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ABSTRACT

Software Product Lines (SPLs) are an approach to capture
families of closely related software systems in terms of com-
monalities and variabilities where individual variants are
defined by configurations of selected features. Specific (par-
tial) configurations may be of particular importance to SPL
manufacturers, e.g., if they are very popular or used by major
customers. SPLs are subject to evolution, which may inad-
vertently break existing configurations, e.g., if a previously
selected feature does no longer exist. This is problematic
as it may delay or completely prevent creation of previously
existing important variants causing monetary loss and cus-
tomer dissatisfaction. In this paper, we present a method
to lock specific configurations to ensure their validity dur-
ing evolution of the SPL. For this, we present Temporal
Feature Models (TFMs) and dedicated evolution operations
as a semantic-enriched first-class notion for evolution of fea-
ture models, which we use to assess the impact on existing
configurations. Using the presented method, it is possible
to guarantee that locked configurations remain valid during
SPL evolution and make statements on which part of the
evolution would break the configurations.
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1. INTRODUCTION

Software Product Lines (SPLs) are an approach for sys-
tematic reuse for closely related software systems in terms of
commonalities and variabilities [15]. The variability model,
e.g., a Feature Model (FM) [12], is defined in the problem
space, whereas the realization artifacts, such as code or mod-
els, are defined in the solution space [6]. Configurations
bind the variability in the problem space, e.g., by selecting a
set of features, to define the conceptual part of a concrete
variant of the SPL. Partial configurations bind a subset
of the possible variability leaving some variability decisions
open. Configurations are wvalid if they are consistent with
the configuration rules defined in the variability model. The
variability space contains all possible variants, which can be
created with the respective SPL.

SPL developers typically have several particularly impor-
tant configurations, which are popular or used by major
customers. However, these configurations are often partial as
SPL manufacturers want to leave certain variability decisions
to customers. These major (partial) configurations need to
be handled prioritized, as breaking these configurations may
lead to delays in production which potentially results in
monetary loss. Also, a break in configuration may possibly
lead to a loss of trust in the manufacturer.

As all software systems, SPLs need to evolve due to
changed or new requirements [11]. This evolution may also
affect the FM when restructuring the problem space. Thus,
features may be added or removed and constraints may
change the variability space. However, evolution can break
configurations so that variants based on these configurations
can no longer be generated. This is particularly critical
for particularly important (partial) configurations of SPL
developers. For example, a major customer of a computer
system manufacturer may have bought many computers of
one configuration type. All these computers run on a Linux
operating system and have a specific USB controller. How-
ever, as the Linux kernel is evolving as well, the driver for
that specific USB controller may have been dropped in the
new version of the Linux kernel [14]. As a consequence, the
configurations using this specific USB controller get inval-
idated due to this evolution. Thus, the Linux kernel on
the computers of the major customer cannot be updated to
new versions and potential security flaws of the Linux kernel
cannot be fixed. Therefore, the customer has to buy new
computers without that USB controller or has to remain
with vulnerable systems. This could lead to monetary loss
or security issues and, potentially, customer dissatisfaction
with the manufacturer. Hence, for SPL manufacturers, it
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is crucial to prevent that selected particularly important
(partial) configurations are invalidated during evolution.

In this paper, we present a methodology to guarantee the
validity of specific configurations during evolution through
configuration locking. To achieve this goal, we introduce
Temporal Feature Models (TFMs) as a methodology to model
FMs and their evolution as first-class entities. On this basis,
we analyze the impact of evolution on existing (partial) con-
figurations and define categories for broken configurations.
Finally, we prohibit evolutions that would break locked con-
figurations so that their validity can be guaranteed.

The rest of the paper is structured as follows: In Sec-
tion 2, we introduce fundamental principles our methodology
is built on. In Section 3, we present Temporal Feature Mod-
els (TFMs) as methodology to capture evolution of an FM
as first-class entity along with evolution operations. In Sec-
tion 4, we elaborate on analyses to consider the impact of
evolution on existing configurations and introduce the con-
cept of locking configurations. In Section 5, we demonstrate
the applicability with a case study. In Section 6, we dis-
cuss related work. Finally, in Section 7, we close with a
conclusion and an outlook to future work.

