
Formal proofs and certified computation in Coq

Érik Martin-Dorel

http://erik.martin-dorel.org

Équipe ACADIE, Laboratoire IRIT
Université Toulouse III - Paul Sabatier

French Symposium on Games
26–30 May 2015

Université Paris Diderot

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 1/18
1/18

http://erik.martin-dorel.org/

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Formal Methods

Gather
a set of mathematically-based
techniques
designed to specify and verify
computer systems

Used in areas where
errors can cause loss of life
errors can cause significant
financial damage

For instance
for the Paris Métro Line 14
at Intel, AMD, . . .

Verification
Techniques

Deductive
Verifi-
cation

Formal
Proofs

Abstract
Interpre-
tation

Model
Checking

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 2/18
2/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Formal Methods

Gather
a set of mathematically-based
techniques
designed to specify and verify
computer systems

Used in areas where
errors can cause loss of life
errors can cause significant
financial damage

For instance
for the Paris Métro Line 14
at Intel, AMD, . . .

Verification
Techniques

Deductive
Verifi-
cation

Formal
Proofs

Abstract
Interpre-
tation

Model
Checking

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 2/18
2/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Formal Methods

Gather
a set of mathematically-based
techniques
designed to specify and verify
computer systems

Used in areas where
errors can cause loss of life
errors can cause significant
financial damage

For instance
for the Paris Métro Line 14
at Intel, AMD, . . .

Verification
Techniques

Deductive
Verifi-
cation

Formal
Proofs

Abstract
Interpre-
tation

Model
Checking

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 2/18
2/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Formal Proofs

needs a proof assistant (= proof checker (= theorem prover))
specify algorithms and theorems
develop proofs interactively
check proofs
but also perform computations, develop automatic tactics. . .

various tools: ACL2, Agda, Coq, HOL Light, Isabelle, Mizar, PVS. . .

main criteria to classify them:
the kind of underlying logic (FOL/HOL, classical/intuitionistic. . .)
the presence of a proof kernel (De Bruijn’s criterion)
the degree of automation
the availability of large libraries of formalized results

see also [Freek Wiedijk (2006): The Seventeen Provers of the World]

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 3/18
3/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Formal Proofs

needs a proof assistant (= proof checker (= theorem prover))
specify algorithms and theorems
develop proofs interactively
check proofs
but also perform computations, develop automatic tactics. . .

various tools: ACL2, Agda, Coq, HOL Light, Isabelle, Mizar, PVS. . .
main criteria to classify them:

the kind of underlying logic (FOL/HOL, classical/intuitionistic. . .)
the presence of a proof kernel (De Bruijn’s criterion)
the degree of automation
the availability of large libraries of formalized results

see also [Freek Wiedijk (2006): The Seventeen Provers of the World]

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 3/18
3/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

How to Believe a Machine-Checked Proof [R. Pollack 1998]

Two sub-problems:
1 decide if the putative formal proof is really a derivation in the given

formal system

→ this question can be answered by a machine
→ need to trust the hardware, the OS. . . and the proof checker (but it is

a simple program: it just need to check the proof, not to “discover” it !)

2 decide if what it proves really has the informal meaning claimed for it

→ this is an informal question
→ well surveyable: check that the formalized definitions indeed correspond

to the usual mathematical ones
(no need to dive into proof details: they’re fully handled by the checker)

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 4/18
4/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

How to Believe a Machine-Checked Proof [R. Pollack 1998]

Two sub-problems:
1 decide if the putative formal proof is really a derivation in the given

formal system

→ this question can be answered by a machine
→ need to trust the hardware, the OS. . . and the proof checker (but it is

a simple program: it just need to check the proof, not to “discover” it !)
2 decide if what it proves really has the informal meaning claimed for it

→ this is an informal question
→ well surveyable: check that the formalized definitions indeed correspond

to the usual mathematical ones
(no need to dive into proof details: they’re fully handled by the checker)

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 4/18
4/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

How to Believe a Machine-Checked Proof [R. Pollack 1998]

Two sub-problems:
1 decide if the putative formal proof is really a derivation in the given

formal system

→ this question can be answered by a machine
→ need to trust the hardware, the OS. . . and the proof checker (but it is

a simple program: it just need to check the proof, not to “discover” it !)

2 decide if what it proves really has the informal meaning claimed for it

→ this is an informal question
→ well surveyable: check that the formalized definitions indeed correspond

to the usual mathematical ones
(no need to dive into proof details: they’re fully handled by the checker)

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 4/18
4/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

How to Believe a Machine-Checked Proof [R. Pollack 1998]

Two sub-problems:
1 decide if the putative formal proof is really a derivation in the given

formal system
→ this question can be answered by a machine
→ need to trust the hardware, the OS. . . and the proof checker (but it is

a simple program: it just need to check the proof, not to “discover” it !)
2 decide if what it proves really has the informal meaning claimed for it

→ this is an informal question
→ well surveyable: check that the formalized definitions indeed correspond

to the usual mathematical ones
(no need to dive into proof details: they’re fully handled by the checker)

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 4/18
4/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

How to Believe a Machine-Checked Proof [R. Pollack 1998]

Two sub-problems:
1 decide if the putative formal proof is really a derivation in the given

formal system
→ this question can be answered by a machine
→ need to trust the hardware, the OS. . . and the proof checker (but it is

a simple program: it just need to check the proof, not to “discover” it !)
2 decide if what it proves really has the informal meaning claimed for it

→ this is an informal question
→ well surveyable: check that the formalized definitions indeed correspond

to the usual mathematical ones
(no need to dive into proof details: they’re fully handled by the checker)

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 4/18
4/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Focus on the Coq proof assistant

Written in OCaml

Initiated by Thierry Coquand and Gérard Huet, and developed by
Inria since 1984 (the latest stable release being version 8.4pl6)
Provides a strongly-typed functional programming language and proof
framework, based on the Calculus of Inductive Constructions, a
higher-order logic that is constructive (= intuitionistic) and very
expressive
[Yves Bertot, Pierre Castéran (2004): Coq’Art: The Calculus of
Inductive Constructions]
Coq has been awarded the 2013 ACM Software System Award,
and the 2013 SIGPLAN Programming Languages Software Award.

