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Abstract

This paper documents the Time Series Growth Curves (tsgc) package for R, which
is designed for forecasting epidemics, including the detection of new waves and turning
points. The package implements time series growth curve methods founded on a dynamic
Gompertz model and can be estimated using techniques based on state space models and
the Kalman filter. The model is suitable for predicting future values of any variable which,
when cumulated, is subject to some unknown saturation level. In the context of epidemics,
the model can adjust to changes in social behavior and policy. It is also relevant for many
other domains, such as the diffusion of new products. The tsgc package is demonstrated
using data on COVID-19 confirmed cases.
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1. Forecasting epidemic trajectories

Outbreaks of infectious diseases with epidemic potential require real-time responses by public
health authorities. Accurate real-time forecasting of the trajectory of the epidemic over the
near future is of great value in this regard.

The R package, tsgc, is intended for use in monitoring and forecasting the progress of an epi-
demic, including the detection of new waves and turning points.1 It develops and implements
time series growth curve methods first reported in Harvey and Kattuman (2020) (hereinafter
referred to as HK). HK develop a class of time series models for predicting future values of a
variable which, when cumulated, is subject to an unknown saturation level. In a single wave
of an epidemic, as more and more people get infected, the pool of susceptible individuals
dwindles. This results in the decline of new infections, and the cumulative number of infec-
tions approaches its saturation level. The model can take account of deviations relative to

∗Correspondence to: p.kattuman@jbs.cam.ac.uk
1The package is available from https://github.com/Craig-PT/tsgc.

https://github.com/Craig-PT/tsgc
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this canonical trajectory due to changes in social behavior and policy. Models in this family
are relevant for many other disciplines, such as marketing (when estimating the demand for
new products). While attention here is focused on the spread of epidemics and the applica-
tions used for illustration relate to coronavirus, this package is designed with a view to wider
applicability.

Given the number of different modeling approaches for epidemics, there are many notable
packages that can be used for monitoring epidemics. For the most part, these seek to model
explicitly the mechanism by which the disease spreads through the population. For example,
EpiModel (Jenness, Goodreau, and Morris 2018), EpiEstim (Cori, Ferguson, Fraser, and
Cauchemez 2013), epinowcast (Abbott and Monticone 2021) to name a few, can be categorized
as belonging to the class of ‘mechanistic’ models in the language of philosophy of science, in
that they require structural knowledge of the disease spread mechanism in order to obtain
predictions.

In contrast, the empirical approach implemented in tsgc falls into the class of models described
as ‘phenomenological’. Although it is motivated by the archetypal pattern in the dynamics of
disease spread, it does not rely on structural assumptions derived from epidemiological theory.
There are advantages to not requiring assumptions about values of parameters relating to,
inter alia, disease infectiousness, disease severity, or contact patterns, which are difficult to
pin down with sufficient precision, especially in real-time during an epidemic. Our approach
makes minimal assumptions and merely requires past observations of the epidemic variable
of interest, to which we apply time-series methods to provide predictions over short future
time horizons. The model can be estimated quickly and straightforwardly, and subjected
to standard diagnostic tests. A statistical model of this type is a useful complement to
mechanistic models that attempt to describe the epidemic in terms of underlying processes.

Section 2 sets out the state space formulation of the dynamic Gompertz growth curve and
the way nowcasts and forecasts are obtained from predictive recursions. It is then shown how
these numbers translate into estimates of the instantaneous reproduction number Rt. Section
3 explains how multiple waves can be accommodated by reinitializing the series at the start
of new waves. The start of a new wave is not obvious in real time but a rule for triggering
reinitialization that works well in practice is presented. Section 4 describes the functionality
of tsgc. Section 5 sets out a full working example of the use of the package to forecast COVID
infection in Gauteng province in South Africa. Section 6 concludes.

