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Abstract

A space resection and multistation intersection analysis 1is
presented which wWorks well for highly convergent close range
photography. A program based on this analysis has been written
at the National Physical Laboratory and, i1in addition to
providing initial values for a bundle adjustment program, it is
also used to detect gross errors such as incorrect labelling of
measured points.

1. Introduction

At NPL considerable effort has been put into the production of
an accurate bundle solution package for use 1in close-range
photogrammetry applied to metrological problems. An essential
requirement for this acclurate program to work was the provision
of good initial esimates of the photogrammetric variables.

In the present analysis it is assumed that the minimum amount
of information necessary to fix the positions and orientations
of the cameras is presented in the form of initial estimates of
the ©positions of at least four object points. It will be noted
where appropriate how additional information can be used to
reduce the amount of computation.

2. Outline of the Notation

In photogrammetry using np photographs there are np+1
co=-ordinate systems in which obJject and image points may be
expressed. One 1s the ‘'exterior' co=-ordinate system of the

object and the other np, are the 'interior' co-ordinate systems
of the cameras at the instants of taking the photographs. If
the co-ordinate systems are assumed to be right handed and
orthogonal then any vector in one system must correspond to a
vector in any other system differing by a translation, a
rotation and, possibly, a change of scale. If the scale 1is
unchanged, vector differences can only differ by a rotation.

Let the vectors in the 'exterior' co-ordinate system be denoted
by upper case letters and those in the 'interior' systems by
lower case letters using superscripts to indicate the
photograph with which they are associated.

(») |
e, (X.7%XP) = EP (xP-x7) —1)
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to simplify the notation let
(P) @ _ (P
3= (x-zf)and C; (X}"Xa )
then (1) becomes

G(P) /2 3 == (2)

If X; is the position of a point on the ebject and x“’J is the
corresponding point in the 'internal' co-ordinate system of the
pth photograph then X% and x/ are the 'external perspective

centre' and the 'inner perspectlve centre' of the pth camera.

In order to obtain the image points Q?’on the pth photograph it
is necessary to project the object points in the co-ordinate
system of that photograph onto the corresponding image plane.
The simplest such projection is of the form:

(p)
(P) (h(p) gp)) - Ccp gL.(P) —(3)

Which corresponds to an aberration free 'pin-hole' camera for
which any point h"’ln the image plane satisfies:

[/
E‘(P) f) (hP-2®), J(“’) _f ()

where f“”ls the normal to the- image plane and £® is the

principal distance. It is usual to take an 'internal' system of
gggordinates for the camera such that f®has the Simple form

£ = (0,0,1) therefore from (3) and (4)

c?=- 197,

hence one obtains the usual photogrammetric equation as:
?) q(p) ()
--5737/097), —(5)

As measurements of the image are done in two dimensions it is
convenient to define a two dlmen31onal vector uM) having the
same components in the image plane as P . Then uf’ is the two
dimensional vector from the pr1n01pal point on the pth
photograph to the image of the ith point on that photograph.
The relation between these vectors is illustrated in figure(1).

3. A Method of Finding the Perspective Centres

In the photogrammetric literature several methods for finding
the position of the camera ln terms of its perspective centre
gg” and the rotation matrix R’ are described but they usually
rely on some prior knowledge of approximate camera positions.
This may be reasonable in air survey work where the overall
geometry 1is fairly standard but at close range it is useful to
have a method which works with the minimum number of initial
assumptions. These assumptions or initial conditions may be
presented in a variety of ways. In the present section it is
assumed that every photograph images at least four points for

which initial values of the co-ordinates are known.
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The method presented here to estimate the perspective centre
x® contains four distinct steps: (i) choosing three suitable
points X, X, and X, from the object points for which initial
estimates of the co-ordinates are known as initial points to
determine X%, (ii) finding the distances S, , S, and S; from
X% to the three chosen points X,, X, and X,, (iii) finding the
intersection of three spheres radius S, , S, and S; with c¢entres
X,, X, and X, and (iv) choosing the best solution from (ii) and
(1ii) using all the points for which initial co-ordinates are

known.

Step(i): choice of initial points.

If sets of initial co-ordinates have been given for ng points
on the object, three of them must be chosen to start the space
resection. The chief requirements of these points are that they
are 1imaged on the photograph under consideration and that their
images are not collinear. Provided there are not excessive
numbers of initial points it is possible to calculate the area
of the triangle on the image plane with the images of each set
of three initial points X, , X; and X, at its vertices for all
possible sets of three initial points. The points X, , X, and X,
giving the maximum area are in some sense furthest from
collinearity and provide a suitable starting point for the
resection.

Step(ii): determination of distances S, , Sz and S;.

