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Abstract 

 This project examines the effects of weighted random early detection (WRED) 

packet discard on dropping probabilities for multi-class traffic. The flexibility of the 

WRED parameters will be illustrated with respect to performance parameters and traffic 

characteristics. Recent advances in analytic RED modeling will be described and 

extended to WRED and analytic results compared to those found using the simulation 

model developed for this project. Guidelines for setting WRED parameters will also be 

examined for various traffic scenarios. 
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Section 1: Introduction 

1.1 Problem Description 
 
 Modern networks require the integration of a variety of data flows into an 

infrastructure that may not be precisely suited to handle the requirements and 

characteristics of the traffic. Under heavy loads, decisions must be made about which 

packets will be discarded in order to maintain stability in the network. The tail drop 

mechanism, in which all packets are discarded once a queue becomes full, ensures that all 

of the positions in the queue are used to their full potential. If all arriving packets 

conformed to either a uniform or a basic Poisson distribution with exponential interarrival 

times, tail drop discarding would likely provide an excellent means of utilizing a queue 

when the load approaches or exceeds capacity, though differentiation with respect to 

dropping probability may still be desirable for different classes of traffic.    

 However, much of the traffic on the Internet is inherently composed of bursts of 

data. Services requiring human interaction, including web browsing and TCP signaling, 

often involve quick transfers of data followed by periods of inactivity. The queues 

located at routers and switches must have the ability to handle these bursts. As access 

speeds to the Internet improve, burst characteristics may become more pronounced, 

increasing the severity of the problem. When dial-up service was the major means of 

access to the Internet, the low transfer rate constraints imposed by the delivery 

mechanism (modem) produced a less pronounced burst than with a modern broadband 

system. It has been found that a 33Kbps modem user produces a peak rate that is about 

3.3 times the average transfer rate, whereas a similar customer using a 1Mbps broadband 

connection produces a peak rate approximately 100 times the average rate [1]. Some of 

the issues with quality of service can be alleviated by the aggregation of large numbers of 
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flows onto large links [2]. However, as broadband Internet service reaches less populated 

communities, traffic may remain bursty due to a low number of subscribers connected to 

a single link. Because a tail drop queue operates near its capacity under heavy load, 

traffic bursts have no place to be stored upon arrival and are discarded at a 

disproportionate rate. The inequity in dropping probability between the two types of 

traffic may grow to unacceptable levels. The simulation result in Figure 1 illustrates the 

problems that arise under heavy load (ρ=1.2) with the use of tail drop blocking when 

combining an even amount of a bursty traffic flow, in this case batch Poisson arrivals, 

with an equal amount of smooth constant interarrival traffic: 

Dropping Prob. vs. Burst Size, Tail Drop
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Figure 1: Blocking Probability using Tail Drop, ρ=1.2, Queue Size=100, Mean Exponential Packet 
Length=1000, Link Rate = 10000 

 

 As the figure shows, the bias against bursty traffic increases rapidly as the burst 

size becomes larger, though the overall load remains constant. Note that the dropping 

probabilities are not precisely equal at a burst size of one, because the bursty model still 
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uses Poisson arrivals instead of the constant interarrivals of the smooth source. The 

bursty traffic is much more prone to blocking than the smooth traffic with which it is 

sharing the queue for all but the smallest burst sizes. As burst size decreases, the overall 

blocking rate approaches the minimum of 1/6 as required for stability in a M/M/1/K 

system at ρ=1.2. At larger burst sizes, smooth packets have a lower probability of being 

dropped due to long windows of time between bursts in which the queue may not be 

operating at overload conditions. However, the dropping probability for the batch Poisson 

arrivals increases rapidly  to nearly 50% as the burst size approaches the queue size.  

A well-designed network must be capable of properly handling these bursts of 

data and the heavy loads that may be encountered. At peak usage, when the load ρ may 

increase to unity and beyond, the network designer may want packets discarded in a 

manner that provides equitable service and does not overly discriminate against bursty 

traffic. This project addresses, through analytic and simulation modeling, how Weighted 

Random Early Detection can be used to effectively establish a flexible service that can be 

configured to provide the desired relationship between the blocking probabilities of two 

disparate traffic flows.  
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1.2 Project Purpose and Motivation

 The goal of this project is to extend the analytic model used for Random Early 

Detection (RED) to WRED and to use simulation to examine the differences from the 

analytic solutions. The simulation portion of the report will allow examination of the 

performance characteristics of WRED in a more realistic environment. This work will 

show how performance varies with respect to the multitude of configuration parameters 

available to WRED technology.  