2. Theory

2.1. Gompertz curve

Our model is based on the sigmoidal growth curve pattern that characterizes epidemics. We
start by assuming that the cumulative number of cases follows a Gompertz curve, which is
a parsimonious model for the canonical sigmoid shape of cumulative case numbers in a one-
wave epidemic. Over the course of a wave, the number of new infected cases increases up to
a peak before declining to zero as the pool of susceptible individuals declines. Specifically, if
the cumulative number of cases at time t, µ(t), follows a Gompertz curve, we can write

µ(t) = µ̄ exp{γ0eγt},
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where µ̄ is the unknown saturation level for the cumulative number of cases, γ0 < 0 is a
parameter related to µ(0) and γ < 0 is the growth rate parameter. Defining µ̇(t) ≡ dµ(t)/dt
and g(t) ≡ µ̇(t)/µ(t), it is straightforward to show that

ln g(t) = δ + γt, (1)

where δ = ln γ0γ.

The observational model needs to be specified in discrete, rather than continuous, time.
This is straightforward. Let Yt be the observed cumulative number of cases on day t and
yt = Yt − Yt−1 be the number of daily new cases.2 We can then define the growth rate of Yt
as gt = yt/Yt−1 and replace ln g(t) with ln yt − lnYt−1.

2.2. Dynamic Gompertz model

The deterministic trend implied by (1) is too inflexible for practical time-series modeling of
an epidemic. Replacing it with a stochastic trend allows the model to adapt to changes in
dynamics during the course of the epidemic. We call this stochastic-trend counterpart of (1)
the dynamic Gompertz model. It is a local linear trend model specified as

ln gt = δt + εt, εt ∼ NID(0, σ2ε), t = 2, ..., T, (2)

where ln gt = ln yt − lnYt−1 and

δt = δt−1 + γt−1, (3)

γt = γt−1 + ζt, ζt ∼ NID(0, σ2ζ ), (4)

where the disturbances εt and ζt are mutually independent, and NID(0, σ2) denotes normally
and independently distributed with mean zero and variance σ2. Note that the larger the
signal-to-noise ratio, qζ = σ2ζ/σ

2
ε , the faster the estimate of the slope parameter, γt, which can

be interpreted as the growth rate of the growth rate of cumulative cases, changes in response
to new observations. Conversely, a lower signal-to-noise ratio induces more smoothness to the
estimates. When σ2ζ = 0, the trend is deterministic as in (1).

2.3. State space form and estimation

It is convenient to write the dynamic Gompertz model in general state space form:

ln gt = Zαt + εt εt ∼ NID(0, σ2ε)

αt+1 = Tαt +Rηt ηt ∼ NID(0, Q)

with

αt = (δt, γt)
′ , Z = (1, 0) , ηt = (0, ζt)

′ , T =

(
1 1
0 1

)
, R =

(
0 0
0 1

)
, Q =

(
0 0
0 σ2ζ

)
.

This model can be estimated using techniques based on the Kalman filter once a prior is
specified. The prior is

2Of course, while yt denotes daily new cases here, it could equally denote weekly sales of a new product,
etc. None of the analysis here is dependent on the data frequency.
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(δ1, γ1)
′ ∼ N(a1, P1),

where a1 is a 2 × 1 vector of prior means and P1 a 2 × 2 prior variance matrix. We use a
diffuse prior due to the absence of prior information about the epidemic when the model is
first estimated: i.e., we set a1 = (0, 0)′, P1 = κI, and let κ→∞. Model estimation, including
implementation of the diffuse prior, is carried out using the KFAS package (Helske 2017).

The Kalman filter outputs estimates of the state vector (δt, γt)
′. The estimates at time t

conditional on information up to and including time t are denoted (δ̂t|t, γ̂t|t)
′ and given by the

contemporaneous filter; the predictive filter estimates the state at time t + 1 from the same
information set, outputting (δ̂t+1|t, γ̂t+1|t)

′.

It may be useful to review past movements of the state vector (δt, γt)
′. This can be done using

the smoothed estimates (δ̂t, γ̂t)
′, which denotes the estimates of the state vector at time t

based on all T observations in the series.

