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Context and Motivations

What? Compute polynomial approximations of univariate functions with
certified error bounds: for a given function f over an interval1 I ,
compute P, ε and formally prove that ∀x ∈ I , |f (x)− P(x)| 6 ε

Why? The correctness of such bounds is a key part of the reliability of
numerical software implementing mathematical functions

How? Rely on Taylor models and interval arithmetic

1Intervals (and polynomials with interval coefficients) will be printed in bold.
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Overview of Interval Arithmetic (IA)

Interval = pair of real numbers (or floating-point numbers)
E.g., [3.1415, 3.1416] 3 π
Operations on intervals, e.g., [2, 4]− [0, 1] := [2− 1, 4− 0] = [1, 4],
with the enclosure property: ∀x ∈ [2, 4], ∀y ∈ [0, 1], x − y ∈ [1, 4].
Tool for bounding the range of functions

Dependency problem: for f (x) = x · (1− x) and X = [0, 1], a naive
use of IA gives eval(f ,X) = [0, 1] while the image of X by f is [0, 1

4 ]
IA is not directly applicable to bound approximation errors e := f − P
which notably raise some cancellation issues
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Overview of Taylor Models (TMs)

The function f is replaced with (P,∆), where P(x) =
∑n

i=0 Pi · (x − x0)i

and ∆ is an interval.

A Taylor Model (P,∆) over I approximates a whole set of functions:

J(P,∆)KI = {f : I → R | ∀x ∈ I , f (x)− P(x) ∈∆} .
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Taylor-Lagrange formula and interval-based Taylor models

Theorem (Taylor-Lagrange formula)
If f is n + 1 times derivable on I , then ∀x ∈ I , ∃ξ between x0 and x s.t.:

f (x) =
( n∑

i=0

f (i)(x0)
i! (x − x0)i

)
︸ ︷︷ ︸

P(x)

+ f (n+1)(ξ)
(n + 1)! (x − x0)n+1

︸ ︷︷ ︸
∆n(x0,x,ξ)

.

Naive algorithm to compute an interval-based Taylor model
Input: function f , intervals I and x0 (containing x0), integer n > 0

Output: (P,∆), where polynomial P has interval coefficients f (i)(x0)
i!

and ∆ is an enclosure of ∆n(x0, x, ξ) for x, ξ ∈ I and x0 ∈ x0

→ Rounding errors are easily handled by interval arithmetic
→ Uniform computation of (P,∆)

Erik Martin-Dorel Certified, Efficient and Sharp Univariate Taylor Models in Coq 5/14
5/14



Context and preliminary remarks Taylor models for basic functions Benchmarks Conclusion

Taylor-Lagrange formula and interval-based Taylor models

Theorem (Taylor-Lagrange formula)
If f is n + 1 times derivable on I , then ∀x ∈ I , ∃ξ between x0 and x s.t.:

f (x) =
( n∑

i=0

f (i)(x0)
i! (x − x0)i

)
︸ ︷︷ ︸

P(x)

+ f (n+1)(ξ)
(n + 1)! (x − x0)n+1

︸ ︷︷ ︸
∆n(x0,x,ξ)

.

Naive algorithm to compute an interval-based Taylor model
Input: function f , intervals I and x0 (containing x0), integer n > 0

Output: (P,∆), where polynomial P has interval coefficients f (i)(x0)
i!

and ∆ is an enclosure of ∆n(x0, x, ξ) for x, ξ ∈ I and x0 ∈ x0

→ Rounding errors are easily handled by interval arithmetic
→ Uniform computation of (P,∆)

Erik Martin-Dorel Certified, Efficient and Sharp Univariate Taylor Models in Coq 5/14
5/14



Context and preliminary remarks Taylor models for basic functions Benchmarks Conclusion

Taylor-Lagrange formula and interval-based Taylor models

Theorem (Taylor-Lagrange formula)
If f is n + 1 times derivable on I , then ∀x ∈ I , ∃ξ between x0 and x s.t.:

f (x) =
( n∑

i=0

f (i)(x0)
i! (x − x0)i

)
︸ ︷︷ ︸

P(x)

+ f (n+1)(ξ)
(n + 1)! (x − x0)n+1

︸ ︷︷ ︸
∆n(x0,x,ξ)

.