 Though much work has been put into the evaluation of RED in the last few years, 

the research of RED variants like WRED is still a nascent field. Technologies that can 

combine the desired benefits of early detection with a package that allows for greater 

control of tradeoffs inherent in RED may hold great promise.   
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Section 2: Analysis of Random Early Detection and WRED 

2.1 Background on RED 

 In its most general form, Random Early Detection is the probabilistic discard or 

marking of packets as a function of queue fill before overflow conditions are reached. 

The probability of a packet being marked or dropped is determined by a monotonically 

increasing drop function d(k).  

 The merits of RED have been greatly debated over the last ten years. The first 

paper detailing random early detection’s merits was the Floyd and Jacobson paper of 

1993 [3]. Some of the key reasons stated for RED adoption were as follows: 

 

• Congestion Avoidance – RED allows for queue congestion to be managed 

before a critical overflow point is reached. Also, keeping the queue size lower 

decreases delay for those packets that are not dropped. 

• Global TCP Synchronization Avoidance – By marking packets for early 

discard, the number of consecutive drops can be reduced. Many Internet 

designers were concerned that consecutive drops when queues became full 

could cause global instability in the network as many queues signal their 

source to reduce their window at the same time  

• Fairness – Reduces the bias against bursty traffic, as mentioned earlier. RED 

will avoid a situation in which bursty traffic faces extreme packet loss 

compared to smooth traffic.  
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While many of these phenomena have been seen in controlled experiments, much 

active research still involves the refinement and verification of these claims in more 

realistic networks. Some of Floyd and Jacobson’s claims have since been refuted under 

certain conditions, including the consecutive packet drop claim. [4]  

The RED dropping probability is a linear function that determines whether a 

packet will be admitted to the queue when k packets are currently waiting. The dropping 

probability d(k) is determined by a set of parameters that create the drop function.  The 

important parameters include: 

minth

 
Minimum Queue Fill for RED Dropping 

maxth

 
Maximum Queue Fill for RED Dropping 
(Normally set to K, the maximum queue size)

 
maxp Maximum Probability of RED Dropping 

 

For instantaneous queue size k, d(k) is as follows: 
 

( ) 0d k =  if k < minth 

( ) 1d k =  if k > maxth 

( ) ( ) minmax
max min

th
p

th th

kd k −⎛ ⎞= ⎜ ⎟−⎝ ⎠
 otherwise 

 
[4] 

 

producing the function plotted in Figure 2 if maxth is set equal to queue size K: 
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Figure 2: RED Dropping Function 

 

2.2 Queue Averaging Pros and Cons

 One major area of study in RED analyzes the use of an exponentially weighted 

moving average for estimation of the queue fill [5]  

1ˆ ˆ(1 ) n nk w k w−= − + k  

 Decreasing the weight w applied to the new sample of the queue fill makes the 

system less aggressive in dropping packets during sudden bursts. It has been shown that 

the careful adjustment of the queue sample weight can reduce dropping probability as 

compared to the instantaneous queue size method used in this report [6]. However, it has 

been shown that a low weighting can lead to a greater number of consecutive packet 

drops than a tail drop queue [4], and therefore it may contradict one of the major reasons 

for RED implementation with respect to TCP synchronization. This project will use 

instantaneous queue size due to the fact that its more aggressive discard and sensitivity to 

bursts will exacerbate differences in fairness between classes of traffic. Instantaneous 

queue sampling also makes possible the type of analysis to be covered later in this 
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section. The proper configuration of the queue fill average is a major area of note in RED 

research, but it is beyond the scope of this report on WRED.   

 

2.3 Introduction to RED Analysis

 The groundwork for RED analytic modeling was created by a breakthrough paper 

by Bonald, May, and Bolot published in IEEE INFOCOM in 2000 [4]. The work 

addresses the problems arising from the mixture of smooth UDP traffic and bursty TCP 

traffic in a traditional tail drop queue, and it was the first successful attempt to create a 

satisfactory analytic model of packet discard in RED.  The following sections detail the 

model described in this paper and its adaptation to WRED analysis.  