Estimation of the unknown variance parameters (σ2ε and σ2ζ ) is by maximum likelihood (ML)
and is carried out using KFAS following the procedure described in Helske (2017). We retain
the option of either estimating the signal-to-noise ratio qζ , or of fixing it at a plausible value.
In practice, for coronavirus applications, we set the value of qζ based on experience and
judgment, reducing the number of parameters to be estimated by one. Tests for normality
and residual serial correlation are based on the standardized innovations, that is one-step
ahead prediction errors, vt = ln gt − δt|t−1, t = 3, ..., T.

Daily effects, which are generally quite pronounced in the coronavirus data, can be included
in the model as described in the Appendix.

2.4. Forecasts and peak prediction

Forecasts of future observations are obtained from the predictive recursions

ĝT+`|T = exp(δ̂T |T + γ̂T |T `), ` = 1, 2, ..

µ̂T+`|T = µ̂T+`−1|T (1 + ĝT+`|T )

so that

ŷT+`|T = ĝT+`|T µ̂T+`−1|T = YT exp δ̂T+`|T

`−1∏
j=1

(1 + exp δ̂T+j|T ) (5)

and ŶT+`|T = µ̂T+`|T ; the initial value is µ̂T |T = YT .

We construct forecast intervals for yt based on the prediction intervals for δt. The conditional
distribution of future values of δ̂t is Gaussian. We replace δ̂T+j|T in (5) with the upper bound

of a prediction interval for δ̂T+j|T to compute the upper bound of our forecast interval for
yT+` and likewise for the lower bound.3 In effect, the forecast intervals are based on inference
on the log cumulative growth rate, δt.

3These are not proper prediction or confidence intervals for yT+`. The one-step-ahead predictive distribution
of ŷT+`|T (for ` = 1) is lognormal. This is not the case more than one step ahead due to the presence of the
cumulative total in equation (2).
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The filtered growth rate ĝy,t|t of new cases yt, can be extracted from the continuous-time
incidence curve: µ′(t) = g(t)µ(t), where µ(t) is the growth curve and g(t) is its growth rate.
Taking logarithms and differentiating

ĝy,t|t = ĝt|t + γ̂t|t, (6)

where ĝt|t = exp δ̂t|t. The sampling variability of ĝt|t is dominated by that of γ̂t|t (see Harvey
and Kattuman 2021). Therefore when constructing confidence intervals for ĝt|t we treat ĝy,t
as if it has a normal distribution centered on ĝy,t|t with variance Var(γ̂t|t).

Even when the nowcast ĝy,T |T is positive and daily cases are growing, there will be a saturation
level for the cumulative total, Yt, so long as γ̂T |T is negative. The nowcasts of yt peak when
ĝy,t|t = 0, which requires γ̂t|t to be sufficiently negative to outweigh ĝt|t, which is, of course,
always positive. This can be seen from the expression for the growth rate of daily cases:

ĝy,T |T = exp δ̂T |T + γ̂T |T = ĝT |T + γ̂T |T . (7)

When γ̂T |T is negative, there is a flattening of the curve and a signaling of an upcoming peak
in the trend of yt. As shown in [HK, p10], the peak in the trend is predicted to be `T days
ahead where4

`T =
ln(−γ̂T |T )− δ̂T |T

γ̂T |T
=

ln(−γ̂T |T /ĝT |T )

γ̂T |T
, − ĝT |T < γ̂T |T < 0.

The generation of forecasts is demonstrated in Section 4.

2.5. Reproduction Number Rt

The path of the epidemic is best tracked by nowcasts and forecasts of gy,t, the growth rate of
yt, which are constructed by HK from the filtered estimates in the state space model, (2), (3)
and (4). Wallinga and Lipsitch (2007) describe how the estimates of gy,t can be translated
into estimates of the instantaneous reproduction number Rt. Harvey and Kattuman (2021)
propose

R̃t,τ = 1 + τgy,t|t or R̃eτ,t = exp(τgy,t|t), (8)

where τ is the generation interval – the typical number of days between an infected person
becoming infected and them transmitting the disease to someone else. We construct credible
intervals for R̃t,τ and R̃eτ,t by substituting the upper and lower bounds of the confidence
intervals for gy,t into (8) to get the upper and lower bounds of the credible intervals. See
Harvey, Kattuman, and Thamotheram (2021) for an application.