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 5/18
5/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Focus on the Coq proof assistant

Written in OCaml
Initiated by Thierry Coquand and Gérard Huet, and developed by
Inria since 1984 (the latest stable release being version 8.4pl6)

Provides a strongly-typed functional programming language and proof
framework, based on the Calculus of Inductive Constructions, a
higher-order logic that is constructive (= intuitionistic) and very
expressive
[Yves Bertot, Pierre Castéran (2004): Coq’Art: The Calculus of
Inductive Constructions]
Coq has been awarded the 2013 ACM Software System Award,
and the 2013 SIGPLAN Programming Languages Software Award.

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 5/18
5/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Focus on the Coq proof assistant

Written in OCaml
Initiated by Thierry Coquand and Gérard Huet, and developed by
Inria since 1984 (the latest stable release being version 8.4pl6)
Provides a strongly-typed functional programming language and proof
framework, based on the Calculus of Inductive Constructions, a
higher-order logic that is constructive (= intuitionistic) and very
expressive

[Yves Bertot, Pierre Castéran (2004): Coq’Art: The Calculus of
Inductive Constructions]
Coq has been awarded the 2013 ACM Software System Award,
and the 2013 SIGPLAN Programming Languages Software Award.

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 5/18
5/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Focus on the Coq proof assistant

Written in OCaml
Initiated by Thierry Coquand and Gérard Huet, and developed by
Inria since 1984 (the latest stable release being version 8.4pl6)
Provides a strongly-typed functional programming language and proof
framework, based on the Calculus of Inductive Constructions, a
higher-order logic that is constructive (= intuitionistic) and very
expressive
[Yves Bertot, Pierre Castéran (2004): Coq’Art: The Calculus of
Inductive Constructions]

Coq has been awarded the 2013 ACM Software System Award,
and the 2013 SIGPLAN Programming Languages Software Award.

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 5/18
5/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Focus on the Coq proof assistant

Written in OCaml
Initiated by Thierry Coquand and Gérard Huet, and developed by
Inria since 1984 (the latest stable release being version 8.4pl6)
Provides a strongly-typed functional programming language and proof
framework, based on the Calculus of Inductive Constructions, a
higher-order logic that is constructive (= intuitionistic) and very
expressive
[Yves Bertot, Pierre Castéran (2004): Coq’Art: The Calculus of
Inductive Constructions]
Coq has been awarded the 2013 ACM Software System Award,
and the 2013 SIGPLAN Programming Languages Software Award.

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 5/18
5/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Recap the role of Coq’s kernel

The Curry–Howard correspondence
A proposition is a type

A proof of a proposition is . . . a program that inhabits this type
A false proposition is an empty type
A proof of P implies Q is . . . a program p turning any proof of P

into a proof of Q; denoted by p : P → Q

Checking that p is a proof of a theorem T (in a proof environment E)
amounts to calculating the type of p (w.r.t. E) and comparing it with T .
We say that it is a type judgement E ` p : T .

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 6/18
6/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Recap the role of Coq’s kernel

The Curry–Howard correspondence
A proposition is a type
A proof of a proposition is . . . a program that inhabits this type

A false proposition is an empty type
A proof of P implies Q is . . . a program p turning any proof of P

into a proof of Q; denoted by p : P → Q

Checking that p is a proof of a theorem T (in a proof environment E)
amounts to calculating the type of p (w.r.t. E) and comparing it with T .
We say that it is a type judgement E ` p : T .

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 6/18
6/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Recap the role of Coq’s kernel

The Curry–Howard correspondence
A proposition is a type
A proof of a proposition is . . . a program that inhabits this type
A false proposition is an empty type

A proof of P implies Q is . . . a program p turning any proof of P
into a proof of Q; denoted by p : P → Q

Checking that p is a proof of a theorem T (in a proof environment E)
amounts to calculating the type of p (w.r.t. E) and comparing it with T .
We say that it is a type judgement E ` p : T .

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 6/18
6/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Recap the role of Coq’s kernel

The Curry–Howard correspondence
A proposition is a type
A proof of a proposition is . . . a program that inhabits this type
A false proposition is an empty type
A proof of P implies Q is . . . a program p turning any proof of P

into a proof of Q; denoted by p : P → Q

Checking that p is a proof of a theorem T (in a proof environment E)
amounts to calculating the type of p (w.r.t. E) and comparing it with T .
We say that it is a type judgement E ` p : T .

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 6/18
6/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Recap the role of Coq’s kernel

The Curry–Howard correspondence
A proposition is a type
A proof of a proposition is . . . a program that inhabits this type
A false proposition is an empty type
A proof of P implies Q is . . . a program p turning any proof of P

into a proof of Q; denoted by p : P → Q

Checking that p is a proof of a theorem T (in a proof environment E)
amounts to calculating the type of p (w.r.t. E) and comparing it with T .

We say that it is a type judgement E ` p : T .

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 6/18
6/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Recap the role of Coq’s kernel

The Curry–Howard correspondence
A proposition is a type
A proof of a proposition is . . . a program that inhabits this type
A false proposition is an empty type
A proof of P implies Q is . . . a program p turning any proof of P

into a proof of Q; denoted by p : P → Q

Checking that p is a proof of a theorem T (in a proof environment E)
amounts to calculating the type of p (w.r.t. E) and comparing it with T .
We say that it is a type judgement E ` p : T .

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 6/18
6/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Coq, proofs and computation
Coq comes with a primitive notion of computation, called conversion.

Key feature of Coq’s logic: the convertibility rule
In environment E , if p : A and if A and B are convertible, then p : B.

