
Memory Error
Artificial Diversity

Diversified Process Replicæ
Effectiveness

Practical Issues
Experimental Results

Future Works

Diversified Process Replicæ for Defeating Memory
Error Exploits

Danilo Bruschi, Lorenzo Cavallaro, and Andrea Lanzi
<sullivan@security.dico.unimi.it>

<lorenzo@cs.sunysb.edu>

Università degli Studi di Milano, Italy
visiting scholar at SUNY at Stony Brook, NY, USA

3rd Workshop on Information Assurance

13th April 2007

D. Bruschi, L. Cavallaro, and A. Lanzi Diversified Process Replicæ

Memory Error
Artificial Diversity

Diversified Process Replicæ
Effectiveness

Practical Issues
Experimental Results

Future Works

Table of Contents

1 Memory Error

2 Artificial Diversity

3 Diversified Process Replicæ

4 Effectiveness

5 Practical Issues
Shared Memory Management
Signals & Threads

6 Experimental Results

7 Future Works

D. Bruschi, L. Cavallaro, and A. Lanzi Diversified Process Replicæ

Memory Error
Artificial Diversity

Diversified Process Replicæ
Effectiveness

Practical Issues
Experimental Results

Future Works

Memory Error
The Issue

Memory Error

A memory error occurs when an object accessed using a pointer
expression is different from the one intended

out-of-bounds access (e.g., buffer overflow)

access using a corrupted pointers (e.g., buffer overflow,
format bug)

uninitialized pointer access;

dangling pointers;

. . .

D. Bruschi, L. Cavallaro, and A. Lanzi Diversified Process Replicæ

Memory Error
Artificial Diversity

Diversified Process Replicæ
Effectiveness

Practical Issues
Experimental Results

Future Works

Memory Error
The Exploit

Memory Error Exploits

well-known way to subvert/divert a legal process execution
flow

usually overwrite control-data with absolute known values:

saved return addresses
application-specific function pointers
“other” function pointers (e.g., GOT, .dtors, C++ vrt ptrs)

e.g., stack/data buffer overflow, format string bug, malloc chunk
exploit, integer overflow

D. Bruschi, L. Cavallaro, and A. Lanzi Diversified Process Replicæ

Memory Error
Artificial Diversity

Diversified Process Replicæ
Effectiveness

Practical Issues
Experimental Results

Future Works

Artificial Diversity
State of the Art

Biological Diversity

Plays a crucial role for the survivability of every biological species

a successful memory error exploit usually relies on using
well-known absolute memory addresses

⇒ solution: make systems appear different!

Address Space Layout Randomization

Address Space Obfuscation

Instruction Set Randomization

D. Bruschi, L. Cavallaro, and A. Lanzi Diversified Process Replicæ

Memory Error
Artificial Diversity

Diversified Process Replicæ
Effectiveness

Practical Issues
Experimental Results

Future Works

Artificial Diversity
Limitations of the State of the Art

Usually diversity is applied on a process itself, but it:

requires high entropy

relies on keeping secrets:

. . . disclosed by information leakage attacks

. . . defeated by brute forcing attacks

generally cannot defeat partial memory overwriting attacks
(e.g., Impossible Path Executions)

cannot defeat memory error exploits with certainty

so far, offers a probabilistic protection mechanism

D. Bruschi, L. Cavallaro, and A. Lanzi Diversified Process Replicæ

Memory Error
Artificial Diversity

Diversified Process Replicæ
Effectiveness

Practical Issues
Experimental Results

Future Works

Our Approach: Diversified Process Replicæ
Framework

Process
Process
Replica

Replicator
&

Monitoring

T , the replicator & monitoring process, creates Pr , a replica
of the protected process P
T makes P and Pr to behave identically on benign input
P and Pr are properly diversified to detect behavioral
divergence caused by malicious input, i.e., memory error
attacks

D. Bruschi, L. Cavallaro, and A. Lanzi Diversified Process Replicæ

Memory Error
Artificial Diversity

Diversified Process Replicæ
Effectiveness

Practical Issues
Experimental Results

Future Works

Our Approach: Diversified Process Replicæ
Process Replication

T synchronizes P and Pr for every system call invocation
(rendez-vouz point), and:

checks for system call consistency (e.g., system call
arguments, system call number)

simulates certain system calls (e.g., read, write, recv,
send)

replicates input, correctly handles output on I/O system calls
performs system call “once”
returns consistent results to P and Pr

lets P and Pr execute others system calls (e.g., brk, signal)

carefully treats other system calls (e.g., mmap2, shmat,
shmget)

