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Introduction Rigorous Polynomial Approximation in Coq Small-Integral-Roots Certificates in Coq Conclusion

Context and Motivations

Context:
The SLZ algorithm for solving (offline) the Table Maker’s Dilemma

→ Very long calculations using sophisticated, optimized methods
→ Either output some numerical data whose completeness cannot be

directly verified, or output a yes/no answer
→ These results are crucial to build reliable and efficient floating-point

implementations of mathematical functions with correct rounding
→ Impact on numerical software, including safety-critical systems

Goal:
Guarantee the results that are produced by the SLZ algorithmic chain

→ Design certificates that fit in with independent verification
→ Use formal methods: the Coq proof assistant
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The Coq proof assistant

We use Coq for
programming

strongly typed functional language
computation

proving
use higher order logic
build proofs interactively
program automatic tactics
check proofs
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Computing within the Coq proof assistant
Coq comes with a primitive notion of computation, called reduction.

Three main reduction tactics are available:

1984: compute: reduction machine (inside the kernel)
2004: vm_compute: virtual machine (byte-code)
2011: native_compute: compilation (native-code)

Several levels of trust:

method trust speed
compute +++ +
vm_compute ++ ++
native_compute + +++
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Numbers in Coq

1984: nat Peano
1994: positive, N, Z radix 2
1999: R a classical axiomatization of R
2001: Float pair of integers
2008: bigN, bigZ, bigQ binary tree
2008: Interval parametric
2000: C-CoRN an intuitionistic axiomatization of R
2008: exact transcendental computation exact reals
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Floating-Point (FP) arithmetic

A finite, radix-β, precision-p FP number is a rational number of the form

x = M × βe−p+1 with


(M , e) ∈ Z× Z
|M | < βp

emin 6 e 6 emax

(1)

the smallest e satisfying (1) is called the exponent of x
the corresponding M is called the integral significand of x
x is said normal if βp−1 6 |M |, otherwise it is subnormal and e = emin
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Correct rounding

Definition (Rounding mode for a FP format F)
A function ◦ : R→ F ∪ {±∞} satisfying{

∀x, y ∈ R, x 6 y =⇒ ◦(x) 6 ◦(y),
∀x ∈ R, x ∈ F =⇒ ◦(x) = x.

Definition (Rounding mode for a FP format F)
An increasing function ◦ : R→ F ∪ {±∞} whose restriction toF is identity.

Example (Standard rounding modes)
toward −∞: RD(x) is the largest FP number 6 x;
toward +∞: RU(x) is the smallest FP number > x;
toward zero: RZ(x) is equal to RD(x) if x > 0, and to RU(x) if x 6 0;
to nearest: RN(x) is the FP number closest to x. In case of a tie: the one

whose integral significand is even (∃ another tie-breaking rule)

Definition (Correctly rounded operation with respect to ◦)
For a given operation ∗ : R× R→ R, an implementation that returns the
value ◦(x ∗ y) for all (x, y) ∈ F× F.
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The IEEE 754 standard for floating-point arithmetic

IEEE 754-1985: requires correct rounding for +, −, ×, ÷,
√
· and some

conversions. Advantages:
if the result of an operation is exactly representable, we get it;
if we just use these correctly rounded operations, deterministic arithmetic

→ we can thus design algorithms and proofs that use the specifications;
accuracy and portability are improved;
. . .

IEEE 754-2008: recommends correct rounding for standard mathematical
functions
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The Table Maker’s Dilemma (TMD) (1/2)

R

FP numbers

Breakpoint f (x) is located in this interval
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The Table Maker’s Dilemma (TMD) (1/2)

R
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FP numbers
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?
Hard-to-round case
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The Table Maker’s Dilemma (TMD) (2/2)

Solving the TMD = knowing the accuracy of the approximation that is
required to avoid hard-to-round cases:

either find the hardest-to-round cases of f : the FP values x such that
f (x) is closest to a breakpoint without being a breakpoint;
or find a lower bound to the nonzero distance between f (x) and a
breakpoint.