 

2.4 The Bonald/May/Bolot RED Model [4] 

 The paper uses continuous-time Markov chain analysis to establish the transition 

rates, and consequently the stationary state probability vector π, used to find the blocking 

probability for bursty traffic. However, many simplifications and approximations must be 

used to create a model that can be solved analytically. Many RED implementations use 

queue size averaging; however, for simplification much of the paper uses instantaneous 

queue size to determine the RED drop probability. This simplification will also be used in 

this project for the analytic and simulation model so that the two can be properly 

compared and also to operate more easily within the limits of the Extend Discrete Event 

modeling library.  The bursty traffic source used for this model is a batch Poisson arrival, 

in which packets arrive in groups of size B with exponential interarrival times. Through 

referenced in the paper as “TCP”, the model does not exactly match the characteristics of 
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TCP flows in practice [7]. The service time distribution of the individual packets are 

exponential.  

 The analytic solution requires an approximation that is problematic for small 

queue sizes. Approximation #1 in [4] states that the RED router uses the same dropping 

probability d(k) on all packets in the same burst, where k is the instantaneous queue size 

at the time the first packet in the burst arrives at the router. In a real implementation, 

packets will be discarded at the dropping probability corresponding to the queue fill when 

they individually arrive, which will be higher for later packets in a burst than for the first 

packet. Thus, any analytic solution for a RED queue that is calculated in this manner will 

prove to be only a lower bound for the dropping probability of a RED system. The 

Poisson Arrivals See Time Averages (PASTA) property states that the continuous-time 

stationary state distribution π will equal the distribution of the number of packets in the 

queue upon burst arrival [4]. This property is necessary to produce the following 

dropping probabilities for tail drop (TD) and RED [4]: 

 

( 1) 1( ) ( 1) ..... ( 1)TD
BP K K K B

B B
π π π−

= + − + + − +  

( ) ( 1) ( 1) ... (1) (1)REDP K K d K dπ π π= + − − + +  

 

Once the state probabilities are found, the dropping probability can be found using the 

above formulas. The offered load can be found by the formula Bλρ
µ

= . The rate of burst 

arrival is considered λ, while the packet service rate remains µ.  

 The conclusion of the paper remarks that RED balances the blocking probability 

between bursty and smooth traffic by increasing the smooth traffic blocking probability 
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rather than by lowering the bursty blocking probability. The simulations in this project 

show that this is not the case across all ranges of the RED parameters. (See Figure 14/15) 

 

2.5 Extension of Markov Chain Analysis to WRED

 Using the same approximations, WRED can be analyzed in a very similar way to 

RED. WRED uses the same parameters as RED, but it has the ability to perform RED on 

traffic classes individually. For example, this figure shows a WRED system in which 

both classes have the same maxp but different minth. The Class 2 traffic begins RED 

discard when the queue contains one packet, and Class 1 traffic discard begins at k=2. 

These WRED dropping functions will be used in the analytic example in Section 2.6.  

 

Figure 3: WRED Dropping Functions 

 

WRED analysis is similar to RED analysis, but the transition rates for the CTMC 

will differ and the general complexity of the Markov chain will increase. This section 

will take the reader through a complete example of the calculation of WRED blocking 

probability for a system with two bursty input sources that are assigned different RED 

blocking probabilities. 
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2.6 WRED Analysis Example 

For this example, the burst size is B=2, and the offered load is 0.6. The resulting λ 

is 0.3 bursts/sec for a normalized service rate (µ) of 1. Note that K is still equal to 4, and 

that this Markov chain corresponds to the number in the total system (queue fill plus one 

packet in the server) in order to ease the calculations.  Thus, the dropping probability 

when the number in the system (x) is 5 corresponds to the dropping probability of a 

queue fill k of 4, and so on. The arrival loads of each class are equal at 0.15 bursts/sec for 

each class. 

