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ABSTRACT: 
 
Coastal mapping is essential for a number of applications such as coastal resource management, coastal environmental protection, 
and coastal development and planning. Coastal mapping has been carried out using a wide range of techniques such as ground 
surveying and aerial mapping. Recently, satellite images, active sensor elevation models, and multispectral and hyperspectral images 
have also been used in coastal mapping. The integration of two or more of these datasets can provide more reliable coastal 
information. This paper presents an alternative technique for coastal mapping using an AVIRIS image and a LIDAR-based DEM. 
The DEM is used to generate building cues that are converted to building polygons. Building pixels are then removed from the 
AVIRIS image, and a supervised classification is performed to generate road and shoreline classes. A number of image processing 
techniques are used to victories road and shoreline pixels. The geometric accuracy and the completeness of the results are evaluated. 
The average positional accuracy for the building, road, and shoreline layers are 2.3, 5.7 and 7.2 meters, with 93.2%, 91.3%, and 
95.2% detection rates respectively. The results demonstrate the potential of using LIDAR-based DEMs to detect building cues and 
remove their corresponding pixels from the classification process. Thus, integrating laser and optical data can provide high quality 
coastal geospatial information. 
 
 

1. INTRODUCTION 

Coastal areas represent important and diverse parts of the Earth 
along shorelines. They consist of recreational beaches, 
residential regions, industrial areas, and harbors. High quality 
geospatial coastal information is essential for coastal resource 
management, coastal environmental protection, and coastal 
development and planning. Acquiring such information has 
been carried out using aerial photographs and ground surveying. 
These techniques have many advantages, such as flexible 
scheduling, easy-to-change configuration, and high quality 
mapping results. However, they are expensive and needs special 
logistics and processing procedures.  
 
Recently, satellite-imaging systems have improved their image 
resolutions and opened the era for high resolution mapping 
from space. Pitts et al. (2004) used a series of five Landsat TM 
images, spanning from 1984 to 1997, for coral reefs mapping. 
Chang et al. (1999) used SPOT images for shoreline mapping 
and change detection. Drzyzga and Arbogast (2002) used 
IKONOS images to monitor and map coastal landscape changes 
during spring and late summer seasons for three sites along 
Lake Michigan and one site along Lake Huron. Di et al. (2003) 
used the multispectral IKONOS images for initial shoreline 
generation. The initial shoreline was then refined using the 
panchromatic IKONOS images.  
 
Active remote sensing techniques, LIDAR and synthetic 
aperture radar (SAR), have been tested and evaluated in a wide 
variety of coastal applications. Cook (2003) used LIDAR for 
shoreline mapping and change detection in Florida coast. Tuell 
(1998) used SAR for shoreline mapping and change detection in 
a remote area along the Alaska shoreline as part of the national 
geodetic survey (NGS) effort to evaluate the potential of several 
mapping technologies. Brzank and Heipke (2006) studied the 
extraction of land and water areas from laser scanner datasets. 
Flight strips were processed separately using a fuzzy logic 
approach that classify the data into water and non-water classes.  
 

The integration of active remote sensing technologies with 
other datasets makes it possible to provide reliable and 
automatic solutions for coastal mapping and change detection. 
Gibeaut et al. [8] used LIDAR data and historical aerial 
photographs to study the Gulf of Mexico shoreline changes. Lee 
and Shan (2003) combined LIDAR data and IKONOS images 
for coastal mapping. They reported an average detection rate 
89.3% without using the LIDAR data and 93% using LIDAR 
data. Bartels et al. (2007) presented a rule-based approach for 
improving classification accuracy obtained in a supervised 
maximum likelihood classification process using 
simultaneously recorded co-registered bands such as high 
resolution LIDAR first, last echo and intensity data, aerial and 
near infra-red photos. The results show that merging these 
datasets improve the quality of the classification process. 
 
This research demonstrates a new framework for automatic 
coastal mapping using the airborne visible/infrared imaging 
spectrometer (AVIRIS) and the light detection and ranging 
(LIDAR) systems. While AVIRIS images measure the spectral 
reflectance of the ground, operating with a wavelength band 
from 0.380µm to 2.500µm of the electromagnetic spectrum, 
LIDAR data are geometric range measurements, operating with 
a wavelength of about 1000µm. Therefore, the combination of 
these two measurements provides accurate geometric and 
spectral information about the ground, which could be used to 
produce high quality topographic maps. 
 
