Proving Tight Bounds on Univariate Expressions with Elementary Functions in Coq

Érik Martin-Dorel
http://www.irit.fr/~Erik.Martin-Dorel/

Équipe ACADIE, Laboratoire IRIT Université Toulouse III - Paul Sabatier

Joint work with Guillaume Melguiond, Inria

31 Mars 2016 Journées FAC LAAS-CNRS

- Motivation: Formal proof of approximation errors
- 2 The Coq proof assistant: computation and proof reflection
- **3 CoqInterval:** Methodology, Architecture, and Examples
- 4 Related works: Comparison with existing tools
- 5 Conclusion and perspectives

Motivation

Accuracy of floating-point elementary functions

- ullet elementary functions (exp, \cos , etc.) are ubiquitous in today's software
- it is crucial that libms (libraries of mathematical functions)
 document the accuracy of the computed values!
- the IEEE 754–2008 std for floating-point arithmetic gives recommendation on their accuracy

Motivation

• Proving the implementation of exp in CRlibm¹ relies on the claim:

$$\forall x \in \mathbb{R}, \ |x| \le 355 \cdot 2^{-22} \Longrightarrow \left| \frac{x + 0.5 \cdot x^2 + c_3 x^3 + c_4 x^4 - \exp x + 1}{\exp x - 1} \right| \le 2^{-62} \quad (1)$$

with
$$c_3 = 6004799504235417 \cdot 2^{-55}$$
 and $c_4 = 1501199876148417 \cdot 2^{-55}$.

ullet Proving the implementation of \exp in CRlibm¹ relies on the claim:

$$\forall x \in \mathbb{R}, \ |x| \le 355 \cdot 2^{-22} \Longrightarrow \left| \frac{x + 0.5 \cdot x^2 + c_3 x^3 + c_4 x^4 - \exp x + 1}{\exp x - 1} \right| \le 2^{-62} \quad (1)$$

with
$$c_3 = 6004799504235417 \cdot 2^{-55}$$
 and $c_4 = 1501199876148417 \cdot 2^{-55}$.

• Tedious and error-prone to prove by hand!

Motivation

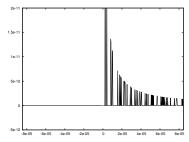
¹http://lipforge.ens-lyon.fr/www/crlibm/

Motivation

Example of correctness claim (continued)

• Attempt to verify (1) by plotting $f: x \mapsto \frac{x+0.5 \cdot x^2 + c_3 x^3 + c_4 x^4 - \exp x + 1}{\exp x - 1}$:

• Attempt to verify (1) by plotting $f: x \mapsto \frac{x+0.5 \cdot x^2 + c_3 x^3 + c_4 x^4 - \exp x + 1}{\exp x - 1}$:

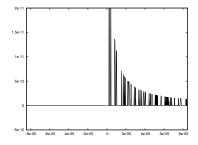


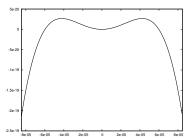
 \bullet On the left, the graph of f, as plotted by the Gnuplot tool.

Motivation

Motivation

• Attempt to verify (1) by plotting $f:x\mapsto \frac{x+0.5\cdot x^2+c_3x^3+c_4x^4-\exp x+1}{\exp x-1}$:

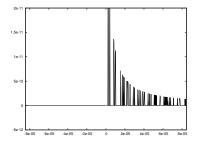


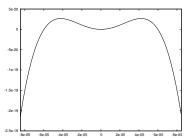


- \bullet On the left, the graph of f, as plotted by the Gnuplot tool.
- On the right, its actual graph, as plotted by Sollya.

Motivation

• Attempt to verify (1) by plotting $f: x \mapsto \frac{x+0.5 \cdot x^2 + c_3 x^3 + c_4 x^4 - \exp x + 1}{\exp x - 1}$:





- \bullet On the left, the graph of f, as plotted by the Gnuplot tool.
- On the right, its actual graph, as plotted by Sollya.
- Need to use dedicated tools, e.g. proof assistants, to verify statements like (1) that are critical for the correctness of libms' implementations

The Coq formal proof assistant

We use Coq for

- programming
 - pure functional language
 - specify algorithms and theorems
 - perform computations

We use Coq for

- programming
 - pure functional language
 - specify algorithms and theorems
 - perform computations
- proving
 - build proofs interactively
 - develop automatic tactics
 - use reflection
 - check proofs

We use Coq for

- programming
 - pure functional language
 - specify algorithms and theorems
 - perform computations
- proving
 - build proofs interactively
 - develop automatic tactics \(\sim \) Ltac
 - use reflection
 - check proofs

Coq comes with a primitive notion of computation, called conversion.

Key feature of Coq's logic: the convertibility rule

In environment E, if p:A and if A and B are convertible, then p:B.

Coq comes with a primitive notion of computation, called conversion.

Key feature of Coq's logic: the convertibility rule

In environment E, if p : A and if A and B are convertible, then p : B.

So we can perform proofs by reflection:

• Suppose that we want to prove G.

Coq comes with a primitive notion of computation, called conversion.

Key feature of Coq's logic: the convertibility rule

In environment E, if p : A and if A and B are convertible, then p : B.

