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ABSTRACT: 
 
This paper presents a new method for matching edges across a video image sequence. The method can deal with uncalibrated images 
acquired with a hand held camera. Compared to previous work, the method employs geometric constraints between edges based on 
reliable matched points, which reduces the search space for corresponding 2D edges in the frames. The 3D edge parameters are 
estimated from these matched 2D edges by using the Gauss-Markoff model with constraints. End points of each 3D edge are found 
by analyzing the end points of the corresponding 2D edges. The results show that the developed algorithms are able to efficiently 
and accurately reconstruct 3D edges from image sequences.  
 
 

                                                                 
*  Corresponding author.   

1. INTRODUCTION 

Modelling 3D objects and scenes from image sequences is a 
research topic since several years [Baltsavias, 2004; Pollefeys, 
2004; Remondino and EL-Hakim, 2006]. The high overlapping 
of images within a video sequence lead to highly redundant 
information, which is exploited for tie point extraction, feature 
tracking and 3D object extraction. However, the short baseline 
between the images also leads to a poor ray intersection 
geometry and thus to mismatches across the sequence. 
 
At the  same time, using edge information for the reconstruction 
of man-made objects from images has been concerned by 
researchers from the fields of photogrammetry and computer 
vision for a long time [Hartley and Zisserman, 2000]. As the 
point clouds obtained from applying feature and camera 
tracking steps to a video sequence are not dense enough, which 
do not allow a complete description of 3D scene and not all 
import points for object reconstruction, such as corner points, 
can be extracted. Edge features can provide more constraints 
about objects’ shape than point features. Existing approaches 
for edge detection can obtain acceptable result [Canny, 1986; 
Meer and Georgescu, 2001]. Nevertheless, edge matching is 
still a difficult problem for several reasons. One is that edges 
belonging to the same entity in object space are often extracted 
incompletely and inaccurately in the single images of the 
sequence. Sometimes, an ideal edge might be broken into two 
or more small segments that are not connected to each other. 
Further, the end points are not reliable, and even with a correct 
orientation, it is difficult to build up topological connections 
between edges. A second reason for the complexity of edge 
matching is due to the fact that there is no strong 
disambiguating geometric constraint available over two or more 
views during edge matching. There is only a weak overlap 
constraint for edge segments of finite length arising from 
applying epipolar geometry constraint to end points [Schmid 
and Zisserman, 1997; Baillard et al., 1999] .  

 
Existing approaches to edge matching in the literature are 
generally categorized into two types. One is matching 
individual edges between images based on a similarity measure. 
The similarity measure is based on the comparison of edge 
attributes, such as orientation, edge support region information. 
The other strategy is structural matching, which considers more 
geometrical and topological information among edge features. 
But this kind of methods often have a high complexity and they 
are sensitive to error in the segmentation process[Armstrong 
and Zisserman, 1995; Baillard et al., 1999; Kunii and Chikatsu, 
2004; Klein and Murray, 2006]. When camera projection 
information is available, matching individual edges can get 
precise and efficient results and reduce the complexity and 
computation time. 
 
Most edge matching methods are based on stereo or triplet 
image pairs, and the results are merged together if there are 
more images [Baillard et al., 1999; Zhang et al., 2005]. How to 
use redundant information from video image sequence for edge 
matching and how to eliminate errors caused by short base line 
when reconstructing 3D edge geometry are the main task of this 
paper. All the problems mentioned above are considered in this 
method. Each step considered in this method will be explained 
in the following paragraphs.  
 
In section 2 our preprocessing steps on feature extraction are 
described. The main method is explained in section 3, divided 
to four parts (overview, point quality analysis, 3D edge 
estimation and end points decision). Results are shown in 
section 4 and discussed in section 5, which also indicates some 
further work.   
 