The estimates of Rt can be used for tracking and forecasting the epidemic. The nowcasts of
yt peak when ĝy,t|t = 0, corresponding to R̃t,τ = R̃eτ,t = 1. Based on (7), predictions of gy,t
are given by

ĝy,T+`|T = exp δ̂T+`|T + γ̂T+`|T = exp(δ̂T |T + γ̂T |T `) + γ̂T |T , ` = 1, 2, . (9)

We can then obtain predictions of Rt, as in (8). If γ̂T |T is zero, the estimated growth of
yt is exponential and it is helpful to characterize it by the doubling time, ln 2/ĝy,T |T =

0.693 exp(−δ̂T |T ).

4Note the change in sign of γ as compared with HK.
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When exp δ̂T |T + γ̂T |T > 0, the nowcast ĝy,T |T is positive and the estimate of Rt given by (8)

is greater than one. So long as γ̂T |T is negative, then as T →∞, R̃eτ,T+`|T → exp(τ γ̂T |T ) < 1,
and a saturation level for Y appears on the horizon.

We now turn to case where γt potentially turns positive in a typically short-lived phase, as a
new wave emerges.

3. Reinitialization

The coronavirus pandemic was characterized by multiple waves punctuated by plateaus. At
the beginning of a new wave the growth rate of daily cases, gy,t, turns positive. The initial
surge may be explosive to the point where the growth is super exponential. In this case, γt, the
growth rate of gt (which is the growth rate of cumulative cases) can also turn positive, with
no peak in prospect for yt. Such a phase can be expected to be transient, with γt dropping
back to zero (exponential growth in infection, accompanied by an upcoming peak in yt), and
then falling below zero (sub-exponential growth in infection).

From the point-of-view of forecasting an epidemic, a peak must be in prospect even if it can
only be expected some way into the future. There is thus a need for a solution to the problem
of the estimated γ̂t|t rising to positive values as it adapts to the upward surge in yt, and
remaining positive for any protracted period. This upward shift in γ̂t|t can be averted by
reinitializing the ln gt series at the start of a new wave. This involves setting the cumulative
total of cases Yt back to zero at, or around, the start of a new wave and setting γt to zero
so as to impose exponential growth. From the point-of-view of the relationship gyt = gt + γt,
the re-initialization effectively shifts “surplus” γt emanating from super-exponential growth,
into δt and therefore into gt (since gt = exp δt). Note that, on the date of the re-initialization,
gy,t = gt, since γt = 0, and both gy,t and gt will be high because a new wave is taking off.

3.1. Reinitalizing the data series

Let t = r denote the re-initialization date and let r0 denote the date at which the cumulative
series is set to 0. Then:

ln gt = ln yt − lnYt−1 t = 1, . . . , r

ln grt = ln yt − lnY r
t−1 t = r + 1, . . . , T (10)

Y r
t = Y r

t−1 + yt t = r, . . . , T (11)

where Y r
t denotes the cumulative cases after re-initialization. We set Y r

r−1 = 0, so that the
growth rate of cumulative cases is available from t = r+ 1 onwards. Note that Y r

t = Yt−Yr0 .

The gap between the two series becomes apparent by writing

ln grt = ln gt + ln
Yt−1
Y r
t−1

= ln gt + ln
Yt−1

Yt−1 − Yr0
t = r + 1, . . . , T (12)

In the next section, where we illustrate the working of the program, it can be seen that in
contrast to the original ln gt series, which continues to increase, the reinitialized ln gt series
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begins to decrease from the reinitialization date. The reinitialization enforces the canonical
Gompertz curve with the log of growth rate of cumulative cases sloping down.