- ullet Suppose that we want to prove G.
- We reify G and automatically prove that $f(x_1, \ldots) = \mathsf{true} \Rightarrow G$,

Coq comes with a primitive notion of computation, called conversion.

Key feature of Coq's logic: the convertibility rule

In environment E, if p : A and if A and B are convertible, then p : B.

- Suppose that we want to prove G.
- We reify G and automatically prove that $f(x_1, \ldots) = \mathsf{true} \Rightarrow G$,
 - by using a dedicated correctness lemma,

Coq comes with a primitive notion of computation, called conversion.

Key feature of Coq's logic: the convertibility rule

In environment E, if p : A and if A and B are convertible, then p : B.

- Suppose that we want to prove G.
- We reify G and automatically prove that $f(x_1, \ldots) = \mathsf{true} \Rightarrow G$,
 - by using a dedicated correctness lemma,
 - ullet where f is a computable Boolean function f.

Coq comes with a primitive notion of computation, called conversion.

Key feature of Coq's logic: the convertibility rule

In environment E, if p : A and if A and B are convertible, then p : B.

- Suppose that we want to prove G.
- We reify G and automatically prove that $f(x_1, \ldots) = \mathsf{true} \Rightarrow G$,
 - by using a dedicated correctness lemma,
 - ullet where f is a computable Boolean function f.
 - So we only have to prove that $f(x_1,...) = \text{true}$.

Coq comes with a primitive notion of computation, called conversion.

Key feature of Coq's logic: the convertibility rule

In environment E, if p : A and if A and B are convertible, then p : B.

- Suppose that we want to prove G.
- We reify G and automatically prove that $f(x_1, \ldots) = \mathsf{true} \Rightarrow G$,
 - by using a dedicated correctness lemma,
 - where f is a computable Boolean function f.
 - So we only have to prove that $f(x_1,...) = \text{true}$.
- We evaluate $f(x_1, \ldots)$.

Coq comes with a primitive notion of computation, called conversion.

Key feature of Coq's logic: the convertibility rule

In environment E, if p : A and if A and B are convertible, then p : B.

- Suppose that we want to prove G.
- We reify G and automatically prove that $f(x_1, \ldots) = \mathsf{true} \Rightarrow G$,
 - by using a dedicated correctness lemma,
 - where f is a computable Boolean function f.
 - So we only have to prove that $f(x_1, ...) = \text{true}$.
- We evaluate $f(x_1, \ldots)$.
- If the computation yields true:

Coq comes with a primitive notion of computation, called conversion.

Key feature of Coq's logic: the convertibility rule

In environment E, if p:A and if A and B are convertible, then p:B.

- Suppose that we want to prove G.
- We reify G and automatically prove that $f(x_1, \ldots) = \text{true} \Rightarrow G$,
 - by using a dedicated correctness lemma,
 - where f is a computable Boolean function f.
 - So we only have to prove that $f(x_1,...) = \text{true}$.
- We evaluate $f(x_1, \ldots)$.
- If the computation yields true:
 - This means that the type " $f(x_1, ...) = \text{true}$ " is convertible with the type "true = true".

Cog comes with a primitive notion of computation, called conversion.

Key feature of Coq's logic: the convertibility rule

In environment E, if p:A and if A and B are convertible, then p:B.

- Suppose that we want to prove G.
- We reify G and automatically prove that $f(x_1, ...) = \text{true} \Rightarrow G$,
 - by using a dedicated correctness lemma,
 - where f is a computable Boolean function f.
 - So we only have to prove that $f(x_1,...) = \text{true}$.
- We evaluate $f(x_1, \ldots)$.
- If the computation yields true:
 - This means that the type " $f(x_1, ...) = \text{true}$ " is convertible with the type "true = true".
 - So we conclude by using reflexivity and the convertibility rule.

• aim: (automatically) prove in Coq that the distance between f(x) and some approximation P(x) is bounded by some $\epsilon > 0$ for all $x \in I$.

CogInterval

- aim: (automatically) prove in Coq that the distance between f(x) and some approximation P(x) is bounded by some $\epsilon > 0$ for all $x \in I$.
- [G. Melquiond (2008): Proving bounds on real-valued functions with computations]

- aim: (automatically) prove in Coq that the distance between f(x) and some approximation P(x) is bounded by some $\epsilon > 0$ for all $x \in I$.
- [G. Melquiond (2008): Proving bounds on real-valued functions with computations]
- main data-type: intervals with floating-point numbers bounds e.g., we'll consider an interval such as [3.1415, 3.1416] in place of π

- aim: (automatically) prove in Coq that the distance between f(x) and some approximation P(x) is bounded by some $\epsilon > 0$ for all $x \in I$.
- [G. Melquiond (2008): Proving bounds on real-valued functions with computations]
- main data-type: intervals with floating-point numbers bounds e.g., we'll consider an interval such as [3.1415,3.1416] in place of π
- dependency problem: when a variable occur several times, it typically leads to an overestimation of the range e.g., for $f(x) = x \cdot (1-x)$ and $\boldsymbol{x} = [0,1]$, we get $\operatorname{eval}_{\operatorname{IA}}(f,\boldsymbol{x}) = [0,1]$, while the exact range is $f(\boldsymbol{x}) = [0,\frac{1}{4}]$

- aim: (automatically) prove in Coq that the distance between f(x) and some approximation P(x) is bounded by some $\epsilon > 0$ for all $x \in I$.
- [G. Melquiond (2008): Proving bounds on real-valued functions with computations]
- main data-type: intervals with floating-point numbers bounds e.g., we'll consider an interval such as [3.1415,3.1416] in place of π
- dependency problem: when a variable occur several times, it typically leads to an overestimation of the range e.g., for $f(x) = x \cdot (1-x)$ and $\boldsymbol{x} = [0,1]$, we get $\operatorname{eval}_{\mathrm{IA}}(f,\boldsymbol{x}) = [0,1]$, while the exact range is $f(\boldsymbol{x}) = [0,\frac{1}{4}]$
- solutions: bisection, automatic differentiation...