So roughly speaking, typing is performed “modulo computation”.
Toy example of proof based on computation

Assume we want to prove 4 6 8, not using the axiomatic approacha

We define 	 as the subtraction over N, i.e. m 	 n := max(0,m − n).
We rewrite 4 6 8 as 4	 8 = 0.
We compute and get 0 = 0, which trivially holds (refl : 0 = 0)
As 0 = 0 and 4	 8 = 0 are convertible, we also have refl : 4	 8 = 0,
hence the result.

ai.e. without relying on ∀n : N, n 6 n and ∀m, n : N, m 6 n ⇒ m 6 n + 1

Three main reduction tactics are available:

1984: compute: reduction machine (inside the kernel)
2004: vm_compute: virtual machine (byte-code)
2011: native_compute: compilation (native-code)

Several levels of trust:
method trust speed
compute +++ +
vm_compute ++ ++
native_compute + +++

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 7/18
7/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Coq, proofs and computation
Coq comes with a primitive notion of computation, called conversion.

Key feature of Coq’s logic: the convertibility rule
In environment E , if p : A and if A and B are convertible, then p : B.

So roughly speaking, typing is performed “modulo computation”.

Toy example of proof based on computation

Assume we want to prove 4 6 8, not using the axiomatic approacha

We define 	 as the subtraction over N, i.e. m 	 n := max(0,m − n).
We rewrite 4 6 8 as 4	 8 = 0.
We compute and get 0 = 0, which trivially holds (refl : 0 = 0)
As 0 = 0 and 4	 8 = 0 are convertible, we also have refl : 4	 8 = 0,
hence the result.

ai.e. without relying on ∀n : N, n 6 n and ∀m, n : N, m 6 n ⇒ m 6 n + 1

Three main reduction tactics are available:

1984: compute: reduction machine (inside the kernel)
2004: vm_compute: virtual machine (byte-code)
2011: native_compute: compilation (native-code)

Several levels of trust:
method trust speed
compute +++ +
vm_compute ++ ++
native_compute + +++

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 7/18
7/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Coq, proofs and computation
Coq comes with a primitive notion of computation, called conversion.

Key feature of Coq’s logic: the convertibility rule
In environment E , if p : A and if A and B are convertible, then p : B.

So roughly speaking, typing is performed “modulo computation”.
Toy example of proof based on computation

Assume we want to prove 4 6 8, not using the axiomatic approacha

We define 	 as the subtraction over N, i.e. m 	 n := max(0,m − n).
We rewrite 4 6 8 as 4	 8 = 0.
We compute and get 0 = 0, which trivially holds (refl : 0 = 0)
As 0 = 0 and 4	 8 = 0 are convertible, we also have refl : 4	 8 = 0,
hence the result.

ai.e. without relying on ∀n : N, n 6 n and ∀m, n : N, m 6 n ⇒ m 6 n + 1

Three main reduction tactics are available:

1984: compute: reduction machine (inside the kernel)
2004: vm_compute: virtual machine (byte-code)
2011: native_compute: compilation (native-code)

Several levels of trust:
method trust speed
compute +++ +
vm_compute ++ ++
native_compute + +++

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 7/18
7/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Coq, proofs and computation
Coq comes with a primitive notion of computation, called conversion.

Key feature of Coq’s logic: the convertibility rule
In environment E , if p : A and if A and B are convertible, then p : B.

So roughly speaking, typing is performed “modulo computation”.
Toy example of proof based on computation

Assume we want to prove 4 6 8, not using the axiomatic approacha

We define 	 as the subtraction over N, i.e. m 	 n := max(0,m − n).

We rewrite 4 6 8 as 4	 8 = 0.
We compute and get 0 = 0, which trivially holds (refl : 0 = 0)
As 0 = 0 and 4	 8 = 0 are convertible, we also have refl : 4	 8 = 0,
hence the result.

ai.e. without relying on ∀n : N, n 6 n and ∀m, n : N, m 6 n ⇒ m 6 n + 1

Three main reduction tactics are available:

1984: compute: reduction machine (inside the kernel)
2004: vm_compute: virtual machine (byte-code)
2011: native_compute: compilation (native-code)

Several levels of trust:
method trust speed
compute +++ +
vm_compute ++ ++
native_compute + +++

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 7/18
7/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Coq, proofs and computation
Coq comes with a primitive notion of computation, called conversion.

Key feature of Coq’s logic: the convertibility rule
In environment E , if p : A and if A and B are convertible, then p : B.

So roughly speaking, typing is performed “modulo computation”.
Toy example of proof based on computation

Assume we want to prove 4 6 8, not using the axiomatic approacha

We define 	 as the subtraction over N, i.e. m 	 n := max(0,m − n).
We rewrite 4 6 8 as 4	 8 = 0.

We compute and get 0 = 0, which trivially holds (refl : 0 = 0)
As 0 = 0 and 4	 8 = 0 are convertible, we also have refl : 4	 8 = 0,
hence the result.

ai.e. without relying on ∀n : N, n 6 n and ∀m, n : N, m 6 n ⇒ m 6 n + 1

Three main reduction tactics are available:

1984: compute: reduction machine (inside the kernel)
2004: vm_compute: virtual machine (byte-code)
2011: native_compute: compilation (native-code)

Several levels of trust:
method trust speed
compute +++ +
vm_compute ++ ++
native_compute + +++

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 7/18
7/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Coq, proofs and computation
Coq comes with a primitive notion of computation, called conversion.

Key feature of Coq’s logic: the convertibility rule
In environment E , if p : A and if A and B are convertible, then p : B.

So roughly speaking, typing is performed “modulo computation”.
Toy example of proof based on computation

Assume we want to prove 4 6 8, not using the axiomatic approacha

We define 	 as the subtraction over N, i.e. m 	 n := max(0,m − n).
We rewrite 4 6 8 as 4	 8 = 0.
We compute and get 0 = 0, which trivially holds (refl : 0 = 0)

As 0 = 0 and 4	 8 = 0 are convertible, we also have refl : 4	 8 = 0,
hence the result.

ai.e. without relying on ∀n : N, n 6 n and ∀m, n : N, m 6 n ⇒ m 6 n + 1

Three main reduction tactics are available:

1984: compute: reduction machine (inside the kernel)
2004: vm_compute: virtual machine (byte-code)
2011: native_compute: compilation (native-code)

Several levels of trust:
method trust speed
compute +++ +
vm_compute ++ ++
native_compute + +++

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 7/18
7/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Coq, proofs and computation
Coq comes with a primitive notion of computation, called conversion.