2. PREPROCESSING 

2.1 Feature Presentation 
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Features in this paper are points and edges in 2D and 3D. Points 
in 2D and 3D are represented as homogenous vector 
x=  and X= . 2D edges use angle-distance 

form l= , and 3D edges are presented by 
Plücker coordinates similar to [Hartley and Zisserman, 2000; 
Heuel, 2004], L = , where the 

homogeneous part Lh = is constrained to be 

orthogonal to the Euclidean part Lo = , i.e. 

. The homogeneous part presents the edge direction 
and the Euclidean part decides the distance from the origin to 
the edge. Thus the 6-vector L has 4 degrees from freedom, 
considering both the orthogonal and homogeneous constraint.  
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2.2 Point and Camera Parameters Extraction  

Usually when dealing with video image sequences, this step 
(point detecting and matching) is also named feature tracking. 
The most widely used tracker is KLT tracker [Lucas and 
Kanade, 1981]. By determining 2D-2D point correspondences 
in consecutive video frames, the relative camera geometry is 
established. We use the commercial software Boujou [2d3, 
2008] to get camera projection information and corresponding 
2D and 3D points.  
 
2.3 Edge Extraction 

Edges are first detected in each frame separately. First, an 8-bit 
binary edge map is generated in each image by running 
EDISON edge detector. As a improvement for Canny detector, 
a confidence measure is introduced in EDISON edge detector, 
which results in more connected and smoothed edges [Canny, 
1986; Meer and Georgescu, 2001]. The second step is to use 
Hough transformation to extract straight edges from the edge 
map. 
 
 

3. APPROACH 

3.1 Method Overview 

The most common model for cameras is the pinhole camera 
model: a point in 3D space is projected into an image by 
computing a viewing ray from the unique projection center to 
the point and intersecting this viewing ray with a unique image 
plane. During preprocessing steps, camera projection matrices 
for each frame are obtained with some corresponding points in 
2D and 3D. Using reliably matched points as guidance for edge 
matching is the key point in this method, only edges near these 
good quality points are considered, which reduces the search 
space for corresponding 2D edges in frames. The workflow is 
described below: 
 
1. Compute the covariance matrix of each tracked 3D feature 
point and chose reliable points based on it. This part will be 
explained in section 3.2. 
 
2. Project a reliable 3D point to an image in which it is visible 
(or using corresponding image point), and calculate the distance 
between the 2D point and all edges detected in the same image. 
The distance here is the distance between a point and a finite 
edge. If the distance is less than one pixel, the edge is 
considered as an edge candidate in that image. 
 

3. Use the same method described in step 2 to analyze edges 
from all the images in which the same 3D point is visible. By 
this measurement, edge candidates in images are obtained. This 
method is much faster than applying epipolar beam from end 
points to find candidates.  
 
4. In order to enlarge the baseline to get a more accurate result, 
a 3D edge hypothesis is made between candidate edges from the 
first and the last images. Because the corresponding edge 
usually can not be extracted in every image, and also 
considering computation time, we choose the candidate edges 
from first and last ten percent images. A 3D infinite edge 
hypothesis is the intersection of two planes, each defined by one 
optical center and the corresponding 2D edge.  
 
                                                                                  (1) a

T
a lPA =

                                                                                   (2) b
T

b lPB =

        BAL ∩=                                                                          (3) 
         
Where, are 2D edges in image a and image b;  are 
projection matrixes of image a and image b; L is the intersection 
of plane 

ba ll , ba PP ,

A and plane B  
  
5. Project the 3D infinite edge to each image. As a projection 
matrix P for points is known, x = X, it’s able to construct a 
projection matrix Q that can be applied to 3D edges, l = Q L, 

where  is a 3×6 matrix. More details are given in [Hartley 
and Zisserman, 2000; Heuel, 2004].     

P

Q

 
Calculate distance and angle between projection results and 
edge candidates. If the distance and the angle is less than a 
predefined threshold, the edge candidate is considered as a 
corresponding edge for the 3D edge hypothesis.  
 
