
SSReflect in Coq 8.10
New intro patterns and support for rewriting under binders

Érik Martin-Dorel1 Enrico Tassi2

1IRIT, Université Toulouse 3, France

2Inria, Université Côte d’Azur, France

September 8th, 2019
The 10th Coq Workshop

Portland State University, OR, USA

Martin-Dorel, Tassi (IRIT, Inria) SSReflect in Coq 8.10
1/18



Introduction New (in Coq 8.10) intro patterns Tactic to rewrite under binders Conclusion

Outline

1 Introduction

2 New (in Coq 8.10) intro patterns

3 Tactic to rewrite under binders

4 Conclusion

Martin-Dorel, Tassi (IRIT, Inria) SSReflect in Coq 8.10
2/18



Introduction New (in Coq 8.10) intro patterns Tactic to rewrite under binders Conclusion

SSReflect in a nutshell

SSR is a proof language (a bit more than a list of tactics)
Way past break-in period: 4C Thm, Odd Order Thm, . . .
Backward compatible (e.g. MathComp 1.9 works on Coq 8.7 → 8.10)
Integrated in Coq since version 8.7 (Require Import ssreflect.)
Enables SSR formalization style, but does not force it

Martin-Dorel, Tassi (IRIT, Inria) SSReflect in Coq 8.10
2/18



Introduction New (in Coq 8.10) intro patterns Tactic to rewrite under binders Conclusion

Small Scale Reflection formalization style

The name: reflecting decideable propositions to bool. . . But it is more than
that, too much for one slide.

Focus: easy to repair scripts = scripts that break early and locally
basic bricks are dumb, predictable and do fail
explicit naming of context items (bookkeeping discipline)

Example:
rewrite [in RHS]leq_ab vs. rewrite {35}H16

In this talk we focus on intro patterns and rewriting

Martin-Dorel, Tassi (IRIT, Inria) SSReflect in Coq 8.10
3/18



Introduction New (in Coq 8.10) intro patterns Tactic to rewrite under binders Conclusion

Intro patterns by examples: working the goal stack

Lemma test : ∀ a b, a <= b -> G. Proof. move=> a ? leq_ab.

a, _b_ : nat
leq_ab : a <= _b_

===================
G

Lemma test : ∀ a b, a <= b -> G. Proof. move=> a [|b] leq_ab.

a : nat a, b : nat
leq_ab : a <= 0 leq_ab : a <= b.+1

================= ====================
G G

Lemma test : ∀ a b, a <= b -> G. Proof. move=> a b /leqW; move: a b.

======================
∀ a b, a <= b.+1 -> G

Martin-Dorel, Tassi (IRIT, Inria) SSReflect in Coq 8.10
4/18



Introduction New (in Coq 8.10) intro patterns Tactic to rewrite under binders Conclusion

Outline

1 Introduction

2 New (in Coq 8.10) intro patterns

3 Tactic to rewrite under binders

4 Conclusion

Martin-Dorel, Tassi (IRIT, Inria) SSReflect in Coq 8.10
5/18



Introduction New (in Coq 8.10) intro patterns Tactic to rewrite under binders Conclusion

Block introduction: case

Destructuring an inductive type using standard names.
Inductive i :=

| K1 (a : T)
| K2 (_ : U) (b : T). (* these names are kept by Coq *)

Lemma test (x : i) : G.
Proof.
case: x => [^ y_ ].

_y_?_ : U
y_a : T y_b : T

========== ============
G G

Names are predictable (derived by simple concatenation) and unique (you
choose a prefix/suffix that must not generate clashes).

Martin-Dorel, Tassi (IRIT, Inria) SSReflect in Coq 8.10
5/18



Introduction New (in Coq 8.10) intro patterns Tactic to rewrite under binders Conclusion

Block introduction: elim

Destructuring also happens as a result of an induction.

you can always put a
name on a product

Lemma my_ind P :
P 0 ->
(∀ a (IHa : P a), P a.+1) ->

∀ x, P x.
Proof.
...
Qed.

Lemma test (n : nat) : G n.
Proof.
elim/my_ind: n => [^~ 1 ].

a1 : nat
IHa1 : G a1

========== =============
G 0 G a1.+1

Martin-Dorel, Tassi (IRIT, Inria) SSReflect in Coq 8.10
6/18



Introduction New (in Coq 8.10) intro patterns Tactic to rewrite under binders Conclusion

Fast and temporary introduction

Skip to the fist assumption with the > intro pattern
Lemma test : ∀ a b, a <= b -> G.
Proof.
move=> >leq_ab

_a_, _b_ : nat
leq_ab : _a_ <= _b_

=====================
G

Introduce now and revert at the end of the intro pattern

Lemma test: ∀ a b, a <= b -> G.
move=> + + /leqW.