Key feature of Coq’s logic: the convertibility rule
In environment E , if p : A and if A and B are convertible, then p : B.

So roughly speaking, typing is performed “modulo computation”.
Toy example of proof based on computation

Assume we want to prove 4 6 8, not using the axiomatic approacha

We define 	 as the subtraction over N, i.e. m 	 n := max(0,m − n).
We rewrite 4 6 8 as 4	 8 = 0.
We compute and get 0 = 0, which trivially holds (refl : 0 = 0)
As 0 = 0 and 4	 8 = 0 are convertible, we also have refl : 4	 8 = 0,
hence the result.

ai.e. without relying on ∀n : N, n 6 n and ∀m, n : N, m 6 n ⇒ m 6 n + 1

Three main reduction tactics are available:

1984: compute: reduction machine (inside the kernel)
2004: vm_compute: virtual machine (byte-code)
2011: native_compute: compilation (native-code)

Several levels of trust:
method trust speed
compute +++ +
vm_compute ++ ++
native_compute + +++

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 7/18
7/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Approaches to certify computation with a Proof Assistant

Borrowing [G. Barthe, G. Ruys, H. Barendregt, 1995]’s terminology
“autarkic approach”: perform all calculations inside the proof assistant
“skeptical approach”: rely on certificates that are produced by a given

tool, external to the proof assistant, then checked

extraction of programs: generate compilable source code (e.g. in OCaml)
correct by construction, from the formalized algorithm:
e.g., the CompCert C compiler has been designed this way
[X. Leroy (2009): A Formally Verified Compiler Back-end].

deductive verification: annotate the (imperative) program code and use
dedicated tools, such as Frama-C/Jessie/Why3, to generate
proof obligations (to be discharged by automated provers or
proof assistants as back-ends)

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 8/18
8/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Approaches to certify computation with a Proof Assistant

Borrowing [G. Barthe, G. Ruys, H. Barendregt, 1995]’s terminology
“autarkic approach”: perform all calculations inside the proof assistant
“skeptical approach”: rely on certificates that are produced by a given

tool, external to the proof assistant, then checked

extraction of programs: generate compilable source code (e.g. in OCaml)
correct by construction, from the formalized algorithm:
e.g., the CompCert C compiler has been designed this way
[X. Leroy (2009): A Formally Verified Compiler Back-end].

deductive verification: annotate the (imperative) program code and use
dedicated tools, such as Frama-C/Jessie/Why3, to generate
proof obligations (to be discharged by automated provers or
proof assistants as back-ends)

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 8/18
8/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Approaches to certify computation with a Proof Assistant

Borrowing [G. Barthe, G. Ruys, H. Barendregt, 1995]’s terminology
“autarkic approach”: perform all calculations inside the proof assistant
“skeptical approach”: rely on certificates that are produced by a given

tool, external to the proof assistant, then checked

extraction of programs: generate compilable source code (e.g. in OCaml)
correct by construction, from the formalized algorithm:
e.g., the CompCert C compiler has been designed this way
[X. Leroy (2009): A Formally Verified Compiler Back-end].

deductive verification: annotate the (imperative) program code and use
dedicated tools, such as Frama-C/Jessie/Why3, to generate
proof obligations (to be discharged by automated provers or
proof assistants as back-ends)

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 8/18
8/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Overview of the Reals library (included in Coq’s stdlib)

originated in the Coq formalization of the Three Gap Theorem
(Steinhaus’ conjecture), cf. [Micaela Mayero’s PhD thesis, 2001]

classical axiomatization of R as a complete Archimedean ordered field
the classical flavor of this formalization is due to the trichotomy axiom
(named total_order_T in the code)
part of the Coq standard library
technicalities: the division is a total function
gathers support results on derivability, Riemann integral (both defined
with dependent types) and reference functions

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 9/18
9/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Overview of the Reals library (included in Coq’s stdlib)

originated in the Coq formalization of the Three Gap Theorem
(Steinhaus’ conjecture), cf. [Micaela Mayero’s PhD thesis, 2001]
classical axiomatization of R as a complete Archimedean ordered field

the classical flavor of this formalization is due to the trichotomy axiom
(named total_order_T in the code)
part of the Coq standard library
technicalities: the division is a total function
gathers support results on derivability, Riemann integral (both defined
with dependent types) and reference functions

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 9/18
9/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Overview of the Reals library (included in Coq’s stdlib)

originated in the Coq formalization of the Three Gap Theorem
(Steinhaus’ conjecture), cf. [Micaela Mayero’s PhD thesis, 2001]
classical axiomatization of R as a complete Archimedean ordered field
the classical flavor of this formalization is due to the trichotomy axiom
(named total_order_T in the code)

part of the Coq standard library
technicalities: the division is a total function
gathers support results on derivability, Riemann integral (both defined
with dependent types) and reference functions

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 9/18
9/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Overview of the Reals library (included in Coq’s stdlib)

originated in the Coq formalization of the Three Gap Theorem
(Steinhaus’ conjecture), cf. [Micaela Mayero’s PhD thesis, 2001]
classical axiomatization of R as a complete Archimedean ordered field
the classical flavor of this formalization is due to the trichotomy axiom
(named total_order_T in the code)
part of the Coq standard library

technicalities: the division is a total function
gathers support results on derivability, Riemann integral (both defined
with dependent types) and reference functions

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 9/18
9/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Overview of the Reals library (included in Coq’s stdlib)

originated in the Coq formalization of the Three Gap Theorem
(Steinhaus’ conjecture), cf. [Micaela Mayero’s PhD thesis, 2001]
classical axiomatization of R as a complete Archimedean ordered field
the classical flavor of this formalization is due to the trichotomy axiom
(named total_order_T in the code)
part of the Coq standard library
technicalities: the division is a total function

gathers support results on derivability, Riemann integral (both defined
with dependent types) and reference functions

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 9/18
9/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Overview of the Reals library (included in Coq’s stdlib)

originated in the Coq formalization of the Three Gap Theorem
(Steinhaus’ conjecture), cf. [Micaela Mayero’s PhD thesis, 2001]
classical axiomatization of R as a complete Archimedean ordered field
the classical flavor of this formalization is due to the trichotomy axiom
(named total_order_T in the code)
part of the Coq standard library
technicalities: the division is a total function
gathers support results on derivability, Riemann integral (both defined
with dependent types) and reference functions