CogInterval

- aim: (automatically) prove in Coq that the distance between f(x) and some approximation P(x) is bounded by some $\epsilon > 0$ for all $x \in I$.
- [G. Melquiond (2008): Proving bounds on real-valued functions with computations]
- main data-type: intervals with floating-point numbers bounds e.g., we'll consider an interval such as [3.1415, 3.1416] in place of π
- dependency problem: when a variable occur several times, it typically leads to an overestimation of the range e.g., for $f(x) = x \cdot (1 - x)$ and x = [0, 1], we get $\text{eval}_{IA}(f, x) = [0, 1]$, while the exact range is $f(\mathbf{x}) = [0, \frac{1}{4}]$
- solutions: bisection, automatic differentiation... or Taylor Models: [N. Brisebarre, M. Joldes, EMD, M. Mayero, J-M. Muller, I. Pasca, L. Rideau, and L. Théry (2012): Rigorous Polynomial Approximation Using Taylor Models in Coq

CogInterval

0000000000

Syntax:

• interval options. (* decision procedure *)

CogInterval

0000000000

Syntax:

- interval options. (* decision procedure *)
- interval_intro (expr) options as [H1 H2]. (* forward chaining *)
- interval_intro (expr) lower options as H1.
- interval_intro (expr) upper options as H2.

CogInterval

Syntax:

- interval options. (* decision procedure *)
- interval_intro (expr) options as [H1 H2]. (* forward chaining *)
- interval_intro (expr) lower options as H1.
- interval intro (expr) upper options as H2.

```
options ::= [with (option_1, option_2, ...)] chosen among the following:
```

• i prec p: precision of radix-2 FP computations (30 bits by default)

CogInterval

Syntax:

- interval options. (* decision procedure *)
- interval_intro (expr) options as [H1 H2]. (* forward chaining *)
- interval_intro (expr) lower options as H1.
- interval intro (expr) upper options as H2.

```
options ::= [with (option_1, option_2, ...)] chosen among the following:
```

- i prec p: precision of radix-2 FP computations (30 bits by default)
- i depth n: maximum depth of bisection

CogInterval

Syntax:

- interval options. (* decision procedure *)
- interval_intro (expr) options as [H1 H2]. (* forward chaining *)
- interval_intro (expr) lower options as H1.
- interval intro (expr) upper options as H2.

options ::= $[with (option_1, option_2, ...)]$ chosen among the following:

- i prec p: precision of radix-2 FP computations (30 bits by default)
- i depth n: maximum depth of bisection
- i bisect x: do a bisection along variable x

Syntax:

- interval options. (* decision procedure *)
- interval_intro (expr) options as [H1 H2]. (* forward chaining *)
- interval_intro (expr) lower options as H1.
- interval intro (expr) upper options as H2.

options ::= $[with (option_1, option_2, ...)]$ chosen among the following:

- i prec p: precision of radix-2 FP computations (30 bits by default)
- i depth n: maximum depth of bisection
- i bisect x: do a bisection along variable x
- i bisect diff x: do a bisection and automatic differentiation w.r.t. x

CogInterval

Syntax:

- interval options. (* decision procedure *)
- interval_intro (expr) options as [H1 H2]. (* forward chaining *)
- interval_intro (expr) lower options as H1.
- interval intro (expr) upper options as H2.

options ::= $[with (option_1, option_2, ...)]$ chosen among the following:

- i prec p: precision of radix-2 FP computations (30 bits by default)
- i depth n: maximum depth of bisection
- i bisect x: do a bisection along variable x
- i bisect diff x: do a bisection and automatic differentiation w.r.t. x
- i bisect taylor x d: do a bisection along variable x while computing degree-d univariate Taylor models

CogInterval

- Idea: Split x into sub-intervals $x=a\cup b$, so we get $f(x)\subset f(a)\cup f(b)$ (which is a tighter inclusion than $f(x)\subset f(x)$)
- Then: Iterate the process recursively on a and b.
- Drawback: Proving something like $\forall x \in [0,1], \ |x-x| \leq 2^{-40}$ with this technique alone yields a huge number of sub-intervals
- And it will not succeed in proving $\forall x \in [0,1], x-x=0$.
- Advantage: Can be combined with other approaches to reduce the dependency effect (cf. i_bisect_diff and i_bisect_taylor)

