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Context and Motivations

Context:
@ The SLZ algorithm for solving (offline) the Table Maker's Dilemma
— Very long calculations using sophisticated, optimized methods

— Either output some numerical data whose completeness cannot be
directly verified, or output a yes/no answer

— These results are crucial to build reliable and efficient floating-point
implementations of mathematical functions with correct rounding

— Impact on numerical software, including safety-critical systems
Goal:

@ Guarantee the results that are produced by the SLZ algorithmic chain
— Design certificates that fit in with independent verification

— Use formal methods: the COQ proof assistant

Erik Martin-Dorel Contributions to the Formal Verification of Arithmetic Algorithms 1/ 44
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The CoQ proof assistant

We use CoQ for
@ programming
e strongly typed functional language
e computation
@ proving
use higher order logic
build proofs interactively
program automatic tactics
check proofs
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Computing within the CoOQ proof assistant

CoQ comes with a primitive notion of computation, called reduction.

Three main reduction tactics are available:

1984: compute: reduction machine (inside the kernel)
2004: vm_compute: virtual machine (byte-code)

2011: native_compute: compilation (native-code)

Several levels of trust:

method ‘ trust ‘ speed
compute +++ +
vm_compute ++ ++
native_compute | + +++
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Numbers in CoQ

1984:
1994
1999:
2001:
2008:
2008:
2000:
2008:

Erik Martin-Dorel

nat Peano
positive, N, Z radix 2
R a classical axiomatization of R
Float pair of integers
bigN, bigZ, bigQ binary tree
Interval parametric
C-CoRN an intuitionistic axiomatization of R
exact transcendental computation exact reals
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Floating-Point (FP) arithmetic

A finite, radix-f3, precision-p FP number is a rational number of the form

(M,e) €ZXZ
z=Mx BPH with {|M| < pP (1)

Emin < € < €max

@ the smallest e satisfying (1) is called the exponent of
@ the corresponding M is called the integral significand of z

e z is said normal if P! < | M|, otherwiseitissubnormal and e = emin
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Correct rounding

Definition (Rounding mode for a FP format IF)

A function o : R — F U {£o0} satisfying
Vz,y €R, <y = o(z) < o(y),
VeeR, ze€F = o(z)

x.
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Correct rounding

Definition (Rounding mode for a FP format [F)

An increasing function o : R — F U {£00} whose restriction to I is identity.

Example (Standard rounding modes)
toward —oo: RD(z) is the largest FP number < z;
U(

toward +oo: RU(z)
toward zero: RZ(z)
R

is the smallest FP number > z;

is equal to RD(z) if z > 0, and to RU(z) if z < 0;
N(z) is the FP number closest to z. Incaseofatie: the one
whose integral significand is even (3 another tie-breaking rule)

to nearest:

Definition (Correctly rounded operation with respect to o)

For a given operation x : R x R — R, an implementation that returns the
value o(z x y) for all (z,y) € F x F.
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The IEEE 754 standard for floating-point arithmetic

IEEE 754-1985: requires correct rounding for +, —, x, =, /- and some
conversions. Advantages:

o if the result of an operation is exactly representable, we get it;
@ if we just use these correctly rounded operations, deterministic arithmetic
— we can thus design algorithms and proofs that use the specifications;

@ accuracy and portability are improved,;

IEEE 754-2008: recommends correct rounding for standard mathematical
functions

Erik Martin-Dorel Contributions to the Formal Verification of Arithmetic Algorithms 7/ 44
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The Table Maker's Dilemma (TMD) (1/2)

Breakpoint f(z) is located in this interval

|
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FP numbers
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The Table Maker's Dilemma (TMD) (1/2)

Breakpoint f(z) is located in this interval
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The Table Maker's Dilemma (TMD) (2/2)

Solving the TMD = knowing the accuracy of the approximation that is
required to avoid hard-to-round cases:

@ either find the hardest-to-round cases of f: the FP values z such that
f(z) is closest to a breakpoint without being a breakpoint;

e or find a lower bound to the nonzero distance between f(z) and a
breakpoint.
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The Table Maker's Dilemma (TMD) (2/2)

Conclusion
000

Solving the TMD = knowing the accuracy of the approximation that is
required to avoid hard-to-round cases:

@ either find the hardest-to-round cases of f: the FP values z such that
f(z) is closest to a breakpoint without being a breakpoint;

e or find a lower bound to the nonzero distance between f(z) and a
breakpoint.