Example of hardest-to-round (HR) case
The HR case of exp for decimal64 and rounding-to-nearest is:

x = 9.407822313572878× 10−2

exp(x) = 1.098645682066338 5 0000000000000000 278 . . .
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The SLZ algorithm

TMD First step: Turn the TMD into a problem involving integers

Domain splitting/Polynomial approximation/Rounding/Scaling

Integer SValP P ∈ Z[X ], find all x ∈ J−A,AK such that |P(x) cmod M | 6 B

Q(X ,Y ) := P(X)−Y ∈ Z[X ,Y ]

Biv. Small Mod. Roots Find all (x, y) ∈ J−A,AK× J−B,BK s.t. Q(x, y) ≡ 0 (mod M)

Coppersmith’s technique with parameter α > 0:
Consider Qi,j(X ,Y ) = X iQ(X ,Y )jMα−j (j 6 α).
Heuristically, find two Z-linear combinations v1, v2 of (Qi,j) s.t.

∀x, y ∈ Z, |x| 6 A ∧ |y| 6 B =⇒ |vk(x, y)| < Mα.
Notice that the small modular roots of Q mod M also satisfy

vk(x, y) ≡ 0 (mod Mα).

Order-2 Small Int. Roots Find all (x, y) ∈ J−A,AK× J−B,BK s.t. v1(x, y) = 0 = v2(x, y)

Bivariate Hensel lifting
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Outline

1 Introduction and Motivations

2 Rigorous Polynomial Approximation in Coq (CoqApprox)

3 Small-Integral-Roots Certificates in Coq (CoqHensel)

4 Conclusion and Perspectives
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Rigorous approximation of functions by polynomials (1/2)

Polynomial approximation
A common way to represent real functions on machines
Only solution for platforms where only +, −, × are available
Used by most computer algebra systems

Bounds for approximation errors
Not always available or guaranteed to be accurate in numerical software
Yet they may be crucial to ensure the reliability of systems
A key part of the SLZ algorithm
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Rigorous approximation of functions by polynomials (2/2)

In the setting of rigorous polynomial approximation (RPA):
Approximate the function while fully controlling the error

May use floating-point arithmetic as support for efficient computation
Systematically compute interval enclosures instead of mere
approximations

From rigorous to formally verified polynomial approximation:
A computational implementation of Taylor Models in Coq
Formal proofs that the provided error bounds are not underestimated
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Brief overview of Interval Arithmetic (IA)

Interval = pair of real numbers (or floating-point numbers)
E.g., [3.1415, 3.1416] 3 π
Operations on intervals, e.g., [2, 4]− [0, 1] := [2− 1, 4− 0] = [1, 4],
with the enclosure property: ∀x ∈ [2, 4], ∀y ∈ [0, 1], x − y ∈ [1, 4].
Tool for bounding the range of functions

Dependency problem: for f (x) = x · (1− x) and X = [0, 1], a naive
use of IA gives eval(f ,X) = [0, 1] while the image of X by f is [0, 1

4 ]
IA is not directly applicable to bound approximation errors e := p − f
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Rigorous Polynomial Approximation

Definition
An order-n Rigorous Polynomial Approximation (RPA) for a function
f : D ⊂ R→ R over I is a pair (P,∆) where P is a degree-n polynomial
and ∆ is an interval, such that ∀x ∈ I , f (x)− P(x) ∈∆.

Various possible instances of RPAs, depending on the polynomial basis and
on the algorithms that are used:
Taylor Models: truncated Taylor series, naturally expressed in Taylor basis
Chebyshev Models: Chebyshev interpolants / truncated Chebyshev series

Taylor Models in CoqApprox
As regards ∆: interval remainder with floating-point bounds;
As regards P: small interval coefficients with floating-point bounds
=⇒ rounding errors are directly handled by the interval arithmetic
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Taylor-Lagrange Remainder

Theorem (Taylor-Lagrange)
If f is n + 1 times derivable on I , then ∀x ∈ I , ∃ξ between x0 and x s.t.:

f (x) =
( n∑

i=0

f (i)(x0)
i! (x − x0)i

)
︸ ︷︷ ︸

Taylor expansion

+ f (n+1)(ξ)
(n + 1)! (x − x0)n+1

︸ ︷︷ ︸
∆(x,ξ)

.

Outline

For P: Compute interval enclosures of f (i)(x0)
i! , i = 0, . . . ,n.

For ∆: Compute enclosure of ∆(x, ξ):

Compute enclosure of f (n+1)(ξ)
(n + 1)! and deduce ∆ := f (n+1)(I )

(n + 1)! (I − x0)n+1

Composite functions ⇒ enclosure for ∆ can be largely overestimated
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Methodology of Taylor Models

Define arithmetic operations on Taylor Models:

TMadd, TMmul, TMcomp, and TMdiv

E.g., TMadd :
(
(P1,∆1), (P2,∆2)

)
7→ (P1 + P2,∆1 + ∆2).