Naive algorithm to compute an interval-based Taylor model
Input: function f , intervals I and x0 (containing x0), integer n > 0

Output: (P,∆), where polynomial P has interval coefficients f (i)(x0)
i!

and ∆ is an enclosure of ∆n(x0, x, ξ) for x, ξ ∈ I and x0 ∈ x0

→ Rounding errors are easily handled by interval arithmetic

→ Uniform computation of (P,∆)

Erik Martin-Dorel Certified, Efficient and Sharp Univariate Taylor Models in Coq 5/14
5/14



Context and preliminary remarks Taylor models for basic functions Benchmarks Conclusion

Taylor-Lagrange formula and interval-based Taylor models

Theorem (Taylor-Lagrange formula)
If f is n + 1 times derivable on I , then ∀x ∈ I , ∃ξ between x0 and x s.t.:

f (x) =
( n∑

i=0

f (i)(x0)
i! (x − x0)i

)
︸ ︷︷ ︸

P(x)

+ f (n+1)(ξ)
(n + 1)! (x − x0)n+1

︸ ︷︷ ︸
∆n(x0,x,ξ)

.

Naive algorithm to compute an interval-based Taylor model
Input: function f , intervals I and x0 (containing x0), integer n > 0

Output: (P,∆), where polynomial P has interval coefficients f (i)(x0)
i!

and ∆ is an enclosure of ∆n(x0, x, ξ) for x, ξ ∈ I and x0 ∈ x0

→ Rounding errors are easily handled by interval arithmetic
→ Uniform computation of (P,∆)
Erik Martin-Dorel Certified, Efficient and Sharp Univariate Taylor Models in Coq 5/14

5/14



Context and preliminary remarks Taylor models for basic functions Benchmarks Conclusion

Methodology of Taylor models

Define arithmetic operations on Taylor models TMadd, TMmul, TMcomp, TMdiv:

Addition: (P1,∆1)⊕ (P2,∆2) = (P1 + P2,∆1 + ∆2)
Similar rule for multiplication, composition, and division (see paper)

A two-step strategy:

1 Apply these operations recursively on the structure of the function
2 For basic functions: compute ∆ using the Taylor-Lagrange formula
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Why using this 2-step strategy for composite functions?

Interval enclosures ∆ for ∆n(x0, x, ξ) can be largely overestimated.

Example
f (x) = e1/ cos x over I = [0, 1] around x0 = 1

2 , with n = 13.

Automatic differentiation and Taylor-Lagrange formula:
∆ = [−1.94 · 102, 1.35 · 103]

Taylor models:
∆ = [−8.74 · 10−4, 4.63 · 10−3]
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Generic computation of sharp remainders for basic functions

Algorithm (Zumkeller’s technique)
Input: F : interval evaluator for function f ; x0 ⊂ I and n ∈ N
Input: T(y0,n): order-n Taylor polynomial of f around y0
Output: (P,∆)
1: P ← T(x0,n)
2: Γ← [Xn+1] T(I ,n + 1)
3: if (sup Γ 6 0 or inf Γ > 0) and I is bounded then
4: a ← [inf I ]
5: b ← [sup I ]
6: ∆a ← F(a)−P (a − x0)
7: ∆b ← F(b)−P (b − x0)
8: ∆x0 ← F(x0)−P (x0 − x0)
9: ∆←∆a ∨∆b ∨∆x0

10: else
11: ∆← Γ× (I − x0)n+1

12: end if
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Compute an enclosure of f (n+1)(ξ)/(n + 1)!, ξ ∈ I

Naive enclosure of the Taylor-Lagrange formula
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Generic computation of sharp remainders for basic functions
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Compute an enclosure of f (n+1)(ξ)/(n + 1)!, ξ ∈ I

Evaluate the Taylor-Lagrange remainder
of f at three point-intervals of I
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D-finite functions (a.k.a. holonomic functions)

Definition
A D-finite function is a solution of a homogeneous linear ordinary
differential equation (LODE) with polynomial coefficients:
ar(x)y(r)(x) + · · ·+ a1(x)y′(x) + a0(x)y(x) = 0, for given ak ∈ K[X ].