======================
∀ a b, a <= b.+1 -> G

Martin-Dorel, Tassi (IRIT, Inria) SSReflect in Coq 8.10
7/18



Introduction New (in Coq 8.10) intro patterns Tactic to rewrite under binders Conclusion

Ltac views

When the developer replies DIY. . .

Notation "’dupP’" := ltac:(code to duplicate an hypothesis) : ssripat_scope.

Lemma test x : x = 3 -> G x.
move=> /dupP def_x ->.

x : nat
def_x : x = 3

================
G 3

Bonus: dupP could take arguments!

Martin-Dorel, Tassi (IRIT, Inria) SSReflect in Coq 8.10
8/18



Introduction New (in Coq 8.10) intro patterns Tactic to rewrite under binders Conclusion

Outline

1 Introduction

2 New (in Coq 8.10) intro patterns

3 Tactic to rewrite under binders

4 Conclusion

Martin-Dorel, Tassi (IRIT, Inria) SSReflect in Coq 8.10
9/18



Introduction New (in Coq 8.10) intro patterns Tactic to rewrite under binders Conclusion

Big operators in a nutshell

Formalization of
∑
i∈A
P (i)

F (i),
∏
i∈A
P (i)

F (i),
⋂
i∈A
P (i)

F (i),
⋃
i∈A
P (i)

F (i), max
i∈A
P (i)

F (i). . .

Implem: higher-order iterator applied to some lambda for P and F

Example
4∑

i=1
i odd

i2 can be formally written as: \sum_(1 <= i < 5 | odd i) i^2,
that is to say: \big[addn/0]_(1 <= i < 5 | odd i) i^2,

which expands to: bigop _ _ 0 (index_iota 1 5) (fun i : nat =>
BigBody _ _ i addn (odd i) (i ^ 2))

Martin-Dorel, Tassi (IRIT, Inria) SSReflect in Coq 8.10
9/18



Introduction New (in Coq 8.10) intro patterns Tactic to rewrite under binders Conclusion

Big operators in a nutshell

Formalization of
∑
i∈A
P (i)

F (i),
∏
i∈A
P (i)

F (i),
⋂
i∈A
P (i)

F (i),
⋃
i∈A
P (i)

F (i), max
i∈A
P (i)

F (i). . .

Implem: higher-order iterator applied to some lambda for P and F

Example
4∑

i=1
i odd

i2 can be formally written as: \sum_(1 <= i < 5 | odd i) i^2,
that is to say: \big[addn/0]_(1 <= i < 5 | odd i) i^2,

which expands to: bigop _ _ 0 (index_iota 1 5) (fun i : nat =>
BigBody _ _ i addn (odd i) (i ^ 2))

Martin-Dorel, Tassi (IRIT, Inria) SSReflect in Coq 8.10
9/18



Introduction New (in Coq 8.10) intro patterns Tactic to rewrite under binders Conclusion

Higher-order iterators? Need for rewriting under binders. . .
From mathcomp Require Import bigop.  provides congruence lemmas to be applied by hand

eq_big : (* main congruence lemma for bigops *)
∀ (R : Type) (idx : R) (op : R -> R -> R) (I : Type) (r : seq I),
∀ (P1 P2 : pred I) (F1 F2 : I -> R),
(∀ i : I, P1 i = P2 i) -> (∀ i : I, P1 i -> F1 i = F2 i) ->
\big[op/idx]_(i <- r | P1 i) F1 i = \big[op/idx]_(i <- r | P2 i) F2 i.

Running example

n : nat
=================================================
\sum_(0 <= k < n | odd k && (k != 1)) (k - k) = 0

rewrite subnn. (* Error: The LHS of subnn, (_ - _), does not match any subterm of the goal *)

rewrite eq_big. (* Error: Unable to find an instance for the variables P2, F2. *)

We need to provide P2 and F2 by hand (the lambda terms we want to obtain after the rewrite):

rewrite (eq_big (fun k => odd k && (k != 1)) (fun k => 0));
[ | done | by move=> ? _; rewrite subnn].