 

Figure 4: WRED CT Markov Chain 

 

The dropping probabilities from Figure 3 are as follows: 

Table 1: Dropping Probabilities of WRED Example 

Number in system (x)

Class 1 
Dropping

d1(x)

Class 2 
Dropping

d2(x)
0 0 0
1 0 0
2 0 1/4
3 1/3 1/2
4 2/3 3/4
5 1 1
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Calculating the transition probabilities: 

For a packet arriving when there are zero or one packets in the system (zero in queue), 

there will be no dropping: 

02q λ=  
13q λ=  

 
 
 
When x=2 (queue fill = 1), only class 2 packets will have a chance of dropping: 
 
 

2

24
21 1 11 0.2344
22 2 4

q λ λ
⎛ ⎞⎛ ⎞= + − =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 (Transition rate if no packets drop) 

 

23
21 1 3 0.05625
12 4 4

q λ
⎛ ⎞⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠
(Transition if one packet in the burst is dropped)  

 

When x=3, both classes may experience dropping: 

2 2

35
2 21 2 1 1 0.1042
2 22 3 2 2

q λ λ
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 

34
2 21 1 2 1 1 1 0.1417
1 12 3 3 2 2 2

q λ λ
⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞= + =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠
 

 

When x=4, the only way for the state to transition upward is if no packets are dropped: 

2 2

45
1 2 1 31 1 0.1490
2 3 2 4

q λ λ
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞= − + − =⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 

Packets will be serviced with exponential service time at a rate of 1, so: 

54 43 32 21 10, , , ,q q q q q =1 
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The following transition rate matrix is then produced: 

0.3 0 0.3 0 0 0
1 1.3 0 0.3 0 0
0 1 1.29 0.05625 0.2344 0
0 0 1 1.2459 0.1417 0.1042
0 0 0 1 1.1490 0.1490
0 0 0 0 1 1

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−

= ⎜ ⎟
−⎜ ⎟

⎜ ⎟−
⎜ ⎟⎜ ⎟−⎝ ⎠

Q  

 

Solving for subject to 0 = πQ 1iπ =∑  

( )0.4812 0.1445 0.1878 0.0979 0.0681 0.0203=π  

The blocking probabilities can be found by using equations similar to those for RED: 

, 1 1* ( )RED x
x

P dπ=∑ x

x

 

, 2 2* ( )RED x
x

P dπ=∑  

Resulting in blocking probabilities: 

, 1 0.0983REDP =  

, 2 0.1673REDP =  
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Section 3: Simulation Model Design  

3.1 Introduction to the Simulation Model

The RED simulation model for this project was designed to resemble the 

simulation used by the Bonald paper [4]. The CAD package Extend [8] and its Discrete 

Event library were used for all simulation data presented in this report.  

Modeling and verifying RED performance presents some unique challenges. Due 

to the approximations used in the analytic model presented in [4], simulation data cannot 

be expected to directly compare to analytic solutions for small queue sizes or large bursts. 

The RED mechanism in simulation, as well as in a real-world environment, will discard 

packets based on the queue size when each packet enters the system, not when each burst 

arrives. For RED, and especially for WRED, the Markov Chain model also becomes 

cumbersome as the queue and burst sizes are expanded, producing the need for 

simulation. 

 

3.2 The Bursty “TCP” Source Model 

 To simulate the TCP-type packets on the network link, a batch Poisson source 

model was created in Extend. A standard Poisson generator block is attached to the 

Discrete Event library’s “Unbatch” block, which multiplies the number of packets 

generated when triggered by the standard Poisson source. The attributes are added later, 

including packet length, so that the burst will consist of non-identical packets arriving at 

the same time. The Unbatch block is controlled by the “Burst Length” control so that the 

number of packets released upon a triggering Poisson arrival can easily be changed. The 

RED Class is assigned as an attribute so the packet can be routed later in the model. All 

 14



of the simulations used in this project have exponential packet length distributions with a 

mean of 1000 bits.  

 

 

 

 

Figure 5: Bursty Source Model Block 

 

3.3 Smooth “UDP” Source Model 

 The smooth traffic generator structure is similar to the bursty packet generator, 

except for the use of constant interarrivals. Some previous RED models have used 

constant bit rate sources. Though this model uses constant interarrivals, it retains the 

exponential packet lengths of 1000 bits from the bursty source model. The result is a 

source that provides a steady stream of variable length packets.  
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Figure 6: Smooth Source Model Block 

3.4 The Random Early Detection Block 

 A key challenge in this project was the creation of a Random Early Detection 

block for Extend. Without using any custom libraries, it was possible to make a device 

that takes as inputs both the packet stream and the queue size and then reroutes the 

desired proportion of packets for marking or dropping. The block distinguishes between 

packets that were dropped for exceeding maxth and those dropped by RED before queue 

overflow between minth and maxth.. The routing architecture can be seen in Figure 7: 

 

 

Figure 7: RED Block Routing Architecture 
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 A “drop all” toggle diverts all input packets when maxth has been exceeded. For 

cases where maxth was set to the maximum queue size, this would represent the type of 

dropping that occurs in a tail drop queue. As will be used later, this RED block can 

function as a tail drop block if minth is set equal to maxth.  