Automatic differentiation

Based on the interval version of Taylor-Lagrange's formula at order 0,

$$\forall x \in \boldsymbol{x}, \ \exists \xi \in \boldsymbol{x}, \quad f(x) = f(x_0) + (x - x_0) \cdot f'(\xi),$$
$$\forall x \in \boldsymbol{x}, \quad f(x) \in \boldsymbol{f}([x_0, x_0]) + (\boldsymbol{x} - [x_0, x_0]) \cdot \boldsymbol{f'}(\boldsymbol{x}).$$

- ullet Rely on automatic differentiation to compute f'(x)
 - Work with pairs of intervals $\underbrace{(u\ ,\ \underline{u'})}_{\ \ \text{enclosure enclosur}}$
 - ullet Example of rule: $(oldsymbol{u},oldsymbol{u'}) imes (oldsymbol{v},oldsymbol{v'})=(oldsymbol{u}oldsymbol{v},oldsymbol{u'}oldsymbol{v}+oldsymbol{u}oldsymbol{v'})$
- For the toy example f(x) = x x over $\boldsymbol{x} = [0,1]$ (cf. previous slide), we get $\boldsymbol{f'}(\boldsymbol{x}) = [0,0]$, so f is a constant function $f \equiv f(x_0) = 0$. QED.

CoqApprox: formally verified library of Taylor models

A Taylor model is a pair (polynom, error interval) and we will say that (P, Δ) represents a function f over I if we have $\forall x \in I$, $f(x) - P(x) \in \Delta$

CoqApprox: formally verified library of Taylor models

A Taylor model is a pair (polynom, error interval) and we will say that (P, Δ) represents a function f over I if we have $\forall x \in I$, $f(x) - P(x) \in \Delta$ Goal: find some Δ as small as possible.

CoqApprox: formally verified library of Taylor models

A Taylor model is a pair (polynom, error interval) and we will say that (P, Δ) represents a function f over I if we have $\forall x \in I$, $f(x) - P(x) \in \Delta$ Goal: find some Δ as small as possible.

Methodology in 2 steps

- For "basic functions", compute an enclosure of the Taylor-Lagrange remainder at order n;
- ② For "composite functions", use a dedicated algorithm for addition, multiplication, composition, and division.

CogApprox: formally verified library of Taylor models

CogInterval

A Taylor model is a pair (polynom, error interval) and we will say that (P, Δ) represents a function f over I if we have $\forall x \in I$, $f(x) - P(x) \in \Delta$ Goal : find some Δ as small as possible.

Methodology in 2 steps

- For "basic functions", compute an enclosure of the Taylor-Lagrange remainder at order n:
- For "composite functions", use a dedicated algorithm for addition, multiplication, composition, and division.

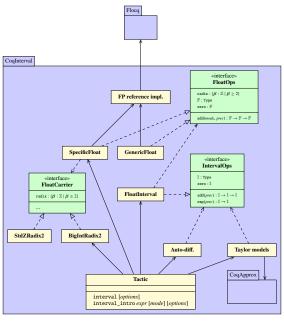
Within CogApprox: verified computation of Taylor models for functions $\sqrt{\cdot}$, $\frac{1}{\sqrt{\cdot}}$, $x \mapsto x^n$ $(n \in \mathbb{Z})$, exp, sin, cos, ln, tan, arctan, as well as the operations $+, -, \times, \div, \circ$.

Some features of the CoqApprox formalization

• Genericity: the formalization is built upon generic data structures (to easily swap their implementation) and provide generic proofs that can be specialized to concrete basic functions.

Some features of the CoqApprox formalization

- Genericity: the formalization is built upon generic data structures (to easily swap their implementation) and provide generic proofs that can be specialized to concrete basic functions.
- Sharp bounds: thanks to the implemented algorithm called Zumkeller's technique, the approximation of basic functions leads to sharp bounds in practice (Idea: take advantage of the monotonicity of $R_n(f,\xi_0)(x) := f(x) \sum_{i=0}^n \frac{f^{(i)}(\xi_0)}{i!} \cdot (x-\xi_0)^i \text{ over } [\inf(x),\xi_0] \text{ and over } [\xi_0,\sup(x)].)$

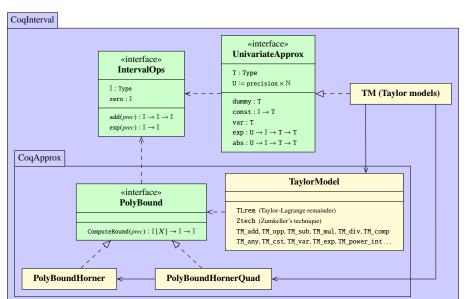


Caption:

A ---->I if the module A is parameterized by a module implementing I

C ----- \triangleright I if the module C implements the interface I

 $M \longrightarrow C$ if the module M uses the module C



ChangeLog (excerpt) for the upcoming CoqInterval 3.0.0

CogInterval

• Simplified architecture w.r.t Modules

ChangeLog (excerpt) for the upcoming CoqInterval 3.0.0

- Simplified architecture w.r.t Modules
- Better naming convention, new helper tactics (e.g., for derivatives)

ChangeLog (excerpt) for the upcoming CogInterval 3.0.0

- Simplified architecture w.r.t Modules
- Better naming convention, new helper tactics (e.g., for derivatives)
- **From** polynomials over $\mathbb{R} \cup \{NaN\}$ to polynomials over \mathbb{R} and separated proofs for NaN propagation (+ changes in IntervalOps)