A two-fold approach:

Apply these operations recursively on the structure of the function
Use Taylor-Lagrange remainder for atoms (i.e., for base functions)

⇒ Need to consider a relevant class for base functions, so that:

We can easily compute their successive derivatives
The interval remainder computed for these atoms is thin enough
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D-finite functions (a.k.a. holonomic functions)

Definition
A D-finite function is a solution of a homogeneous linear ordinary
differential equation with polynomial coefficients:
ar(x)y(r)(x) + · · ·+ a1(x)y′(x) + a0(x)y(x) = 0, for given ak ∈ K[X ].

Property
The Taylor coefficients of these functions satisfy a linear recurrence with
polynomial coefficients

→ fast numerical computation of the coefficients

Example (the exponential function)
The Taylor coefficients of exp at x0 satisfy the recurrence
∀n ∈ N, (n + 1)un+1 = un , with u0 = exp(x0) as an initial condition.

ln, sin, arcsin, sinh, arcsinh, arctan, arctanh. . . are D-finite; tan is not
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Formally verified computation: CoqInterval

Abstract interface for intervals
Instantiation to intervals with floating-point bounds
Formal verification with respect to the Reals library

for x, y : R

and X ,Y : IR

x ∈ X ∧ y ∈ Y =⇒ x + y ∈ X + Y

x ∈ X =⇒ exp(x) ∈ exp(X)
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Implementation of Taylor Models in Coq

Focus on being generic:
a TaylorModel is an instance of a Rigorous Polynomial Approximation,
i.e., a pair (P,∆)
generic with respect to

the type of coefficients of polynomial P,
the type of P and the implementation of related operations
the type of interval ∆

Prove correctness with respect to the standard Reals library
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A modular implementation of Taylor Models

RigPolyApprox TaylorModel

Polynomial TaylorPoly

Coefficient

Interval

TaylorRec

interface

module
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Comparison with a dedicated tool implemented in C

Sollya [S.Chevillard,M.Joldeş, C.Lauter]

written in C

based on the MPFI library

contains an implementation of
univariate Taylor Models

in an imperative-programming
framework

polynomials as arrays of
coefficients

CoqApprox

formalized in Coq

based on the CoqInterval library

implements Taylor Models using a
similar algorithm

in a functional-programming
framework

polynomials as lists of coefficients
(linear access time)

Coq is around 10 times slower than Sollya! It’s very good!
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Some benchmarks for base functions

Timing Approximation error
Coq Sollya Coq Sollya Mathematical

f = exp
prec=1000, deg=70
I =[127/128, 1]

0.716s 0.093s 1.80× 2−906 1.79× 2−906 1.79× 2−906

f = sin
prec=1000, deg=70
I =[127/128, 1]

2.636s 0.088s 1.45× 2−908 1.44× 2−908 1.44× 2−908

f = arctan
prec=1000, deg=118
I =[127/128, 1]

2.969s 0.420s 1.71× 2−913 1.30× 2−967 1.07× 2−1001

with Coq v8.3pl4 using vm_compute,

and Sollya v3.0 using taylorform(), along with supnorm() for last column.
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Some benchmarks for composite functions

Timing Approximation error
Coq Sollya Coq Sollya Mathematical

f = exp× sin
prec=400, deg=20
I =[127/128, 1]

0.812s 0.013s 1.36× 2−222 1.36× 2−222 1.36× 2−222

f = exp× sin
prec=400, deg=40
I =[127/128, 1]

1.736s 0.040s 1.01× 2−397 1.53× 2−397 1.06× 2−402

f = exp ◦ sin
prec=400, deg=20
I =[127/128, 1]

7.165s 0.011s 1.56× 2−192 1.83× 2−192 1.56× 2−192

f = exp ◦ sin
prec=400, deg=40
I =[127/128, 1]

52.687s 0.065s 1.88× 2−385 1.38× 2−384 1.88× 2−385

with Coq v8.3pl4 using vm_compute,
and Sollya v3.0 using taylorform(), along with supnorm() for last column.
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Proving Taylor Models in Coq