 In sub-overflow conditions, packets are then routed to the RED Drop switch so 

long as the queue fill is above minth by the “bypass toggle”, in which case the RED 

dropping mechanism will be activated. The “Red Drop” input determines if the packet 

should be discarded for this particular case, and is calculated from the logic in Figures 8 

and 9.  

 

Figure 8: RED Dropping Probability 

The RED dropping probability is produced using the formula given in Section 2.1. 

The “drop prob” output sends the dropping probability to the decision logic, which then 

compares the dropping probability to a random number between 0 and 1 to determine if 

the RED dropping switch should be activated.  
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Figure 9: RED Logic and Decision Blocks 

 

3.5 WRED Model Design 

With the major components designed, the entire WRED model can be constructed 

by the addition of a basic FIFO queue and a server delay block that delays each packet 

based on the packet length assigned at the source. Other blocks have capabilities like 

counting the number of packets discarded by the RED blocks and measuring average 

queue fill and packet delay.  
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Figure 10: WRED System Model  

 

 WRED is implemented by placing a RED block immediately after each source to 

decide which packets will be admitted to the FIFO queue.  The RED parameters can then 

be adjusted for each input class individually. The packets that are not discarded by the 

RED block are combined and enter the queue.  
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Section 4: Simulation Model Verification 

4.1 RED Verification Issues 
 
 Verification is particularly difficult for RED queues due to the fact that the 

analysis techniques available at this time are only an approximation to the blocking 

probability encountered in a realistic implementation. Recal that Approximation #1 in 

[4], which states that in the analytic solutions all packets are discarded with the dropping 

probability assigned to the queue fill at the beginning of the burst, is not realistic for 

small queues. Unfortunately, analytic solutions for large queues can be cumbersome due 

to the large number of states and transition probabilities that must be found in the Markov 

chain, particularly for WRED and for large burst sizes. The Extend WRED model used in 

this project can be checked, however, by verification of the individual components and 

comparison to known results. After the blocks are shown to perform correctly, the overall 

model can then be found to operate within the bounds of the analytic solution for a 

manageable queue size.  

4.2 Bursty Source Model Verification 

 Using analytic techniques similar to those shown in Section 2, a tail drop Markov 

chain can be constructed and used to find the blocking probability of a tail drop system 

with a bursty traffic source. Tail drop verification will allow the source to be verified 

separately from the rest of the model, as the RED block does not perform any complex 

operations and Approximation #1 [4] is not used. It should be expected that the tail drop 

blocking probability found in simulation match the probability from tail drop analysis. 

The simulation and analysis are constructed using the following parameters:  
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Table 2: Simulation Setup: Bursty Source Verification using Tail Dropping 

Burst Size 3
System Size 5
Queue Size 4

Burst Arrival Rate 2
Mean Packet Length 1000 bits

Link Capacity 10000 bits
Offered Load 0.6

Total Simulation Time 7000s
Run-in Time 2000s

Number of Runs 5
 

 The simulation time and number of runs are chosen to provide approximately 

150,000 packets for sampling and measurement. The run-in time is used to ensure that the 

queue has reached its steady-state occupancy distribution before blocking calculation 

begins.  Table 3 shows the excellent agreement between the simulation model and the 

analytic model, verifying the simulation model in tail-drop mode. 

 

Table 3: Simulation Results: Bursty Source Verification using Tail Dropping 

# Of Packets Simulated 149793
# Of Packets Blocked 24395

Blocking Probability/Sim 0.1629
Blocking Probability/Analytic [9] 0.1632

% Error 0.21%
 

4.3 RED Block Verification 

 RED block verification was performed by comparing the performance of the 

Extend RED model to the analytic and simulation results from the Bonald paper [4]. Due 

to Approximation #1, the blocking probability will be much greater in simulation than in 

analytic calculation for small queues. However, increasing the queue size leads to solid 

correlation between the simulations performed by Bonald and those in this project. For 
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verification, the Extend model was given the following parameters used in the previous 

paper.  