The model adopted for the photographic process assumes that the
angles between rays passing through Xf’are unchanged as in
figure(2a). In the object space:

¢P)

0% = (X, XE). (%, X2V PG o 5= 1% X7 ---(6)

12

and in terms of the image co-ordinates and the principal
distance:

e 0 = (ulul+ F V(NP ) M 7))

For a given photograph the superscript p may be dropped and the
tetrahedron of figure(2a) exploded and flattened onto the plane

containing X, , X, and X, to give figure(2b). The radius r, of
the circle containing points X, , X and X, iIs given by:
21, = 1X-X,1/0-cn26,) ——=(T)

Also by expressing X,, X, and X, in the Cartesian co-ordinates
shown in figure(2b) or otherwise it may be shown that:

S =ty 2+ 2 cor(8,-%2)) - (8)
and Sz TTz \/(2+260j(912+0<12,}) "—'(9)

where in (7), (8) and (9) the positive sqguare root is always
taken and o £ 1T-6,,1 . Similarly taking a cyclic labelling

U

"
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convention:

S,= T3 N 2+2 o (635 -X33)) - —==(10)

Ss= 153 V(2 +7 cor (855 + X23)) —=(11)

Si= 15 1+ 2 (85, - x3)) —--(12)

S =% /(2+2m(93,+o<3,)) —=(13)
If the variable replaces oX,, then from (8) and (9)

5(X) =1, //2+2m/9,2~o<)) —=(14)

Slk) =ty H2+2er (8,5+ ) ——=(15)

A cyclic permutation of labels can always be found such that:
T2 < T3 and 13,
in which case
S5a()= e (SHX) /2132 -1) —-(16)
and Bpp (X) =cor™ (SE(X)/ 212 - 1) ——=(17)
always exist and may be chosen to be in the range OS5 (T .
From (13) @9 (@y +Ky) = S («)/2 752 =
therefore Oy + Kz = % 5, (xX)
and from (12) §,(X)= 15, /(2+ 2o (205+ () 6y () i=lor2  =—=(18)
Similarly from (11) Sy(«)= 15, 242 (2633 + ) 55()) jotor2 —==(19)
Let Fu(X) =152 ( 1+ (26,+ (06, () - 152 (1 + s (16, + C2E,, (0]

then if F¢j(X) = 0, K, = o« corresponds to a solution of
equations (8) to (13) provided:
/0<23/ = [923 +("0ng3 (O()/ \< 17“9231 _--(20)

and /o(g;l = /93, "'('/)[53, (X)] £ 1 TT-83

Thus the solutions for S,, S, and S3; may be found by searching
for zeros along the four branches of F; () which 1is
continuous in &« and discarding those for which (20) is not
satisfied. Fortunately the form of F¢ (X) as a function of &
is quite straightforward. Thus in cases of practical interest
where the geometry is such that the S, are well defined by the
photograph it is only necessary to step through about 50 values
of &« Dbetween -(T-6, and (T -6,) in equal increments of AX

and look for cases where sign(Fg (X)) = - sign(F: (x-4x)) or
sign(Fej (X)) = 0 indicating a root. A sufficiently good
estimate of this root is then obtained by linear interpolation.
Once a root o< has been found the corresponding S, (¢l ) and
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S,( ) may be found from (14) and (15). Similarly S;( < ) may
be found from (16) and (18).

The accuraciesof the resulting estimates of S, , S, and Sz depend
on the accuracy to which the root has been found and the
accuracy of the initial image points u,, w, and &gz which are
used to compute cos8,ete. If the u¢ are to some extent subject
to experimental uncertainty then there 1is a 1limit to the
accuracy of the S; however well the zeros of F¢ (X) are
determined. Thus there is no point in a very elaborate root
finding procedure.

Step(iii): intersection of three spheres.

The perspective centres corresponding to a set of S; from
step(ii) are given by the two points of intersection of three
spheres radius S,, S and Sz with centres at X,, X, and X,.
Routines exist for solving this problem in the air survey case
but they are not all sufficiently general for close range work.

The equations for these spheres may be written in terms of the
variable X as:

(x-¥x)° =" —m(21)
(X-X,)" =52 ——(22)
(X-X3)* = St | —-=(23)

Taking (22) from (21) gives the plane containing the circle of
intersection of the corresponding spheres as:

2 2 2 2z
X (K -X2) =14 (x*= X5 -(s*-57)) - (24)
similarly for the other planes of intersection
2 2 2 2
These planes meet in a line which is perpendicular to the plane
of the triangle with vertices at X,, X, and X, and which

contains the two points of intersection of the spheres. The
normal XK to this triangle 1s given by:

K’=XVAX2+XIAX;+K3AX|

Hence the equation of the plane containing this triangle is:

XK= X (X A %) ---(26)

Solution of (26) with (24) and (25) gives X, the point at which
the line joining the intersections of the three spheres crosses
the plane of the triangle.

The plane of the triangle is the perpendicular bisector of the
line Joining the two points of intersection of the .three

spheres. Thus the estimates of X_ may be written:




424

X,= X, *tK ——=(27)
Substitution of (27) in (21) gives:

= (5F-(X,-X )/ K*

Step(iv): choice of the best solution.

