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Accuracy of floating-point elementary functions

elementary functions (exp, cos, etc.) are ubiquitous in today’s
software

it is crucial that libm s (libraries of mathematical functions)
document the accuracy of the computed values!

the IEEE 754–2008 std for floating-point arithmetic gives
recommendation on their accuracy
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Example of correctness claim

Proving the implementation of exp in CRlibm1 relies on the claim:

∀x ∈ R, |x| ≤ 355 · 2−22 =⇒∣∣∣∣∣x + 0.5 · x2 + c3x3 + c4x4 − exp x + 1
exp x − 1

∣∣∣∣∣ ≤ 2−62 (1)

with c3 = 6004799504235417 · 2−55 and
c4 = 1501199876148417 · 2−55.

Tedious and error-prone to prove by hand!

1http://lipforge.ens-lyon.fr/www/crlibm/
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Example of correctness claim (continued)

Attempt to verify (1) by plotting f : x 7→ x+0.5·x2+c3x3+c4x4−exp x+1
exp x−1 :
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On the left, the graph of f , as plotted by the Gnuplot tool.
On the right, its actual graph, as plotted by Sollya.

 Need to use dedicated tools, e.g. proof assistants, to verify statements
like (1) that are critical for the correctness of libm s’ implementations
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The Coq formal proof assistant

We use Coq for
programming

pure functional language
specify algorithms and theorems
perform computations

proving
build proofs interactively
develop automatic tactics

 Ltac

use reflection
check proofs
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Coq, computation, and proof by reflection
Coq comes with a primitive notion of computation, called conversion.

Key feature of Coq’s logic: the convertibility rule
In environment E , if p : A and if A and B are convertible, then p : B.

So we can perform proofs by reflection:

Suppose that we want to prove G.
We reify G and automatically prove that f (x1, . . .) = true⇒ G,

by using a dedicated correctness lemma,
where f is a computable Boolean function f .
So we only have to prove that f (x1, . . .) = true.

We evaluate f (x1, . . .).
If the computation yields true:

This means that the type “f (x1, . . .) = true” is convertible with the
type “true = true”.
So we conclude by using reflexivity and the convertibility rule.
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Overview of the CoqInterval library — Issues and methods

aim: (automatically) prove in Coq that the distance between f (x) and
some approximation P(x) is bounded by some ε > 0 for all x ∈ I .

[G. Melquiond (2008): Proving bounds on real-valued functions with computations]

main data-type: intervals with floating-point numbers bounds
e.g., we’ll consider an interval such as [3.1415, 3.1416] in place of π
dependency problem: when a variable occur several times, it typically
leads to an overestimation of the range
e.g., for f (x) = x · (1− x) and x = [0, 1], we get evalIA(f ,x) = [0, 1],
while the exact range is f (x) = [0, 1

4 ]
solutions: bisection, automatic differentiation. . .

or Taylor Models:
[N. Brisebarre, M. Joldeş, EMD, M. Mayero, J-M. Muller, I. Paşca, L. Rideau, and
L. Théry (2012): Rigorous Polynomial Approximation Using Taylor Models in Coq]
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The interval and interval_intro tactics
Syntax:

interval options. (* decision procedure *)

interval_intro (expr) options as [H1 H2]. (* forward chaining *)

interval_intro (expr) lower options as H1.

interval_intro (expr) upper options as H2.

options ::=
[
with (option1,option2,...)

]
chosen among the following:

i_prec p: precision of radix-2 FP computations (30 bits by default)

i_depth n: maximum depth of bisection

i_bisect x: do a bisection along variable x

i_bisect_diff x: do a bisection and automatic differentiation w.r.t. x

i_bisect_taylor x d: do a bisection along variable x while computing
degree-d univariate Taylor models
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The interval and interval_intro tactics
Syntax:

interval options. (* decision procedure *)

interval_intro (expr) options as [H1 H2]. (* forward chaining *)

interval_intro (expr) lower options as H1.

interval_intro (expr) upper options as H2.
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[
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Bisection

Idea: Split x into sub-intervals x = a ∪ b, so we get
f (x) ⊂ f (a) ∪ f (b) (which is a tighter inclusion than f (x) ⊂ f (x))
Then: Iterate the process recursively on a and b.

