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ABSTRACT: 
 
One well established technique to construct a surface that best fits to an observed scattered point cloud is based on the Kriging 
methodology that uses semi-variograms. It somewhat resembles least-squares collocation which, however, uses the covariance 
function to define spatial coherency. This approach requires the assumption of ergodicity for the underlying spatial process that 
ultimately determines the surface in need for reconstruction by pointwise spatial prediction and, thereby, avoids the restrictions that 
come with a parametric surface description. An essential part of the Kriging approach, though, is the estimation of the empirical 
semi-variogram which is usually found by employing a weighted least-squares technique to best fit a number of representative 
values, derived from the data set, that describe the average loss of similarity between surface heights over growing distances. As this 
semi-variogram regularly turns out to have a steep slope near the origin - where it matters most -, a better idea seems to be seeking a 
best fit on the basis of the Total Least-Squares (TLS) principle. This approach does guarantee that any measures of misfit are taken 
perpendicular to the adjusted curve rather then in the vertical direction. 
 
In the present contribution, an attempt will be made to quantify the improvement, due to the TLS adjustment, over the traditional 
weighted least-squares fit. An exemplary set of aeromagnetic data from West Antarctica will serve as a realistic application case for 
this novel approach to surface reconstruction. 
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INTRODUCTION 

In most datasets from the earth sciences we can recognize 
spatial dependence (resp. correlation) in the sense that two data 
points are more likely to have similar values the closer they are 
to each other. This behavior is usually expressed 
mathematically in form of a spatial coherency function such as 
the semi-variogram, the covariance function, or the 
homeogram. In this contribution we shall restrict ourselves to 
the semi-variogram which is the traditional tool in geostatistical 
analysis; see, e.g., G.Matheron (1971), A.G.Journel and 
Ch.J.Huijbregts (1978), R.Dutter (1985), N.Cressie (1991), 
P.K.Kitanidis (1997), or J.P.Chilès and P.Delfiner (1999). 
 
Proper spatial dependence analysis is a vital step towards any 
geostatistical approach to surface reconstruction since it 
provides initial information about the likely surface behavior in 
space and, moreover, a mathematical description of the 
quantities needed for Kriging interpolation. In general, semi-
variograms measure the spatial dissimilarity of the surface 
value at different locations, including the data points. In a 
planar area, the semi-variogram would only depend on the 
distance vector between the two points involved if the so-called 
“intrinsic hypothesis” holds true which is actually a similar, but 
slightly weaker property than “second order stationarity”; cf. 
A.G.Journel and Ch.J.Huijbregts (1978, pp. 32-34) for a short 
discussion. If the spatial process that describes the surface, in 
addition, follows the requirement of “isotropy” (i.e., rotational 
invariance) the semi-variogram will only depend on one scalar 
parameter, namely the distance itself. After some prepocessing, 

including trend removal and/or “median polish” according to 
N.Cressie (1991, pp. 46-48), the resulting incremental process 
may oftentimes be assumed to be, at least, second order 
stationary (if not isotropic, too). 
 
In order to estimate the semi-variogram from the collected data, 
which typically represent observations of only one realization 
of the spatial process, we also need to assume the property of 
“ergodicity” that allows the full description of the process by 
analyzing any one of its realizations. Note that ergodic 
processes will necessarily turn out to be stationary; thus, non-
stationary processes cannot be handled by using methods that 
require ergodicity for their application. 
 
As a result of this diffuse situation, no universal technique to 
derive the semi-variogram from a given dataset has been firmly 
established. Those commonly recommended start from the 
“classical” estimator of G.Matheron (1963) that is based on the 
“method of moments”. Since these “empirical” function values 
will (generally) not obey the characteristics of a semi-
variogram, namely to be “conditionally positive-definite”, a 
certain model from an admissible class must be fitted in a 
second step, with special consideration of the behavior near the 
origin. 
 
The quality of fit will usually be judged in terms of a discrete 
“measure of deviation”, for instance the (standard) l2-norm as 
applied by M.David (1977) among others, taken along the 
ordinates. N.Cressie (1985) proposed a related (suitably) 
weighted least-squares criterion which contrasts to the 
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MInimum Norm Quadratic Estimation (MINQUE) by 
M.L.Stein (1987), or the Best (Invariant) Quadratic Unbiased 
Estimation (BIQUE) by P.K.Kitanidis (1985), resp. 
R.J.Marshall and K.V.Mardia (1985). In a large Monte Carlo 
study, D.L.Zimmerman and M.B.Zimmerman (1991) eventually 
concluded that, with respect to a number of well-established 
criteria, the Weighted Least-Squares (WLS) approach yields 
sometimes the best, but never poor results. 
 
In our view, WLS could be improved indeed by modifying the 
distance criterion to not only reflect the deviations in the 
ordinates, but also in the abscissas which result from an 
averaging process, too. In fact, the deviation will be measured 
perpendicular to the semi-variogram graph when using the 
criterion of Total Least-Squares (TLS) as it was first discussed 
by G.H.Golub and C.F.van Loan (1980) in a different context. 
By applying this modified criterion in two stages, Felus and 
Schaffrin (2005) could already see a better approximation of the 
“classical” estimator near the origin while generally preserving 
the “good nature” of the WLS by N.Cressie (1985). 
 
