightarrow\,$  Rounding errors are easily handled by interval arithmetic
- ightarrow Uniform computation of  $({m P}, {m \Delta})$

Erik Martin-Dorel

Certified, Efficient and Sharp Univariate Taylor Models in Coq

# Methodology of Taylor models

Define arithmetic operations on Taylor models  $\text{TM}_{add}, \text{TM}_{mul}, \text{TM}_{comp}, \text{TM}_{div}$ :

- Addition:  $(P_1, \Delta_1) \oplus (P_2, \Delta_2) = (P_1 + P_2, \Delta_1 + \Delta_2)$
- Similar rule for multiplication, composition, and division (see paper)

A two-step strategy:

- Apply these operations recursively on the structure of the function
- **②** For basic functions: compute  $\Delta$  using the Taylor-Lagrange formula

# Why using this 2-step strategy for composite functions?

Interval enclosures  $\Delta$  for  $\Delta_n(x_0, x, \xi)$  can be largely overestimated.

### Example

 $f(x) = e^{1/\cos x}$  over I = [0, 1] around  $x_0 = \frac{1}{2}$ , with n = 13.

• Automatic differentiation and Taylor-Lagrange formula:  $\Delta = [-1.94 \cdot 10^2, \ 1.35 \cdot 10^3]$ 

# Why using this 2-step strategy for composite functions?

Interval enclosures  $\Delta$  for  $\Delta_n(x_0, x, \xi)$  can be largely overestimated.

### Example

$$f(x) = e^{1/\cos x}$$
 over  $I = [0, 1]$  around  $x_0 = \frac{1}{2}$ , with  $n = 13$ .

- Automatic differentiation and Taylor-Lagrange formula:  $\Delta = [-1.94 \cdot 10^2, \ 1.35 \cdot 10^3]$
- Taylor models:

$$\mathbf{\Delta} = [-8.74 \cdot 10^{-4}, 4.63 \cdot 10^{-3}]$$

## Algorithm (Zumkeller's technique)

**Input:** F: interval evaluator for function f;  $x_0 \subset I$  and  $n \in \mathbb{N}$ **Input:**  $T(y_0, n)$ : order-*n* Taylor polynomial of *f* around  $y_0$ **Output:**  $(P, \Delta)$ 1:  $\boldsymbol{P} \leftarrow \boldsymbol{T}(\boldsymbol{x_0}, n)$ 2:  $\Gamma \leftarrow [X^{n+1}] T(I, n+1)$ 3: if  $(\sup \Gamma \leq 0 \text{ or } \inf \Gamma \geq 0)$  and I is bounded then 4:  $a \leftarrow [\inf I]$ 5:  $b \leftarrow [\sup I]$ 6:  $\Delta_a \leftarrow F(a) - P(a - x_0)$ 7:  $\Delta_b \leftarrow F(b) - P(b - x_0)$  $\boldsymbol{\Delta}_{\boldsymbol{x_0}} \leftarrow \boldsymbol{F}(\boldsymbol{x_0}) - \boldsymbol{P}\left(\boldsymbol{x_0} - \boldsymbol{x_0}\right)$ 8:  $\Delta \leftarrow \Delta_a \lor \Delta_b \lor \Delta_{x_0}$ 9: 10: else  $oldsymbol{\Delta} \leftarrow oldsymbol{\Gamma} imes \left( oldsymbol{I} - oldsymbol{x}_{oldsymbol{0}} 
ight)^{n+1}$ 11: 12: end if

#### Algorithm (Zumkeller's technique) **Input:** F: interval evaluator for function f; $x_0 \subset I$ and $n \in \mathbb{N}$ **Input:** $T(y_0, n)$ : order-*n* Taylor polynomial of *f* around $y_0$ **Output:** $(P, \Delta)$ 1: $\boldsymbol{P} \leftarrow \boldsymbol{T}(\boldsymbol{x}_0, n)$ Compute an enclosure of $f^{(n+1)}(\xi)/(n+1)!, \xi \in I$ 2: $\Gamma \leftarrow [X^{n+1}] T(I, n+1)$ 3: if $(\sup \Gamma \leq 0 \text{ or } \inf \Gamma \geq 0)$ and I is bounded then $oldsymbol{a} \leftarrow [\inf oldsymbol{I}]$ 4: 5: $b \leftarrow [\sup I]$ $\Delta_a \leftarrow F(a) - P(a - x_0)$ 6: 7: $\Delta_b \leftarrow F(b) - P(b - x_0)$ $\Delta_{x_0} \leftarrow F(x_0) - P(x_0 - x_0)$ 8: $\Delta \leftarrow \Delta_a \lor \Delta_b \lor \Delta_{x_0}$ <u>g</u>. 10: else $\Delta \leftarrow \Gamma imes \left( I - x_0 \right)^{n+1}$ 11: Naive enclosure of the Taylor-Lagrange formula 12: end if