ChangeLog (excerpt) for the upcoming CoqInterval 3.0.0

- Simplified architecture w.r.t Modules
- Better naming convention, new helper tactics (e.g., for derivatives)
- From polynomials over $\mathbb{R} \cup \{\text{NaN}\}$ to polynomials over \mathbb{R} and separated proofs for NaN propagation (+ changes in IntervalOps)
- Remove degree constraints in TM_add_correct, TM_mul_correct, and so on → no more side-conditions nor padding (→ better perf. expected for multiplying TMs with heterogeneous sizes)

Related works

- Simplified architecture w.r.t Modules
- Better naming convention, new helper tactics (e.g., for derivatives)
- **From** polynomials over $\mathbb{R} \cup \{NaN\}$ to polynomials over \mathbb{R} and separated proofs for NaN propagation (+ changes in IntervalOps)
- Remove degree constraints in TM add correct, TM mul correct, and so on \rightsquigarrow no more side-conditions nor padding (\rightsquigarrow better perf. expected for multiplying TMs with heterogeneous sizes)
- Add support for tan and arctan Taylor models (formal verification of Sollya's algorithm)

ChangeLog (excerpt) for the upcoming CoqInterval 3.0.0

- Simplified architecture w.r.t Modules
- Better naming convention, new helper tactics (e.g., for derivatives)
- From polynomials over $\mathbb{R} \cup \{NaN\}$ to polynomials over \mathbb{R} and separated proofs for NaN propagation (+ changes in IntervalOps)
- Remove degree constraints in TM_add_correct, TM_mul_correct, and so on → no more side-conditions nor padding (→ better perf. expected for multiplying TMs with heterogeneous sizes)
- Add support for tan and arctan Taylor models (formal verification of Sollya's algorithm)
- Depend on the Coquelicot library of real analysis

ChangeLog (excerpt) for the upcoming CoqInterval 3.0.0

- Simplified architecture w.r.t Modules
- Better naming convention, new helper tactics (e.g., for derivatives)
- From polynomials over $\mathbb{R} \cup \{\text{NaN}\}$ to polynomials over \mathbb{R} and separated proofs for NaN propagation (+ changes in IntervalOps)
- Remove degree constraints in TM_add_correct, TM_mul_correct, and so on → no more side-conditions nor padding (→ better perf. expected for multiplying TMs with heterogeneous sizes)
- Add support for tan and arctan Taylor models (formal verification of Sollya's algorithm)
- Depend on the Coquelicot library of real analysis
- Support for Coq 8.5 and MathComp 1.6

Overview of the CogInterval library — Proof example #1

CogInterval

Example taken from [John Harrison (1997): Verifying the Accuracy of Polynomial Approximations in HOLl

Require Import Reals Interval tactic. Local Open Scope R scope.

Theorem Harrison97 :
$$\forall x: \mathbb{R}, -\frac{10831}{1000000} \leq x \leq \frac{10831}{1000000} \Longrightarrow \left| (e^x - 1) - \left(x + \frac{8388676}{2^{24}} x^2 + \frac{11184876}{2^{26}} x^3 \right) \right| \leq \frac{23}{27} \times \frac{1}{2^{33}} \,.$$

Overview of the CoqInterval library — Proof example #1

Example taken from [John Harrison (1997): Verifying the Accuracy of Polynomial Approximations in HOL]

Require Import Reals Interval_tactic.
Local Open Scope R_scope.

```
Theorem Harrison97 : \forall x: \mathbb{R}, -\frac{10831}{1000000} \leq x \leq \frac{10831}{1000000} \Longrightarrow |(e^x-1)-\left(x+\frac{8388676}{2^{24}}x^2+\frac{11184876}{2^{26}}x^3\right)| \leq \frac{23}{27} \times \frac{1}{2^{33}}. Proof. intros x H. interval with (i_bisect_diff x, i_prec 50, i_depth 16). (* 35s *) Qed.
```

Overview of the CogInterval library — Proof example #1

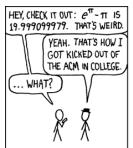
CogInterval

Example taken from [John Harrison (1997): Verifying the Accuracy of Polynomial Approximations in HOLl

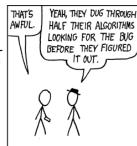
Require Import Reals Interval tactic. Local Open Scope R scope.

```
Theorem Harrison97 : \forall x : \mathbb{R}, -\frac{10831}{1000000} \le x \le \frac{10831}{1000000} \Longrightarrow
       \left| (e^x - 1) - \left( x + \frac{8388676}{224} x^2 + \frac{11184876}{226} x^3 \right) \right| \le \frac{23}{27} \times \frac{1}{233}.
Proof.
intros x H.
interval with (i bisect taylor x 3, i prec 50). (* 0.50s *)
Qed.
```

Overview of the CoqInterval library — Proof example #2



DURING A COMPETITION, I TOLD THE PROGRAMMERS ON OUR TEAM THAT $e^{i\pi}$ - $i\pi$ was a standard test of Floating-Point Handlers -- IT Would COME OUT TO 20 UNLESS THEY HAD ROUNDING ERRORS.