Example of hardest-to-round (HR) case

The HR case of exp for decimal64 and rounding-to-nearest is:
z = 9.407822313572878 x 102

exp(z) = 1.098645682066338 5 0000000000000000 278.. ..

Erik Martin-Dorel Contributions to the Formal Verification of Arithmetic Algorithms 9/ 44
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The SLZ algorithm

TMD First step: Turn the TMD into a problem involving integers

4| Domain splitting/Polynomial approximation/Rounding/Scaling |

Y

Integer SValP P € Z[X], find all & € [—A,A] such that | P(z) cmod M| < B)
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The SLZ algorithm

TMD First step: Turn the TMD into a problem involving integers

4| Domain splitting/Polynomial approximation/Rounding/ScaIing|

Y
(Integer SValP P € Z[X], find all & € [—A,A] such that | P(z) cmod M| < B)
——| Q(X,Y) := P(X) - Y € Z[X,Y] |

Y

(Biv. Small Mod. Roots Find all (z,y) € [-A,A] x [-B,B] s.t. Q(z,y) =0 (mod M))
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The SLZ algorithm

TMD First step: Turn the TMD into a problem involving integers

4| Domain splitting/Polynomial approximation/Rounding/Scaling |

A
(Integer SValP P € Z[X], find all & € [—A,A] such that | P(z) cmod M| < B)
——| Q(X,Y) := P(X) - Y € Z[X,Y] |

A

(Biv_ Small Mod. Roots Find all (z,y) € [-A,A] X [-B,B] s.t. Q(z,y) =0 (mod M))

Coppersmith’s technique with parameter a > 0:

Consider Q;;(X,Y) = X'Q(X,Y) M*~7 (j< a).
Heuristically, find two Z-linear combinations vy, v2 of (Qj,;) s.t.
Vz,y €Z, |lz| <A A |yl < B = |u(z,y)| < M.
Notice that the small modular roots of Q mod M also satisfy

vp(z,y) =0 (mod M®).
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The SLZ algorithm

TMD First step: Turn the TMD into a problem involving integers

4| Domain splitting/Polynomial approximation/Rounding/Scaling |

Y
(Integer SValP P € Z[X], find all & € [—A,A] such that | P(z) cmod M| < B)
——| Q(X,Y) := P(X) - Y € Z[X,Y] |

Y

(Biv_ Small Mod. Roots Find all (z,y) € [—A,A] x [-B,B] s.t. Q(z,y) =0 (mod M))

Coppersmith’s technique with parameter a > 0:

Consider Q;;(X,Y) = X'Q(X,Y) M*~7 (j< a).
Heuristically, find two Z-linear combinations vy, v2 of (Qj,;) s.t.
Va,y €Z, |t| <A A |yl < B = |u(z,y)| < M°.
Notice that the small modular roots of Q mod M also satisfy

vp(z,y) =0 (mod M®).

y
(Order—2 Small Int. Roots)—(Find all (z,y) € [-A,A] x [-B,B] s.t. vi1(z,y) =0 = v2(x, y))

_—l Bivariate Hensel Iiftingl

Y
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The SLZ algorithm
CoqApprox

TMD First step: Turn the TMD into a problem involving integers

4| Domain splitting/Polynomial approximation/Rounding/Scaling |

A
(Integer SValP P € Z[X], find all & € [—A,A] such that | P(z) cmod M| < B)
——| Q(X,Y) := P(X) - Y € Z[X,Y] |

A

(Biv_ Small Mod. Roots Find all (z,y) € [-A,A] X [-B,B] s.t. Q(z,y) =0 (mod M))

Coppersmith’s technique with parameter a > 0:

Consider Q;;(X,Y) = X'Q(X,Y) M*~7 (j< a).
Heuristically, find two Z-linear combinations vy, v2 of (Qj,;) s.t.
Vz,y €Z, |lz| <A A |yl < B = |u(z,y)| < M.
Notice that the small modular roots of Q mod M also satisfy

vp(z,y) =0 (mod M®).

v
(Order—2 Small Int. Roots)—(Find all (z,y) € [-A4,A] x [-B,B] s.t. vi(z,y) =0 = v2(x, y))

_—l Bivariate Hensel Iiftingl Coq Hensel

4
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@ Introduction and Motivations
© Rigorous Polynomial Approximation in CoQ (CogApprox)
© Small-Integral-Roots Certificates in Coq (CoqHensel)

@ Conclusion and Perspectives
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Rigorous approximation of functions by polynomials (1/2)

@ Polynomial approximation

e A common way to represent real functions on machines
e Only solution for platforms where only 4+, —, X are available
o Used by most computer algebra systems