#### Algorithm (Zumkeller's technique) **Input:** *F*: interval evaluator for function *f*; $x_0 \subset I$ and $n \in \mathbb{N}$ **Input:** $T(y_0, n)$ : order-*n* Taylor polynomial of *f* around $y_0$ **Output:** $(P, \Delta)$ 1: $\boldsymbol{P} \leftarrow \boldsymbol{T}(\boldsymbol{x}_0, n)$ Compute an enclosure of $f^{(n+1)}(\xi)/(n+1)!, \xi \in I$ 2: $\left[ \boldsymbol{\Gamma} \leftarrow [X^{n+1}] \boldsymbol{T}(\boldsymbol{I}, n+1) \right]$ 3: if $(\sup \Gamma \leq 0 \text{ or } \inf \Gamma \geq 0)$ and I is bounded then $a \leftarrow [\inf I]$ 4: 5: $b \leftarrow [\sup I]$ $\Delta_a \leftarrow F(a) - P(a - x_0)$ 6: Evaluate the Taylor-Lagrange remainder $\Delta_{b} \leftarrow F(b) - P(b - x_{0})$ 7: of f at three point-intervals of I $\Delta_{x_0} \leftarrow F(x_0) - P(x_0 - x_0)$ 8: $\Delta \leftarrow \Delta_a \lor \Delta_b \lor \Delta_{x_0}$ 9: 10: else $oldsymbol{\Delta} \leftarrow oldsymbol{\Gamma} imes \left( oldsymbol{I} - oldsymbol{x}_{oldsymbol{0}} ight)^{n+1}$ 11: 12: end if

## Algorithm (Zumkeller's technique)

**Input:** F: interval evaluator for function f;  $x_0 \subset I$  and  $n \in \mathbb{N}$ **Input:**  $T(y_0, n)$ : order-*n* Taylor polynomial of f around  $y_0 \leftarrow$  to provide **Output:**  $(P, \Delta)$ 1:  $\boldsymbol{P} \leftarrow \boldsymbol{T}(\boldsymbol{x_0}, n)$ 2:  $\Gamma \leftarrow [X^{n+1}] T(I, n+1)$ 3: if  $(\sup \Gamma \leq 0 \text{ or } \inf \Gamma \geq 0)$  and I is bounded then 4:  $a \leftarrow [\inf I]$ 5:  $b \leftarrow [\sup I]$ 6:  $\Delta_a \leftarrow F(a) - P(a - x_0)$ 7:  $\Delta_b \leftarrow F(b) - P(b - x_0)$ 8:  $\Delta_{x_0} \leftarrow F(x_0) - P(x_0 - x_0)$  $\Delta \leftarrow \Delta_a \lor \Delta_b \lor \Delta_{x_0}$ 9: 10: else  $oldsymbol{\Delta} \leftarrow oldsymbol{\Gamma} imes \left( oldsymbol{I} - oldsymbol{x}_{oldsymbol{\Omega}} 
ight)^{n+1}$ 11: 12: end if

# *D*-finite functions (a.k.a. holonomic functions)

### Definition

A *D*-finite function is a solution of a homogeneous linear ordinary differential equation (LODE) with polynomial coefficients:  $a_r(x)y^{(r)}(x) + \cdots + a_1(x)y'(x) + a_0(x)y(x) = 0$ , for given  $a_k \in \mathbb{K}[X]$ .

## Property

The Taylor coefficients of these functions satisfy a *linear recurrence with* polynomial coefficients  $\rightarrow$  fast numerical computation of the coefficients

# *D*-finite functions (a.k.a. holonomic functions)

### Definition

A *D*-finite function is a solution of a homogeneous linear ordinary differential equation (LODE) with polynomial coefficients:  $a_r(x)y^{(r)}(x) + \cdots + a_1(x)y'(x) + a_0(x)y(x) = 0$ , for given  $a_k \in \mathbb{K}[X]$ .

## Property

The Taylor coefficients of these functions satisfy a *linear recurrence with* polynomial coefficients  $\rightarrow$  fast numerical computation of the coefficients

## Example (the exponential function)

The Taylor coefficients of exp at  $x_0$  satisfy the recurrence  $\forall n \ge 1$ ,  $u_n = u_{n-1}/n$ , with  $u_0 = \exp(x_0)$  as an initial condition.

ln, sin, arcsin, sinh, arcsinh, arctan, arctanh... are D-finite; tan isn't

# Coq libraries involved in the formalisation

- SSReflect/MathComponents
  - tactic facilities
  - ullet libraries on arithmetic, lists, and big operators such as  $\sum$  and  $\prod$
- Coq.Interval
  - Abstract interface for intervals (IntervalOps)
  - Instantiation to intervals with floating-point bounds
  - Formal verification with respect to the Reals standard library:

for  $x, y : \mathbb{R}$ and  $X, Y : \mathbb{R}$  $x \in X \land y \in Y \implies x + y \in X + Y$  $x \in X \implies \exp(x) \in \exp(X)$ 