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 9/18
9/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Overview of the Coquelicot library

a new library of real analysis for Coq

conservative extension of the Reals standard library
cf. [Sylvie Boldo, Catherine Lelay, Guillaume Melquiond (2015):
Coquelicot: A User-Friendly Library of Real Analysis for Coq]
new features:

user-friendly definitions of limits, derivatives, integrals. . . (with total
functions in place of dependent types)
comprehensive set of theorems on these notions, up to power series,
parametric integrals, two-dimensional differentiability, asymptotic
behaviors
tactics to automate proofs on derivatives

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 10/18
10/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Overview of the Coquelicot library

a new library of real analysis for Coq
conservative extension of the Reals standard library

cf. [Sylvie Boldo, Catherine Lelay, Guillaume Melquiond (2015):
Coquelicot: A User-Friendly Library of Real Analysis for Coq]
new features:

user-friendly definitions of limits, derivatives, integrals. . . (with total
functions in place of dependent types)
comprehensive set of theorems on these notions, up to power series,
parametric integrals, two-dimensional differentiability, asymptotic
behaviors
tactics to automate proofs on derivatives

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 10/18
10/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Overview of the Coquelicot library

a new library of real analysis for Coq
conservative extension of the Reals standard library
cf. [Sylvie Boldo, Catherine Lelay, Guillaume Melquiond (2015):
Coquelicot: A User-Friendly Library of Real Analysis for Coq]

new features:

user-friendly definitions of limits, derivatives, integrals. . . (with total
functions in place of dependent types)
comprehensive set of theorems on these notions, up to power series,
parametric integrals, two-dimensional differentiability, asymptotic
behaviors
tactics to automate proofs on derivatives

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 10/18
10/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Overview of the Coquelicot library

a new library of real analysis for Coq
conservative extension of the Reals standard library
cf. [Sylvie Boldo, Catherine Lelay, Guillaume Melquiond (2015):
Coquelicot: A User-Friendly Library of Real Analysis for Coq]
new features:

user-friendly definitions of limits, derivatives, integrals. . . (with total
functions in place of dependent types)
comprehensive set of theorems on these notions, up to power series,
parametric integrals, two-dimensional differentiability, asymptotic
behaviors
tactics to automate proofs on derivatives

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 10/18
10/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Overview of the Coquelicot library

a new library of real analysis for Coq
conservative extension of the Reals standard library
cf. [Sylvie Boldo, Catherine Lelay, Guillaume Melquiond (2015):
Coquelicot: A User-Friendly Library of Real Analysis for Coq]
new features:

user-friendly definitions of limits, derivatives, integrals. . . (with total
functions in place of dependent types)

comprehensive set of theorems on these notions, up to power series,
parametric integrals, two-dimensional differentiability, asymptotic
behaviors
tactics to automate proofs on derivatives

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 10/18
10/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Overview of the Coquelicot library

a new library of real analysis for Coq
conservative extension of the Reals standard library
cf. [Sylvie Boldo, Catherine Lelay, Guillaume Melquiond (2015):
Coquelicot: A User-Friendly Library of Real Analysis for Coq]
new features:

user-friendly definitions of limits, derivatives, integrals. . . (with total
functions in place of dependent types)
comprehensive set of theorems on these notions, up to power series,
parametric integrals, two-dimensional differentiability, asymptotic
behaviors

tactics to automate proofs on derivatives

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 10/18
10/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Overview of the Coquelicot library

a new library of real analysis for Coq
conservative extension of the Reals standard library
cf. [Sylvie Boldo, Catherine Lelay, Guillaume Melquiond (2015):
Coquelicot: A User-Friendly Library of Real Analysis for Coq]
new features:

user-friendly definitions of limits, derivatives, integrals. . . (with total
functions in place of dependent types)
comprehensive set of theorems on these notions, up to power series,
parametric integrals, two-dimensional differentiability, asymptotic
behaviors
tactics to automate proofs on derivatives

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 10/18
10/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Overview of the C-CoRN library

C-CoRN = Constructive Coq Repository at Nijmegen

originated in the FTA project for formalizing the Fundamental
Theorem of Algebra constructively
intuitionistic axiomatization via an algebraic hierarchy built upon
constructive setoids + construction of a real number structure via
Cauchy sequences, cf. [Milad Niqui’s PhD thesis, 2004].
features:

large and generic library in the spirit of E. Bishop’s constructive analysis
“computational real numbers” ; “proof by computation” is possible
by construction, all functions overs the constructive reals are continuous
; hinders the applicability to proofs in standard/numerical analysis

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 11/18
11/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Overview of the C-CoRN library

C-CoRN = Constructive Coq Repository at Nijmegen
originated in the FTA project for formalizing the Fundamental
Theorem of Algebra constructively

intuitionistic axiomatization via an algebraic hierarchy built upon
constructive setoids + construction of a real number structure via
Cauchy sequences, cf. [Milad Niqui’s PhD thesis, 2004].
features:

large and generic library in the spirit of E. Bishop’s constructive analysis
“computational real numbers” ; “proof by computation” is possible
by construction, all functions overs the constructive reals are continuous
; hinders the applicability to proofs in standard/numerical analysis

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 11/18
11/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Overview of the C-CoRN library

C-CoRN = Constructive Coq Repository at Nijmegen
originated in the FTA project for formalizing the Fundamental
Theorem of Algebra constructively
intuitionistic axiomatization via an algebraic hierarchy built upon
constructive setoids + construction of a real number structure via
Cauchy sequences, cf. [Milad Niqui’s PhD thesis, 2004].

features:

large and generic library in the spirit of E. Bishop’s constructive analysis
“computational real numbers” ; “proof by computation” is possible
by construction, all functions overs the constructive reals are continuous
; hinders the applicability to proofs in standard/numerical analysis

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 11/18
11/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Overview of the C-CoRN library