Compare the number of corresponding edges with the number 
of images considered. If the rate is higher than fifty percent, the 
hypothesis is confirmed. Otherwise, it should be rejected and 
new hypothesis need to be made from edge candidates. Return 
to step 4.  
 
6. When the hypothesis is confirmed, the corresponding edge in 
each image can received. From these 2D edges, 3D edge 
estimation is done see section 3.3 below. The 3D edge can still 
be rejected if the estimated variance factor is lager than a 
suitable threshold or if the solution does not converge. 
  
7. Compute end points for the estimated 3D edge. By backward 
projecting rays from the end points of the corresponding 2D 
edges and taking the intersection with the estimated 3D edge, 
we get two sets of end point candidates for the 3D edge. The 
method described in section 3.4 is used to fix the end points.   
 
8. Take next reliable 3D point, until all points are processed. 
 
3.2 Point Quality Analysis 

Assume a 3D point is visible in n+1 images, a set of 
corresponding image points , , and camera 
projection matrices , i

),,( ZYX
(

iP ,0"
), ii yx

n,
ni ,,0"=

= , for each frame in which the 
3D point is visible are known. It is usually not the case that the 
rays of the corresponding points in the images intersect 
precisely in a common point, which means, the points’ quality 
should be analyzed first. As the relation between 3D point and 
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its corresponding image point is x = X, projecting a 3D point 
from object space to image plane , the calculated image 
point  can be obtained.  

P
i
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The difference d between tracked image points and 
corresponding calculated image point can be expressed 
by 

),( yx
), yx ′′
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Then the standard deviation σ of image points corresponded to 
point  can be calculated by ),,( ZYX
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The 3D coordinate of point  is estimated by 
intersecting all its viewing rays as 
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The partial derivatives are computed directly using the 
Euclidean interpretation of the projection matrix. So, the 
covariance matrix C  for 3D point can be obtained by  
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Then, the theoretical precision of the computed 3D point can be 
expressed as error D3σ  according to, 
 

                                                                             (9) ∑
=

=
2

0

2
3

i
iiD Cσ

 
If D3σ  is larger than a suitable threshold, the 3D point is not 
accurate.    
 
3.3 3D Edge Estimation 

The geometric construction can be described as an estimation 
task, where an unknown 3D edge has to be fitted to a set of 2D 
edges from different images.  
 
So a relation between a 3D line and 2D line can be defined as: 
 

                                                                          (10) 
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The relation to the angle-distance form of a 2D line is given by 

a multiplication factor 22/1 ba + : 
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If there are n lines matched across the image sequence, the 3D 
edge can be estimated by using Gauss-Markoff Model with 
constraints: N=3n observations l for U=6 unknown parameters L 
in Plücker coordinates with H=2 constraints .  h

        ( )Lfvl ˆˆ =+                                                                      (12) 
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In order to get corrections lΔ  and LΔ , the following Jacobians 
are needed: 
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An initial covariance matrix llC of the observed 2D edges can 
be calculated from the uncertainty of edge extraction result. 
More details are given in [Heuel, 2004]. So, 
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Where, ,  and )( 0Lfll −=Δ )( 0Lhch −= μ  is Lagrangian 
multiplier [McGlone et al., 2004].  
 
Then, the covariance matrix for unknown 3D edge L̂  and the 
estimated residuals can be obtained v̂
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The estimated variance factor  is given by 2σ̂
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Finally the estimated covariance matrix can be obtained 
 
                                                                          (22) LLLL CC ˆˆ

2
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The initial value for the 3D edge is the intersection of backward 
projecting 2D edge from first and last image. The stopping 
criterion for iteration is that the changes L̂Δ to estimation 
should be less than 1% with respect to their uncertainty or over 
a maximum iteration value.  
 
If the estimated variance factor  is larger than a suitable 
threshold or if the solution does not converge, the 
estimated 3D edge is rejected.   