In the following, we shall first introduce the notation and 
provide a brief overview of the mathematical setting before 
introducing the Total Least-Squares approach in one stage and 
its adaptation to the spatial context, namely the fitting of a 
semi-variogram model based on the “empirical” values. A 
MATLAB program has been developed for this purpose and 
tested on an aeromagnetic dataset from Antarctica, using two 
different models for their semi-variogram. We conclude with a 
discussion of the merits that are specific to either the WLS, or 
the TLS procedure in view of our experience so far. 
 
1. Spatial Process and Their Prediction: A Review 

The semi-variogram offers one way to summarize spatial 
coherency among the process values within its domain of 
definition. More formally, let us introduce the real-valued 
stochastic process x(s), that describes the surface, by 
 

:x S → �    for                                                  (1.1) ds S∈ ⊂ �

 
where d denotes the Euclidean dimension. For the elements of 
the domain S, let the process values x(s) be random numbers 
with constant expectation (or “mean”)  
 
{ }( )E x s β=    for all   s S∈ ,                                              (1.2) 

 
such that the (auto)-covariance 
 
{ } { } 2( ), ( ) ( ) ( ) : ( )xC x s x s h E x s x s h C hβ+ = ⋅ + − =             (1.3) 

 
only depends on the distance vector h. In this case we call the 
process x(s) “second order stationary”; moreover, the 
variogram  
 

{ } [ ]{ }
[ ]

2( ) ( ) ( ) ( )

2 (0) ( ) : 2 ( )x x x

D x s h x s E x s h x s

C C h γ

+ − = + − =

= − = h
                 (1.4) 

 
will also depend on the distance vector h only. Here D denotes 
“dispersion” (or “variance”). With (1.2) and (1.4) the process 
x(s) fulfills the “intrinsic property”. 
In addition, we would assume x(s) to be “ergodic” which allows 
us to replace the expectation operator by a spatial integral over 

a realization of the process, here also denoted by x(s). Hence, 
the mean from (1.2) can be rewritten 
 

{ } 1( ) ( )
S

E x s x s ds
S

β= =∫                                                   (1.5) 

 
and the semi-variogram from (1.4) as  
 

[ 21( ) ( ) ( )
2

h

x
h S

h x s h x s
S

γ = + −∫ ] ds                                    (1.6) 

 
where is that portion of the domain S that guarantees s+h to 
be still in S for a given h if and only if 

hS

hs S∈ . 
 
We emphasize the fact that “ergodicity” implies “second order 
stationarity” and consequently the “intrinsic property”. If either 
of these latter characteristics does not hold true, the use of any 
identities such as (1.5) or (1.6) is not advised, due to the lack of 
“ergodicity”. 
 
In this study, we shall restrict ourselves to the dimension d=2, 
i.e. to true surfaces defined over a planar domain, and shall 
assume “isotropy” as additional property. In this case, both 
covariance function and semi-variogram will only depend on 
the distance 
 

2
1 2 1 2: ( ) ( )h X X Y Y= − + − 2                                             (1.7) 

 
between two locations 1 1: ( , )s X Y  and 2 2: ( , )s h X Y+ , namely: 
 
{ }( ) ( ) ( )xC x s x s h C h+ =                                                   (1.8) 

 
{ }( ) ( ) / 2 (xD x s h x s hγ+ − = )                                             (1.9) 

 
If we, furthermore, consider the “homeogram” 
 
{ } 2( ) ( ) : ( ) ( )x xE x s x s h h C hη β⋅ + = = +                         (1.10) 

 
we may readily establish the identities 
 

( ) (0) ( ) (0) ( ),x x x x xh C C h hγ η= − = −η

)

                       (1.11) 
 
provided the afore-mentioned quantities exist. Obviously, 
covariance function and homeogram need to be “positive-
definite” functions whereas the variogram may only be 
“conditionally positive-definite”; see A.G.Journel and 
Ch.J.Huijbregts (1978, p.35) for more details. 
 
In order to evaluate formulas such as (1.5) and (1.6), a 
realization of the process x(s) ought to be available on the entire 
domain S. In practice, this will be an unrealistic requirement; 
instead, the process will be “sampled” (i.e., observed) at a 
number of (mostly) discretely distributed locations, say 

( 1, ,js j n= L , leading to a “digitized surface” with the 1n×  
vector 
 
 

[ ] [1 1 1
T T

ny y x s e x s e= = +, , : ( ) , , ( )L Ly ]n n+                      (1.12) 
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where je (j=1,…,n) denotes the additive random observation 

noise associated with the respective sample point jS . As usual, 
we assume 
 
{ } 0jE e = ,       { } 2

j eD e σ= ,         for all { }1, ,j n∈ L ,    (1.13a) 

 
{ },j kC e e = 0 ,            if j k≠ ,                                          (1.13b) 