C-CoRN = Constructive Coq Repository at Nijmegen
originated in the FTA project for formalizing the Fundamental
Theorem of Algebra constructively
intuitionistic axiomatization via an algebraic hierarchy built upon
constructive setoids + construction of a real number structure via
Cauchy sequences, cf. [Milad Niqui’s PhD thesis, 2004].
features:

large and generic library in the spirit of E. Bishop’s constructive analysis
“computational real numbers” ; “proof by computation” is possible
by construction, all functions overs the constructive reals are continuous
; hinders the applicability to proofs in standard/numerical analysis

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 11/18
11/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Overview of the C-CoRN library

C-CoRN = Constructive Coq Repository at Nijmegen
originated in the FTA project for formalizing the Fundamental
Theorem of Algebra constructively
intuitionistic axiomatization via an algebraic hierarchy built upon
constructive setoids + construction of a real number structure via
Cauchy sequences, cf. [Milad Niqui’s PhD thesis, 2004].
features:

large and generic library in the spirit of E. Bishop’s constructive analysis

“computational real numbers” ; “proof by computation” is possible
by construction, all functions overs the constructive reals are continuous
; hinders the applicability to proofs in standard/numerical analysis

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 11/18
11/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Overview of the C-CoRN library

C-CoRN = Constructive Coq Repository at Nijmegen
originated in the FTA project for formalizing the Fundamental
Theorem of Algebra constructively
intuitionistic axiomatization via an algebraic hierarchy built upon
constructive setoids + construction of a real number structure via
Cauchy sequences, cf. [Milad Niqui’s PhD thesis, 2004].
features:

large and generic library in the spirit of E. Bishop’s constructive analysis
“computational real numbers” ; “proof by computation” is possible

by construction, all functions overs the constructive reals are continuous
; hinders the applicability to proofs in standard/numerical analysis

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 11/18
11/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Overview of the C-CoRN library

C-CoRN = Constructive Coq Repository at Nijmegen
originated in the FTA project for formalizing the Fundamental
Theorem of Algebra constructively
intuitionistic axiomatization via an algebraic hierarchy built upon
constructive setoids + construction of a real number structure via
Cauchy sequences, cf. [Milad Niqui’s PhD thesis, 2004].
features:

large and generic library in the spirit of E. Bishop’s constructive analysis
“computational real numbers” ; “proof by computation” is possible
by construction, all functions overs the constructive reals are continuous
; hinders the applicability to proofs in standard/numerical analysis

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 11/18
11/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Overview of the SSReflect/MathComp libraries

SSReflect was born during the formal verification of the Four Color
Theorem by Georges Gonthier collaborating with Benjamin Werner

SSReflect: extension of the Coq proof language that promotes the
Small Scale Reflection: use reflection (≈ proof by computation)
whenever possible, even for low-level reasoning
the Mathematical Components project, led by G. Gonthier, culminated
in the formalization of the Feit–Thompson theorem in Sept. 2012
(more than 300 textbook pages and a 6-year formalization effort):
Theorem Feit_Thompson (gT: finGroupType)(G: {group gT}):

odd #|G| → solvable G.

; MathComp: comprehensive library of algebra, based on SSReflect

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 12/18
12/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Overview of the SSReflect/MathComp libraries

SSReflect was born during the formal verification of the Four Color
Theorem by Georges Gonthier collaborating with Benjamin Werner
SSReflect: extension of the Coq proof language that promotes the
Small Scale Reflection: use reflection (≈ proof by computation)
whenever possible, even for low-level reasoning

the Mathematical Components project, led by G. Gonthier, culminated
in the formalization of the Feit–Thompson theorem in Sept. 2012
(more than 300 textbook pages and a 6-year formalization effort):
Theorem Feit_Thompson (gT: finGroupType)(G: {group gT}):

odd #|G| → solvable G.

; MathComp: comprehensive library of algebra, based on SSReflect

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 12/18
12/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Overview of the SSReflect/MathComp libraries

SSReflect was born during the formal verification of the Four Color
Theorem by Georges Gonthier collaborating with Benjamin Werner
SSReflect: extension of the Coq proof language that promotes the
Small Scale Reflection: use reflection (≈ proof by computation)
whenever possible, even for low-level reasoning
the Mathematical Components project, led by G. Gonthier, culminated
in the formalization of the Feit–Thompson theorem in Sept. 2012
(more than 300 textbook pages and a 6-year formalization effort):
Theorem Feit_Thompson (gT: finGroupType)(G: {group gT}):

odd #|G| → solvable G.

; MathComp: comprehensive library of algebra, based on SSReflect

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 12/18
12/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Overview of the SSReflect/MathComp libraries

SSReflect was born during the formal verification of the Four Color
Theorem by Georges Gonthier collaborating with Benjamin Werner
SSReflect: extension of the Coq proof language that promotes the
Small Scale Reflection: use reflection (≈ proof by computation)
whenever possible, even for low-level reasoning
the Mathematical Components project, led by G. Gonthier, culminated
in the formalization of the Feit–Thompson theorem in Sept. 2012
(more than 300 textbook pages and a 6-year formalization effort):
Theorem Feit_Thompson (gT: finGroupType)(G: {group gT}):

odd #|G| → solvable G.

; MathComp: comprehensive library of algebra, based on SSReflect

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 12/18
12/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Overview of the CoqEAL library

CoqEAL = the Coq Effective Algebra Library

originated in the ForMath project
aim: facilitate the verification of effective symbolic computation
algorithms in Coq
idea: prove a high-level version of the algorithm (e.g. by relying on
SSReflect/MathComp) then proceed by refinement
CoqEAL has been specifically designed to reduce the “bookkeeping”
that occurs in the refinement proofs
[C. Cohen, M. Dénès, A. Mörtberg (2013): Refinements for Free!]

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 13/18
13/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Overview of the CoqEAL library

CoqEAL = the Coq Effective Algebra Library
originated in the ForMath project

aim: facilitate the verification of effective symbolic computation
algorithms in Coq
idea: prove a high-level version of the algorithm (e.g. by relying on
SSReflect/MathComp) then proceed by refinement
CoqEAL has been specifically designed to reduce the “bookkeeping”
that occurs in the refinement proofs
[C. Cohen, M. Dénès, A. Mörtberg (2013): Refinements for Free!]