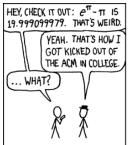


(xkcd.com/217)

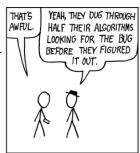
Overview of the CogInterval library — Proof example #2

CogInterval

0000000000



DURING A COMPETITION, I TOLD THE PROGRAMMERS ON OUR TEAM THAT $\rho^{\pi} - \pi$ WAS A STANDARD TEST OF FLOATING-POINT HANDLERS -- IT WOULD COME OUT TO 20 UNLESS THEY HAD ROUNDING ERRORS.



(xkcd.com/217)

Require Import Reals Interval_tactic. Local Open Scope R_scope.

```
Lemma xkcd217 : exp PI - PI <> 20.
Proof.
interval. (* 0.05s *)
Qed.
```

 Sollya: rigorous computing toolbox for the libm developer, relying on MPFI. Considered function: supnorm (otherwise checkinfnorm)

- Sollya: rigorous computing toolbox for the libm developer, relying on MPFI. Considered function: supnorm (otherwise checkinfnorm)
- MetiTarski: standalone tool = axioms for approximating elementary functions + decision procedure for multivariate polynomial inequalities

- Sollya: rigorous computing toolbox for the libm developer, relying on MPFI. Considered function: supnorm (otherwise checkinfnorm)
- MetiTarski: standalone tool = axioms for approximating elementary functions + decision procedure for multivariate polynomial inequalities
- HOL Light/REAL_SOS: decision procedure for multivariate polynomial inequalities (SOS certificates)

- Sollya: rigorous computing toolbox for the libm developer, relying on MPFI. Considered function: supnorm (otherwise checkinfnorm)
- MetiTarski: standalone tool = axioms for approximating elementary functions + decision procedure for multivariate polynomial inequalities
- HOL Light/REAL_SOS: decision procedure for multivariate polynomial inequalities (SOS certificates)
- HOL Light/verify_ineq: born in Flyspeck, decision procedure for multivariate ineqs with elementary functions (order-1 TL)

- Sollya: rigorous computing toolbox for the libm developer, relying on MPFI. Considered function: supnorm (otherwise checkinfnorm)
- MetiTarski: standalone tool = axioms for approximating elementary functions + decision procedure for multivariate polynomial inequalities
- HOL Light/REAL_SOS: decision procedure for multivariate polynomial inequalities (SOS certificates)
- HOL Light/verify_ineq: born in Flyspeck, decision procedure for multivariate ineqs with elementary functions (order-1 TL)
- \bullet NLCertify: born in Flyspeck, decision procedure for multivariate ineqs with elementary functions (quadratic-forms approx + SDP)

- Sollya: rigorous computing toolbox for the libm developer, relying on MPFI. Considered function: supnorm (otherwise checkinfnorm)
- MetiTarski: standalone tool = axioms for approximating elementary functions + decision procedure for multivariate polynomial inequalities
- HOL Light/REAL_SOS: decision procedure for multivariate polynomial inequalities (SOS certificates)
- HOL Light/verify_ineq: born in Flyspeck, decision procedure for multivariate ineqs with elementary functions (order-1 TL)
- ullet NLCertify: born in Flyspeck, decision procedure for multivariate ineqs with elementary functions (quadratic-forms approx + SDP)
- PVS/Bernstein: decision procedure for multivariate polynomial inequalities (Bernstein polynomials + global optimization)

- Sollya: rigorous computing toolbox for the libm developer, relying on MPFI. Considered function: supnorm (otherwise checkinfnorm)
- MetiTarski: standalone tool = axioms for approximating elementary functions + decision procedure for multivariate polynomial inequalities
- HOL Light/REAL_SOS: decision procedure for multivariate polynomial inequalities (SOS certificates)
- HOL Light/verify_ineq: born in Flyspeck, decision procedure for multivariate ineqs with elementary functions (order-1 TL)
- \bullet NLCertify: born in Flyspeck, decision procedure for multivariate ineqs with elementary functions (quadratic-forms approx + SDP)
- PVS/Bernstein: decision procedure for multivariate polynomial inequalities (Bernstein polynomials + global optimization)
- PVS/interval: decision procedure for multivariate ineqs with elementary functions (Interval Arithmetic + Branch & Bound)

- Sollya: rigorous computing toolbox for the libm developer, relying on MPFI. Considered function: supnorm (otherwise checkinfnorm)
- MetiTarski: standalone tool = axioms for approximating elementary functions + decision procedure for multivariate polynomial inequalities
- HOL Light/REAL_SOS: decision procedure for multivariate polynomial inequalities (SOS certificates)
- HOL Light/verify_ineq: born in Flyspeck, decision procedure for multivariate ineqs with elementary functions (order-1 TL)
- ullet NLCertify: born in Flyspeck, decision procedure for multivariate ineqs with elementary functions (quadratic-forms approx + SDP)
- PVS/Bernstein: decision procedure for multivariate polynomial inequalities (Bernstein polynomials + global optimization)
- PVS/interval: decision procedure for multivariate ineqs with elementary functions (Interval Arithmetic + Branch & Bound)