Drawback: Proving something like ∀x ∈ [0, 1], |x − x| ≤ 2−40 with
this technique alone yields a huge number of sub-intervals
And it will not succeed in proving ∀x ∈ [0, 1], x − x = 0.

Advantage: Can be combined with other approaches to reduce the
dependency effect (cf. i_bisect_diff and i_bisect_taylor)
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Automatic differentiation

Based on the interval version of Taylor-Lagrange’s formula at order 0,

∀x ∈ x, ∃ξ ∈ x, f (x) = f (x0) + (x − x0) · f ′(ξ),
∀x ∈ x, f (x) ∈ f ([x0, x0]) + (x − [x0, x0]) · f ′(x).

Rely on automatic differentiation to compute f ′(x)
Work with pairs of intervals (u︸︷︷︸

enclosure
of f (x)

, u′)︸︷︷︸
enclosure
of f ′(x)

Example of rule: (u,u′)× (v, v′) = (uv,u′v + uv′)
For the toy example f (x) = x − x over x = [0, 1] (cf. previous slide),
we get f ′(x) = [0, 0], so f is a constant function f ≡ f (x0) = 0. qed.
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CoqApprox: formally verified library of Taylor models

A Taylor model is a pair (polynom, error interval) and we will say that
(P,∆) represents a function f over I if we have ∀x ∈ I , f (x)−P(x) ∈∆

Goal : find some ∆ as small as possible.

Methodology in 2 steps
1 For “basic functions”, compute an enclosure of the Taylor–Lagrange

remainder at order n;
2 For “composite functions”, use a dedicated algorithm for addition,

multiplication, composition, and division.

Within CoqApprox: verified computation of Taylor models for functions√
·, 1√

· , x 7→ xn (n ∈ Z), exp, sin, cos, ln, tan, arctan, as well as the
operations +, −, ×, ÷, ◦.
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Some features of the CoqApprox formalization

Genericity: the formalization is built upon generic data structures (to
easily swap their implementation) and provide generic proofs that can
be specialized to concrete basic functions.

Sharp bounds: thanks to the implemented algorithm called
Zumkeller’s technique, the approximation of basic functions leads to
sharp bounds in practice (Idea: take advantage of the monotonicity of
Rn(f , ξ0)(x) := f (x)−

∑n
i=0

f (i)(ξ0)
i! · (x − ξ0)i over [inf(x), ξ0] and

over [ξ0, sup(x)].)
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Flocq

CoqInterval

CoqApprox

FP reference impl.

«interface»
FloatOps

radix : {β : Z | β ≥ 2}
F : Type
zero : F

add(mode, prec) : F→ F→ F

GenericFloatSpecificFloat

«interface»
FloatCarrier

radix : {β : Z | β ≥ 2}

...

«interface»
IntervalOps

I : Type
zero : I

add(prec) : I→ I→ I
exp(prec) : I→ I

StdZRadix2 BigIntRadix2

FloatInterval

Auto-diff. Taylor models

Tactic

interval [options]
interval_intro expr [mode] [options]

Caption:

A I
if the module A is parameterized by
a module implementing I

C I
if the module C implements the
interface I

M C
if the module M uses the module C
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CoqInterval

CoqApprox

«interface»
IntervalOps

I : Type
zero : I

add(prec) : I→ I→ I
exp(prec) : I→ I

«interface»
UnivariateApprox

T : Type
U := precision × N

dummy : T
const : I→ T
var : T
exp : U→ I→ T→ T
abs : U→ I→ T→ T

TM (Taylor models)

«interface»
PolyBound

ComputeBound(prec) : I [X ]→ I→ I

PolyBoundHorner PolyBoundHornerQuad

TaylorModel

TLrem (Taylor–Lagrange remainder)

Ztech (Zumkeller’s technique)

TM_add, TM_opp, TM_sub, TM_mul, TM_div, TM_comp

TM_any, TM_cst, TM_var, TM_exp, TM_power_int . . .
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ChangeLog (excerpt) for the upcoming CoqInterval 3.0.0

Simplified architecture w.r.t Modules

Better naming convention, new helper tactics (e.g., for derivatives)
From polynomials over R ∪ {NaN} to polynomials over R and
separated proofs for NaN propagation (+ changes in IntervalOps)
Remove degree constraints in TM_add_correct, TM_mul_correct,
and so on  no more side-conditions nor padding ( better perf.
expected for multiplying TMs with heterogeneous sizes)
Add support for tan and arctan Taylor models (formal verification of
Sollya’s algorithm)
Depend on the Coquelicot library of real analysis
Support for Coq 8.5 and MathComp 1.6
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Overview of the CoqInterval library — Proof example #1

Example taken from [John Harrison (1997): Verifying the Accuracy of
Polynomial Approximations in HOL]

Require Import Reals Interval_tactic.
Local Open Scope R_scope.