Definition
Let f : I → R be a function, x0 be a small interval around an expansion point x0.
Let T be a polynomial with interval coefficients a0, . . . ,an and ∆ an interval.
We say that (T ,∆) is a Taylor Model of f at x0 on I when

x0 ⊆ I ,

0 ∈∆,

∀ξ0 ∈ x0,∃α0 ∈ a0, . . . , αn ∈ an ,∀x ∈ I , f (x)−
n∑

i=0
αi (x − ξ0)i ∈∆.
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Extending the hierarchy to handle proofs

RigPolyApprox TaylorModel

Polynomial

PropPoly

TaylorPoly

Coefficient

PropCoef
Interval

TaylorRec

interface

module
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Extending the hierarchy to handle proofs

RigPolyApprox TaylorModel

Polynomial TaylorPoly

Coefficient

Interval

TaylorRec

PropCoef PropCoefExact

PropPolyMonom PropPolyMonomExact

PropPoly PropPolyExact

interface

module
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Extending the hierarchy to handle proofs

RigPolyApprox TaylorModel

Polynomial TaylorPoly

Coefficient

Interval

TaylorRec

validTM

PropCoef PropCoefExact

PropPolyMonom PropPolyMonomExact

PropPoly PropPolyExact

interface

module
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Idea of the proof of TMs for the exponential

TMexp(x0, I ,n) := (a0 :: . . . :: an ,∆) with

x0 ⊂ I , a0 = exp(x0), an+1 = an
n + 1 , ∆ = exp(I )

(n + 1)! × (I − x0)n+1.

We want to show that TMexp(x0, I ,n) is a valid TM for exp:

x0 ⊂ I ,

0 ∈∆,

∀ξ0 ∈ x0,∃α0 ∈ a0, . . . , αn ∈ an ,

∀x ∈ I , exp(x)−
n∑

i=0
αi (x − ξ0)i ∈∆.

∃αi = exp(ξ0)
i! ∈ ai such that for all x ∈ I ,

exp(x)−
n∑

i=0

exp(ξ0)
i! (x − ξ0)i = exp(ξ)

(n + 1)! × (x − ξ0)n+1 for some ξ ∈ I .
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Generalization to an arbitrary D-finite function f

Difficulties:

Find minimal assumptions on the function f
the derivative is compatible with the recurrence relation
we have a compatible interval evaluator for f

Provide the Taylor-Lagrange theorem for standard Reals

; Generic proof for first-order and second-order recurrences.
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Proofs for composite functions

Proof of the algorithm for each algebraic rule
TMadd: straightforward
TMmul: rely on truncated multiplication of polynomials
TMcomp: rely on TMmul, TMadd and TMs for constant functions

TMdiv: it’s a TM for f ×
((

x 7→ 1
x

)
◦ g
)
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Functions missing from support libraries

Functions missing from the Reals library
cannot provide a proof for the Taylor Model
adding them is so far done in a case-by-case manner

→ find a generic way of adding a new function to Reals
→ e.g. by using a differential equation or a recurrence relation as

definition

Functions missing from CoqInterval
cannot provide an initial value for the Taylor Model

→ just implement the missing functions in CoqInterval
→ may use other techniques (e.g., fixed point theorems)
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Outline

1 Introduction and Motivations

2 Rigorous Polynomial Approximation in Coq (CoqApprox)

3 Small-Integral-Roots Certificates in Coq (CoqHensel)

4 Conclusion and Perspectives
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Goal: certifying the SLZ algorithm

Integer SValP P ∈ Z[X ], find all x ∈ J−A,AK such that |P(x) cmod M | 6 B

Q(X ,Y ) := P(X)−Y ∈ Z[X ,Y ]

Biv. Small Mod. Roots Find all (x, y) ∈ J−A,AK× J−B,BK s.t. Q(x, y) ≡ 0 (mod M)

Coppersmith’s technique with parameter α > 0:
Consider Qi,j(X ,Y ) = X iQ(X ,Y )jMα−j (j 6 α).
Heuristically, find two Z-linear combinations v1, v2 of (Qi,j) s.t.

∀x, y ∈ Z, |x| 6 A ∧ |y| 6 B =⇒ |vk(x, y)| < Mα.
Notice that the small modular roots of Q mod M also satisfy

vk(x, y) ≡ 0 (mod Mα).