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 13/18
13/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Overview of the CoqEAL library

CoqEAL = the Coq Effective Algebra Library
originated in the ForMath project
aim: facilitate the verification of effective symbolic computation
algorithms in Coq

idea: prove a high-level version of the algorithm (e.g. by relying on
SSReflect/MathComp) then proceed by refinement
CoqEAL has been specifically designed to reduce the “bookkeeping”
that occurs in the refinement proofs
[C. Cohen, M. Dénès, A. Mörtberg (2013): Refinements for Free!]

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 13/18
13/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Overview of the CoqEAL library

CoqEAL = the Coq Effective Algebra Library
originated in the ForMath project
aim: facilitate the verification of effective symbolic computation
algorithms in Coq
idea: prove a high-level version of the algorithm (e.g. by relying on
SSReflect/MathComp) then proceed by refinement

CoqEAL has been specifically designed to reduce the “bookkeeping”
that occurs in the refinement proofs
[C. Cohen, M. Dénès, A. Mörtberg (2013): Refinements for Free!]

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 13/18
13/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Overview of the CoqEAL library

CoqEAL = the Coq Effective Algebra Library
originated in the ForMath project
aim: facilitate the verification of effective symbolic computation
algorithms in Coq
idea: prove a high-level version of the algorithm (e.g. by relying on
SSReflect/MathComp) then proceed by refinement
CoqEAL has been specifically designed to reduce the “bookkeeping”
that occurs in the refinement proofs

[C. Cohen, M. Dénès, A. Mörtberg (2013): Refinements for Free!]

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 13/18
13/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Overview of the CoqEAL library

CoqEAL = the Coq Effective Algebra Library
originated in the ForMath project
aim: facilitate the verification of effective symbolic computation
algorithms in Coq
idea: prove a high-level version of the algorithm (e.g. by relying on
SSReflect/MathComp) then proceed by refinement
CoqEAL has been specifically designed to reduce the “bookkeeping”
that occurs in the refinement proofs
[C. Cohen, M. Dénès, A. Mörtberg (2013): Refinements for Free!]

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 13/18
13/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Overview of the CoqInterval library — Issues and methods

aim: (automatically) prove in Coq that the distance between f (x) and
some approximation P(x) is bounded by some ε > 0 for all x ∈ I .

[G. Melquiond (2008): Proving bounds on real-valued functions with computations]

main datatype: intervals with floating-point numbers bounds
e.g., we’ll consider an interval such as [3.1415, 3.1416] in place of π
dependency problem: when a variable occur several times, it typically
leads to an overestimation of the range
e.g., for f (x) = x · (1− x) and x = [0, 1], we get evalIA(f ,x) = [0, 1],
while the exact range is f (x) = [0, 1

4]
solutions: bisection, automatic differentiation. . .

or Taylor Models:
[N. Brisebarre, M. Joldeş, EMD, M. Mayero, J-M. Muller, I. Paşca, L. Rideau, and
L. Théry (2012): Rigorous Polynomial Approximation Using Taylor Models in Coq]

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 14/18
14/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Overview of the CoqInterval library — Issues and methods

aim: (automatically) prove in Coq that the distance between f (x) and
some approximation P(x) is bounded by some ε > 0 for all x ∈ I .
[G. Melquiond (2008): Proving bounds on real-valued functions with computations]

main datatype: intervals with floating-point numbers bounds
e.g., we’ll consider an interval such as [3.1415, 3.1416] in place of π
dependency problem: when a variable occur several times, it typically
leads to an overestimation of the range
e.g., for f (x) = x · (1− x) and x = [0, 1], we get evalIA(f ,x) = [0, 1],
while the exact range is f (x) = [0, 1

4]
solutions: bisection, automatic differentiation. . .

or Taylor Models:
[N. Brisebarre, M. Joldeş, EMD, M. Mayero, J-M. Muller, I. Paşca, L. Rideau, and
L. Théry (2012): Rigorous Polynomial Approximation Using Taylor Models in Coq]

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 14/18
14/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Overview of the CoqInterval library — Issues and methods

aim: (automatically) prove in Coq that the distance between f (x) and
some approximation P(x) is bounded by some ε > 0 for all x ∈ I .
[G. Melquiond (2008): Proving bounds on real-valued functions with computations]

main datatype: intervals with floating-point numbers bounds
e.g., we’ll consider an interval such as [3.1415, 3.1416] in place of π

dependency problem: when a variable occur several times, it typically
leads to an overestimation of the range
e.g., for f (x) = x · (1− x) and x = [0, 1], we get evalIA(f ,x) = [0, 1],
while the exact range is f (x) = [0, 1

4]
solutions: bisection, automatic differentiation. . .

or Taylor Models:
[N. Brisebarre, M. Joldeş, EMD, M. Mayero, J-M. Muller, I. Paşca, L. Rideau, and
L. Théry (2012): Rigorous Polynomial Approximation Using Taylor Models in Coq]

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 14/18
14/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Overview of the CoqInterval library — Issues and methods

aim: (automatically) prove in Coq that the distance between f (x) and
some approximation P(x) is bounded by some ε > 0 for all x ∈ I .
[G. Melquiond (2008): Proving bounds on real-valued functions with computations]

main datatype: intervals with floating-point numbers bounds
e.g., we’ll consider an interval such as [3.1415, 3.1416] in place of π
dependency problem: when a variable occur several times, it typically
leads to an overestimation of the range
e.g., for f (x) = x · (1− x) and x = [0, 1], we get evalIA(f ,x) = [0, 1],
while the exact range is f (x) = [0, 1

4]

solutions: bisection, automatic differentiation. . .

or Taylor Models:
[N. Brisebarre, M. Joldeş, EMD, M. Mayero, J-M. Muller, I. Paşca, L. Rideau, and
L. Théry (2012): Rigorous Polynomial Approximation Using Taylor Models in Coq]