 
{ }, ( ) 0jC e x s = ,      for all if { }1, ,j n∈ L and s S∈ ,       (1.13c) 

 
and can thus conclude  
 
{ }

1n
E y β

×
= ⋅τ ,  { } 2: : en n n n

D y σ
× ×

= = + nK C I .                          (1.14a) 

 
Here denotes the [: 1, ,1 T

= Lτ ] 1n×  “summation vector”, and 
the typical element in the  covariance matrix K is defined 
by 

n n×

 
{ } 2: , ( )jk j k x j k eK C y y C s s jkσ δ= = − + ⋅                          (1.14b) 

 
with jkδ as “Kronecker delta”. Moreover, we may define the 

vector 1n×
 

{ } { }

{ } { }
1

1

1

( ) : ( ), , , ( ),

( ), ( ) , , ( ), ( )

( , , ( )

T
n

T
n

T
x x n

s C x s y C x s y

C x s x s C x s x s

C s s C s s

= ⎡ ⎤ =⎣ ⎦
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⎡ ⎤= − −⎣ ⎦

L

L

L

κ

                 (1.14c) 

 
in order to obtain the Simple Kriging (SK) prediction 
 

1( ) ( ) ( )Tx s sβ β−= + ⋅ ⋅ −κ K y τ                                        (1.15a) 
 
with its Mean Squared Prediction Error 
 

{ } 2 1( ) ( ) ( )T
xx s s sσ −= − ⋅ ⋅κ κMSPE K 2 : (0),x xCσ =,      (1.15b) 

 
in accordance with G.Matheron (1971). 
 
Obviously, the use of (1.15a) requires the process mean β  to 
be known which, most of the time, is unrealistic to assume. In 
those situations, the Ordinary Kriging (OK) prediction is 
preferred, namely 
 

1ˆ( ) ( ) ( )Tx s s ˆβ β−= + ⋅ ⋅ − ⋅% κ K y τ

1 ),

                                    (1.16a) 
 
with the estimated process mean 
 

1ˆ ( ) /(T Tβ − −= τ τ τK y K                                                   (1.16b) 
 
and (slightly) deteriorated Mean Squared Prediction Error 
 

{ } { }
1 2 1

( ) ( )

[1 ( )] /( ) 0;T T

x s x s

s− −

−

= − ≥

%

τ κ τ τ

MSPE MSPE

K K
                                     (1.16c) 

see, e.g., N.Cressie (1991, p.123).  
 

Both Kriging variants, SK as well as OK, can also be 
represented in terms of the semi-variogram (or the homeogram 
for that matter) instead of the covariance function; see, e.g., 
B.Schaffrin (2001). In case of the latter (OK), we define the 
slightly altered n n×  matrix Γ by its typical element 
 

{ } 2

2 2

: / 2 ( ) (1

( )

)jk j k x j k e

x e jk

D y y x x

K
jkγ σ δ

σ σ

Γ = − = − + ⋅ −

= + −
               (1.17a) 

 
and the (similarly altered) 1n×  vector, at an arbitrary location 

,s S∈  by  
 

2
1

2 2

( ) : ( ), , ( )

( ) ( )

T
x x n e

x e

s s s s s

s

γ γ σ

σ σ

⎡ ⎤γ = − − +⎣
= + ⋅ −

L ⋅⎦ τ

τ κ
 if s js≠

)

,     (1.17b) 

 
* 2

2 2

( ) : ( )

( ) (
j j e j

x e j

s s

s

σ

σ σ

= + ⋅

= + ⋅ −

γ γ η

τ κ
    if { }1,j n∈ L ;               (1.17c) 

 
here  denotes the j[: 0, ,1, ,0 T

j = L Lη ] th unit vector of size 

1n× . Due to these identities and the fact that (1.16a-c) can be 
derived from the extended system 
 

ˆ ( ) ( )
ˆ0 ( ) 1T

s s
v s

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

τ χ κ
τ
K

                                               (1.18) 

 
1ˆ( ) 1 ( ) /( )T Tv s s−⎡ ⎤= −⎣ ⎦

1−τ κ τK K τ

1−

                                     (1.19a) 

 
1 1 1ˆ ( ) ( ) 1 ( ) /( )T Ts s s− − −⎡ ⎤= + −⎣ ⎦χ κ τ τ κ τK K K K τ            (1.19b) 

 
ˆ( ) ( )Tx s s= ⋅% χ y                                                                 (1.19c) 

 
{ } 2 ˆ ˆ( ) ( ) ( )T

xx(s) s s v sσ= − ⋅ +% χ κMSPE                            (1.19d) 
 
we are able to establish the equivalency of (1.18) with the 
equations 
 

2 2

2 2

2 2

ˆ ˆ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ( ),

x e

T
x e

x e

s s s v

s s v s

s v s

σ σ

σ σ

σ σ

s+ ⋅ − = = ⋅ − ⋅ =

⎡ ⎤= + ⋅ − ⋅ − ⋅ =⎣ ⎦
= + − ⋅ − ⋅

τ γ κ χ τ

τ τ χ χ τ

τ χ τ

K

Γ

Γ

             (1.20a) 