 

 

Table 4: Simulation Setup: RED Block Verification 

Burst Size variable
Queue Size 40

Burst Arrival Rate 2
Mean Packet Length 1000 bits

Link Capacity 10000 bits
Offered Load variable

minth 20
maxth 40
maxp 1

Total Simulation Time 7000s
Run-in Time 2000s

Number of Runs 5
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Figure 11: Dropping Probability vs. Offered Load: Published Results [4] 
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Figure 12: Dropping Probability vs. Offered Load: Extend RED Model 

 

 The dropping probability is found to match closely both the simulation results and 

analytic results from [4] across a range of offered loads and burst sizes. The previously 
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published results shown in Figure 11 also illustrate that, at larger queue sizes, the 

dropping probability analysis approximation does not result in a large amount of error. 

 

4.4 WRED: Comparison of Simulation vs. Analysis 

 The RED block and the burst source model have been shown to behave correctly 

for the less complex tail drop and RED packet dropping schemes. Now, a full WRED 

system will be simulated and compared to results found using analysis similar to that in 

Section 2.6. The offered load ρ is 0.6 with a burst size of 3 and a system that can hold 

nine packets in the queue as well as one in the server. Two bursty sources with equal 

arrival rates are assigned different dropping priorities (parameters listed correspond to 

number in queue, not system): 

1min 4th = 1max 9th =  

2min 1th = 2max 9th =  

1 2max max 1p p= =  

Solving the transition rate matrix results in a state probability vector of: 

( )0.4549 0.0909 0.1092 0.1310 0.0657 0.0560 0.0414 0.0250 0.0161 0.0075 0.0023=π
 

Using Approximation #1 [4], the drop probabilities are: 

, 1 0.0362REDP =  

, 2 0.1491REDP =  

 However, these provide only a lower bound for the blocking probability. A worst-

case blocking scenario is needed to provide an upper bound. If the assumption is made 

that all drops occur at the maximum possible probability, the worst case dropping 

probability will come from the queue state B-1 packets greater than the current state. 
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Essentially, the worst-case approximation will use the dropping probability that the last 

packet in the burst will encounter, provided that none of the previous packets are 

dropped. This is a highly unlikely case, but it will provide some manner of upper 

estimate. This approximation gives: 

, 1 0.0707REDP =  

, 2 0.2487REDP =  

 

 

 

The simulation is conducted using the following parameters: 

Table 5: Simulation Setup: WRED Model Verification 

Burst Size Class 1 3
Burst Size Class 2 3

System Size 10
Queue Size 9

Burst Arrival Rate 1/class
Mean Packet Length 1000 bits

Link Capacity 10000 bits
Offered Load 0.6

Total Simulation Time 7000s
Run-in Time 2000s

Number of Runs 5
 

The WRED simulation dropping probabilities are found to be within the estimates 

established with the analytic work: 

, 1 0.0551REDP =  

, 2 0.1731REDP =  
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Figure 13: Dropping Probability by WRED Class 
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Section 5: Simulation using the WRED Model 

5.1 Introduction to WRED Simulation 

 This simulations in this project focus on the fairness considerations for a multi-

class traffic scenario in which one class “TCP” consists of bursty batch Poisson arrivals 

and the other class “UDP” consists of constant interarrival data. The packet lengths for 

both classes are exponentially distributed with a mean of 1000 bits.  Unless otherwise 

noted, the traffic load is equally divided between the two classes. 

 

5.2 Parameter Adjustment without WRED 

 To provide a baseline measurement of how the system behaves without class-

specific RED parameters, simulations were performed with the model using the same 

parameters for each class, representing simple RED. The minth and maxp parameters were 

adjusted across their full ranges to test how the system reacts. The burst size is 10 and the 

queue size is 100. In Figure 14, the RED aggressiveness is progressively increased by 

means of lowering the minimum threshold for dropping from K (queue size) to 0. In 

Figure 15, the RED aggressiveness is increased by increasing the maximum drop 

probability from 0 to 1 with a minimum drop threshold of zero.  
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Table 6: Simulation Setup: RED Parameter Variation 

Burst Size Class 1 10 pkts/burst
Burst Arrival Rate 0.6 bursts/s

Packet Arrival Rate Class 2 6 pkt/s
Queue Size 100

maxth1, maxth2 100
Mean Packet Length Class 1 and 2 1000 bits

Link Capacity 10000 bits
Offered Load 1.2

Total Simulation Time 7000s
Run-in Time 2000s

Number of Runs 5
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Figure 14: Dropping Probability vs. Minimum Drop Threshold, ρ=1.2, maxp=1 