3.2. Reinitalizing the model

We reinitialize the model by specifying the appropriate prior distribution for the initial states:
αr1 ∼ N(ar1, P

r
1 ) with ar1 = (arδ,1, a

r
γ,1)
′ and P r1 defined as follows. Let Ft = ln gt, ln gt−1, . . . , ln g1

and define at = E(αt|Ft−1), at|t = E(αt|Ft), Pt = V ar(αt|Ft−1), Pt|t = V ar(αt|Ft). Then,

arδ,1 = aδ,r+1 + ln(Yr/yr)

arγ,1 = 0

P r1 = Pr+1,

where aδ,r+1 and Pr+1 are obtained from the non-reinitialized model estimated over t =
1, . . . , r via the usual Kalman filter recursions. Adding ln(Yr/yr) to aδ,r+1 corrects for the
shift down in the log cumulative cases caused by reinitializing the cumulative case series.
Setting arγ,1 = 0 ensures the model starts off with exponential, rather than super-exponential,
growth.

We reinitialize the model through the priors in this way rather than simply re-estimating
the model from scratch for two reasons. First, it allows us to impose a proper (rather than
diffuse) prior centered on zero for γ, so that the starting point is exponential growth. Second,
it enables us to make use of data from before the reinitialization date. One needs a reasonable
sample size for the estimated model and forecasts to be reliable, but if a new wave is taking
off, forecasts need to be generated quickly. This was particularly true with the emergence of
the Omicron variant, which caused an explosive increase in infection over a short period of
time.

We do not re-estimate the σ2ε or σ2ζ parameter in the reinitialized model. Rather, we use the
values estimated in the original model over t = 1, . . . , r. The one-step-ahead prediction error
at t = r is the same in both the initialized and reinitialized models, but after t = r, the
prediction errors diverge.

The reinitialization procedure is very similar in the case where we have seasonal terms. If we
let αs,t be the vector of seasonal states and maintain an analogous notation to that above,
the prior mean of the seasonal components in the reinitialized model is

ars,1 = as,r+1.

The prior variance of αr1 remains Pr+1 where Pr+1 is appropriately re-defined to include the
seasonal term, as described in the Appendix.

4. Functionality of tsgc

The two main classes in tsgc are SSModelDynamicGompertz and SSModelDynGompertzReinit.
These implement the models described in (2)-(4), with and without reinitialization, respec-
tively. They both inherit from a common base class SSModelBase, which acts as a wrapper
around KFAS to set up the state space model and define consistent update and estimation
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methods for it. The unknown parameters are estimated with the estimate method in both
classes. This estimation returns an object of the FilterResults class, which is a wrapper
around the KFAS KFS class with a date index and additional methods for prediction attached.

The SSModelDynamicGompertz needs only a cumulative series Y as an input. In our applica-
tion, this is the cumulative number of new coronavirus cases. There is an option to specify
the signal-to-noise ratio qζ , rather than estimate it, and an option to specify the model to
have a seasonal component, using the sea.type option. The period of a seasonal component
is specified through the sea.period option.

The SSModelDynGompertzReinit class allows the model to be estimated for a new wave
without losing information from prior waves. It will accept the reintialization date specified
by reinit.date or a FilterResults object from which it can extract the initial values. If
the user wishes to reinitialize the model without using prior information (i.e. treat the new
wave as an entirely separate epidemic), a reinitialization date can be specified through the
renit.date option and use.presample.info can be set to FALSE.

The FilterResults class contains prediction methods which can be applied to estimated
dynamic Gompertz curve models (both reinitialized and non-reinitialized). get_growth_y will
return filtered or smoothed estimates of the growth rate of new cases (gt), while get_gy_ci

will return the same with confidence intervals. Forecasts of the incidence variable (new cases,
yt) can be obtained with the predict_level call, and forecasts of all the states can be
obtained with the predict_all call.