 
ˆ ( ) 1T s⋅ =τ χ ,                                                                     (1.20b)       

 
if ( 1, , )js s j n≠ = L  or, alternatively, with the system 
 

ˆ ( ) ( )
ˆ0 ( ) 1T

s s
v s

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

τ χ γ
τ
Γ

 ,                                                 (1.21)                     

 
which firmly indicates the importance of a well determined 
semi-variogram for the purpose of OK prediction. In the system 
(1.21), on the right hand side, the vector ( )sγ  is obviously to be 
replaced by *( )jsγ  following (1.17c), should s coincide with a 

sample point ; see also the respective remarks by N.Cressie 

(1991, pp.128-130). The system (1.21) now yields the solution 
js
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1ˆ( ) 1 ( ) /( )T Tv s s−⎡ ⎤= − −⎣ ⎦

1−τ γ τΓ Γ τ

1

,                                   (1.22a) 

 
1 1 1ˆ ( ) ( ) 1 ( ) /( )T Ts s s− − − −⎡ ⎤= + −⎣ ⎦χ γ τ τ γ τΓ Γ Γ Γ τ ,              (1.22b) 

 
ˆ( ) ( )Tx s s= ⋅% χ y ,                                                               (1.22c) 

 
{ } 2ˆ ˆ( ) ( ) ( ) .T

ex(s) s s v s σ= ⋅ + −% χ γMSPE                            (1.22d) 
 

2 2 1

( ) ( )
( ) ( ) 1T

x e

s s
v sσ σ −

⎡ ⎤ ⎡ ⎤ ⎡
=⎢ ⎥ ⎢ ⎥ ⎢+ ⎣ ⎦ ⎣⎣ ⎦

τ χ γ
τ
Γ ⎤

⎥
⎦

                                   (1.23) 

 
if ( 1, , )js s j n≠ = L , via 
 

2 2( ) ( ) 1 ( )T
x ev s sσ σ ⎡= + −⎣ τ χ ⎤⎦                                            (1.24a) 

 
12 2 2 2

1

( ) ( ) ( ) ( )

( )

T
x e x es s

s

σ σ σ σ
−

−

⎡ ⎤ ⎡= − + ⋅ − + ⋅⎣ ⎦ ⎣
= ⋅

⎤⎦χ ττ γ τ

κK

Γ
        (1.24b) 

 
( ) ( ) ( )Tx s sβ β= + − ⋅χ τy ,                                             (1.24c) 

 
{ } 2( ) ( ) ( ) ( ) .T

ex s s s v s σ= ⋅ + −χ γMSPE                          (1.24d) 
 
Again, on the right hand side of (1.23) as well as in (1.24d), the 
vector ( )sγ  ought to be replaced by *( )jsγ  it one of the 

sample points js  is chosen for the Simple Kriging prediction 
using the semi-variogram. (Note that such a possibility was 
negated by J.P.Chilès and P.Delfiner (1999, p.170).) Of course, 
the value for 2 2

x eσ σ+  can be taken as the “sill” of the semi-

variogram while 2
eσ  represents the “nugget effect”, at least in 

the absence of microscale variation. 
 
2. Empirical Semi-Variogram Values and Suitable Models 
to be Fitted to 

Since we had assumed “ergodicity” and “isotropy” for our 
spatial process, empirical values for the semi-variogram can be 
obtained from a discrete version of (1.6) when applied to the 
sample data, namely 
 

2( )

1 1

ˆˆ ( : ( ) ( ) / 2 ( )
i
jN Hn

i i
y j j l

j l

h y s y s h Nγ
= =

⎡ ⎤ ⎡= − +⎣ ⎦ ⎣∑ ∑ iH ⎤⎦

l

            (2.1a) 

 
where i

js h+  denotes any other sample point within a 

neighborhood  of i
jH js , defined by 

1i
h h h

−
< ≤

i
 with 

chosen lower and upper bounds, which has ( )i
jN H  elements 

with respect to this sample point js . The total number of 
squared differences is, therefore, 
 

1
( ) : ( )

n
i

j
j

iN H N H
=

= ∑                                                            (2.1b) 

and the central value for this neighborhood would be the 
average lag in all jH , namely 
 

( )

1 1

ˆ : /
i
jN Hn

i i
l

j l

h h N
= =

= ∑ ∑ ( ).iH                                                  (2.1c) 

 
Except for the origin, the function values of ( )y hγ  are 

expected to be shifted away from the semi-variogram ( )x hγ  
by the noise variance: 
 

( ) ( ) 2
y x eh hγ γ= +σ        if                                      (2.2) 0h ≠

 
which was already reflected in the formulas (1.17a-c). The 
formulas (2.1a-c) represent the “classical” estimate by 
G.Matheron (1963), based on the method of moments; see, e.g., 
N.Cressie (1991, pp. 69-70) for more details, and J.P.Chilès 
and P.Delfiner (1999, pp. 34-57) for possible modifications. 
 