@ Bounds for approximation errors

o Not always available or guaranteed to be accurate in numerical software
e Yet they may be crucial to ensure the reliability of systems
o A key part of the SLZ algorithm

Erik Martin-Dorel Contributions to the Formal Verification of Arithmetic Algorithms 11 / 44
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Rigorous approximation of functions by polynomials (2/2)

In the setting of rigorous polynomial approximation (RPA):
Approximate the function while fully controlling the error

@ May use floating-point arithmetic as support for efficient computation

@ Systematically compute interval enclosures instead of mere
approximations

Erik Martin-Dorel Contributions to the Formal Verification of Arithmetic Algorithms 12 / 44
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Rigorous approximation of functions by polynomials (2/2)

In the setting of rigorous polynomial approximation (RPA):
Approximate the function while fully controlling the error
@ May use floating-point arithmetic as support for efficient computation

@ Systematically compute interval enclosures instead of mere
approximations

From rigorous to formally verified polynomial approximation:
@ A computational implementation of Taylor Models in CoQ

@ Formal proofs that the provided error bounds are not underestimated

Erik Martin-Dorel Contributions to the Formal Verification of Arithmetic Algorithms 12 / 44
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Brief overview of Interval Arithmetic (1A)

@ Interval = pair of real numbers (or floating-point numbers)

e E.g., [3.1415, 3.1416] > «

e Operations on intervals,e.g., [2,4] — [0,1] :=[2— 1,4 — 0] = [1,4],
with the enclosure property: Vz € [2,4], Vy € [0,1], = — y € [1,4].

@ Tool for bounding the range of functions
@ Dependency problem: for f(z) = z- (1 —z) and X = [0, 1], a naive
use of IA gives eval(f, X) = [0, 1] while the image of X by f is [0, %]

@ IA is not directly applicable to bound approximation errors ¢ := p — f

Erik Martin-Dorel Contributions to the Formal Verification of Arithmetic Algorithms 13 / 44
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Rigorous Polynomial Approximation

Definition

An order-n Rigorous Polynomial Approximation (RPA) for a function
f:DCR— Rover I is a pair (P, A) where P is a degree-n polynomial
and A is an interval, such that Vz € I, f(z) — P(z) € A.

Erik Martin-Dorel Contributions to the Formal Verification of Arithmetic Algorithms 14 / 44
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Rigorous Polynomial Approximation

Definition
An order-n Rigorous Polynomial Approximation (RPA) for a function

f:DCR — Rover Iis a pair (P, A) where P is a degree-n polynomial
and A is an interval, such that Vz € I, f(z) — P(z) € A.

Various possible instances of RPAs, depending on the polynomial basis and
on the algorithms that are used:

Taylor Models: truncated Taylor series, naturally expressed in Taylor basis
Chebyshev Models: Chebyshev interpolants / truncated Chebyshev series
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Rigorous Polynomial Approximation

Definition
An order-n Rigorous Polynomial Approximation (RPA) for a function

f:DCR — Rover Iis a pair (P, A) where P is a degree-n polynomial
and A is an interval, such that Vz € I, f(z) — P(z) € A.

Various possible instances of RPAs, depending on the polynomial basis and
on the algorithms that are used:

Taylor Models: truncated Taylor series, naturally expressed in Taylor basis
Chebyshev Models: Chebyshev interpolants / truncated Chebyshev series

Taylor Models in CogApprox

As regards A: interval remainder with floating-point bounds;
As regards P: small interval coefficients with floating-point bounds
= rounding errors are directly handled by the interval arithmetic

Erik Martin-Dorel Contributions to the Formal Verification of Arithmetic Algorithms 14 / 44
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Taylor-Lagrange Remainder

Theorem (Taylor-Lagrange)
If f is n+ 1 times derivable on I, then Yz € I, 3¢ between xy and z s.t.:

f(z) = <Zf ('350) (z—a;o)z> +&(lﬂ_%)n+1.
i=0

7! (n+1)!
Taylor expansion A(z,6)
Outline
(4)
For P: Compute interval enclosures of ! z('ﬂﬁo)? =0,...,n
For A: Compute enclosure of A(z,§): '
C I ff("Jrl)(g) d ded A f("+1)( ) I +1
t L) =L (] — )"
ompute enclosure o 1) and deduce 1) (I — x9)

Erik Martin-Dorel Contributions to the Formal Verification of Arithmetic Algorithms 15 / 44
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Taylor-Lagrange Remainder

Theorem (Taylor-Lagrange)
If f is n+ 1 times derivable on I, then Yz € I, 3¢ between xy and z s.t.:

n_ (i) N D)
(e) = (Z L2l xoV) + @ mp,

Taylor expansion A(z,8)

Outline
FO(zp)

For P: Compute interval enclosures of , 1=0,...,n.