The LIDAR-based digital elevation model (DEM) and the 
AVIRIS image are processed and registered using a number of 
ground control points (GCPs) obtained from a pair of aerial 
images. The DEM is then filtered and segmented to generate 
building cues. These cues are converted to building polygons 
and used to generate a polygon layer for buildings. Due to the 
low resolution of the AVIRIS data and the diversity of the 
building roof materials, it is difficult to classify buildings as one 
class. Therefore, the building polygons are superimposed on the 
AVIRIS image. All buildings pixels in the AVIRIS image are 
excluded from the classification. A supervised classification 725



 

technique is then applied to classify the AVIRIS image. The 
classified pixels for the road and water classes are used to 
generate road and shoreline vector layers, respectively, via a 
line extraction process. Results showed an average positional 
accuracy of about five meters and an average detection rate of 
93%. The results demonstrate that integrating laser and optical 
data can provide high quality coastal information.  
 
 

2. DATASET DESCRIPTION 

The dataset used was collected over the coastal area of Ocean 
City, Maryland. Ocean City is an urban area that consists of 
roads, high-rise buildings, and residential buildings. In addition, 
along the east coast are a number of sandy beaches while 
harbours and docks are found on the west coast. The dataset 
was collected by the International Society of Photogrammetry 
and Remote Sensing (ISPRS) Commission III, Working Group 
5, (Csathó and Schenk, 1998). The dataset includes large-scale 
aerial images, laser altimetry data, and hyperspectral images. 
The large-scale aerial photographs are used as the source for 
ground control points (GCPs) and as the ground truth data for 
evaluation. The laser altimetry and the hyperspectral data are 
used for the coastal mapping process.  
 
The aerial photographs consist of a pair of 1:5000 aerial images 
acquired using an RC20 camera operated independently by 
NGS. The images are provided in a digital form at a resolution 
of 12.5µm. Well-distributed GCPs, surveyed using the 
differential global positioning system (DGPS), are used to 
compute the interior and exterior orientation parameters of the 
images. A manual feature extraction process is then performed 
in order to provide the ground truth data.  
 
The LIDAR-based DEM is acquired using an airborne 
topographic mapper (ATM) laser system. The ATM is a conical 
scanning laser altimeter developed by NASA for precise 
measurement of surface elevation changes. Laser elevation data 
is acquired as a point cloud that is used to drive the required 
DEM in three main steps. First, the flight path is reconstructed 
using the DGPS and the inertial navigation system (INS) 
techniques mounted with the ATM system on the aircraft. 
Secondly, the 3D coordinates for each laser pulse intersection 
with the ground are computed using the laser travelling time 
and the reconstructed flight path. The LIDAR data is generated 
as a high-density point cloud with an average spacing of one 
laser point per one square meter. Finally, a post-processing step 
is used for filtering out the data outliers and generating the 
DEM and other products. The final data is provided as a one-
meter DEM projected in the universal traverse mercator (UTM) 
projection with the WGS84 used as the reference ellipsoid. The 
vertical accuracy of the LIDAR based DEM is about 10 
centimetres, (Ackerman, 1999). Twenty-eight ground 
checkpoints, measured in the reference orthophoto, are used to 
evaluate the horizontal accuracy of the LIDAR based DEM. 
The average of the root mean square errors (RMS) for the 28 
checkpoints is 1.08 meter.  
 
The AVIRIS hyperspectral image is obtained using the AVIRIS 
scanner from the jet propulsion laboratory (JPL) that was 
installed on the NGS aircraft. The AVIRIS instrument contains 
224 different detectors, each with a spectral bandwidth of 
approximately 10 nanometers (nm), allowing it to cover the 
entire range between 380nm and 2500nm. The ground 
resolution of the AVIRIS image is 3.8 meters. The image is 

provided in raw and column pixel units with approximate 
geographic coordinates (latitude and longitude) for the start and 
the end points of the flight line. Therefore, the AVIRIS image 
was first registered before it is used the coastal mapping 
application. 
 
 

3. REGISTERING OF AVIRIS IMAGE 

Several experiments are conducted to rectify the AVIRIS image 
using the 2D projective transformation model, Equation 1. 
Three experiments are performed using different sets of GCPs 
and an independent set of 25 ground checkpoints. For each 
experiment the RMS is used to evaluate the results. The true 
ground coordinates of the GCPs and checkpoints are measured 
from the stereo images using tradition photogrammetric 
techniques. After computing the 2D transformation parameters 
using the ground and image coordinates of the GPCs, the 
computed parameters are used to calculate the ground 
coordinates of the checkpoints. These coordinates are compared 
with the measured ground coordinates, from the stereo images, 
and their RMS is computed. Results show that the average RMS 
is about five meters. Figure 1 shows the AVIRIS imagery 
before and after the rectification process using 10 GCPs. 
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Figure 1. AVIRIS image before and after rectification using  10 