As a result, we obtain an empirical value ( )ˆˆ i
y hγ  for each 

neighborhood (or interval)  that approximates 

the respective semi-variogram 

iH ( 1, , )i = L I

( )y hγ  at ˆih h= . These 

discrete values must be fitted to a continuous semi-variogram 
model that necessarily provides a (conditionally) positive-
definite semi-variogram as theoretically required. N.Cressie 
(1991, pp. 61-63) presents six valid isotropic standard models 
while J.-P.Chilès and P.Delfiner (1999, pp. 80-93) discuss even 
more  complex models. In this contribution, we shall restrict 
ourselves to the following two isotropic standard models: 
 
Model I:”Spherical Semi-Variogram” 
 

( ) 2 2 3

2 2

0 0

: (3 / ) ( / ) / 2 0y e x

e x

if h

h h r h r if

if h r

γ σ σ

σ σ

⎧ =
⎪⎪ ⎡ ⎤ h r= + − <⎨ ⎣ ⎦
⎪

+ ≥⎪⎩

≤  

                                                                                              (2.3) 
 
Model II:”Exponential Semi-Variogram” 
 

( ) 2 2

0 0
:

1 exp( / ) 0y
e x

if h
h

h r if h
γ

σ σ
⎧ =⎪= ⎨ ⎡ ⎤+ − − >⎪ ⎣ ⎦⎩

          (2.4) 

 
Both models depend on three parameters that have to be 
derived from the empirical semi-variogram values by a certain 
estimation principle. They are 
 

• 2
eσ , the noise variance (or “nugget effect”), 

• 2
xσ , the process variance (or 2

e
2
xσ σ+  as “sill”), 

• r, the impact interval (or “range”), 
 

but do not automatically form a linear relation. Hence, we 

linearize first by using approximate values  and r
o 2

xσ
o

 that are 
straight-forwardly derived from an analysis of the empirical 
semi-variogram values at the far end (i.e., for large lags ˆih , 

along with 
2

: 0eσ =
o

, and obtain: 
Linearized Model I: 
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3

2 3 2 2 3

2 2

( ) : ( ) 3 / ( / ) / 2

(3 / ( / ) ) / 2 3( / ) ( / ( / ) ) / 2 0

xy y

e x x

e x

h h h r h r

h r h r r h r h r r if h r

if h r

δγ γ σ

σ δσ σ δ

σ δσ

⎡ ⎤= − − =⎢ ⎥⎣ ⎦
⎧ ⎡ ⎤ ⎡ ⎤+ − ⋅ − − ⋅ < ≤⎪ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦= ⎨
⎪ + ≥⎩

o o o

o o o o o

o

o

 
                                                                                              (2.5) 
 
Linearized Model II: 
 

2

2
2 2

( ) : ( ) 1 exp /

1 exp / ( / ) ( / ) exp( / ) 0

xy y

xe x

h h h r

h r r h r h r r if h

δγ γ σ

σ δσ σ δ

⎡ ⎤⎛ ⎞= − − − =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞= + − − ⋅ − ⋅ ⋅ − ⋅ >⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

o o

o o o o o

 
                                                                                              (2.6) 
 
From these linearized models, we can readily obtain estimates 
for 2

eσ , 2
xδσ  and rδ   by applying a suitable principle such as 

“Weighted Least-Squares (WLS)” or “Total Least-Squares 
(TLS)”. In any case, the procedure has to be repeated with 
improved approximate values until convergence is reached. 
 
3. Fitting Principle: Weighted Least-Squares vs. Total 
Least-Squares 

Here we discuss methods how the empirical values ˆˆ ( )i
y hγ  

from (2.1a-c) for  can be “best” fitted to one of the 
admissible semi-variogram models such as (2.3)-(2.4), for 
instance, or (2.5)-(2.6) after linearization. Obviously, Weighted 
Least-Squares (WLS) according to N.Cressie (1985) comes to 

mind in which estimates for the parameters  

are found from the objective function 

1, ,i = L I

⎤⎦
2 2: , ,

T

e x rσ σ⎡= ⎣Ξ

 
ˆ ˆ ˆ ˆˆ ˆ( ) ( , ) ( ) ( ) ( , ) min

T
i i i i

y y y yh h h h
Ξ

⎡ ⎤ ⎡− ⋅ ⋅ − =⎣ ⎦ ⎣γ γ γ γWΞ Ξ Ξ .⎤
⎦  

                                                                                              (3.1) 
 
where the brackets denote an 1I ×  vector of increments 
between empirical values and the chosen semi-variogram 
model, and  is an  weight matrix that is still to be 
defined. Note that this weight matrix itself may generally 
depend on the parameters in . 