- Sollya: rigorous computing toolbox for the libm developer, relying on MPFI. Considered function: supnorm (otherwise checkinfnorm)
- MetiTarski: standalone tool = axioms for approximating elementary functions + decision procedure for multivariate polynomial inequalities
- HOL Light/REAL_SOS: decision procedure for multivariate polynomial inequalities (SOS certificates)
- HOL Light/verify_ineq: born in Flyspeck, decision procedure for multivariate ineqs with elementary functions (order-1 TL)
- NLCertify: born in Flyspeck, decision procedure for multivariate ineqs with elementary functions (quadratic-forms approx + SDP)
- PVS/Bernstein: decision procedure for multivariate polynomial inequalities (Bernstein polynomials + global optimization)
- PVS/interval: decision procedure for multivariate ineqs with elementary functions (Interval Arithmetic + Branch & Bound)

• approximation problems: CRlibm's $\exp(|x| \ge 2^{-20})$, a Remez of $\sqrt{\cdot}$, a degree-5 approx of arctan, Earth's radius of curvature, Tang's \exp

- approximation problems: CRlibm's $\exp(|x| \ge 2^{-20})$, a Remez of $\sqrt{\cdot}$, a degree-5 approx of arctan, Earth's radius of curvature, Tang's \exp
- degree-2 to degree-8 approximations problems of $x\mapsto \cos(1.5\cdot\cos x)$ with binary32 coefficients

- approximation problems: CRlibm's $\exp(|x| \ge 2^{-20})$, a Remez of $\sqrt{\cdot}$, a degree-5 approx of arctan, Earth's radius of curvature, Tang's exp
- degree-2 to degree-8 approximations problems of $x \mapsto \cos(1.5 \cdot \cos x)$ with binary32 coefficients
- 25 problems from MetiTarski's test-suite selected to be compatible with all provers' input

- approximation problems: CRlibm's $\exp(|x| \ge 2^{-20})$, a Remez of $\sqrt{\cdot}$, a degree-5 approx of \arctan , Earth's radius of curvature, Tang's \exp
- degree-2 to degree-8 approximations problems of $x\mapsto \cos(1.5\cdot\cos x)$ with binary32 coefficients
- 25 problems from MetiTarski's test-suite selected to be compatible with all provers' input
- 4 typical multivariate polynomial inequalities: RD, adaptiveLV, butcher, magnetism

- approximation problems: CRlibm's exp ($|x| \ge 2^{-20}$), a Remez of $\sqrt{\cdot}$, a degree-5 approx of arctan, Earth's radius of curvature, Tang's exp
- degree-2 to degree-8 approximations problems of $x \mapsto \cos(1.5 \cdot \cos x)$ with binary32 coefficients
- 25 problems from MetiTarski's test-suite selected to be compatible with all provers' input
- 4 typical multivariate polynomial inequalities: RD, adaptiveLV, butcher, magnetism
- System: Ubuntu 14.04.2 LTS on Intel Core i5-4460S CPU @ 2.90 GHz

- approximation problems: CRlibm's $\exp{(|x| \ge 2^{-20})}$, a Remez of $\sqrt{\cdot}$, a degree-5 approx of \arctan , Earth's radius of curvature, Tang's \exp
- degree-2 to degree-8 approximations problems of $x\mapsto \cos(1.5\cdot\cos x)$ with binary32 coefficients
- 25 problems from MetiTarski's test-suite selected to be compatible with all provers' input
- 4 typical multivariate polynomial inequalities: RD, adaptiveLV, butcher, magnetism
- System: Ubuntu 14.04.2 LTS on Intel Core i5-4460S CPU @ 2.90 GHz
- ullet Output: total time in $s \mid \mathsf{Failed} \ (\Leftrightarrow \mathsf{error}) \mid \mathsf{Timeout} \ (\Leftrightarrow > 180 \, s) \mid \mathsf{-}$

- approximation problems: CRlibm's $\exp{(|x| \ge 2^{-20})}$, a Remez of $\sqrt{\cdot}$, a degree-5 approx of \arctan , Earth's radius of curvature, Tang's \exp
- degree-2 to degree-8 approximations problems of $x\mapsto \cos(1.5\cdot\cos x)$ with binary32 coefficients
- 25 problems from MetiTarski's test-suite selected to be compatible with all provers' input
- 4 typical multivariate polynomial inequalities: RD, adaptiveLV, butcher, magnetism
- System: Ubuntu 14.04.2 LTS on Intel Core i5-4460S CPU @ 2.90 GHz
- \bullet Output: total time in s | Failed (\Leftrightarrow error) | Timeout ($\Leftrightarrow > 180\,s)$ | -

Forge: https://gforge.inria.fr/scm/browser.php?group_id=6316&extra=bench-ineqs

Problems	CoqInterval 2.0	Sollya	MetiTarski	NLCertify (not verified)	NLCertify (verified polys)	PVS/interval	HOL Light/ verify_ineq	PVS/Bernstein	HOL Light/ REAL_SOS
crlibm_exp	0.83*	0.02	Failed	-	-	Failed	-	-	-
remez_sqrt	0.45	0.02	0.05	15.28*	Timeout	Failed	3.60*	-	-
abs_err_atan	0.45	0.01	0.07	Failed	Failed	Timeout	2.36*	-	-
rel_err_geo	3.10	2.24	Timeout	Timeout	Timeout	Failed	229.54*	-	-
harrison97	0.42	0.01	0.10	-	-	Failed	-	-	-
cos_cos_d2	0.71	0.05	Timeout	Timeout	Timeout	20.64	5.82*	-	-
cos_cos_d3	0.79	0.05	Timeout	Timeout	Timeout	48.87	6.28*	-	-
cos_cos_d4	0.91	0.06	Timeout	Timeout	Timeout	Timeout	8.83*	-	-
cos_cos_d5	1.44	0.06	Timeout	Timeout	Timeout	Timeout	15.70*	-	-
cos_cos_d6	1.54	0.07	Timeout	Timeout	Timeout	Timeout	20.92*	-	-
cos_cos_d7	2.21	0.07	Timeout	Timeout	Timeout	Timeout	41.88*	-	-
cos_cos_d8	2.79	0.08	Timeout	Timeout	Timeout	Timeout	87.78*	_	_