Order-2 Small Int. Roots Find all (x, y) ∈ J−A,AK× J−B,BK s.t. v1(x, y) = 0 = v2(x, y)

Bivariate Hensel lifting

certificate
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Main steps of the formalization

1 Define bivariate Hensel lifting as a fixpoint;
2 Prove bivariate Hensel’s lemma;
3 Define order-2 SIntRootP certificates as an inductive type;
4 Define order-2 SIntRootP checker as a Boolean predicate;
5 Prove its soundness: if a certificate is accepted then it is valid;
6 Define ISValP certificates;
7 Define ISValP checker;
8 Prove its soundness;
9 Redo steps 3 and 4, 6 and 7 in a generic way to allow one to

instantiate the checkers with efficient datatypes;
10 Derive the final correctness proofs, using steps 5 and 8 as well as a

series of homomorphisms lemmas rewritings.
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Bivariate Hensel lifting

Algorithm 1: Bivariate Hensel lifting (quadratic version)

Input : P1,P2 ∈ Z[X ,Y ],
p ∈ P,
(uk , vk) ∈ Z2 s.t. Pi(uk , vk) ≡ 0 (mod p2k ), i = 1, 2,
and det JP1,P2(uk , vk) 6≡ 0 (mod p).

Output: (uk+1, vk+1) ∈ Z2 s.t. Pi(uk+1, vk+1) ≡ 0 (mod p2k+1), i = 1, 2.(
uk+1
vk+1

)
←
(

uk
vk

)
−
[
JP1,P2(uk , vk)

]−1

p2k+1

(
P1(uk , vk)
P2(uk , vk)

)
mod p2k+1
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Hensel’s lemma: a uniqueness result for modular roots
Let P1,P2 ∈ Z[X ,Y ] and let p be a prime satisfying

∀z, t ∈ Z,P1(z, t)≡ 0≡P2(z, t) (mod p)⇒ det JP1,P2(z, t) 6≡ 0 (mod p).

For any (x, y) ∈ Z× Z, if we have P1(x, y) ≡ 0 ≡ P2(x, y) (mod p2k ) for
a given k ∈ N, then for (

u0
v0

)
:=
(

x mod p
y mod p

)
,

the sequence (ui , vi)i defined by the recurrence relation

∀i ∈ J0, kJ ,

(
ui+1
vi+1

)
:=
(

ui
vi

)
−
[
JP1,P2(ui , vi)

]−1

p2i+1

(
P1(ui , vi)
P2(ui , vi)

)
mod p2i+1

satisfies:
∀i ∈ J0, kK ,

(
ui
vi

)
=
(

x mod p2i

y mod p2i

)
.
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Order-2 SIntRootP certificates

Record bivCertif : Set := BivCertif
{ bc_P1 : {bipoly Z}
; bc_P2 : {bipoly Z}
; bc_A : Z
; bc_B : Z
; bc_p : nat
; bc_k : nat
; bc_L : seq (Z * Z * bool)
}.
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Order-2 SIntRootP certificates checker

Our implemented checker will accept such a certificate
(P1,P2,A,B, p, k,L) iff

p ∈ P
p2k

> 2A and p2k
> 2B

L contains only simultaneous roots of (P1,P2) modulo p2k , of
absolute value 6 p2k

/2, and all roots modulo p are present
for all (u, v, b) ∈ L,

JP1,P2(u, v) is invertible modulo p
the Boolean b is true iff (u, v) is an actual root in Z
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ISValP certificates

Record cert_ISValP : Set := Cert_ISValP
{ c_P : {poly Z} (* hence Q(X ,Y ) = P(Y )−X *)
; c_M : Z
; c_alpha : positive
; c_A : Z
; c_B : Z
; c_u1 : {bipoly Z} (* in basis Mα−i ×Qi(X ,Y )×Y j *)
; c_u2 : {bipoly Z} (* in basis Mα−i ×Qi(X ,Y )×Y j *)
; c_p : nat
; c_k : nat
; c_L : seq (Z * Z * bool)
}.
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ISValP certificates checker

Definition check_ISValP (C : cert_ISValP) : bool :=
let: Cert_ISValP P M alpha A B u1 u2 p k L := C in
let Q := poly_cons P (bipolyC (-1)) in
let v1 := (bipoly_precalc_alpha u1 alpha M) \Po Q in
let v2 := (bipoly_precalc_alpha u2 alpha M) \Po Q in
let Ma := Zpower_pos M alpha in
let C’ := BivCertif v1 v2 A B p k L in
[&& 0 < M,
bimaphorner Zabs A B v1 < Zabs Ma,
bimaphorner Zabs A B v2 < Zabs Ma
& biv_check C’].
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Concepts and libraries involved in the bivariate proofs