( )W Ξ I I×

Ξ
 
As a reasonable choice, we would try to find the weight matrix 

 by approximating the inverse covariance matrix of the 
empirical values, namely 

( )W Ξ

 

{ } 1ˆˆ( ) ( ( ) ) .i
yD hγ −⎡ ⎤≈ ⎣ ⎦W Ξ                                                   (3.2) 

 
Since this may prove a very tedious endeavor in itself, let us 
restrict ourselves to the diagonal elements only, which leads to 
the definition 
 

{ } [1ˆˆ( ) : ( ( ) ) ( )i
y iDiag D h Diag wγ −⎡ ⎤⎡ ⎤= =⎢ ⎥⎣ ⎦⎣ ⎦

W Ξ Ξ ]              (3.3) 

 
Under quasi-normal assumptions, the variance of each 
empirical value ˆˆ ( )i

y hγ  can be readily obtained by exploiting 

the fact that twice this value would represent an estimated 
variance. So, we first get 
 

{ } ( ){ }2ˆ ˆˆ ˆ2 ( ) 2 ( , ) / ( ) 4i i i
y y yD h h N H D hγ γ γ⎡ ⎤= =⎣ ⎦Ξ ˆi     (3.4a) 

 
in agreement with N.Cressie (1991, p.96) and, furthermore, 
 

{ } 2
1ˆ ˆˆ( ) : ( ( ) ) 2 ( ) / ( , )i i i

i y yw D h N H hγ γ− ⎡= = ⎣Ξ Ξ ⎤
⎦

I

            (3.4b) 

 
for the weights ( 1, , )i = L . Consequently, up to the factor 2, 
the objective function (3.1) is reduced to 
 

2

1

ˆ ˆˆ( ) ( ) / ( , ) 1 min.
I

i i i
y y

i
N H h hγ γ

Ξ
=

⎡ − =⎣∑ Ξ ⎤
⎦                         (3.5) 

 
which can be solved by well-established techniques.  
 
We may, however, go one step further and replace the weight 
matrix in (3.3) by its empirical counterpart 
 

{ } [ ]1ˆˆ ˆ ˆ ˆ: ( ( ) )i
y iDiag D h Diag wγ −⎡ ⎤= ⎢ ⎥⎣ ⎦

W =                            (3.6a) 

 
with 
 

{ } 2
1ˆˆ ˆˆ : ( ( ) ) 2 ( ) / ( )i i

i y yw D h N H hγ − ⎡= = ⎣
ˆˆ iγ ⎤

⎦

I

                      (3.6b) 

 
for 1, ,i = L  which now no longer depends on Ξ . As a 
result, we arrive at the new objective function 
 

2

1

ˆ ˆˆ( ) 1 ( , ) / ( )
I

i i i
y y

i
N H h hγ γ

=

⎡ ⎤−⎣ ⎦∑ Ξ                                     (3.7) 

 
which, after linearization , reads: 
 

2

1

ˆ ˆˆ( ) 1 ( , ) / ( ) min.
I

i i i i
y y

i
N H h h γ ξ

γ γ
=

⎡ ⎤− −⎢ ⎥⎣ ⎦
∑

o

ξAΞ =               (3.8) 

 

Here, 2 2: , ,
T

e x rσ δσ δ⎡ ⎤= ⎣ ⎦ξ  denotes the  vector of 

(incremental) parameters; 

3 1×

γA  is a  matrix with 
coefficients taken from either of the linearized models (2.5)-
(2.6) and then divided by the respective empirical value 

3I ×

ˆˆ ( i
y hγ ) , with i

γA  as the ith row of γA ( 1, , )i = L I . We may 

further introduce the 1I ×  vector 
 

1, ,

ˆ ˆˆ: 1 ( , ) / ( )i i
y y

i I

h hγ γ γ
=

⎡= −⎢⎣ ⎦

o

L

y Ξ ⎤
⎥

)

                                     (3.9) 

 
and the additional weight matrix of size,  I I×
 

: ( iDiag N Hγ ⎡ ⎤= ⎣ ⎦P  ,                                                         (3.10)    

 
to give (3.8) the vectorial form 
 
( ) ( ) minT

γ γ γ γ γ− ⋅ − ⋅ =
ξ

ξ ξy A P y A .                                    (3.11) 
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In our view, (3.11) offers the most practical approach to WLS, 
but still suffers from the fact that the fit, although properly 
weighted, occurs only in the direction of the ordinate. This may 
not be critical at the far end of the semi-variogram, but it 
becomes a more serious issue near the origin where we may see 
a substantial slope. In such a case, the target function (3.11) 
does not provide an estimated semi-variogram that is “nearest” 
to the empirical values in the geometric sense, namely 
measured along perpendicular projections onto the graph of the 
semi-variogram.  
 
Such an estimate can, however, be obtained by the principle of 
“Total Least-Squares (TLS)” as defined in the following, using 
equal weighting for both ordinate and abscissa. Note that, in the 
future, we shall try to allow different weights for the abscissa 
values ˆih  in accordance with the averaging (2.1c). For now, 

let us introduce 
 

1/ 2 1/ 2 1/ 2 1/ 2: , : , :γ γ γ γ γ γ γ γ γ= = =y P y A P A P P P⋅                 (3.12) 
 
to form the Linear Model 
 
( ) ( )γ γ γ γ− − − =ξA E y e 0                                                (3.13a) 
 

{ } { }, 0, , o IE E e D vec E e Iγ γ γ γ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ = Σ ⊗                    (3.13b) 

 
where  has size 4  (with unknown2

4:o oσ= I∑ 4× 2
oσ ), II  is the 

I I×  identity matrix, and  denotes the “Kronecker-Zehfuss 
product” of matrices, defined by 

⊗

 
: ijm⎡⊗ = ⋅⎣M N N ⎤⎦   for  ;                                (3.14) ijm⎡ ⎤= ⎣ ⎦M

 
the “vec” operator stacks one column of a matrix under the 
other, moving from left to right. 
 