2. BACKGROUND

Feature Models (FMs) capture the variability of a system
in terms of hierarchically structured features — units of reuse
representing configurable functionality [12]. Features may
be optional or mandatory but may only be selected if their
parent is selected. Additionally, features are organized in
unbounded, or and alternative groups. To express the types of
features and groups, cardinality-based feature models assign
a lower and upper cardinality to each feature and group [8].
A cardinality of (0..1) represents an optional feature and a
cardinality of (1..1) a mandatory feature. For single features,
we explicitly do not support cardinalities greater than 1,
which would result in cloned features. The cardinality for
alternative groups is (1..1) so that the contained features are
mutually exclusive but at least one feature has to be selected.
Or groups containing n features have a cardinality of (1..n)
implying the selection of at least one feature of the group.
For unbounded groups containing n features, the cardinality
is (0..n), which does not restrict the selection of features.

Feature attributes may be used to provide additional vari-
ability for features [3] that goes beyond mere (de)selection.
For example, the language for the user interface of an info-
tainment system. A feature may have an arbitrary number
of attributes, which consist of an identifier and a type. At-
tributes may be incorporated in the configuration process
by setting an appropriate value for a dedicated attribute of
the respective feature. Within our work, we assume that
each attribute has a default value.

Additionally, cross-tree constraints on features can be spec-
ified via propositional formulas. Such constraints can define
dependencies between features that are not defined by the
structure of the FM. To support constraints on feature
attributes, these formulas can be extended by Boolean ex-
pressions on feature attributes, e.g., limiting the range of
an Integer attribute.

Configurations are used to derive concrete variants of an
SPL. In configurations, features of the FM may be selected.
Moreover, with feature attributes, values for the attributes
of each selected feature may be set. If no value is defined, the
default value of the attribute is assumed. A configuration

is considered wvalid when the feature selection is compatible
with the structure of the feature model and all of its cross-
tree constraints and when the set values obey the type of
their respective attribute. The variability space contains all
possible configurations.

Figure 1 depicts an excerpt from our case study used as
running example where the configuration options of a Car
with its Assistance Systems and Infotainment System are
represented as FM. The original FM in Figure la is evolved
by adding and deleting features as well as restructuring the
existing features to the FM depicted in Figure 1b. In the
following, we elaborate on the respective modifications to
demonstrate our individual contributions.

3. EVOLUTION OF FEATURE MODELS

Evolving SPLs include the evolution of the FM. Modifying
the FM without keeping track of the evolution itself results
in loss of information as the old versions of the FM cannot
be retrieved. Keeping old versions of an FM can be neces-
sary, e.g., to support customers with products based on old
versions of the FM with updates. Moreover, commonly there
is no formal documentation on the evolution of the FM, i.e.,
there is no semantics, providing information about how and
why the FM evolved, which can be of relevance for reasoning
about the evolution. For example, if a feature is renamed
and no documentation on the renaming is stored, it is similar
to deleting the old feature and adding a new feature with the
new name. To keep track of the evolution and to preserve
the old versions of the FM in one model, we need a first-class
notion of evolution. Based on the provided information of the
first-class evolution, we present how to attribute additional
semantics to evolutions by extracting evolution operations
from the timespan an element is temporally valid.

3.1 Temporal Feature Models

To capture evolution of FMs and preserve the informa-
tion of the old model, we present Temporal Feature Mod-
els (TFMs). TFMs define the concept of evolving elements,
capturing evolution as first-class entities. Evolving elements
have a limited timespan in which they are temporally valid.

Their temporal validity ¥ is an interval defined by two
points in time: the start of their temporal validity, Jsince,
and the end, Yyntii. The temporal validity is defined as
¥ = [Usince, Yuntit), meaning that the element is not valid
at Yunti. This is necessary to provide seamless tempo-
ral validities of elements, e.g., if two elements e, ez have
Detuntil = Ve2since means that for each point in time between
Yetsince and Veauntir €xactly one of these elements is valid.
In Figure 2, an example of an FM with different temporal
validities of features is depicted. As can be seen, F1 and F2
are valid since t;. However, F1 is only valid until ¢2, whereas
F3 is valid since t2. As a result, at point ¢1, the features F1
and F2 are valid, whereas features F2 and F3 are valid at
point t2 and t3. Note that deleting an element means setting
Yuntit to the the desired deletion date.