Several functions are available to generate plots of smoothed and filtered estimates and fore-
casts. plot_forecast will plot actual and realised values of ln(gt). plot_gy and plot_gy_ci

can be used to plot the smoothed or filtered growth rate, its components, and confidence
intervals, respectively. Forecasts of the incidence variable (yt) and forecast intervals can be
plotted using plot_new_cases, while plot_holdout adds plots of prediction intervals and of
realized outcomes over a holdout period to help evaluate forecast accuracy. Finally, the reini-
tialise_dataframe function can be used to reinitialise a dataframe at a given reinit.date.

More details on how to use the methods and functions described are presented in the following
section.

5. Illustration of the tsgc package

In this section we provide a full working example of the tsgc package in R which implements
the modeling framework for time series growth curves-based epidemic forecasting.

tsgc comes with two example data sets relating to COVID-19: one for Gauteng province in
South Africa (sourced from https://sacoronavirus.co.za/, South Africa’s official coron-
avirus online news and information portal) and another for England (sourced from the official
UK government dashboard for data and insights on coronavirus, https://coronavirus.

data.gov.uk/). In the example that follows, we use the data on confirmed cases in Gauteng.
The data series is in cumulative form and is loaded as an xts object with a date index, as
follows.

data(gauteng, package = "tsgc")

New COVID-19 cases reported for Gauteng province and their centered 7-day moving average

https://sacoronavirus.co.za/
https://coronavirus.data.gov.uk/
https://coronavirus.data.gov.uk/
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presented in Figure 1 show a sequence of four waves over the period between 10 March 2020
and 5 January 2022.
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Figure 1: New Cases and their centered 7-day moving average for Gauteng province in South
Africa between 10 March 2020 and 5 January 2022.

5.1. Setting up the forecasting exercise

We begin by specifying a number of options for the forecasting exercise, as defined below.

• Y is the data, in the form of time series of cumulative confirmed cases. In this example
the object holding this series is called gauteng.

• estimation.date.start is the date of the first observation in the sample to be used
for estimating the model. By default, it is the first date in the xts object Y.

• estimation.date.end is the date of the last observation in the sample to be used for
estimating the model. By default, it is the last date in the xts object Y.

• n.forecasts is the number of days or periods for which forecasts are to be made.
E.g., if n.forecasts = 14, forecasts will be generated for up to 14 days following
estimation.date.end.

• q is the signal-to-noise ratio, which controls the smoothness of the estimated trend.
A lower value will lead to more smoothness. By default, we use q = 0.005, which in
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our experience ensures a good balance between the smoothness of the trend and the
speed with which changes in estimates respond to new observations. Alongside, q can
be estimated and compared with the default value.

• confidence.level sets the coverage of the confidence intervals for ln(gt) which is then
used to generate the prediction intervals for forecasts. Here, we use 0.68, corresponding
to the probability that the forecast lies within one standard deviation of the point
forecast.

• plt.length sets a truncation date to enhance the clarity of plots, e.g. showing only
the last 30 days of the estimation sample. The date range for plotting can be set as
plt.length days upto estimation.date.end.

In this example the data is the cumulative confirmed cases time series for Gauteng. The start
and end dates (estimation.date.start and estimation.date.end) that define the sample
used for estimation are chosen as appropriate for the exercise. We begin with the sample
period set from 1 February to 19 April 2021. This marks the beginning of the third wave in
Gauteng as can be seen in Figure 1. The options are specified as below.

file.path <- here()

res.dir <- here::here(file.path, 'results')
date.format <- "%Y-%m-%d"

Y <- gauteng

estimation.date.start <- as.Date("2021-02-01")

estimation.date.end <- as.Date("2021-04-19")

n.forecasts <- 14

q <- 0.005

confidence.level <- 0.68

plt.length <- 30

5.2. Estimation

We begin by selecting the data series (Y) for the defined sample period.

idx.est <-

(zoo::index(Y) >= estimation.date.start) &

(zoo::index(Y) <= estimation.date.end)

y <- Y[idx.est]

We then estimate the model using a diffuse prior distribution for the initial state vector. The
signal-to-noise ratio can be left as a free parameter to be estimated, as in the code below.