 

RED, maxp vs. Blocking
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Figure 15: Dropping Probability vs. Maximum Dropping Probability, ρ=1.2, minth=0 
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 The simulation shows that, as RED becomes more aggressive, fairness initially 

increases rapidly. The best fairness occurs in Figure 15 when the minimum threshold is 

low and the maxp value is moderate. Overall dropping probability increases gradually 

until a point, in this case maxp=0.8 or minth=20, where many packets are likely being 

dropped prematurely causing a large increase in total blocking. The increased 

aggressiveness of RED can be seen in the mean queue fill corresponding with the same 

maxp values as in Figure 15: 
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Figure 16: Queue Fill vs. Maximum Dropping Probability, ρ=1.2 

 

 Queue occupancy decreases with increased aggressiveness in the RED dropping 

parameters, and lower queue fill also results in lower delay for those packets entering the 

queue. A slight cost is incurred, relative to tail drop, in overall drop probability. Now that 

a range of acceptable parameters has been found, RED settings are chosen to be 

minth=50 and maxp=0.5 to maximize fairness and the simulation used to create Figure 1 

is recreated using RED to provide a comparison of tail drop to RED: 
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Dropping Prob. vs. Burst Size
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Figure 17: Dropping Probability using Tail Drop and RED, ρ=1.2, Queue Size=100, Mean Exponential 
Packet Length=1000, Link Rate = 10000 

 

 For smaller burst sizes, RED greatly increases fairness for the TCP traffic stream. 

As the burst size becomes closer to the queue size, the dropping probability for bursty 

traffic approaches that of a tail drop case. 

 

5.3 WRED Simulation with Class Distinction 

 RED has been shown to increase fairness for mixed traffic with relatively small 

burst sizes. One possible use of WRED is to increase fairness beyond what is possible 

through RED. With a class-specific RED configuration, it should be possible to overcome 

traffic bursts and provide equitable service quality to multiple classes of traffic. The 

following simulation shows the effect of decreasing the minimum dropping threshold for 

smooth UDP Traffic by the burst size, ten packets, relative to TCP traffic. The goal is to 

provide a near-equal dropping probability for a burst size of ten packets. Simulation 

parameters are the same as those listed in Table 5 and produce the following result: 
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WRED: maxp = 0.5, minth(UDP) = minth(TCP) - 10
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Figure 18: WRED Dropping Probability with Ten Packet Minimum Threshold Preference for TCP Traffic, 
maxp=0.5, ρ=1.2 

 

WRED: maxp = 1, minth(UDP) = minth(TCP) - 10
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Figure 19: WRED Dropping Probability, Ten Packet Minimum Threshold Preference for TCP Traffic, 
maxp=1, ρ=1.2 

 

 Across the range of most minth values, a ten packet difference in minimum 

threshold overcompensates and produces a more favorable dropping probability for TCP 

than for the UDP packets, which are dropped at a lower queue fill. Overall fairness is 

slightly improved for maxp = 0.5 as compared to the RED dropping with no class 
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preference in Figure 14. To make the dropping probabilities even more similar, the 

difference between minimum thresholds is lowered to five packets, or one half of the 

burst size: 

WRED: maxp = 0.5, minth(UDP) = minth(TCP) - 5
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Figure 20: WRED Dropping Probability, Five Packet Minimum Threshold Preference for TCP Traffic, 
maxp=0.5, ρ=1.2 

 

 Providing a minimum threshold preference of five packets for a TCP source with 

a burst size of ten produces near equality with respect to dropping probability when 

WRED is sufficiently aggressive. Overall dropping probability is not greatly affected by 

this WRED implementation. The preference of five packets is maintained with 

minth(UDP) = 50 and minth(TCP) = 55 and then investigated for sensitivity to overall 

offered load.  
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Dropping Probability vs. Offered Load, 
minth(UDP)=50 minth(TCP)=55, maxp=0.5
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Figure 21: WRED Fairness vs. Offered Load 
 