For A: Compute enclosure of A(z,§):

Fr(E) _ f ()
m and deduce A := m

n+1

Compute enclosure of (I — )

Composite functions = enclosure for A can be largely overestimated

Erik Martin-Dorel Contributions to the Formal Verification of Arithmetic Algorithms 15 / 44
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Methodology of Taylor Models
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Define arithmetic operations on Taylor Models:

® TMagda, TMpu1, TMcompv and TMaiv

o Eg. T i ((P1, A1), (Po, A2)) = (P + P2, Aq + Ag).
A two-fold approach:

@ Apply these operations recursively on the structure of the function

@ Use Taylor-Lagrange remainder for atoms (i.e., for base functions)

Erik Martin-Dorel Contributions to the Formal Verification of Arithmetic Algorithms 16 / 44



Introduction Rigorous Polynomial Approximation in CoQ Small-Integral-Roots Certificates in CoQ Conclusion
00000000000 00000@0000000000000 000000000000 [e]e]e}

Methodology of Taylor Models

Define arithmetic operations on Taylor Models:

® TMagda, TMpu1, TMcompv and TMaiv

o E.g., TMaqgq : ((Pl,Al), (P2,A2)) = (P1+ P2, A1 + Ag).
A two-fold approach:

@ Apply these operations recursively on the structure of the function

@ Use Taylor-Lagrange remainder for atoms (i.e., for base functions)

= Need to consider a relevant class for base functions, so that:

@ We can easily compute their successive derivatives

@ The interval remainder computed for these atoms is thin enough

Erik Martin-Dorel Contributions to the Formal Verification of Arithmetic Algorithms 16 / 44
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D-finite functions (a.k.a. holonomic functions)

Definition

A D-finite function is a solution of a homogeneous linear ordinary
differential equation with polynomial coefficients:

4 (@)Y (@) + -+ a1(2)y'(z) + a0(2)y(z) = 0, for given o) € K[X].

Property

The Taylor coefficients of these functions satisfy a linear recurrence with
polynomial coefficients

Erik Martin-Dorel Contributions to the Formal Verification of Arithmetic Algorithms 17 / 44
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D-finite functions (a.k.a. holonomic functions)

Definition

A D-finite function is a solution of a homogeneous linear ordinary
differential equation with polynomial coefficients:

4 (@)Y (@) + -+ a1(2)y'(z) + a0(2)y(z) = 0, for given o) € K[X].

Property

The Taylor coefficients of these functions satisfy a linear recurrence with
polynomial coefficients — fast numerical computation of the coefficients

Example (the exponential function)

The Taylor coefficients of exp at 2y satisfy the recurrence
Vn € N, (n+ 1)upt1 = uy, with ug = exp(ap) as an initial condition.

In, sin, arcsin, sinh, arcsinh, arctan, arctanh. ..are D-finite; tan is not

Erik Martin-Dorel Contributions to the Formal Verification of Arithmetic Algorithms 17 / 44
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Formally verified computation: Coglnterval

o Abstract interface for intervals
@ Instantiation to intervals with floating-point bounds
@ Formal verification with respect to the Reals library
forz,y : R
and X, Y : IR
reX NyeY = z+yeX+Y
rz e X = exp(z) € exp(X)

Erik Martin-Dorel Contributions to the Formal Verification of Arithmetic Algorithms 18 / 44
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Implementation of Taylor Models in CoQ

Focus on being generic:
@ a Taylor Model is an instance of a Rigorous Polynomial Approximation,
i.e., a pair (P, A)
@ generic with respect to

o the type of coefficients of polynomial P,
o the type of P and the implementation of related operations
e the type of interval A

Prove correctness with respect to the standard Reals library

Erik Martin-Dorel Contributions to the Formal Verification of Arithmetic Algorithms 19 / 44
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A modular implementation of Taylor Models

Coefficient p------------29 >| TaylorRec

!

|

|
|

Y

Polynomial - -----------2 > TaylorPoly

!
|
|
|
| -
|
|
|
|
|

Y £~
RigPolyApprox TaylorModel

) >
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Comparison with a dedicated tool implemented in C

Sollya [S.Chevillard, M.Joldes, C.Lauter]

@ written in C
@ based on the MPFI library

@ contains an implementation of
univariate Taylor Models

@ in an imperative-programming
framework

@ polynomials as arrays of
coefficients

CogApprox
formalized in CoQ
based on the Coglnterval library

implements Taylor Models using a
similar algorithm

in a functional-programming
framework

polynomials as lists of coefficients
(linear access time)

CoqQ is around 10 times slower than Sollya! It's very good!