D. Bruschi, L. Cavallaro, and A. Lanzi Diversified Process Replicæ

Memory Error
Artificial Diversity

Diversified Process Replicæ
Effectiveness

Practical Issues
Experimental Results

Future Works

Our Approach: Diversified Process Replicæ
Process Diversification

non-overlapping address spaces to combat memory corruption
attacks targeting absolute memory address

address space shifting to combat partial overwriting memory
corruption attacks

⇒ both address non relative control-data memory error exploits
and some non-control data

statically: custom linker script which takes care of the
executable .text, .data, .bss, heap (next to .bss)

dynamically: with a modified ld-linux.so which takes care
of the executable stack and shared objects “relocation”

D. Bruschi, L. Cavallaro, and A. Lanzi Diversified Process Replicæ

Memory Error
Artificial Diversity

Diversified Process Replicæ
Effectiveness

Practical Issues
Experimental Results

Future Works

Our Approach: Diversified Process Replicæ
Address Space Partitioning

0x08048000

text

data

bss

heap

stack

0x0

0xbfffffff

unmapped

0x08048000

0x64023fff

text

data

bss

heap

stack

0x0

0xbfffffff

unmapped

0x68048000

D. Bruschi, L. Cavallaro, and A. Lanzi Diversified Process Replicæ

Memory Error
Artificial Diversity

Diversified Process Replicæ
Effectiveness

Practical Issues
Experimental Results

Future Works

Effectiveness
Stack-based Buffer Overflow

0xbfff1234

higher
addresses
(stack growth)

Process Stack

lower
addresses

arguments

SFP (overwrit)

Injected
Malicious

Code

0xbfff1234
0xbfff1234

 Process Replica Stack

arguments

SFP (overwrit)

Injected
Malicious

Code
0x7fff1245

Unmapped
Area

(segfault)
0xbfff1234

(a) (b)

D. Bruschi, L. Cavallaro, and A. Lanzi Diversified Process Replicæ

Memory Error
Artificial Diversity

Diversified Process Replicæ
Effectiveness

Practical Issues
Experimental Results

Future Works

Shared Memory Management
Signals & Threads

Practical Issues

shared memory management

signals

threads

D. Bruschi, L. Cavallaro, and A. Lanzi Diversified Process Replicæ

Memory Error
Artificial Diversity

Diversified Process Replicæ
Effectiveness

Practical Issues
Experimental Results

Future Works

Shared Memory Management
Signals & Threads

Shared Memory
mmap-based and “classical” shared memory

mmap-based

1 non-anonymous

(a) private mapping (intra-process communication)
(b) shared mapping (inter-process communication)

2 anonymous (intra-process communication)

classical shared memory

(a) private mapping (intra-process communication)

(b) shared mapping (inter-process communication)

D. Bruschi, L. Cavallaro, and A. Lanzi Diversified Process Replicæ

Memory Error
Artificial Diversity

Diversified Process Replicæ
Effectiveness

Practical Issues
Experimental Results

Future Works

Shared Memory Management
Signals & Threads

Shared Memory
Data inconsistency and Behavioral Divergence

P and Pr create a readable and writable non-anonymous
shared memory segment M
ptr[0] points to the beginning of M

1 if (ptr[0] == ’A’)

2 ptr[0] = ’B’;

3 else

4 ptr[0] = ’C’;

5 ...

6 /*

7 * process invokes system calls based on the

8 * value held by ptr[0]

9 */

D. Bruschi, L. Cavallaro, and A. Lanzi Diversified Process Replicæ

Memory Error
Artificial Diversity

Diversified Process Replicæ
Effectiveness

Practical Issues
Experimental Results

Future Works

Shared Memory Management
Signals & Threads

Shared Memory
Related-only Processes

let suppose that only P and Pr are sharing a resource R

as seen before, P and Pr start an unwanted form of
inter-process communication between them

the direct consequence is that P and Pr might exhibit a
different behavior and R might be inconsistent

the solution is simple: let Pr create a private mapping, i.e., no
IPC between P and Pr

D. Bruschi, L. Cavallaro, and A. Lanzi Diversified Process Replicæ

Memory Error
Artificial Diversity

Diversified Process Replicæ
Effectiveness

Practical Issues
Experimental Results

Future Works

Shared Memory Management
Signals & Threads

Shared Memory
Unrelated Processes (1)