(.).(L"')_(a)v (XJ".XJ/SC S,
(we.hj +F2)/(HuF~F2) Hud+£2)

for all pairs of points imaged on the photograph. Thus the
'best’! estimate of the perspective centre X, 1s taken as that
which gives the minimum value of the sum:

T(Xo) = 2-; § (XL".Xo)o(xJ"Xa) _ de Uy 4--‘(Z }
- S¢S  Muderd Hgzf)

From (6) ¢ O

4., A Method of Finding the R Matrix

The orientation of the ‘'internal' co-ordinate system of the
camera in the act of taking the pth photograph may be referred
to as the orientation of that photograph. This orientation is
described in terms of the rotation matrix R‘” in (1).

From (2) and (5)

-R B —(28)

LAV

[3

where G, = G,/ |G/ depends on X. and X,
and = P. /\B:| depends on u, and f.

Thus they may be computed for any point 1imaged on the
photograph for which initial co-ordinates are known using the
best estimate of X, from sectlon(3) To illustrate the method
of solution the 1ndlces on G ’?. and R may be rearranged to

give' -t
yL.(jJ = (_é{.)j ’ Acr=(P.), and 7 (G) = Rp
then (28) becomes:
yGl=81r

where the A matrix is the same in each case. Thus provided 1
runs at least from 1 to 3 it is possible to give a 1least
squares solution for the r(j) and hence the R¢j as though they
were independent variables. This estimate of R

trahic>

e~

i.e. R =(ra), r02), r(3))

is very nearly orthogonal because (28) implies that it leaves
the length of a unit vector unchanged. This is exactly the same
method of finding R normally used in air survey work. The only
refinement before using it as an initial R for the 'bundle
adjustment’ program 1is to ensure that it is orthogonal to the
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accuracy of the computer by using the Schmidt procedure. This
ensures that R 1s a true rotation matrix.

5. An Intersection Method to Find the Unknown Points

An intersection may be performed with any number of cameras
greater than one as follows:

from (28) Z(c - Zo(p) R(P)/\CP) .X. X(p)l

let dP= 1 - x|

then X&P= X, +d¥ RP® —--(29)
At this stage in the calculation X“v 30) and @?’ have been

estimated therefore only X; and d¥ are unknown. If a solution
is sought which minimises Vg where:

Z \/(P) Z (xm X d(P)RcP)A(p))

the sum belng taken only over photographs containing images of
the ith point, then (29) 1looks 1like a linear least squares
problem with 3n equations (where n% is the number of
photographs with 1mages of the ith point) in 3 + n“’ unknowns.
Thus (29) may be solved in a least squares sense provided that
the ith point is imaged by at least two independent cameras.

This method 1is somewhat different from that which is usually
employed for two photographs but has the advantage that 1t is
easily generalised to any number of photographs greater than
two and gives an easily soluble linear problem.

6. Practical data input

While we have been running photogrammetric programs at NPL it
has been found that a major source of effort is the preparation
of a good set of data. There are three additions to the 'front
end’ software which can greatly increase the efficiency of data
preparation.

First: each photograph is checked for repeated occurences of
the same point, as identified by 1its serial number. Any
repeated occurences are 1listed and execution of the program
terminated.

Second: an entry to the package is provided in an interactive
mode. This ensures that a data file may easily be created in a
suitable format to be read correctly by the main program. This
provision is particularly useful for large data sets and users
who are not familiar with the layout of the data.

Third: some form of gross error detection is necessary. This is
provided by examining the virtuazl displacements necessary to
obtain a perfect intersection as described in section(5). At
NPL these virtual displacements V” have proved remarkably good
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indicators of points with gross data errors and in many cases
show which photograph is at fault. The advantage of inspecting
for gross errors at this stage is that they have not been
'spread out' over the rest of the data by a global least"
squares adjustment.

Ideally all data checking and correction should be done as the
points are being measured so that they c¢an be remeasured
immediately if there is any reason to suspect an error. In
order to implement this philosophy a version of the above
analysis has been used to produce a resection/intersection
package for a 32k microcomputer (BBC Model B)which will be used
to control an automated version of a Zeiss ZKM measuring
machine.

{. Conclusion

Despite extensive discussion of the general 'bundle' solution
in the literature there seems to be little written on reliable
methods of finding initial estimates of the photogrammetric
variables. These initial estimates are required to linearise
the equations giving the image co-ordinates in terms of the
object co-ordinates etc. :

As there are a great number of different types of
photogrammetric problem it is difficult, if not impossible, to
give a prescription for doing all of them. Yet it has been
possible to structure the 'front end' program used at NPL in
such. a way that various forms of constraint are written in
terms of 1initial point positions. In particular if some
photographs fail to image four initial points a preliminary
intersection is carried out to provide additional ‘'initial'
values. Various forms of iterative refinement may be used but
these are largely inappropriate for a 'front end' package which
is to be followed by a full 'bundle adjustment'.
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Figure (1)
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Figure (2)