Experimental Results (MetiTarski 1/2)

Problems	CoqInterval 2.0	Sollya	MetiTarski	NLCertify (not verified)	NLCertify (verified polys)	PVS/interval	HOL Light/ verify_ineq	PVS/Bernstein	HOL Light/ REAL_SOS
MT1	0.53	-	0.13	-	-	Failed	-	-	-
MT2	1.56	-	0.06	9.99*	Timeout	Failed	-	-	-
MT3	0.18	-	0.18	-	-	1.14	-	-	-
MT4	0.23	-	0.17	1.31*	18.95*	1.19	-	-	-
MT5	0.11*	-	0.05	-	-	1.24	-	-	-
MT6	0.15*	-	0.07	-	-	1.23	-	-	-
MT7	0.04	-	0.04	-	-	0.69	-	-	-
MT8	0.33	-	0.15	-	-	Timeout	-	-	-
MT9	0.52	-	0.46	-	-	Timeout	-	-	-
MT10	0.19	-	0.04	0.96	14.86	Failed	-	-	-
MT11	0.10	-	0.22	0.40	6.73	1.72	-	-	-
MT12	2.84	-	0.07	Timeout	Timeout	Timeout	-	-	-
MT13	0.98	-	0.07	11.82	137.91	Failed	-	-	-
MT14	0.07	-	0.06	-	-	0.89	-	-	-
MT15	0.15	-	0.07	-	-	0.98	-	-	-

Experimental Results (MT 2/2 + multivariate problems)

Problems	CoqInterval 2.0	Sollya	MetiTarski	NLCertify (not verified)	NLCertify (verified polys)	PVS/interval	HOL Light/ verify_ineq	PVS/Bernstein	HOL Light/ REAL_SOS
MT16	0.13	-	0.02	0.58*	8.23*	3.23	0.57*	-	-
MT17	0.11	-	0.06	0.22	4.06	1.27	0.23	-	_
MT18	0.16	-	0.02	0.21	2.46	0.69	0.75	-	-
MT19	0.52	-	Failed	5.09	74.55	Failed	1.92	-	-
MT20	3.09	-	0.05	2.63	44.21	Timeout	15.54	-	-
MT21	0.33	-	0.38	3.69	51.94	Failed	1.37	-	-
MT22	0.69	-	0.06	Timeout	Timeout	Failed	113.74	-	-
MT23	1.17	-	0.12	Failed	Failed	Failed	86.90	-	-
MT24	0.10	-	0.36	0.17	2.38	Failed	0.24	-	-
MT25	0.29	-	0.17	-	-	1.78	-	-	-
RD	0.25	-	0.02	1.88	66.01	1.67	0.48	3.26	Timeout
adaptiveLV	0.16	-	0.04	0.23	3.18	1.00	1.26	4.02	3.78
butcher	0.42	-	0.05	0.73	11.08	19.99	2.21	18.23	Timeout
magnetism	0.17	-	0.05	1.35	20.60	Timeout	313.75	Timeout	0.24

Conclusion

 Coq tactics to automatically and formally prove numerical bounds on real-valued expressions

Conclusion

- Coq tactics to automatically and formally prove numerical bounds on real-valued expressions
- All computations performed in Coq's logic, using interval arithmetic

- Coq tactics to automatically and formally prove numerical bounds on real-valued expressions
- All computations performed in Coq's logic, using interval arithmetic
- Implements bisection, automatic differentiation and Taylor models techniques to reduce the dependency effect

- Cog tactics to automatically and formally prove numerical bounds on real-valued expressions
- All computations performed in Coq's logic, using interval arithmetic
- Implements bisection, automatic differentiation and Taylor models techniques to reduce the dependency effect
- Regarding performance, CogInterval is competitive w.r.t the state-of-the-art inequality provers

Conclusion

Some future directions

- Bottleneck: Horner evaluation. Formalize alternative schemes that are amenable to formal methods?
- Certifying algorithms: Check polynomial approximations for special functions, by using certificates generated by Sollya?
- Reals/Coquelicot/CogInterval/...: Increase automation for developing formal libraries of elementary functions more easily
- Symbolic-numeric methods: CogInterval has been used and extended by Thomas Sibut-Pinote, Assia Mahboubi and Guillaume Melquiond to formally verify approximations of definite integrals \rightsquigarrow ultimate goal to formally verify numerical solutions of differential equations.

Thanks for your attention!

Homepage: http://coq-interval.gforge.inria.fr/

Ref: http://www.irit.fr/publis/ACADIE/CoqInterval-JAR.pdf