To allow arbitrary evolution of an FM, it has to be possi-
ble to represent changes on each individual element making
evolution itself a first-class entity. As features are not only
removed and added but groups and features can be moved,
their type can be changed or they can be renamed, the re-
spective affected elements need to be modeled as first-class
entities, too. In standard FMs, not all the information possi-
bly affected by evolution is captured in dedicated elements
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Figure 2: Example of Temporal Validities of Features

but some of it is represented by relations between elements.
For example, groups are related to a parent feature, which
determines their location in the FM. In addition, groups are
composed of an arbitrary set of features. Thus, the location
of features in the FM is determined by their group member-
ship. To allow evolution of group-parent feature relations
and group compositions, it is necessary to capture temporal
validities along with the affected relations. Hence, the rela-
tions of standard feature models become association classes in
TFMs, which makes them first-class entities. In the following,
we briefly elaborate on all first-class entities of TFMs:

e Features and groups to support their creation and dele-
tion.

e Cardinalities of features and groups to support the
evolution of types of features and groups.

e Names of features to support the renaming of features.

o Attributes of features to support their creation, renam-
ing and deletion.

e Group compositions to support the relocation of fea-
tures and changeable compositions of groups.

e [eature children to support the relocation of groups.

e (Cross-tree constraints to support their creation and
deletion.

Note that for each group exactly one group composition
must exist for every point in time the group is temporally
valid to prevent ambiguity. The same applies for feature
children. For each group, exactly one feature child must
exist, for every point in time the group is temporally valid.
Moreover, TFMs explicitly do not support the evolution of

sub-expressions of cross-tree constraints. However, evolving
constraints is possible by invalidating the old constraint and
adding a new one.

3.2 Evolution Operations

To determine the impact of FM evolution on configurations,
it is necessary to reason about the semantics of that respective
evolution. While temporal validities may be used uniformly
to represent the evolution of feature model elements and do
not require to record the specific type of modification during
evolution, it is beneficial for analyses to have information
on the nature of an applied change. For this purpose, we
introduce evolution operations that can be derived from
changes to temporal validities in order to attribute additional
semantics to evolution. Through this, we can make more
precise statements on why and through which operation
the FM evolved as opposed to merely observing the effects
of evolution as with diffs on FMs. We define five atomic
evolution operations: add, delete, rename, change type and
move. These operations are possibly applicable for different
elements, e.g., the move operation can be applied for features
and groups. More complex evolution operations may be
defined by combining these operations.

The atomic evolution operations can be extracted by
merely analyzing changes to the temporal validities of respec-
tive evolving elements. For this, we analyze the temporal
validities, Ysince and Yyntir, of the elements for two points
in time, 71 and 72 (71 < 72), for which the operations should
describe the evolution. In the following, we describe the
atomic evolution operations with the running example of
Figure 1. In Table 1, the properties of the temporal validities
for the respective evolution operations are depicted.

From the evolution of the running example, several add
evolution operations can be extracted. The features Front
Distance Sensors and Fast Front Distance Sensor are
added. The delete operation is the opposite of the add oper-
ation and can be seen for feature Consumption Indicator.
As the Side Distance Sensor is moved under Distance
Sensors, its type has to be changed to optional. A change
type operation can be extracted by analyzing the temporal
validities of the cardinalities card, and cards of a feature
or a group. As the Adaptive Cruise Control needs differ-
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Operation between two points in time 71, 72
add 71 < Vsince <1< ﬁuntil
delete Vsince < T1 < Duntir < T2

card; # cards,
ﬂcardlsince <7< ﬂcardluntil <
ﬁcardgsince S T2 < ﬁcav‘dguntil

change type

name; # names,
ﬂnamelsince S T < ﬁnameluntil S

rename feature

ﬁnamegsince <7< ﬁnameguntil

move feature groupi # groupa,
ﬁeampolsince S 71 < 19comp01until S

ﬂcompogsince <1< 'Lgcompoguntil

move group parentFeaturei # parentFeatures,
ﬁfeatu'rec'hildlsince S 1 <
ﬁfeaturechildluntil S

ﬁfeatu'rechildgsince <712 <

ﬂfeaturechildg until

Table 1: Evolution Operations and Temporal Validities

ent Front Distance Sensors for different maximum speeds,
the Front Distance Sensor in Figure la is renamed to Slow
Front Distance Sensor in Figure 1b to better distinguish
it from the newly added sensor. Thus, a rename feature op-
eration can be extracted. Within a diff, renaming a feature
would be similar to deleting the old feature and adding a new
one with the new name but with TFMs, we are able to detect
that it is still the same feature. A move feature operation can
be extracted if the feature is part of two group compositions,
compoi of group: and compos of groups. The move group
operation can be extracted equivalently to the move feature
operations, whereas a group is related to multiple feature
child entities with different parent features. In the example,
the FM is restructured and a new feature Distance Sensors
is introduced with all distance sensors as children. Thus,
the Side Distance Sensor has to be moved under the new
Distance Sensors feature.