Theorem Harrison97 : ∀x : R,− 10831
1000000 ≤ x ≤ 10831

1000000 =⇒∣∣(ex − 1)−
(
x + 8388676

224 x2 + 11184876
226 x3)∣∣ ≤ 23

27 ×
1

233 .

Proof.
intros x H.
interval with (i_bisect_diff x, i_prec 50, i_depth 16). (* 35s *)
Qed.
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Overview of the CoqInterval library — Proof example #1

Example taken from [John Harrison (1997): Verifying the Accuracy of
Polynomial Approximations in HOL]

Require Import Reals Interval_tactic.
Local Open Scope R_scope.

Theorem Harrison97 : ∀x : R,− 10831
1000000 ≤ x ≤ 10831

1000000 =⇒∣∣(ex − 1)−
(
x + 8388676

224 x2 + 11184876
226 x3)∣∣ ≤ 23

27 ×
1

233 .
Proof.
intros x H.
interval with (i_bisect_taylor x 3, i_prec 50). (* 0.50s *)
Qed.
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Overview of the CoqInterval library — Proof example #2

(xkcd.com/217)

Require Import Reals Interval_tactic.
Local Open Scope R_scope.

Lemma xkcd217 : exp PI - PI <> 20.
Proof.
interval. (* 0.05s *)
Qed.
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Panorama of existing tools

Sollya: rigorous computing toolbox for the libm developer, relying on
MPFI. Considered function: supnorm (otherwise checkinfnorm)

MetiTarski: standalone tool = axioms for approximating elementary
functions + decision procedure for multivariate polynomial inequalities
HOL Light/REAL_SOS: decision procedure for multivariate polynomial
inequalities (SOS certificates)
HOL Light/verify_ineq: born in Flyspeck, decision procedure for
multivariate ineqs with elementary functions (order-1 TL)
NLCertify: born in Flyspeck, decision procedure for multivariate ineqs
with elementary functions (quadratic-forms approx + SDP)
PVS/Bernstein: decision procedure for multivariate polynomial
inequalities (Bernstein polynomials + global optimization)
PVS/interval: decision procedure for multivariate ineqs with
elementary functions (Interval Arithmetic + Branch & Bound)
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PVS/Bernstein: decision procedure for multivariate polynomial
inequalities (Bernstein polynomials + global optimization)
PVS/interval: decision procedure for multivariate ineqs with
elementary functions (Interval Arithmetic + Branch & Bound)
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Design of a multi-prover test-suite

approximation problems: CRlibm’s exp (|x| ≥ 2−20), a Remez of
√
·,

a degree-5 approx of arctan, Earth’s radius of curvature, Tang’s exp

degree-2 to degree-8 approximations problems of x 7→ cos(1.5 · cos x)
with binary32 coefficients
25 problems from MetiTarski’s test-suite selected to be compatible
with all provers’ input
4 typical multivariate polynomial inequalities: RD, adaptiveLV,
butcher, magnetism
System: Ubuntu 14.04.2 LTS on Intel Core i5-4460S CPU @ 2.90 GHz
Output: total time in s | Failed (⇔ error) | Timeout (⇔ > 180 s) | -