It is easy to see that WLS is based on the minimization of T

γ γe e  

under the constraint γ = 0E . In contrast, the equally weighted 
“Total Least-Squares” principle starts from the objective 
function 
 

( ) miT Tvec vecγ γ γ γ ξ
+e e E E n.=                                             (3.15) 

 
The solution to the TLS problem was originally provided by 
G.H.Golub and C.F.van Loan (1980); see also G.H.Golub and 
C.F.van Loan (1983, pp.420-425) for a brief overview, or S.van 
Huffel and J.Vandewalle (1991) for many details. 
 
In essence, the identity (3.13a) of size  is equivalently 
transformed into one of size  via 

1I ×
4 1×

 

,
1 1

1 1

T TT T

T T T T

T T

T T

γ γ γ γγ γ
γ γ γ γ

γ γ γ γ γ γ

γ γ γ γ γ γ

γ γ γ γ γ γ

⎛ ⎞⎡ ⎤⎡ ⎤− ⎡ ⎤ ⎡ ⎤⎜ ⎟⎢ ⎥⎡ ⎤− − = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎜ ⎟− −
=

⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎝ ⎠
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥= − ⋅ =⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

0

ξ ξ

ξ ξ

A A A yA E
A E y e

y e y A y y

A P A A P y

y P A y P y

Δ

Δ

−

 

 
where the 4 4×  matrix ( , )γ γ= E eΔ Δ  is still unknown, but will 
be determined such that it has minimum Frobenius norm  
 

1/ 2
( ) minTtr⎡ ⎤= =⎣ ⎦Δ ΔΔ .                                                   (3.17) 

 
among all matrices Δ  that make the difference 
 

[ ],
T T T

TT T
o

γ γ γ γ γ γ

γ γ γ γ γ γ
λ

⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ − = −⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

0
0

A P A A P y U
U u

uy P A y P y

Λ
Δ Δ         (3.18) 

 
singular. On the right hand side, we have applied the Singular 
Value Decomposition with the provision that all the three 
eigenvalues in Λ  are larger than the smallest eigenvalue oλ . 
In this case, we first obtain 
 

min ( ) ( , ),T
o γ γλ ⎡ ⎤= ⋅ =

⎣ ⎦
% %uu E eΔ Δ                                         (3.19a) 

and consequently 
 

ˆ
( )

1
T ⎡ ⎤

⋅ ⋅ ⋅ =⎢ ⎥
−⎣ ⎦

0ξU UΛ                                                        (3.19b) 

 
from which we learn the proportionality of ˆ , 1T⎡ ⎤−⎣ ⎦ξ  to 

[ ]1 2 3 4, , ,T u u u u=u , leading to 
 

[ 1 2 3
4

1ˆ , , .T u u u
u

= −ξ ]                                                          (3.20) 

 
This solution is unique if rk γA =3 and oλ  has a multiplicity of 

1, whereas the residual matrix ,γ γ
⎡
⎣
% % ⎤

⎦E e  may not immediately 

be isolated from (3.19a). Recognizing, however, that the 
orthogonality relations 
 

,
T T

T T
γ γ

γ γ
γ γ

⎡ ⎤− ⎡ ⎤ 0⋅ =⎢ ⎥ ⎣ ⎦−⎢ ⎥⎣ ⎦

%
% %

%
A E E e
y e

                                                  (3.21a) 

 
and thus the identities 
 

min ,
TT

TT
γγ ,γ γ
γγ

⎡ ⎤ ⎡ ⎤
γ γ

⎡ ⎤ ⎡= ⋅ = ⋅⎢ ⎥ ⎢ ⎥ ⎤
⎣ ⎦ ⎣⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

%
% %

%

AE
⎦

% %E e E
ye

Δ e                           (3.21b) 

 
hold true, we may get it from the Singular Value Decomposition 
of 
 

[ ]
1/ 2

1/ 2
1 2

1/ 2 1/ 2
1

1/ 2
1

, , ,

( )

,

U
A y V V

u

V U u

V U E e

T

o T

T T
o

T

γ

γ γ

λ

λ

⎡ ⎤
⎡ ⎤⎢ ⎥⎡ ⎤ = =⎢ ⎥⎢ ⎥⎣ ⎦
⎣ ⎦⎢ ⎥⎣ ⎦

= ⋅ ⋅ + ⋅

⎡ ⎤= ⋅ ⋅ +
⎣ ⎦

0
v 0

0 0

v
% %

Λ

Λ

Λ

                          (3.22a) 