Assumption

“[...] What is normally required [when using shared memory],
however, is some form of synchronization between the processes
that are storing and fetching information to and from the shared
memory region”

the scenario with unrelated processes is more tricky
creating a private mapping is necessary but it is not sufficient
an external process E might modify the resource

P will see the modification (shared mapping)
Pr will not (private mapping)

Pr must operate on an up-to-dated view of the shared
resource R

D. Bruschi, L. Cavallaro, and A. Lanzi Diversified Process Replicæ

Memory Error
Artificial Diversity

Diversified Process Replicæ
Effectiveness

Practical Issues
Experimental Results

Future Works

Shared Memory Management
Signals & Threads

Shared Memory
Unrelated Processes (2)

the Assumption provides the following

it makes possible to decide when to perform the refresh
operation (rendez-vouz point)
it permits to wait for P to “acquire a lock” for R: it grants
data consistency during the refresh operation

Main point: how and when to update the memory regions where R
is referenced at:

to get “when” requires to analyze the synchronization
mechanisms P can use

knowing such mechanisms help to find the answer to the
“how” ⇒ Fault Interpretation

D. Bruschi, L. Cavallaro, and A. Lanzi Diversified Process Replicæ

Memory Error
Artificial Diversity

Diversified Process Replicæ
Effectiveness

Practical Issues
Experimental Results

Future Works

Shared Memory Management
Signals & Threads

Fault Interpretation

T marks P and Pr shared mapping as read-only

T exploits the CPU page fault exception to know whenever P
is writing into a shared memory area

T interprets the outcome of the synchronization adopted
(might be tricky)

T refreshes Pr shared memory mapping if P acquired the lock
successfully

D. Bruschi, L. Cavallaro, and A. Lanzi Diversified Process Replicæ

Memory Error
Artificial Diversity

Diversified Process Replicæ
Effectiveness

Practical Issues
Experimental Results

Future Works

Shared Memory Management
Signals & Threads

Signals and Non-Determinism

signals are asynchronous events; they might cause P and Pr

to behave differently if delivered asynchronously to them

signals can be delivered synchronously by postponing them at
the next rendez-vouz point (in general)

threads share the same issues raised by shared memory
management, but their treatment could be more tricky

open issue if shared control-dependencies data might modify a
thread’s behavior
scheduling P and Pr threads in the same way might not be
enough

D. Bruschi, L. Cavallaro, and A. Lanzi Diversified Process Replicæ

Memory Error
Artificial Diversity

Diversified Process Replicæ
Effectiveness

Practical Issues
Experimental Results

Future Works

Diversified Process Replicæ
Project Status & Experimental Results

user space ptrace prototype on a Debian GNU/Linux system,
2.6.x kernel

clone/fork/vfork support (still unreliable)

shared memory management (preliminary idea)

signals management (preliminary idea)

preliminary experimental results (100 conns, 4 sess x conn, 13
reqs x conn, ∼ 7.5MB web site):

Throughput MB/s (real) MB/s (DPR) slowdown

1 thttpd (mmap) 12386.9 12238.8 1.20%
2 thttpd (mmap-nocache) 12718.4 12496.5 1.75%
3 thttpd (read) 12599.5 12117.4 3.83%
4 thttpd (read-nocache) 12603.7 7086.3 43.78%
5 thttpd (read-nocache-single) 9134.5 2838.1 68.93%

D. Bruschi, L. Cavallaro, and A. Lanzi Diversified Process Replicæ

Memory Error
Artificial Diversity

Diversified Process Replicæ
Effectiveness

Practical Issues
Experimental Results

Future Works

Future Works

full implementation of the prototype

assess the viability and practicability of the shared memory
solution

improve protection from partial overwriting memory
corruption attacks targeting control-data

address relative addressing and, in general, non-control-data
memory corruption attacks

performance:

hybrid system call interposition implementation
(selective) file system replication (currently testing)
could SMP help out?

It seems to be an exciting research topic! :-)
D. Bruschi, L. Cavallaro, and A. Lanzi Diversified Process Replicæ

Memory Error
Artificial Diversity

Diversified Process Replicæ
Effectiveness

Practical Issues
Experimental Results

Future Works

Questions & Answers

Q & A?
Thank you! :-)

D. Bruschi, L. Cavallaro, and A. Lanzi Diversified Process Replicæ

	Memory Error
	Artificial Diversity
	Diversified Process Replicæ
	Effectiveness
	Practical Issues
	Shared Memory Management
	Signals & Threads

	Experimental Results
	Future Works