model_q <- SSModelDynamicGompertz$new(Y = y)

res_q <- model_q$estimate()

In the rest of this example we estimate the model setting the signal-to-noise ratio at 0.005. As
mentioned, in our experience this value strikes a useful balance between the smoothness of the
estimate of the slope parameter γ, and the speed with which it adapts to new observations.
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model <- SSModelDynamicGompertz$new(Y = y, q = q)

res <- model$estimate()

5.3. Results

We can now plot the forecast of ln gt – the log of the growth rate of Y , the cumulative cases
– which is the transformation of the data series that is taken to the model, and we can
compare these forecasts to the actual ln gt series. We do this by passing the output (res) of
the estimation step along with an evaluation sample to a plotting function. We specify the
evaluation sample by converting the cumulative cases series to the log of the growth rate of
the cumulative cases.

First, we create the evaluation sample.

y.eval <- Y %>%

subset(index(.) > tail(res$index,1)) %>%

tsgc::df2ldl()

tsgc::plot_forecast then creates and plots forecasts of ln(gt).

tsgc::plot_forecast(

res<-res,

y.eval <- y.eval, n.ahead <- n.forecasts,

plt.start.date <- tail(res$index, 1) - plt.length

)

From these results we can recover the forecasts of new cases from 20 April 2021, with their
prediction intervals.

tsgc::plot_new_cases(

res <- res, Y <- Y,

n.ahead <- n.forecasts,

confidence.level <- confidence.level,

date_format <- "%Y-%m-%d",

plt.start.date <- tail(res$index, 1) - plt.length

)

To assess accuracy, we plot these forecasts against the actual new cases, that have been held
back from the estimation sample, using the plot_holdout function. The model forecasts
are compared with the the first differences of Y.eval, the cumulative series for the forecast
window.

tsgc::plot_holdout(res, Y<-Y,

Y.eval <- Y[(tail(res$index,1)+0:n.forecasts)],

confidence.level <- 0.68,

date_format <- "%Y-%m-%d")
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Figure 2: Fourteen-day forecast of ln(gt) from 20 April 2021 for Gauteng province in South
Africa.

Figure 4 shows that the forecasts were accurate over the first seven days, with a mean absolute
percentage error (MAPE) of 13.9%. Note that reported cases were unusually low on 27 April
due to the fact that it is Freedom Day and a public holiday in South Africa. That day aside,
over the six days from 28 April the MAPE was 12.8%. Over the full 14 days of the forecasts,
the MAPE was 27%.

As discussed in Section 2.5, the reproduction numbers Rt and their 68% credible intervals can
be calculated. The plot in Figure 5 reveals that Rt remains above one through the period,
indicating that the (third) wave in Gauteng had launched by this time.

r.t <- tail(exp(res$get_gy_ci()*gen_int),7)

A CSV file (named y-forecast) is written to the directory specified. The forecast options
specified earlier are retained.

tsgc::write_results(

res<-res,

res.dir <- res.dir,

Y<-Y,

n.ahead <- n.forecasts,
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Figure 3: Fourteen-day forecast of new cases from 20 April 2021 for Gauteng province in
South Africa.

confidence.level <- confidence.level

)

5.4. Reinitialization

In all countries the coronavirus pandemic was characterized by a series of recurring waves due
to a combination of biological, behavioral, and environmental reasons. In an epidemic, the
onset of a new wave is signalled when the slope parameter γ, which measures of the growth
rate of the growth rate of new cases, rises above zero for a sustained period. Such a super-
exponential phase of the epidemic in which the growth rate of new cases is itself increasing
over time is typically short.

This section illustrates the reinitialization procedure which allows us to apply the model to
the new wave as it begins, without jettisoning information from the wave that has just ended.
We extend the estimation window to 25 June 2021, by which date the third wave is well on
course with its peak within sight (see Figure 1). All other options remain the same.

estimation.date.end <- as.Date("2021-06-25")
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Figure 4: Accuracy of the fourteen-day forecast of new cases from 20 April 2021, for Gauteng
province in South Africa.