 
1/ 2, ( T
oγ γ λ⎡ ⎤ = ⋅⎣ ⎦ v% % ).E e u                                                      (3.22b) 
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If we now re-insert  from (3.19a) back into (3.18), formula 
(3.19b) will give us the relations 

minΔ

 

3
ˆ( ) , : ,N I N c A P A yT

o forγ γ γ γ γ γ γλ ⎡ ⎤ ⎡− = =⎣ ⎦ ⎣ξ c γ ⎤⎦          (3.23) 

 
which may be considered as the “normal equations” for TLS, 
and 
 

min

ˆ

( )

P y c

e e E E

T
o

T Ttr vec vec

γ γ γ γ

γ γ γ

λ = − =

= = + %% %

Ty

Δ

ξ

γ
%

                                  (3.24) 

 
as minimized “sum of squared residuals”. Obviously, oλ  ought 
to be smaller than any of the three eigenvalues of Nγ  for (3.23) 

to provide a unique solution ξ̂  of type (equally weighted) TLS. 
How to procede in the “degenerate case” where Nγ  has at least 

one eigenvalue that is equal to (or even smaller than) oλ , has 
been described by S.van Huffel and J.Vandewalle (1991,chapter 
3). Also, suggestions to generalize the weighting pattern for the 
TLS principle have been presented before, but will not be 
considered in the present contribution. The interested reader is 
referred to Schaffrin and Wieser (2008) for an overview over 
recently made progress. 
 
4. Case Study: Aeromagnetic Data From West Antarctica 
and The Goodness-of-Fit 

The data that have been used to test the procedure, described in 
the previous section, stem from a data set of aeromagnetic data 
that have been collected in West Antarctica. The raw data were 
first preprocessed by using standard techniques as described by 
Felus (2002) in detail, particularly to ensure that no dominant 
trend remains in the data of which only a small portion, namely 
1322 points, was actually employed. In essence, the surface that 
is being constructed via Kriging represents only the fine 
structure of the overall surface that is defined by the magnetic 
field values at every point of the sampled domain. 
 
For these data, 30 neighbourhoods (intervals) were introduced 
with the representative distances between pairs of points 
reaching from  500 m to almost 15 km. The empirical 
semivariogram values spread from just below 4000 to over 
11000. After these thirty values had been obtained, a Total 
Least-Squares fit was computed, using either of the two 
linearized models, defined in (2.5) and (2.6). The results came 
out in form of the following estimated parameters: 

≈

 
 “nugget 

effect” 
2ˆeσ  

“sill”, 
2 2ˆ ˆe xσ σ+  

“range”, 
ˆr̂ r rδ= +

o

 

Spherical 
model (still to be specified) 

Exponential 
model 3830.3 9939.2 5000.8 

 
In order to obtain precision measures for these nonlinear (!) 
estimates, major error propagations would have to be performed 
which is left as a future task. 
 
Instead, let us look into the issue how well the respective 
models fit the empirical semivariogram values, and whether the 

Total Least-Squares adjustment turns out to be superior to the 
Weighted Least-Squares adjustment indeed. For this 
comparison, the sum of weighted squared residuals is being 
considered, using formula (3.24) in case of TLS, and formula 
(3.11) for weighted LS. The results are seen in the following 
table for the range zone only, thereby reflecting on the actual 
redundancy in these models. 
 

 Spherical Model Exponential Model 
TLS (still to be specified) 
WLS 4.7258 6.5357 

 
As expected, the TLS procedure provides a clearly better fit 
than the weighted LS adjustment. The improvement, however, 
that originates from a model change may still turn out much 
larger. This obviously means that a poor model choice can 
normally not be counterbalanced by a smart estimation 
technique. For the aeromagnetic data analyzed here, the 
spherical semivariogram model appears to be a suitable choice, 
to which the TLS may contribute roughly another 15% 
improvement in fit when compared with the weighted LS 
adjustment. 
 
4. Conclusions and Outlook 

In this contribution a novel approach to semivariogram fitting 
has been presented, in support of surface reconstruction by 
Kriging. It is based on the Total Least-Squares (TLS) principle 
that promises a better representation of the semivariogram 
function near the origin where it matters most. The fitting 
algorithm is a bit more complex than in the case of Weighted 
Least-Squares (WLS) adjustment since the TLS approach leads 
to nonlinear estimates. This is the reason why, at this stage, no  
analytical precision measures could be presented. This remains 
one of the main tasks for the future. 
 
However, the goodness-of-fit was determined for an 
aeromagnetic dataset where two semivariogram models have 
been compared, the spherical and the exponential model. In this 
case, the spherical model provided a much better fit both when 
using TLS or WLS, respectively. For both models, the TLS fit 
turned out superior to the WLS fit by 5-15% overall, including 
mainly the range zone. 
 
In the future, it is planned to introduce a suitable weighting 
scheme for TLS as well as a modified one for WLS. First steps 
into this general direction have been undertaken successfully by 
Schaffrin and Wieser (2008). 
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