2σ̂
2
maxσ

  
3.4 End Points Decision 

The last part of the algorithm is the computation of the end 
points of the 3D edges. By backward projecting rays from the 
end points of one corresponding 2D edge and taking the 
intersection with the estimated 3D edge, we can get two 
endpoints. Considering the direction vector of 3D edge, we can 
separate intersection points to two groups, as shown in figure 1. 
The red circle area shows where the intersection points are. 
Then we get a set of end point candidates for each 3D edge end 
point.  

                 

 
The uncertainty value of corrections for each 2D edge is used as 
a weight for its affection on end points of 3D edge. The weight 
value can be obtained from covariance matrix of estimated 
residuals.  

4. EXPERIMENT 

4.1 Data Description 

Above video data was captured by a hand-hold Canon IXUS 
camera moving along a street. The images are 640×480 pixels, 
15 frames per second and 134 frames in total. Figure 2 shows 
first and last frame from input image sequence with reliable 
points and edge extraction results. Tracked points from Boujou 
with D3σ  less than 8mm are considered as reliable points. The 
number of extracted edges from each frame varies from 72 to 96, 
about 87 in average. 

 
 

 
 

 
   
4.2 Results 

Figure 2. Input video image sequence with reliable points 
and extracted edges,  
Reliable points (green), edges with end points (yellow) 
frame 0 (upper), frame 133 (lower) 

Figure 1. End points decision  
Optical centers (black points), 2D edges (green), 3D edges 
(black solid line), viewing rays (black dashed lines), 
direction vector (blue)  

A common way for taking video is to maintain a constant height 
of the camera during capture. As the camera is moving 
horizontally, horizontal edges are almost at epipolar plane 
between different view points. For such poor geometry relation, 
they are difficult to be correctly estimated. By setting the 
suitable threshold for estimated variance factor, those incorrect 
3D edges can be eliminated.  
 
We chose 200 as the max iteration value during 3D edge 
estimation and =0.1 for estimated variance factor. Figure 
3 show first and last frame from image sequence with edges that 
successfully reconstruct 3D edges that are showed in figure 4. 
As there are many cars in front of the building, edges on the 
ground and cars are usually connected and easily mixed up, 
which leads to two incorrect 3D edges extracted in front of the 
building. But all the other edges fix the wall plane very well and 
the main building plane can be seen from the extracted 3D 
edges. Comparing figure 2, figure 3 and figure 4, our method 
can correctly match edges in short range video image sequence. 

2
maxσ
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5. CONCLUSIONS 

Video as an easy obtainable and low cost image data source has 
been of interest for many researchers in recent years. However 
recovering accurate structure of objects in realistic environment 
from video image sequence is still a difficult problem. 
Especially reconstruction from images captured by hand held 
camera is a challenging topic, whose image resolution is low, 
and not all corner points can be detected.  Edge information can 
provide more constraints about objects’ shape. But quickly 
searching corresponding edges from image sequence and 
reconstructing their accurate position correctly is difficult. In 
this method, only edges near the reliable matched points are 
considered as edge candidates, which can reduce the search 
space for corresponding 2D edges in frames and is much faster 
than applying epipolar beam from end points to find candidates. 
So, this method can significantly simplify and speed up the edge 
matching procedure. In order to avoid a poor ray intersection 
geometry caused by the short baseline between the images, all 
the edge candidates are used to estimate a 3D edge. Based on 
the estimated variance factor, only good 3D edge estimations 
are accepted, which ensures the accurate position of matched 
 
 

 
 

             

 

Figure 3. Matched 2D edges with reliable points, 
Reliable points (green), edges with end points (red)
frame 0 (upper), frame 133 (lower) 
  

 Figure 4. 3D view on estimated 3D Edges with reliable   
points, side view (upper), top view (lower)  

3D edges. But it should be mentioned here that the decided end 
points may not correspond to corner points.      
 
Although we can not get enough information from edge 
matching results to reconstruct the whole objects, these matched 
edges contain relation with points. Further on, surface patch and 
other feature aggregates are connected, which are useful 
topological constraints for recovering 3D structures.  
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