Erik Martin-Dorel
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Some benchmarks for base functions

Conclusion
000

Timing Approximation error

Coq |Sollya CoqQ Sollya Mathematical
f=exp
prec=1000, deg=70 |0.716s/0.093s(1.80 x 27996{1.79 x 27996| 1,79 x 2906
I=[127/128,1]
f=sin
prec=1000, deg=70 |2.6365/0.088s|1.45 x 27998(1.44 x 27908| 1.44 x 27908
I=[127/128,1]
f = arctan
prec=1000, deg=118 [2.969s|0.420s|1.71 x 27913|1.30 x 27967|1.07 x 21001
I=[127/128,1]

@ with CoQ v8.3pl4 using vm_compute,

@ and Sollya v3.0 using taylorform(), along with supnorm() for last column.

Erik Martin-Dorel
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Some benchmarks for composite functions

Timing Approximation error
CoQ |Sollya CcoqQ Sollya Mathematical

f=exp xsin
prec=400, deg=20 | 0.812s [0.013s|1.36 x 27222|1.36 x 27222|1.36 x 27222
I=[127/128,1]
f=exp xsin

prec=400, deg=40 | 1.736s [0.040s|1.01 x 27397|1.53 x 27397| 1.06 x 2402
I=[127/128,1]
f =exposin

prec=400, deg=20 | 7.165s |0.011s|1.56 x 27192|1.83 x 27192| 1.56 x 27192
I=[127/128,1]
f =exposin

prec=400, deg=40 [52.6875|0.065s|1.88 x 273851.38 x 27384|1.88 x 2738
I=[127/128,1]

@ with CoQ v8.3pl4 using vm_compute,

@ and Sollya v3.0 using taylorform(), along with supnorm() for last column.
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Proving Taylor Models in CoQ
Definition
Let f : I — R be a function, @y be a small interval around an expansion point zj.
Let T be a polynomial with interval coefficients ag, ..., a, and A an interval.
We say that (7', A) is a Taylor Model of f at xg on I when
o C I,
0€ A,
n .
V& € Tp, g € g, ..., € ay,Vz € I, f(z)— > ai(z—&)" € A.
i=0

Erik Martin-Dorel Contributions to the Formal Verification of Arithmetic Algorithms 24 / 44




Introduction Rigorous Polynomial Approximation in CoQ Small-Integral-Roots Certificates in CoQ Conclusion
00000000000 0000000000000 0e0000 000000000000 [e]e]e}

Extending the hierarchy to handle proofs

Coefficient
;
|

fffffffffffff >| TaylorRec

rPoly

Y k/

—

RigPolyApprox TaylorModel

) >
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Extending the hierarchy to handle proofs

~~~~~~~~~~~~~ [roiores]

(PropCoef) : (PropCoefExact)
|
|

|

A
|
: (Polynomial - -----------= > TaylorPoly
|
! (PropPoly) @ropPolyExact)
|
|
|
|

Q’roppolyMonomD (PropPolyMonomExact)

Y V3 I—
RigPolyApprox TaylorModel

) >
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Extending the hierarchy to handle proofs

~~~~~~~~~~~~~ [roiores]

(PropCoef) : (PropCoefExact)
|
|

|

A
|
: (Polynomial - -----------= > TaylorPoly
|
! (PropPoly) @ropPolyExact)
|
|
|
|

Q’roppolyMonomD (PropPolyMonomExact)
Y V3 -

RigPolyApprox TaylorModel

validTM

i

) >
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|dea of the proof of TMs for the exponential
TMexp(To, I, 1) := (@g :: ... i Gp, A) with @
a, exp(I
cI, ap= : = A= P (T — o)t
o do = exp(@0),  ani1 n+1 (n+ 1) x( o)
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|dea of the proof of TMs for the exponential

TMexp(To, I, 1) := (@g :: ... i Gp, A) with
a, exp(I)
I, ap= = A= TP (1)t
o C I, ao=exp(zo), ant1 1 (n+1)!><( o)

We want to show that TMeyp (o, I, 1) is a valid TM for exp:

@ 1o C I,
e 0€e A,
@ V¢ € xp,dag € ag, ..., € ay,
n .
Ve eI, exp(z) — Y a;(z—&)" € A.
i=0
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|dea of the proof of TMs for the exponential

TMexp(To, I, 1) := (@g :: ... i Gp, A) with
a, exp(I)
I, ap= = A= TP (1)t
o C I, ao=exp(zo), ant1 1 (n+1)!><( o)

We want to show that TMeyp (o, I, 1) is a valid TM for exp:
@ 1o C I,
e 0€e A,
@ V¢ € xp,dag € ag, ..., € ay,

Ve e I, exp(z) — > a;(z — fo)i €A
i=0

o, — XP0)

€ a; such that for all z € I,

xp(£o) i_ exp(§)
L (= &) —(n+1)!><(x

.,

exp(z) —

'M3

— &))" for some ¢ € I.

7
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Generalization to an arbitrary D-finite function f

Difficulties:

@ Find minimal assumptions on the function f

e the derivative is compatible with the recurrence relation
e we have a compatible interval evaluator for f

@ Provide the Taylor-Lagrange theorem for standard Reals

~» Generic proof for first-order and second-order recurrences.
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Proofs for composite functions

Proof of the algorithm for each algebraic rule
@ TMaqq: straightforward
@ TMp,1: rely on truncated multiplication of polynomials

® TMcomp: rely on TMpy1, TMaqq and TMs for constant functions

® TMyiy: it's a TM for f x ((x — %) o g)
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Functions missing from support libraries

Functions missing from the Reals library

@ cannot provide a proof for the Taylor Model

@ adding them is so far done in a case-by-case manner
— find a generic way of adding a new function to Reals

— e.g. by using a differential equation or a recurrence relation as
definition
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Functions missing from support libraries

Functions missing from the Reals library
@ cannot provide a proof for the Taylor Model
@ adding them is so far done in a case-by-case manner
— find a generic way of adding a new function to Reals
— e.g. by using a differential equation or a recurrence relation as
definition
Functions missing from Coglnterval
@ cannot provide an initial value for the Taylor Model
— just implement the missing functions in Coglnterval

— may use other techniques (e.g., fixed point theorems)
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Goal: certifying the SLZ algorithm

Integer SValP P € Z[X], find all & € [—A,A] such that | P(z) cmod M]| < B)
1 Q(X,Y) == P(X) - Y €ZX,Y]|
Y

(Biv. Small Mod. Roots )—{ Find all (z,4) € [~4,A] x [~B,B] st. Q(x,y) =0 (mod M))

Coppersmith’s technique with parameter a > 0:

Consider Q;;(X,Y) = X'Q(X,Y) M~/ (j< a).
Heuristically, find two Z-linear combinations vy, v2 of (Q;,;) s.t.
Vz,y €Z, |z| <A A |yl < B = |u(z, y)| < M.
Notice that the small modular roots of Q mod M also satisfy

vp(z,y) =0 (mod M®).

¥
(Order—2 Small Int. Roots)—(Find all (z,y) € [-A,A] x [-B,B] s.t. vi(z,y) =0 = va(z, y))

_—l Bivariate Hensel Iiftingl

Y
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Goal: certifying the SLZ algorithm

Integer SValP P € Z[X], find all & € [—A,A] such that | P(z) cmod M]| < B)
1 Q(X,Y) == P(X) - Y €ZX,Y]|
Y

(Biv. Small Mod. Roots )—{ Find all (z,4) € [~4,A] x [~B,B] st. Q(x,y) =0 (mod M))

Coppersmith’s technique with parameter a > 0:

Consider Q;;(X,Y) = X'Q(X,Y) M~/ (j< a).
Heuristically, find two Z-linear combinations vy, v2 of (Q;,;) s.t.
Vz,y €Z, |z| <A A |yl < B = |u(z, y)| < M.
Notice that the small modular roots of Q mod M also satisfy

vp(z,y) =0 (mod M®).