GCPs 
 
 

4. COASTAL MAPPING 

The coastal mapping process is divided to two parts. In the first 
part, the LIDAR DEM is used to generate a vector layer for 
buildings. This task includes the following steps: DEM 
filtering, DEM segmentation, region classification, and region 
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to polygon conversion. In the second part, a supervised 
classification technique is used to classify the AVIRIS image 
after removing building pixels from the image. A number of 
image processing techniques including thinning, edge detection, 
and line fitting are performed on all pixels classified as road 
and water to generate two vector layers for the road network 
and the shoreline. 
 
 

5. BUILDING VECTOR LAYER 

In order to find buildings cues in the LIDAR-based DEM, the 
digital surface model (DSM), i.e. representing bare ground, 
need to be extracted. Minimum filters are used to perform this 
task (Masaharu and Ohtsubo, 2002; Wack and Wimmer, 2002). 
The main objective of the filtering process is to detect and 
consequently remove points above the ground surface in order 
to recognize height DSM points in the data set. The minimum 
filter size should be large enough to include data points that are 
not part of the noise. However, iterative approaches could be 
used to avoid the effect of noise. In this research, the size of the 
filter is 3x3. The filtering is repeated iteratively until the DSM 
is extracted. If the difference between the DSM and the DEM 
for any pixel is greater than a given threshold, the point is 
treated as a building pixel. The value of the threshold is 
determinate using previous knowledge about the area.  
 
The next step is to eliminate extraneous features such as trees 
and any other object above the ground that are not buildings. A 
local statistic analysis (Maas, 1999) is used for this purpose. 
The process is implemented as follows. Each group of pixels 
that lies within a small square window is fitted to a plane. Then, 
a least squares adjustment algorithm is used to obtain the plane 
parameters. After the adjustment procedure, the RMS is 
computed for each window. A high RMS indicates an irregular 
surface that can be interpreted as a characteristic of a tree or a 
rough surface, since most buildings have smooth roof surfaces. 
For each pixel, the algorithm is implemented with different 
window orientations and positions and the minimum RMS is 
reported.  
 
A split and merge image segmentation process is then used to 
segment the LIDAR based DEM to regions after removing the 
extraneous objects from the raw data. The split and merge 
image segmentation technique, Horowitz and Pavlidis (1974), is 
implemented as follows. First a quad-tree representation is 
constructed for the image splitting as necessary when in-
homogeneities exist. Then adjacent regions are merged to form 
larger regions based on a similarity criterion. In the last step, 
small regions are either eliminated or merged with larger 
regions and holes are removed. Border points for each region 
are extracted and used to fill a 2D Hough transformation 
parameter space, (Hough, 1962). The Hough transformation 
parameter space is then searched and analyzed to find all 
borderlines. For each cell in the parameter space a non-linear 
lest squares estimation model is employed to refine the 
borderline parameters using all border points contributing to the 
cell.  
 
The next step is to convert the extracted lines to polygons using 
a rule-based system. The rules are designed as complex as 
possible to cover a wide range of polygons. The mechanism that 
is developed here works in three steps. The first step is to find 
all possible intersections between all borderlines. The next step 
is to generate all feasible polygons from all recorded 
intersections. Each combination of three to six intersection 

points is considered to be a polygon hypothesis. Some 
hypotheses are ignored if the difference in the area between the 
region and the hypothesized polygon is more than 50%. The 
third step is to find the optimal polygon that represents the 
region borders. This polygon is chosen from the remaining 
polygons using a template matching technique. The template is 
chosen to be the original region, while it is matched across all 
polygon hypotheses. The hypothesis with the largest correlation 
and minimum number of vertices is chosen to be the best fitting 
polygon. Figure 2, shows the extracted building polygons 
overlaid on the one-meter LIDAR-based DEM. 
 

 
 
Figure 2. Extracted building polygons overlaid on the one-

meter LIDAR-based DEM, (rotated) 
 
 
6. ROAD NETWORK AND SHORELINE VECTOR 

LAYERS 

In this section the process of generating vector layers for the 
road network and the shoreline is presented. The results of 
classifying the raw AVIRIS image showed an overall accuracy 
of about 68.7%. This is due to the diversity of the building roof 
materials and the small number of buildings. Several buildings 
were classified as roads. This motivated the elimination of the 
building pixels before the classification process. Hence, the 
following algorithm was applied. Building polygons were first 
used to define building pixels in the AVIRIS hyperspectral 
image using a point-in-polygon process. All pixels defined as 
building points are identified as background pixels and not used 
in the classification process. In the next step, a supervised 
classification technique is performed on the AVIRIS 
hyperspectral image using the extraction and classification of 
homogeneous objects (ECHO) classifier, (Biehl and Landgrebe, 
2002).  
 