With the atomic evolution operations, we are able to
attribute semantics to the evolution of the FM. Thus, we can
use these semantics to reason about the evolution of the FM.

4. ENSURING VALID CONFIGURATIONS

Configurations bind all variability of an SPL on a con-
ceptual level by selecting a valid subset of all features that
satisfies all configuration rules of an FM. In contrast, partial
configurations leave some configuration choices open by bind-
ing only a part of the variability of the SPL. This can be
done by selecting features to express that a certain feature
always must be integrated in configurations which are based
on the respective partial configurations. However, with our
methodology, developers should also be able to explicitly
exclude variability decisions with partial configurations. To
this end, we extend the notion of a configuration to not
just allow selecting features but to also explicitly support
deselecting features.

During FM evolution, it may be inevitable that existing
(partial) configurations get invalidated, e.g., by removing a
feature that was selected within the configuration. However,
some configurations may be of particular importance so that
they specifically need to be maintained throughout evolution.
For example, breaking configurations demanded by major

customers may lead to monetary loss for the customer and,
consequentially, reduced trust in the SPL maintainer. To
prevent breaking these configurations, one solution is to pro-
hibit evolution which leads to the invalidation. To this end,
analyses making statements on the impact of evolution on
configurations facilitate prohibiting such evolution. Thus, in
the following sections, we introduce such analyses based on
the semantic information provided by evolution operations.
Additionally, our analyses are applicable for partial config-
urations, too. We then introduce configuration locking as
concept to guarantee the validity of configurations by using
the results of the impact analyses.

4.1 Change Impact Analyses

Inconsistencies caused by the evolution of FMs can arise
easily. For example, a configuration based on the FM
before the evolution in Figure la with Assistance Systems,
Parking Assistance, Front Distance Sensor and Side
Distance Sensor selected, would be inconsistent after the
evolution of the example. After the evolution, the three
features are still selected, although Parking Assistance is
renamed to Parking Pilot. As the renaming is a refactoring
and the feature remains the same, it is still selected. How-
ever, without TFMs but with FM diffs, the feature would
not be selected anymore, as it would seem that the original
feature had been deleted and that the renamed feature was
a new one. However, considering the FM after the evolution,
the feature Side Distance Sensor is still selected, but its
new parent Distance Sensors is not selected. Thus, the
configuration is not consistent as Parking Pilot cannot be
selected without Side Distance Sensor and the sensors
cannot be selected without Distance Sensors. However,
evolution of SPLs is necessary and it may be hard to tell
which part of the evolution broke a configuration, especially
if many configurations can be affected.

To detect inconsistencies which may arise due to FM evo-
lution, the impact of an evolution on configurations needs to
be analyzed. Additionally, information on how the evolution
affected certain configurations may be valuable for SPL de-
velopers. However, reasoning about the entire FM and every
configuration may be needlessly time consuming when only
specific configurations or individual evolution operations are
of interest. Thus, we use the information captured within
TFMs for analyses on the impact of evolutions on configu-
rations. To prevent superfluous analyses, we only analyze
selected and deselected elements of the respective configura-
tion which changed during FM evolution. For this, we assume
that all analyzed configurations were valid with respect to
the FM before the respective evolution. Additionally, to give
more detailed information on the impact of the evolution on
a configuration, we provide broken configuration categories,
which define in what way a configuration is affected by the
evolution. We attribute each evolution to one of the following
categories regarding its potential impact on a configuration:

e Not Broken: The configuration is not broken, but
the following distinctions are made to provide warnings
to SPL developers about possible side effects:

— Refactoring: The evolution is a refactoring, and
thus, has no impact on the variability space. For
example, a feature is renamed.

— Unaffected: The configuration is unaffected as
the variability space is extended or the configu-
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Table 2: Broken Categories for Evolution Operations

ration defines none of the removed variants. For
example, the type of a selected feature is changed
from optional to mandatory.