¥
(Order—2 Small Int. Roots)—(Find all (z,y) € [-A,A] x [-B,B] s.t. vi(z,y) =0 = va(z, y))

_—l Bivariate Hensel Iiftingl

Y

( certificate )
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Main steps of the formalization

Define bivariate Hensel lifting as a fixpoint;

Prove bivariate Hensel's lemma;

Define order-2 SIntRootP certificates as an inductive type;
Define order-2 SIntRootP checker as a Boolean predicate;
Prove its soundness: if a certificate is accepted then it is valid,
Define ISValP certificates;

Define ISValP checker;

Prove its soundness;

000000 O0O0OFe

Redo steps 3 and 4, 6 and 7 in a generic way to allow one to
instantiate the checkers with efficient datatypes;

(=]

Derive the final correctness proofs, using steps 5 and 8 as well as a
series of homomorphisms lemmas rewritings.
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Prove its soundness;
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Derive the final correctness proofs, using steps 5 and 8 as well as a
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Main steps of the formalization

Define bivariate Hensel lifting as a fixpoint;

Prove bivariate Hensel's lemma;

Define order-2 SIntRootP certificates as an inductive type;
Define order-2 SIntRootP checker as a Boolean predicate;
Prove its soundness: if a certificate is accepted then it is valid,
Define ISValP certificates;

Define ISValP checker;

Prove its soundness;

0000006 00O0

Redo steps 3 and 4, 6 and 7 in a generic way to allow one to
instantiate the checkers with efficient datatypes;

e

Derive the final correctness proofs, using steps 5 and 8 as well as a
series of homomorphisms lemmas rewritings.
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Bivariate Hensel lifting

Algorithm 1: Bivariate Hensel lifting (quadratic version)

Input : Py, P, € Z[X,Y],
pel,
(ug, v) € Z* s.t. Pi(ug, vg) =0 (mod p2k), i=1,2,
and det Jp, p,(uk, vx) Z0 (mod p).
Output: (w1, vhs1) € Z2 sit. Pi(Ups1, vpe1) =0 (mod p2™ ), i =1,2.

—1
(Uk+1> - (W) _ JPl,PQ(Uk,Uk)} (Pl(ukavk)> mod p2*!
Uk+1 Uk

poit \ Pa(u, vr)
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Hensel's lemma: a uniqueness result for modular roots

Let Py, Py € Z[X,Y] and let p be a prime satisfying
Vz,t € Z, Pi(z,t) =0= Pa(z,t) (mod p) = det Jp, p,(2,t) #0 (mod p).

For any (z,y) € Z x Z, if we have Py(z,y) =0 = Py(z,y) (mod p") for

a given k € N, then for
up\ . (xmodp
)]  \ymodp]/’

the sequence (u;, v;), defined by the recurrence relation

Vi € [0, k[, (Z:i) = (Z;)— Jpl,p2<ui,vz->} (P 1“‘“””) mod p*

p21+1 Pg(ui, ’Ui)
satisfies: .
Vi e [0, k], (“) = (‘T mod p2i> .
Uy y mod p
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Order-2 SIntRootP certificates

Record bivCertif : Set := BivCertif
{ bc_P1 : {bipoly Z}

; bc_P2 : {bipoly Z}

; bc_A : Z

; bc_ B : Z

; bc_p : nat

; bc_k : nat

; bc_L : seq (Z * Z * bool)

Erik Martin-Dorel Contributions to the Formal Verification of Arithmetic Algorithms 34 / 44



Introduction Rigorous Polynomial Approximation in CoQ Small-Integral-Roots Certificates in CoQ Conclusion
00000000000 0000000000000 000000 00000e000000 000

Order-2 SIntRootP certificates checker

Our implemented checker will accept such a certificate
(P1, Py, A, B, p, k, L) iff
epch
° ])21C > 2A and p2k > 2B
@ L contains only simultaneous roots of (P;, P2) modulo p2k, of
absolute value < ka/Q, and all roots modulo p are present
o for all (u,v,b) € L,

o Jp, p,(u,v) is invertible modulo p
o the Boolean b is true iff (u,v) is an actual root in Z
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ISValP certificates

Record cert_ISValP : Set := Cert_ISValP
{ c_P : {poly Z} (* hence Q(X,Y)=P(Y)— X *)
; ¢c.M: Z

; c_alpha : positive

; cC_A : Z

; c.B: Z

; c_ul : {bipoly Z} (* in basis M®*

i
; C_p : nat
; c_k : nat
; c_L : seq (Z * Z * bool)
.
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ISValP certificates checker

Definition check_ISValP (C : cert_ISValP) : bool :=
let: Cert_ISValP P M alpha A Bul u2 p kL :=Cin
let Q := poly_cons P (bipolyC (-1)) in

let vl := (bipoly_precalc_alpha ul alpha M) \Po Q in
let v2 := (bipoly_precalc_alpha u2 alpha M) \Po Q in
let Ma := Zpower_pos M alpha in

let C’ := BivCertif vl v2 AB p k L in

[&& O < M,

bimaphorner Zabs A B vl < Zabs Ma,
bimaphorner Zabs A B v2 < Zabs Ma
& biv_check C’].
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Concepts and libraries involved in the bivariate proofs