Signed integers (Z) with exponentiation and modulus ; ssrzarith

Small natural numbers (N) with primality predicate ; ssrnat, prime

Rings Z/pmZ, modular inversion and divisibility results ; zmodp, div

Ring Z[X ,Y ] of bivariate polynomials over Z, with Horner evaluation
and Taylor theorem ; bipoly, based on poly and ssralg

Need to manipulate a number of summations, typically after the
invocations of Taylor theorem ; bigop

We also developed some material specific to 2-by-2 matrices,
including a modular version of Cramer rule whose correctness proof is

∀A∈M2(Z), u∈Z2, k∈N, det A 6≡ 0 (mod p)⇒ A
(
A−1u

)
≡ u (mod p2k+1)
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A generic implementation for effective certificates checkers

Most of poly data structures are not computational
Goal 1: allow to check integral-roots certificates inside Coq
Goal 2: allow to easily change data structures to speedup computation

→ Define generic checkers once-and-for-all and instantiate them with the
desired integer operations to avoid duplication of code

→ Proof: Reuse the reference lemmas proved with SSReflect datatypes
and the rewriting lemmas that link both implementations:

Module Type CalcRingSig.
Parameters (T : Type) (R : comRingType) (toR : T -> R).
Parameter tadd : T -> T -> T.
Parameter toR_add :

forall a b, toR (tadd a b) = (toR a + toR b)%R.
...
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An implementation of “Integers Plus Positive Exponent”

Big ISValP certificates ; coefficients scaled with a big power of 2
(e.g., (2n + 1)× 210629)
Develop a specialized instance of computational integers to handle
these integers

→ Consider pairs (m, e) ∈ bigZ× bigN for unevaluated dyadic numbers
m × 2e with e > 0

→ Implement a generic module using a subset of the CoqInterval library

Module CalcRingIPPE (Import C : FloatCarrier)
(Import E : CalcRingExpo C) <: CalcRingIntSig.

Notation typeZ := smantissa_type.
Record T := TZN { TZ : typeZ; TN : typeN }.
...

; Speedup of 2x
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Benchmarks for the ISValP certificates checker (f = exp)

Inst. prec prec′ deg(P) maxi(|Pi |) M A B
#1 53 100 2 /1.68×2237 2185 2139 212

#2 53 100 2 /1.22×2237 2185 2139 212

#3 53 300 12 /1.36×2996 2942 2696 232

#4 113 3000 90 /1.36×213661 213547 210661 272

Inst. α Mα p k # L time to parse time to return true
#1 2 2370 5 6 1 0.096s 0.092s

#2 2 2370

7 6 2 0.132s 0.112s
3 7 1 0.112s 0.092s
23 5 0 0.088s 0.172s

#3 4 23768 5 9 0 0.420s 2.348s
#4 6 281282 5 14 0 17.4s 3h12m42s
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Contributions

1 CoqApprox: a modular formalization of Taylor Models in the Coq
proof assistant

with a generic approach involving D-finite functions
taking advantage of the CoqInterval library for interval arithmetic

→ ability to compute some formally verified TMs in Coq

2 CoqHensel: formalization of some effective checkers in Coq for
small-integral-roots problems as well as ISValP

using Hensel lifting as a certifying algorithm
relying on ZArith, BigZ, CoqInterval as well as SSReflect

→ ensure that no hard-to-round case for correct rounding has been forgotten

&Augmented computation of
√

x2 + y2 &Fast2Sumwith double roundings
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Perspectives

1 For CoqApprox:
add more functions
combine TMs with some Sums-of-Squares technique
implement Chebyshev Models ; tighter remainders
investigate ways to ease the definition of RPAs from the ODE
investigate ways to verify error bounds a posteriori

2 For CoqHensel:
implement a fast algorithm for the multiplication over Z[X ], and/or
for the composition over Z[X ,Y ]
combine CoqHensel & CoqApprox to get a complete TMD checker
consider a possible extension of Hensel lifting to rational roots of
polynomials

3 On formal floating-point:
formalize Thm7.3 (TwoSumwith double roundings), Thm6.4 (2D norms)
investigate ways to ease similar formal proofs
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End of the Talk
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TaMaDi

Thank you for your attention!

The TaMaDi project homepage:
http://tamadi.gforge.inria.fr/
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