Martin-Dorel, Tassi (IRIT, Inria) SSReflect in Coq 8.10
10/18



Introduction New (in Coq 8.10) intro patterns Tactic to rewrite under binders Conclusion

Higher-order iterators? Need for rewriting under binders. . .
From mathcomp Require Import bigop.  provides congruence lemmas to be applied by hand

eq_big : (* main congruence lemma for bigops *)
∀ (R : Type) (idx : R) (op : R -> R -> R) (I : Type) (r : seq I),
∀ (P1 P2 : pred I) (F1 F2 : I -> R),
(∀ i : I, P1 i = P2 i) -> (∀ i : I, P1 i -> F1 i = F2 i) ->
\big[op/idx]_(i <- r | P1 i) F1 i = \big[op/idx]_(i <- r | P2 i) F2 i.

Running example

n : nat
=================================================
\sum_(0 <= k < n | odd k && (k != 1)) (k - k) = 0

rewrite subnn. (* Error: The LHS of subnn, (_ - _), does not match any subterm of the goal *)

rewrite eq_big. (* Error: Unable to find an instance for the variables P2, F2. *)

We need to provide P2 and F2 by hand (the lambda terms we want to obtain after the rewrite):

rewrite (eq_big (fun k => odd k && (k != 1)) (fun k => 0));
[ | done | by move=> ? _; rewrite subnn].

Martin-Dorel, Tassi (IRIT, Inria) SSReflect in Coq 8.10
10/18



Introduction New (in Coq 8.10) intro patterns Tactic to rewrite under binders Conclusion

Higher-order iterators? Need for rewriting under binders. . .
From mathcomp Require Import bigop.  provides congruence lemmas to be applied by hand

eq_big : (* main congruence lemma for bigops *)
∀ (R : Type) (idx : R) (op : R -> R -> R) (I : Type) (r : seq I),
∀ (P1 P2 : pred I) (F1 F2 : I -> R),
(∀ i : I, P1 i = P2 i) -> (∀ i : I, P1 i -> F1 i = F2 i) ->
\big[op/idx]_(i <- r | P1 i) F1 i = \big[op/idx]_(i <- r | P2 i) F2 i.

Running example

n : nat
=================================================
\sum_(0 <= k < n | odd k && (k != 1)) (k - k) = 0

rewrite subnn. (* Error: The LHS of subnn, (_ - _), does not match any subterm of the goal *)

rewrite eq_big. (* Error: Unable to find an instance for the variables P2, F2. *)

We need to provide P2 and F2 by hand (the lambda terms we want to obtain after the rewrite):

rewrite (eq_big (fun k => odd k && (k != 1)) (fun k => 0));
[ | done | by move=> ? _; rewrite subnn].

Martin-Dorel, Tassi (IRIT, Inria) SSReflect in Coq 8.10
10/18



Introduction New (in Coq 8.10) intro patterns Tactic to rewrite under binders Conclusion

The under tactic - I

One-liner (a.k.a. batch) mode
n : nat
=================================================
\sum_(0 <= k < n | odd k && (k != 1)) (k - k) = 0

under eq_big do [ | rewrite subnn].

n : nat
===========================================
\sum_(0 <= i < n | odd i && (i != 1)) 0 = 0

Martin-Dorel, Tassi (IRIT, Inria) SSReflect in Coq 8.10
11/18



Introduction New (in Coq 8.10) intro patterns Tactic to rewrite under binders Conclusion

The under tactic - I

One-liner (a.k.a. batch) mode
n : nat
=================================================
\sum_(0 <= k < n | odd k && (k != 1)) (k - k) = 0

under eq_big do [ | rewrite subnn].

n : nat
===========================================
\sum_(0 <= i < n | odd i && (i != 1)) 0 = 0

Martin-Dorel, Tassi (IRIT, Inria) SSReflect in Coq 8.10
11/18



Introduction New (in Coq 8.10) intro patterns Tactic to rewrite under binders Conclusion

The under tactic - II

Interactive mode (without do clause)
n : nat
=================================================
\sum_(0 <= k < n | odd k && (k != 1)) (k - k) = 0

under eq_big =>[i | i /andP[i_odd i_neq1]].

n, i : nat
i_odd : odd i

n, i : nat i_neq1 : i != 1 n : nat
=========================== =============== ===================================
’Under[ odd i && (i != 1) ] ’Under[ i - i ] \sum_(0 <= i < n | ?P2 i) ?F2 i = 0

↓ ↓
over. rewrite subnn.

over.

Martin-Dorel, Tassi (IRIT, Inria) SSReflect in Coq 8.10
12/18



Introduction New (in Coq 8.10) intro patterns Tactic to rewrite under binders Conclusion

The under tactic - II

Interactive mode (without do clause)
n : nat
=================================================
\sum_(0 <= k < n | odd k && (k != 1)) (k - k) = 0

under eq_big =>[i | i /andP[i_odd i_neq1]].

n, i : nat
i_odd : odd i

n, i : nat i_neq1 : i != 1 n : nat
=========================== =============== ===================================
’Under[ odd i && (i != 1) ] ’Under[ i - i ] \sum_(0 <= i < n | ?P2 i) ?F2 i = 0

↓ ↓
over. rewrite subnn.

over.