@ Signed integers (Z) with exponentiation and modulus ~ ssrzarith

Small natural numbers (N) with primality predicate ~» ssrnat, prime

e Rings Z/p™Z, modular inversion and divisibility results ~ zmodp, div

e Ring Z[X,Y] of bivariate polynomials over Z, with Horner evaluation
and Taylor theorem ~» bipoly, based on poly and ssralg

@ Need to manipulate a number of summations, typically after the
invocations of Taylor theorem ~» bigop

@ We also developed some material specific to 2-by-2 matrices,
including a modular version of Cramer rule whose correctness proof is

VAEM3(Z), u€Z?, ke, det A # 0 (mod p) = A (A'u) = u (mod p*")
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A generic implementation for effective certificates checkers

@ Most of poly data structures are not computational
@ Goal 1: allow to check integral-roots certificates inside C0OQ
@ Goal 2: allow to easily change data structures to speedup computation

—> Define generic checkers once-and-for-all and instantiate them with the
desired integer operations to avoid duplication of code

— Proof: Reuse the reference lemmas proved with SSReflect datatypes
and the rewriting lemmas that link both implementations:

Module Type CalcRingSig.
Parameters (T : Type) (R : comRingType) (toR : T -> R).
Parameter tadd : T -> T -> T.
Parameter toR_add :
forall a b, toR (tadd a b) = (toR a + toR b)%R.
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An implementation of “Integers Plus Positive Exponent”

@ Big ISValP certificates ~» coefficients scaled with a big power of 2
(e.g., (2n + 1) x 210629)
@ Develop a specialized instance of computational integers to handle
these integers
— Consider pairs (m, e) € bigZ x bigN for unevaluated dyadic numbers
m x 2¢ with e > 0

— Implement a generic module using a subset of the Coqlnterval library

Module CalcRingIPPE (Import C : FloatCarrier)
(Import E : CalcRingExpo C) <: CalcRingIntSig.

Notation typeZ := smantissa_type.

Record T := TZN { TZ : typeZ; TN : typeN }.

~> Speedup of 2x
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Benchmarks for the ISValP certificates checker (f = exp)

Inst. | prec prec’ | deg(P) max;(|P;]) M A B
#1 | 53 100 2 $1.68%x2237 2185 2139 912
#2 | 53 100 2 $1.22x2237 2185 2130 912
#3 | 53 300 12 $1.36x2996 2942 2696 232
#4 | 113 3000 90 $1.36x213661 913547 910661 972
Inst. |« M® | p k #L | timeto parse time to return true
#1 |2 2370 | 5 6 1 0.096s 0.092s
7T 6 2 0.132s 0.112s
#2 |2 2870 | 3 7 1 0.112s 0.092s
23 5 0 0.088s 0.172s
#3 |4 2368 | 5 9 0 0.420s 2.348s
#4 | 6 281282 1 5 14 0 17.4s 3h12m42s
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Contributions

@ CoqApprox: a modular formalization of Taylor Models in the CoQ
proof assistant
e with a generic approach involving D-finite functions
e taking advantage of the Coqlnterval library for interval arithmetic
— ability to compute some formally verified TMs in CoQ

@ CoqHensel: formalization of some effective checkers in CoqQ for
small-integral-roots problems as well as ISValP

e using Hensel lifting as a certifying algorithm
e relying on ZArith, BigZ, Coqlnterval as well as SSReflect
— ensure that no hard-to-round case for correct rounding has been forgotten

& Augmented computation of /22 + y? & Fast2Sum with double roundings
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Perspectives

@ For CogApprox:
e add more functions
e combine TMs with some Sums-of-Squares technique
e implement Chebyshev Models ~ tighter remainders
e investigate ways to ease the definition of RPAs from the ODE
e investigate ways to verify error bounds a posteriori

@ For CoqHensel:
e implement a fast algorithm for the multiplication over Z[X], and/or
for the composition over Z[X, Y]
e combine CogHensel & CoqApprox to get a complete TMD checker
e consider a possible extension of Hensel lifting to rational roots of
polynomials

© On formal floating-point:

o formalize Thm 7.3 (TwoSum with double roundings), Thm 6.4 (2D norms)
e investigate ways to ease similar formal proofs
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End of the Talk

Thank you for your attention!

The TaMaDi project homepage:
http://tamadi.gforge.inria.fr/
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