Property
The Taylor coefficients of these functions satisfy a linear recurrence with
polynomial coefficients → fast numerical computation of the coefficients

Example (the exponential function)
The Taylor coefficients of exp at x0 satisfy the recurrence
∀n > 1, un = un−1/n, with u0 = exp(x0) as an initial condition.

ln, sin, arcsin, sinh, arcsinh, arctan, arctanh. . . are D-finite; tan isn’t
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Coq libraries involved in the formalisation

SSReflect/MathComponents
tactic facilities
libraries on arithmetic, lists, and big operators such as

∑
and

∏
Coq.Interval

Abstract interface for intervals (IntervalOps)
Instantiation to intervals with floating-point bounds
Formal verification with respect to the Reals standard library:
for x, y : R
and X ,Y : IR

x ∈ X ∧ y ∈ Y =⇒ x + y ∈ X + Y
x ∈ X =⇒ exp(x) ∈ exp(X)
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Comparison with a dedicated tool implemented in C

Sollya [S.Chevillard, M.Joldeş, C.Lauter]

written in C

based on the C libraries GMP,
MPFR and MPFI

contains an implementation of
univariate Taylor models

in an imperative programming
framework

polynomials as arrays of coefficients

not formally proved

CoqApprox

formalised in Coq

based on the internals of the library
Coq.Interval

implements Taylor models using a
similar algorithm

in a purely-functional programming
framework

polynomials as lists of coefficients
(linear access time)

formally proved in Coq
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Some benchmarks for basic functions (more in the paper)

Execution time Approximation error
Coq Sollya Coq/Sollya naive Coq Coq Sollya

f (x) = 1/x
I = [1, 3]
deg=100
prec=125

0.022s 0.165s 7.6x faster 1·20 1·2-101

f (x) =
√

x
I = [1, 3]
deg=100
prec=125

0.037s 0.169s 4.5x faster 1.98·2-12 1.60·2-112

f (x) = sin x
I = [−1, 1]
deg=80
prec=500

0.146s 0.092s 1.6x slower 1.79·2-402

Column “naive Coq” ; naive use of the Taylor-Lagrange formula
Column “Coq” ; rely on Zumkeller’s technique
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Some benchmarks for composite functions

Execution time Approximation error
Coq Sollya Coq/Sollya naive Coq Coq Sollya

f (x) = exsin x
I = [− 3

2 ,
3
2 ]

deg=100
prec=500

1.010s 0.306s 3.3x slower 1.63·2-423

f (x) = e1/cos x

I = [0, 1]
deg=100
prec=100

52.92s 0.653 81x slower 1.97·2-49 1.99·2-89 1.98·2-89

f (x) = sin x
cos x

I = [−1, 1]
deg=100
prec=100

11.15s 0.570s 20x slower 1.45·226 1.12·2-64 1.82·2-96

Column “naive Coq” ; naive use of the Taylor-Lagrange formula
Column “Coq” ; rely on Zumkeller’s technique
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Conclusion and Perspectives

CoqApprox: a Coq library of Rigorous Polynomial Approximation
Efficient computation of Taylor models with sharp remainders
Machine-checked proofs of correctness based on generic data-types

→ we can thus formally prove that |f (x)− TM f (x)| 6 ε1 for x ∈ I .

To do: combine CoqApprox with a polynomial global optimisation method
E.g., rely on Bernstein polynomials or Sums of Squares in Coq
Devise a tactic to formally prove |TM f (x)− P(x)| < ε2 for x ∈ I .

→ will be able to automatically prove |f (x)− P(x)| < ε for x ∈ I .
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End of the talk
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Thank you for your attention!

The CoqApprox homepage:
http://tamadi.gforge.inria.fr/CoqApprox/

We acknowledge our colleagues Nicolas Brisebarre,
Mioara Joldeş and Jean-Michel Muller for their help.

Erik Martin-Dorel Certified, Efficient and Sharp Univariate Taylor Models in Coq 14/14
14/14

http://tamadi.gforge.inria.fr/CoqApprox/

	Context and preliminary remarks
	Taylor models for basic functions
	Benchmarks
	Conclusion