— Extended: The variability space is extended and
new elements are available. For example, a new
feature is added. The SPL developers are informed
that new variability is available.

e Outdated: The configuration is outdated as it con-
tains elements that are not valid anymore. For example,
a selected feature was deleted.

e Conflicting: The contained elements of the configu-
ration are not consistent with the FM anymore. For
example, a new constraint prohibits the simultaneous
selection of two selected features.

To make more precise statements about evolution breaking
configurations, we assign each evolution operation to one of
the broken categories. With that, we can determine exactly
which part of the evolution has broken a configuration. In
Table 2, we assign the broken categories to the different
atomic evolution operations. Note that we split up some
operations as these distinctions allow us to provide a more
precise categorization. If the categorization is annotated with
a condition in brackets, the respective operation could also

be categorized as unaffected if the condition is not true. Con-
straints are only evaluated if they affect any of the selected or
deselected elements of the configurations. Adding and delet-
ing a constraint may also result in an unaffected category
if the constraint is already covered by another constraint.
With this categorization, we can analyze the impact of FM
evolution on configurations. Our methodology is applicable
for partial configurations, too, as we analyze the consistency
of the evolution only with respect to the elements defined
in the configurations.

A combination of evolution operations does not necessarily
result in the worst case broken category. For example, if
a selected feature is moved into an alternative-group and
the type of this group is changed to an or-group, the con-
figuration is still valid although the categorization of this
move operation would be conflicting for every configuration.
Thus, more complex and composite evolution operations
can be categorized differently from their constituent atomic
evolution operations.

4.2 Configuration Locking

SPL developers may have several configurations of high im-
portance, which should not get broken. However, evolution
can lead to breaking existing configurations. To guarantee
the validity of configurations, we introduce the concept of
configuration locking. Thus, a locked configuration is a con-
figurations that may never be broken. This means that all
selected and deselected features, as well as defined attribute
values, must remain consistent with the evolved FM. For
this, the evolution of the FM is analyzed in respect to all
locked configurations with the previously introduced change
impact analyses. Thus, the evolution must not fall into
the categories outdated or conflicting for each locked con-
figuration. If developers try to evolve an FM and a locked
configuration gets broken, the evolution cannot be performed.
Additionally, we can tell why an evolution cannot be per-
formed. Considering an approach, where the configuration
and the new FM are given to an evaluator which checks the
compatibility between the configuration and the FM, it is
not possible to make statements about which part of the
evolution has broken the configuration. Additionally, it is
inevitably necessary to verify the entire FM and configura-
tion. With our methodology, we can only check the parts of
the FM and configuration that are part of the evolution. As
composite evolution operations may only have a less strict
categorization (e.g., unaffected instead of conflicting), the
categories for composite evolution operations may only be
stricter than they would have to be. Thus, the validity of the
locked configuration is always guaranteed. Additionally, the
SPL developers get informed if an evolution was categorized
as extended or unaffected for any locked configuration so that
they can review the respective evolution.

5. CASE STUDY

To demonstrate the benefits of configuration locking and
to show the feasibility of our methodology, we provide a case
study based on a fictitious but realistic scenario. To this end,
we provide an exemplary implementation of TFMs, which is
used in an artificial case study. We show that locking guaran-
tees the validity of specific configurations during evolution.

5.1 Implementation
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Figure 3: Metamodel for Temporal Feature Models (TFMs)

We implemented TFMs with the Eclipse Modeling
Framework (EMF)*. For this, we created an Ecore meta
model, which can be seen in Figure 3. Two interfaces
are responsible for allowing the evolution of the elements.
HyTemporalElement defines two fields: validSince and
validUntil, which represent the previously introduced tem-
poral validity ¥. The HyLinearTemporalElement inherits
from HyTemporalElement but specifies an additional super-
seding relation. This is used to express that a temporally
valid element for a certain relation must exist for every
relevant point in time. For example, the HyCardinality,
representing the cardinality of a group or a feature, is a
HyLinearTemporalElement. Thus, for a group or a feature,
there must be exactly one valid cardinality for every point
in time within the temporal validity of the feature or group.
However, as can be seen, a HyFeatureModel consists mainly
of HyFeatures and HyGroups. The relation for the root
feature, as well as the composition of the groups and the
parent feature of a group, are modeled as first-class entities
to support the evolution of these relations. Thus, e.g., a
group can have multiple HyGroupCompositions, as different
compositions may be valid at different points in time.
Moreover, each HyFeatureAttribute and each HyName has
a validity, too. The complexity of the meta model is hidden
from end users as models are represented in a graphical
language similar to that used in Figure 1. For the end user,
the only new concept is to provide temporal validities for
the respective elements. To allow inspecting the temporal
validity of the elements in a TFM at a selected point in
time, we support a mode in which only the currently valid
FM for that point in time is viewed.