 Figure 21 shows that a system can exhibit excellent fairness characteristics across 

a normal range of operating loads, in this case from ρ=0 to ρ=1.2, but it may struggle to 

maintain fairness for very high loads. This holds true when the traffic load is split 50/50, 

but it is worthwhile to investigate what happens as the traffic composition becomes 

biased towards the bursty or smooth side. Figure 22 shows how fairness is affected by the 

predominance of one type of traffic over the other at ρ=1.2: 
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Dropping Probability vs. % of Offered Load
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Figure 22: Class Dropping Probabilities vs. % Of Traffic That is TCP, minth=55/50, maxp=0.5, ρ=1.2 
 
 The traffic-weighted overall dropping probability is not greatly affected by the 

makeup of the traffic. However, the type of traffic that is less dominant experiences a 

greater chance of dropping, particularly for UDP packets when TCP makes up more than 

about 70% of the traffic load. When establishing WRED parameters, it may be desirable 

to compensate for this disparity if the system will be operating with a substantial majority 

of the traffic belonging to a single class for a long period of time. 

 

5.4 Congestion and Delay Considerations for WRED 

 In addition to the increased fairness across different classes of traffic, RED claims 

to offer better performance with respect to congestion and delay. Increased 

aggressiveness in early discard will decrease the mean queue fill, and thus decrease the 

amount of waiting time a packet will experience in the queue. A simulation is performed 

using the best parameters found in Section 5.3, including a five packet TCP preference in 
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minth and maxp=0.5, and the delay is found to decrease with lower minimum discard 

thresholds: 

WRED: Delay vs. minth(UDP)
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Figure 23: WRED Packet Delay vs. minth(UDP) , ρ=1.2 
 

 As mentioned in [3], RED will result in a lower percentage of drops occurring 

from queue overflow. The parameters used for the delay measurement are repeated to 

find the percentages of total drops resulting from buffer overflow for each class: 
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Figure 24: WRED: Queue Overflow vs. minth(UDP) , ρ=1.2 

 35



 As expected, the percentage of packets dropped from overflow decreases as 

WRED is implemented in a more aggressive manner. With less aggressive RED, TCP 

packets are much more likely to overflow the buffer due to burst arrivals at high queue 

fill states. WRED dropping lowers the average queue fill and results in a system that 

drops packets early in a probabilistic random fashion instead of the discard of the tail-

drop case, in which drops suddenly occur when the queue becomes full. As a result, the 

scenario of complete network-wide congestion is less likely to occur with a sufficiently 

aggressive RED queue than with a tail drop queue.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 36



Section 6: Final Conclusions and Future Work 

6.1 Conclusions 
 
 WRED retains many of the beneficial attributes of RED while adding additional 

configuration options. Through an iterative process, WRED parameters were found that 

provide close to an exact match in dropping probability for two classes with different 

arrival statistics. Many of the benefits of RED that were promoted in [3] were shown to 

be true for this WRED model, and the cost in overall dropping probability, as compared 

to a tail drop queue, was relatively low.  

 It was discovered that the WRED parameters were not required to be extremely 

aggressive in order to receive equal dropping probability during slight overload 

conditions, provided that the minimum thresholds are correctly distinguished. The use of 

WRED minth parameters of approximately one half of the queue size provided dropping 

probabilities for the two classes that are almost equal. More aggressive WRED 

parameters led to increased total packet dropping, and were not shown to provide much 

additional benefit with the burst sizes used in the project.  

 Proper parameter settings were shown to provide strong fairness characteristics 

over most realistic traffic loads when the balance of smooth and bursty traffic was similar 

to their ratio when the parameters were initially found. If one class of traffic dominates, 

the other class may face increased blocking probability, particularly if bursty TCP traffic 

is predominant.  The overall traffic-weighted mean dropping probability was not greatly 

affected.  

 The WRED extensions of the Bonald RED analytic work were also used to 

provide bounds for the dropping probability of the simulation model. The Extend model 

is found to obey these bounds.  
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6.2 Future Investigations 

 This project focused on the performance of an individual queue within a larger 

system. Some of the RED claims, particularly regarding TCP synchronization, would be 

best investigated by implementing WRED in a multi-node network simulation. Source 

models could be constructed that follow TCP specifications more precisely. If these 

models were created, it would be worthwhile to investigate the use of WRED to mark 

packets and signal the TCP source to reduce its load, instead of simply dropping the 

packets. The WRED system would then becomes a feedback control system that would 

require further analysis. Some initial work into this type of system has already begun for 

the RED case [10].  
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