Martin-Dorel, Tassi (IRIT, Inria) SSReflect in Coq 8.10
12/18



Introduction New (in Coq 8.10) intro patterns Tactic to rewrite under binders Conclusion

The under tactic - II

Interactive mode (without do clause)
n : nat
=================================================
\sum_(0 <= k < n | odd k && (k != 1)) (k - k) = 0

under eq_big =>[i | i /andP[i_odd i_neq1]].

n, i : nat
i_odd : odd i

n, i : nat i_neq1 : i != 1 n : nat
=========================== =============== ===================================
’Under[ odd i && (i != 1) ] ’Under[ i - i ] \sum_(0 <= i < n | ?P2 i) ?F2 i = 0

↓ ↓
over. rewrite subnn.

over.

Martin-Dorel, Tassi (IRIT, Inria) SSReflect in Coq 8.10
12/18



Introduction New (in Coq 8.10) intro patterns Tactic to rewrite under binders Conclusion

The under tactic - III

Batch mode: can be viewed as a shortcut for interactive mode + dispatch:

under eq_big =>[i_1 | i_2] do [tac1 | tac2].
≡
(under eq_big)=>[i_1 | i_2 | ]; [tac1; over | tac2; over | ].

Some even shorter syntax is available (with automatic introduction):

under eq_big do [ | rewrite subnn].
is the defective form for:

under eq_big =>[* | *] do [ | rewrite subnn].

Interactive mode: useful to debug/repair a broken proof script

Choice between batch & interactive versions? mostly a matter of style1

1
see also https://github.com/math-comp/math-comp/blob/master/CONTRIBUTING.md#proof-style

Martin-Dorel, Tassi (IRIT, Inria) SSReflect in Coq 8.10
13/18

https://github.com/math-comp/math-comp/blob/master/CONTRIBUTING.md#proof-style


Introduction New (in Coq 8.10) intro patterns Tactic to rewrite under binders Conclusion

The under tactic - III

Batch mode: can be viewed as a shortcut for interactive mode + dispatch:

under eq_big =>[i_1 | i_2] do [tac1 | tac2].
≡
(under eq_big)=>[i_1 | i_2 | ]; [tac1; over | tac2; over | ].

Some even shorter syntax is available (with automatic introduction):

under eq_big do [ | rewrite subnn].
is the defective form for:

under eq_big =>[* | *] do [ | rewrite subnn].

Interactive mode: useful to debug/repair a broken proof script

Choice between batch & interactive versions? mostly a matter of style1

1
see also https://github.com/math-comp/math-comp/blob/master/CONTRIBUTING.md#proof-style

Martin-Dorel, Tassi (IRIT, Inria) SSReflect in Coq 8.10
13/18

https://github.com/math-comp/math-comp/blob/master/CONTRIBUTING.md#proof-style


Introduction New (in Coq 8.10) intro patterns Tactic to rewrite under binders Conclusion

The under tactic - III

Batch mode: can be viewed as a shortcut for interactive mode + dispatch:

under eq_big =>[i_1 | i_2] do [tac1 | tac2].
≡
(under eq_big)=>[i_1 | i_2 | ]; [tac1; over | tac2; over | ].

Some even shorter syntax is available (with automatic introduction):

under eq_big do [ | rewrite subnn].
is the defective form for:

under eq_big =>[* | *] do [ | rewrite subnn].

Interactive mode: useful to debug/repair a broken proof script

Choice between batch & interactive versions? mostly a matter of style1

1
see also https://github.com/math-comp/math-comp/blob/master/CONTRIBUTING.md#proof-style

Martin-Dorel, Tassi (IRIT, Inria) SSReflect in Coq 8.10
13/18

https://github.com/math-comp/math-comp/blob/master/CONTRIBUTING.md#proof-style


Introduction New (in Coq 8.10) intro patterns Tactic to rewrite under binders Conclusion

The under tactic - IV

The tactic also supports occurrences switches and contextual
patterns, which are both optional:

under {2}[in RHS]eq_lem.

Intro patterns are optional, but recommended:

under eq_big => [i|i ?].
under eq_bigl => i.