# Comparison with a dedicated tool implemented in C

Sollya [S.Chevillard, M.Joldeş, C.Lauter]

- written in C
- based on the C libraries GMP, MPFR and MPFI
- contains an implementation of univariate Taylor models
- in an imperative programming framework
- polynomials as arrays of coefficients
- not formally proved

CoqApprox

- formalised in Coq
- based on the internals of the library Coq.Interval
- implements Taylor models using a similar algorithm
- in a purely-functional programming framework
- polynomials as lists of coefficients (linear access time)
- formally proved in Coq



# Some benchmarks for basic functions (more in the paper)

|                                                    |        | Executio | on time     | Approximation error    |                        |        |  |
|----------------------------------------------------|--------|----------|-------------|------------------------|------------------------|--------|--|
|                                                    | Coq    | Sollya   | Coq/Sollya  | naive Coq              | Coq                    | Sollya |  |
| f(x) = 1/x<br>I = [1,3]<br>deg=100<br>prec=125     | 0.022s | 0.165s   | 7.6x faster | $1{\cdot}2^0$          | $1 \cdot 2^{-101}$     |        |  |
| $f(x) = \sqrt{x}$ $I = [1,3]$ $deg=100$ $prec=125$ | 0.037s | 0.169s   | 4.5x faster | 1.98.2-12              | 1.60·2 <sup>-112</sup> |        |  |
| $f(x) = \sin x$ $I = [-1, 1]$ $deg=80$ $prec=500$  | 0.146s | 0.092s   | 1.6x slower | 1.79·2 <sup>-402</sup> |                        |        |  |

Column "naive Coq"  $\rightsquigarrow$  naive use of the Taylor-Lagrange formula Column "Coq"  $\rightsquigarrow$  rely on Zumkeller's technique

Erik Martin-Dorel

Certified, Efficient and Sharp Univariate Taylor Models in Coq

<sup>12</sup>/14

# Some benchmarks for composite functions

|                                                                                                                 | Execution time |        |             | Approximation error  |                       |                       |
|-----------------------------------------------------------------------------------------------------------------|----------------|--------|-------------|----------------------|-----------------------|-----------------------|
|                                                                                                                 | Coq            | Sollya | Coq/Sollya  | naive Coq            | Coq                   | Sollya                |
| $f(x) = e^x \sin x$<br>$I = \begin{bmatrix} -\frac{3}{2}, \frac{3}{2} \end{bmatrix}$<br>deg = 100<br>prec = 500 | 1.010s         | 0.306s | 3.3x slower | 1.63.2-423           |                       |                       |
| $f(x) = e^{1/\cos x}$<br>I = [0, 1]<br>deg=100<br>prec=100                                                      | 52.92s         | 0.653  | 81x slower  | $1.97 \cdot 2^{-49}$ | 1.99·2 <sup>-89</sup> | 1.98·2 <sup>-89</sup> |
| $f(x) = \frac{\sin x}{\cos x}$ $I = [-1, 1]$ $deg = 100$ $prec = 100$                                           | 11.15s         | 0.570s | 20x slower  | $1.45 \cdot 2^{26}$  | 1.12·2 <sup>-64</sup> | 1.82·2 <sup>-96</sup> |

Column "naive Coq"  $\rightsquigarrow$  naive use of the Taylor-Lagrange formula Column "Coq"  $\rightsquigarrow$  rely on Zumkeller's technique

Erik Martin-Dorel

Certified, Efficient and Sharp Univariate Taylor Models in Coq

# Conclusion and Perspectives

CoqApprox: a Coq library of Rigorous Polynomial Approximation

- Efficient computation of Taylor models with sharp remainders
- Machine-checked proofs of correctness based on generic data-types
- $\rightarrow$  we can thus formally prove that  $|f(x) TM_f(x)| \leq \epsilon_1$  for  $x \in I$ .

To do: combine CoqApprox with a polynomial global optimisation method

- E.g., rely on Bernstein polynomials or Sums of Squares in Coq
- Devise a tactic to formally prove  $|TM_f(x) P(x)| < \epsilon_2$  for  $x \in I$ .
- $\rightarrow$  will be able to automatically prove  $|f(x) P(x)| < \epsilon$  for  $x \in I$ .

# End of the talk



# Thank you for your attention!

The CoqApprox homepage: http://tamadi.gforge.inria.fr/CoqApprox/

We acknowledge our colleagues Nicolas Brisebarre, Mioara Joldes and Jean-Michel Muller for their help.