Forge: https://gforge.inria.fr/scm/browser.php?group_id=6316&extra=bench-ineqs
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Experimental Results (univariate approximation problems)
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crlibm_exp 0.83? 0.02 Failed - - Failed - - -
remez_sqrt 0.45 0.02 0.05 15.28? Timeout Failed 3.60? - -
abs_err_atan 0.45 0.01 0.07 Failed Failed Timeout 2.36? - -
rel_err_geo 3.10 2.24 Timeout Timeout Timeout Failed 229.54? - -
harrison97 0.42 0.01 0.10 - - Failed - - -

cos_cos_d2 0.71 0.05 Timeout Timeout Timeout 20.64 5.82? - -
cos_cos_d3 0.79 0.05 Timeout Timeout Timeout 48.87 6.28? - -
cos_cos_d4 0.91 0.06 Timeout Timeout Timeout Timeout 8.83? - -
cos_cos_d5 1.44 0.06 Timeout Timeout Timeout Timeout 15.70? - -
cos_cos_d6 1.54 0.07 Timeout Timeout Timeout Timeout 20.92? - -
cos_cos_d7 2.21 0.07 Timeout Timeout Timeout Timeout 41.88? - -
cos_cos_d8 2.79 0.08 Timeout Timeout Timeout Timeout 87.78? - -
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Experimental Results (MetiTarski 1/2)
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MT1 0.53 - 0.13 - - Failed - - -
MT2 1.56 - 0.06 9.99? Timeout Failed - - -
MT3 0.18 - 0.18 - - 1.14 - - -
MT4 0.23 - 0.17 1.31? 18.95? 1.19 - - -
MT5 0.11? - 0.05 - - 1.24 - - -
MT6 0.15? - 0.07 - - 1.23 - - -
MT7 0.04 - 0.04 - - 0.69 - - -
MT8 0.33 - 0.15 - - Timeout - - -
MT9 0.52 - 0.46 - - Timeout - - -
MT10 0.19 - 0.04 0.96 14.86 Failed - - -
MT11 0.10 - 0.22 0.40 6.73 1.72 - - -
MT12 2.84 - 0.07 Timeout Timeout Timeout - - -
MT13 0.98 - 0.07 11.82 137.91 Failed - - -
MT14 0.07 - 0.06 - - 0.89 - - -
MT15 0.15 - 0.07 - - 0.98 - - -
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Experimental Results (MT 2/2 + multivariate problems)

Problems Co
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MT16 0.13 - 0.02 0.58? 8.23? 3.23 0.57? - -
MT17 0.11 - 0.06 0.22 4.06 1.27 0.23 - -
MT18 0.16 - 0.02 0.21 2.46 0.69 0.75 - -
MT19 0.52 - Failed 5.09 74.55 Failed 1.92 - -
MT20 3.09 - 0.05 2.63 44.21 Timeout 15.54 - -
MT21 0.33 - 0.38 3.69 51.94 Failed 1.37 - -
MT22 0.69 - 0.06 Timeout Timeout Failed 113.74 - -
MT23 1.17 - 0.12 Failed Failed Failed 86.90 - -
MT24 0.10 - 0.36 0.17 2.38 Failed 0.24 - -
MT25 0.29 - 0.17 - - 1.78 - - -

RD 0.25 - 0.02 1.88 66.01 1.67 0.48 3.26 Timeout
adaptiveLV 0.16 - 0.04 0.23 3.18 1.00 1.26 4.02 3.78
butcher 0.42 - 0.05 0.73 11.08 19.99 2.21 18.23 Timeout
magnetism 0.17 - 0.05 1.35 20.60 Timeout 313.75 Timeout 0.24
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Conclusion

Coq tactics to automatically and formally prove numerical bounds on
real-valued expressions

All computations performed in Coq’s logic, using interval arithmetic

Implements bisection, automatic differentiation and Taylor models
techniques to reduce the dependency effect

Regarding performance, CoqInterval is competitive w.r.t the
state-of-the-art inequality provers
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Some future directions

Bottleneck: Horner evaluation.
Formalize alternative schemes that are amenable to formal methods?

Certifying algorithms: Check polynomial approximations for special
functions, by using certificates generated by Sollya?

Reals/Coquelicot/CoqInterval/. . . : Increase automation for
developing formal libraries of elementary functions more easily

Symbolic-numeric methods: CoqInterval has been used and extended
by Thomas Sibut-Pinote, Assia Mahboubi and Guillaume Melquiond
to formally verify approximations of definite integrals  ultimate goal
to formally verify numerical solutions of differential equations.
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Thanks for your attention!

Homepage: http://coq-interval.gforge.inria.fr/

Ref: http://www.irit.fr/publis/ACADIE/CoqInterval-JAR.pdf
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