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 14/18
14/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Overview of the CoqInterval library — Issues and methods

aim: (automatically) prove in Coq that the distance between f (x) and
some approximation P(x) is bounded by some ε > 0 for all x ∈ I .
[G. Melquiond (2008): Proving bounds on real-valued functions with computations]

main datatype: intervals with floating-point numbers bounds
e.g., we’ll consider an interval such as [3.1415, 3.1416] in place of π
dependency problem: when a variable occur several times, it typically
leads to an overestimation of the range
e.g., for f (x) = x · (1− x) and x = [0, 1], we get evalIA(f ,x) = [0, 1],
while the exact range is f (x) = [0, 1

4]
solutions: bisection, automatic differentiation. . .

or Taylor Models:
[N. Brisebarre, M. Joldeş, EMD, M. Mayero, J-M. Muller, I. Paşca, L. Rideau, and
L. Théry (2012): Rigorous Polynomial Approximation Using Taylor Models in Coq]

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 14/18
14/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Overview of the CoqInterval library — Issues and methods

aim: (automatically) prove in Coq that the distance between f (x) and
some approximation P(x) is bounded by some ε > 0 for all x ∈ I .
[G. Melquiond (2008): Proving bounds on real-valued functions with computations]

main datatype: intervals with floating-point numbers bounds
e.g., we’ll consider an interval such as [3.1415, 3.1416] in place of π
dependency problem: when a variable occur several times, it typically
leads to an overestimation of the range
e.g., for f (x) = x · (1− x) and x = [0, 1], we get evalIA(f ,x) = [0, 1],
while the exact range is f (x) = [0, 1

4]
solutions: bisection, automatic differentiation. . . or Taylor Models:
[N. Brisebarre, M. Joldeş, EMD, M. Mayero, J-M. Muller, I. Paşca, L. Rideau, and
L. Théry (2012): Rigorous Polynomial Approximation Using Taylor Models in Coq]

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 14/18
14/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Overview of the CoqInterval library — Proof example #1

Example taken from [John Harrison (1997): Verifying the Accuracy of
Polynomial Approximations in HOL]

Require Import Reals Interval_tactic.
Local Open Scope R_scope.

Theorem Harrison97 : ∀x : R,− 10831
1000000 6 x 6 10831

1000000 =⇒∣∣∣(ex − 1)−
(
x + 8388676

224 x2 + 11184876
226 x3

)∣∣∣ 6 23
27 ×

1
233 .

Proof.
intros x H.
interval with (i_bisect_taylor x 3, i_prec 50). (* in 0.5s *)
Qed.

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 15/18
15/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Overview of the CoqInterval library — Proof example #1

Example taken from [John Harrison (1997): Verifying the Accuracy of
Polynomial Approximations in HOL]

Require Import Reals Interval_tactic.
Local Open Scope R_scope.

Theorem Harrison97 : ∀x : R,− 10831
1000000 6 x 6 10831

1000000 =⇒∣∣∣(ex − 1)−
(
x + 8388676

224 x2 + 11184876
226 x3

)∣∣∣ 6 23
27 ×

1
233 .

Proof.
intros x H.
interval with (i_bisect_taylor x 3, i_prec 50). (* in 0.5s *)
Qed.

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 15/18
15/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Overview of the CoqInterval library — Proof example #2

(xkcd.com/217)

Lemma xkcd217 : 19 999 099 979/109 < eπ − π < 19 999 099 980/109.
Proof.
split; interval with (i_prec 40). (* in 0.15s *)
Qed.

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 16/18
16/18

http://xkcd.com/217/

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Overview of the CoqInterval library — Proof example #2

(xkcd.com/217)

Lemma xkcd217 : 19 999 099 979/109 < eπ − π < 19 999 099 980/109.
Proof.
split; interval with (i_prec 40). (* in 0.15s *)
Qed.

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 16/18
16/18

http://xkcd.com/217/

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Related works on formalized game theory

[René Vestergaard (2005): A constructive approach to sequential Nash equilibria]

; proof, formalized in Coq, that all non-cooperative, sequential games
have a Nash equilibrium
[Stéphane Le Roux’ PhD thesis, 2008]

; generalizes and formalizes in Coq the notions of strategic game and
Nash equilibrium (notably, not requiring payoffs to be real numbers)
[Evgeny Dantsin, Jan-Georg Smaus, Sergei Soloviev (2012): Algorithms in Games
Evolving in Time: Winning Strategies Based on Testing]

; formalizes in Isabelle/HOL sufficient conditions for the computability
of a winning strategy function (for two-player games evolving in time)

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 17/18
17/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Perspectives

Motivation: results of game theory have a key role in decision
making and numerous applications ⇒ providing a formal certificate
would facilitate the audit of such decisions by independent experts.

Aim: identify key problems in game theory that are amenable to
formal proof.

Long-term goal: obtain some game-theoretic and formally-certified
components that may be extended, combined, and reused.

Thank you for your attention!

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 18/18
18/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Perspectives

Motivation: results of game theory have a key role in decision
making and numerous applications ⇒ providing a formal certificate
would facilitate the audit of such decisions by independent experts.

Aim: identify key problems in game theory that are amenable to
formal proof.

Long-term goal: obtain some game-theoretic and formally-certified
components that may be extended, combined, and reused.

Thank you for your attention!

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 18/18
18/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Perspectives

Motivation: results of game theory have a key role in decision
making and numerous applications ⇒ providing a formal certificate
would facilitate the audit of such decisions by independent experts.

Aim: identify key problems in game theory that are amenable to
formal proof.

Long-term goal: obtain some game-theoretic and formally-certified
components that may be extended, combined, and reused.

Thank you for your attention!

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 18/18
18/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

Perspectives

Motivation: results of game theory have a key role in decision
making and numerous applications ⇒ providing a formal certificate
would facilitate the audit of such decisions by independent experts.

Aim: identify key problems in game theory that are amenable to
formal proof.

Long-term goal: obtain some game-theoretic and formally-certified
components that may be extended, combined, and reused.

Thank you for your attention!

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq 18/18
18/18

	Introduction
	The Coq proof assistant
	Overview of several Coq libraries
	–CoqInterval–

	Towards formalized game theory