A HyConfiguration inherits from HyTemporalElement
and, therefore, has a temporal validity, too. It consists of
HyConfigurationElements, which define the selection or
deselection of a feature or a value for an attribute. However,
HyFeatureSelection and HyAttributeValueAssignment
inherit from HyTemporalElement, as the selection of features
and the value assignment for attributes can evolve, too.

5.2 Case Study Scenario

Using this implementation, we perform a case study on
a fictitious but realistic scenario to show the feasibility of
modeling FM evolution with TFMs and analyzing the impact
of such evolution on configurations. For this, we use the FMs
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of Figure 1, whose evolution is comprised of multiple opera-
tions. The original FM and its evolution are implemented
as instance of the respective meta model.

As our focus is on the locking of configurations and, thus,
on the impact of FM evolution on configurations, we provide
three different configurations for the FM of Figure 1a, which
can be seen in Figure 4. The explicitly selected features
are depicted with a "4", whereas deselected features are
depicted with a "-".

Premium

Basic Economic
HInfotainment System
HAssistance Systems
H-Parking Assistance
HAdaptive Cruise Controll
H+Side Distance Sensor
tHFront Distance Sensor

(a) (b) (c)

Figure 4: Exemplary Configurations for a Car

+Infotainment System
- Assistance Systems

+Infotainment System
+Consumption Indicator

The Basic configuration only selects the manda-
tory Infotainment System and explicitly deselects the
Assistance Systems. For economic drivers, the Economic
configuration also selects the Consumption Indicator. As
economic driving is very popular and customers demand
an economic variant of the car, the manufacturer decides
to lock the Economic configuration. The full featured
Premium configuration selects every possible features of
the original FM.

We analyze the impact of the evolution on these configura-
tions with regard to the broken categories. As a new feature
and a new attribute are added, the evolution falls into the
extended category for all configurations. Thus, a person in-
terested in maintaining a configuration could be notified that
additional elements are available. However, as only specified
elements need to be analyzed for the other categories, the Ba-
sic configuration, which only selects Infotainment System,
is not affected by any evolution operation. Thus, Basic falls
into the unaffected category. The Economic configuration
selects additionally the Consumption Indicator. As this
feature is deleted (respectively invalidated), it falls into the
outdated category. For the Premium configuration, several op-
erations were applied. The selected Front Distance Sensor
is renamed to Fast Front Distance Sensor. As this is a
refactoring and the reference to the object still exists, the con-
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figuration is not yet broken. Additionally, Front Distance
Sensor and Side Distance Sensor are moved underneath
the new feature Distance Sensors. As the new parent is
not selected, these evolution operations fall into the conflict-
ing category. Additionally, the Adaptive Cruise Control
receives a new attribute maxSpeed. This would fall into the
extended category but, combined with the new constraints, it
falls into the conflicting category. As the value for maxSpeed
is not set, the default value of 200 is assumed. However, the
constraint requires selecting Fast Front Distance Sensor
if maxSpeed is greater than 180. As the Economic configura-
tion has been locked and the evolution falls into the outdated
category in respect to the Economic configuration, the SPL
developer receives a notification about the evolution breaking
the locked configuration. As result, the evolution could not
be applied. If the Premium configuration would have been
locked instead of the Economic configuration, this evolution
scenario could still not have been applied regardless, as it
would fall in the conflicting category in respect to the Pre-
maum configuration. Whereas, when only locking the Basic
configuration, the evolution could be applied.

We realized the presented scenario of the case study with
our methodology. With TFMs, we were able to capture
variability in cardinality-based FMs with feature attributes
while modeling their evolution as first-class entities at the
same time. The presented analyses and broken categories
allowed us to make statements concerning the impact of the
evolution on the configurations. We showed that the concept
of locking configurations provides guarantees to SPL devel-
opers as the respective configurations remain valid. However,
with additional tool support, it would be easier to create
the TFM models as it is complex to create instances due
to the increased number of first-class entities, e.g., names
and group compositions.