(notably as under attempts to preserve the name of bound variables
from the first branch, as we’ll see in the demo)

Martin-Dorel, Tassi (IRIT, Inria) SSReflect in Coq 8.10
14/18



Introduction New (in Coq 8.10) intro patterns Tactic to rewrite under binders Conclusion

The under tactic - IV

The tactic also supports occurrences switches and contextual
patterns, which are both optional:

under {2}[in RHS]eq_lem.

Intro patterns are optional, but recommended:

under eq_big => [i|i ?].
under eq_bigl => i.

(notably as under attempts to preserve the name of bound variables
from the first branch, as we’ll see in the demo)

Martin-Dorel, Tassi (IRIT, Inria) SSReflect in Coq 8.10
14/18



Introduction New (in Coq 8.10) intro patterns Tactic to rewrite under binders Conclusion

The under tactic - IV

The tactic also supports occurrences switches and contextual
patterns, which are both optional:

under {2}[in RHS]eq_lem.

Intro patterns are optional, but recommended:

under eq_big => [i|i ?].
under eq_bigl => i.

(notably as under attempts to preserve the name of bound variables
from the first branch, as we’ll see in the demo)

Martin-Dorel, Tassi (IRIT, Inria) SSReflect in Coq 8.10
14/18



Introduction New (in Coq 8.10) intro patterns Tactic to rewrite under binders Conclusion

The under tactic - V

Design decisions
Implemented in OCaml to avoid Ltac1 limitationsa

Give a protected context ’Under[ _ ] for evars
Name all bound variables
Compatibility with SSReflect’s intro patterns
Compatibility with precedence level of tacticals “;” and “do”

aa prototype was first coded in Ltac [mid-2016]: github.com/erikmd/ssr-under-tac

Martin-Dorel, Tassi (IRIT, Inria) SSReflect in Coq 8.10
15/18

https://github.com/erikmd/ssr-under-tac


Introduction New (in Coq 8.10) intro patterns Tactic to rewrite under binders Conclusion

What about setoid_rewrite?

setoid_rewrite
+ automatic way to rewrite a bunch of occurrences
− not precise enough: doesn’t allow to specify contextual patterns for

the desired rewrite

under
+ more flexibility (one can choose the congruence lemma to follow and

precisely select the redex to rewrite), can be nested
++ ability to perform conditional rewrites

+ compatible with registered Setoid equalities [ Coq 8.11]

[Demo]

Martin-Dorel, Tassi (IRIT, Inria) SSReflect in Coq 8.10
16/18



Introduction New (in Coq 8.10) intro patterns Tactic to rewrite under binders Conclusion

Outline

1 Introduction

2 New (in Coq 8.10) intro patterns

3 Tactic to rewrite under binders

4 Conclusion

Martin-Dorel, Tassi (IRIT, Inria) SSReflect in Coq 8.10
17/18



Introduction New (in Coq 8.10) intro patterns Tactic to rewrite under binders Conclusion

Concluding remarks & perspectives

SSReflect
In Coq since version 8.7, documented [1, 2], stable proof language
Since Coq 8.10:

Fast, temporary, block, DIY intro patterns:
[ssr] extended intro patterns
https://github.com/coq/coq/pull/6705
Rewriting under binders:
[ssr] Add tactics under and over
https://github.com/coq/coq/pull/9651

In the pipeline for Coq 8.11:
Make under support equivalence relations other than “=”:
[ssr] Generalize tactics under and over to any Setoid relation
https://github.com/coq/coq/pull/10022

Martin-Dorel, Tassi (IRIT, Inria) SSReflect in Coq 8.10
17/18

https://github.com/coq/coq/pull/6705
https://github.com/coq/coq/pull/9651
https://github.com/coq/coq/pull/10022


Introduction New (in Coq 8.10) intro patterns Tactic to rewrite under binders Conclusion

References

[1] The Coq Development Team.
The Coq Proof Assistant, version 8.10.0, August 2019.
URL: https://coq.inria.fr/distrib/current/refman/
proof-engine/ssreflect-proof-language.html.

[2] Assia Mahboubi and Enrico Tassi.
Mathematical Components.
draft, v1-183-gb37ad7, 2018.
URL: https://math-comp.github.io/mcb.

Martin-Dorel, Tassi (IRIT, Inria) SSReflect in Coq 8.10
18/18

https://coq.inria.fr/distrib/current/refman/proof-engine/ssreflect-proof-language.html
https://coq.inria.fr/distrib/current/refman/proof-engine/ssreflect-proof-language.html
https://math-comp.github.io/mcb

	Introduction
	New (in Coq 8.10) intro patterns
	Tactic to rewrite under binders
	Conclusion