Six classes are defined in the image; road, water, sand beach, 
grass, bare soil, others. The last class includes all objects that 
cannot be identified. Training pixels are then identified and 
used to calculate each class statistics. A number of test samples 
are used to evaluate the classification results of each class. 
Table 1 shows the size of the training and test samples for each 
class and the classification results for the training and test 
samples. The total accuracy of all training sites is 92.7%, while 
the total accuracy of all test sites is 87.6%. However, the 
average accuracy of the road and water test sites, that are used 
to generate the road network and shoreline layers, is about 98%.  
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Number of Pixels Site Accuracy 
(%)  Trainin

g  Test  Trainin
g Test 

Number 
of 

Classifie
d Pixels  

Roads 3686 1662 96.7 96.1 25512 
Grass 960 499 98.5 35.3 2047 
Water 3331 7695 99.6 99.8 35012 
Sand 2299 4584 100.0 99.9 12319 
Bare 
Soil 323 115 99.7 98.3 1312 

Other 7564 5041 84.1 59.2 100702 
Total 18163 19596 92.7 87.6 176904 

 
Table 1. Results of the AVIRIS image classification after 

removing the building pixels 
 
  
The next step in the process is to generate the road and the 
shoreline vector layers. The road class is first separated from 
other classes then a thinning process is performed on road 
pixels. A 2D Hough transformation parameter space is filled 
using all road pixels. Peak cells in the parameter space are 
located and all pixels contributing to these cells are used to find 
the road centrelines using a non-linear lest squares estimation 
model. A line joining process is then used to join road 
centrelines that have the same parameters.  
 
  
In the last step, the shoreline is extracted from the water class. 
First, the water class is separated from other classes and border 
pixels are defined. These pixels are then converted to a polyline 
using the algorithm presented in Bimal and Kumar (1991). The 
basic idea of the algorithm is to go through all the border points 
and only retain those that that are significant, i.e. those that 
represent vertices. Figure 3 shows the extracted road network 
and the extracted shorelines overlaid on the reference 
orthophoto. 

 
 
Figure 3. Extracted road network and shoreline overlaid on the 

reference orthophoto 
 

7. EVALUATION AND ANALYSIS 

The completeness and the positional accuracy of the results are 
evaluated using different metrics. The completeness is 

measured using two metrics: the detection rate (DR) and the 
false alarm rate (FR). Table 2 shows the values of the DR and 
FR for each class. The table shows that the detection rate for all 
three features is more than 90%. In addition, the table shows 
that no false-alarm roads or shorelines have been extracted. The 
table shows that the false-alarm rate in the building layer is 
3.2%. 

 Detection rate (%) False –alarm rate 
(%) 

Roads 91.3 0 
Shorelines 95.2 0 
Buildings 93.2 3.2 

 
Table 2. Quality metrics used to evaluate the results 

 
The RMS is used to evaluate the positional accuracy of the 
extracted features. This is performed in different means. For the 
road network, the positions of 20 road intersections are used. 
The RMS for the coordinates of the 20 points is 5.7 meters and 
the maximum error is 9.5 meters. For the shoreline, 30 distinct 
points are manually selected. The RMS for the 30 points is 7.2 
meters, and the maximum positional error is 10.9 meters. The 
RMS for the buildings corners is 2.3 meters, while the 
maximum error is 3.8 meters.  
 
 

8. CONCLUSIONS 

This research shows that the combination of multiple and 
independent remote sensing data is essential to solve the 
complexity of the coastal mapping. Due to the nature of the 
LIDAR data, it was employed to extract building polygons 
only. The AVIRIS data led to other coastal features that are not 
distinguished using the height attribute only such as roads and 
shorelines. The classification results are vectorized and used to 
generate road and shoreline vector layers. Results show that the 
average detection rate of the proposed technique is 93%. The 
positional accuracy of the extracted features is data depended. 
The research shows that the RMS of the generated building 
polygons is 2.3 meters, while the RMS of the roads and the 
shorelines is about 6.5 meters. These results show the potential 
of merging optical and laser data to provide reliable and 
accurate geospatial information that can be used to build or 
update coastal GIS database. 
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