6. RELATED WORK

Different authors worked on various combinations of FMs
and evolution. Seidl et al. [18, 19] capture versions of so-
lution space artifacts with Hyper Feature Models (HFMs).
In contrast, our methodology addresses evolution of the FM
itself. Quinton et al. [16] mainly consider the impact of
evolution on cardinality consistencies and, thus, the consis-
tency of the FM. Gamez et al. [10] automatically create
new configurations of evolved FMs and they measure the
change impact by means of a difference between the old
configuration and the new configuration. However, they
do not explicitly define the evolution of an FM and their
approach does not consider evolution as first-class entity.
White et al. [21] formalize FM edits happening during the
configuration finding process. They represent the FM as a
Constraint-Satisfaction-Problem (CSP) and model arbitrary
FM evolutions via added or removed constraints. However,
they do not analyze which existing configurations are broken,
do not support partial configurations and do not provide a
first-class notion of evolution.

Botterweck et al. [5, 4] introduce EvoFM and consider
evolution as first-class entity. However, they require the dif-
ferent evolution operations to be modeled explicitly whereas
we can extract evolution operations from temporal validities
of different elements. Our methodology offers the same level
of semantics as FvoFMs but is more flexible in application as
evolution operations do not need to be recorded. Addition-
ally, to analyze an FM for a particular point in time, FvoFMs

need to apply the sequence of all evolution operations to the
respective point in time. Our methodology allows to select
the valid elements of that point in time directly, which is
particularly beneficial for long evolution histories.

Furthermore, there is work on analyzing the impact of
evolution/modification of an FM on the variability space.
Thiim et al. [20] provide four categories, which define how
modifications of an FM influence the variability space. Neves
et al. [13] describe a set of evolution templates called "safe
evolutions" as they do not reduce the variability space. How-
ever, even evolutions that reduce the variability space may
be safe regarding certain configurations. Reuling et al. [17]
compare two versions of an FM and assign Mutation Op-
erators to the extracted evolution. However, they do not
analyze the impact of evolution on certain configurations.

Dintzner et al. [9] present an approach to analyze the
impact of FM evolution on Multi-SPL configurations by de-
termining the impact on "shared features", which are used by
multiple sub-SPLs. In contrast, our methodology analyses
the impact of evolution independently of SPLs boundaries,
e.g., if a configuration contains multiple features from dif-
ferent sub-SPLs.

Batory [2] uses Logic Truth Maintenance Systems, to con-
tinually check the consistency of certain feature selections
to a given FM. However, this methodology does not an-
alyze explicitly the impact of evolution on configurations.
Moreover, as only Boolean predicates are allowed, it does
not suffice for attributed FMs.

Acher et. al [1] present an approach to provide additional
semantics to FM modifications. However, they create a diff
between two versions of an FM. This limits the semantics
which can be provided for certain changes.

Furthermore, all the discussed impact analyses are not
able to handle partial configurations. With the analyses
provided in this paper, it is possible to handle complete and
partial configurations alike.

7. CONCLUSION

In this paper, we presented a methodology to guarantee the
validity of specific configurations during evolution of an FM.
We introduced Temporal Feature Models (TFMs) to enable
modeling of arbitrary evolution of attributed cardinality-
based FMs by creating first-class entities for all elements
subjected to evolution and assigning temporal validities to
them. By extracting evolution operations from the temporal
validities, we attribute additional semantics to the modeled
evolution. On this basis, we measure the impact of FM
evolution on (partial) configurations by only inspecting the
FM parts relevant for the configuration. Furthermore, we
introduce the concept of configuration locking to provide
guarantees that the evolution of the FM does not break
specific configurations.

In our future work, we will investigate the benefits of our
incremental analyses compared to non-incremental analyses.
As our analyses already support partial configurations, we
intend to provide support for staged configuration [7] and,
thus, to analyze which stages are affected by the evolution.
Moreover, as we attribute additional semantics to individ-
ual evolutions by extracting evolution operations, we are
planning to create a methodology to provide semantic repair
mechanisms of configurations. Finally, we intend to perform
an industrial case study to analyze the suitability of our
methodology in a realistic environment.
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