Triggering reinitialization It is not obvious, a priori, when precisely to reinitialize the model.
Based on experiments a reasonable option is to reinitialize when the estimate of the slope
parameter, γt, breaches a threshold of two standard errors above zero, and at that point
backdate reinitialization to when the estimate of γt first turned positive. In applying the
above heuristic there is a choice between the filtered slope estimate and the smoothed slope
estimate. Experiments suggests that the greater noisiness of the filtered estimate of γt often
triggers reinitialization too early. The smoothed estimate is more reliable.

Figure 6 shows that for the third wave in Gauteng, the smoothed slope estimate exceeded
twice its standard error on 1 May 2021, having risen above zero on 21 April 2021.

The date for reinitialization is set accordingly.

reinit.dates <- "2021-04-21"

Estimating the reinitialized model SSModelDynGompertzReinit takes the same arguments
as SSModelDynGompertz, with the addition of the reinit.dates argument.

model <- SSModelDynGompertzReinit$new(

Y <- y, q <- q,

reinit.date <- as.Date(reinit.dates,
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Figure 5: Reproduction numbers for the 7-day period to 19 April 2021, for Gauteng province
in South Africa.

format <- date.format)

)

res.reinit <- model$estimate()

We generate the reinitialized data frame by setting cumulative cases to 0 at the appropriate
point, as discussed in Section 3.1 and extract the evaluation sample from the reinitialized
data frame as below.

y.eval.reinit <- Y %>%

reinitialise_dataframe(., reinit.dates) %>%

df2ldl() %>%

subset(index(.) > tail(res.reinit$index,1))

Estimating the model with the reinitialized series, the actual and forecast ln(gt) can be plotted
as in Figure 7, which is analogous to Figure 2 for the non-reinitialized series.

tsgc::plot_forecast(

res <- res.reinit,

y.eval <- y.eval.reinit,

n.ahead <- n.forecasts,
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Figure 6: Trigger for reinitialization: when filtered slope γ̂t|t exceeds twice its standard error
σ̂γ,t|t above zero, reinitialization is triggered to the date when γ̂t|t crossed zero.

plt.start.date <- tail(res.reinit$index, 1) - plt.length

)

The plot of the forecasts of new cases, and that of these forecasts against the actual number
of new cases can be produced as before. See Figures 8 and 9. The trend has begun to turn
down in model forecasts with with the reinitialized series.

tsgc::plot_new_cases(

res.reinit, Y <- Y.reinit,

n.ahead <- n.forecasts,

confidence.level <- confidence.level,

date_format <- "%Y-%m-%d",

plt.start.date <- tail(res.reinit$index, 1) - plt.length

)

tsgc::plot_holdout(

res <- res.reinit,

Y <- Y.reinit[index(y)],

Y.eval <- Y[(tail(res.reinit$index,1)+0:n.forecasts)],
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Figure 7: Forecast of ln(gt) after reinitialization.

confidence.level <- 0.68,

date_format <- "%Y-%m-%d")

Comparing forecasts, without reinitialization the 14-day forecast MAPE is 41.9% (see Figure
10). With reinitialization, it falls to 20.2%. The corresponding MAPE figures for 7-day
forecasts is 15.2% without reinitialization and 9.5% with reinitialization.

Just as for the standard (non-reinitialized) model, the returned estimation results contained in
res.reinit are a FilterResults object, and can be written to CSV using the write_results
method.

6. Conclusions

The tsgc package is based on a dynamic Gompertz curve model for the log of the growth rate
of cumulative cases in an epidemic, with seasonal terms that capture day-of-the-week effects.
The estimation is carried out using the KFAS, a package for state-space modeling in R.

The Kalman filter is used to estimate the state vector at each time point. The filter is
initialized using a diffuse prior for the initial state vector. We allow the option for the signal-
to-noise ratio to either be estimated or fixed at some value based on experience and judgment.
Future observations are forecast using predictive recursions.

Epidemics are often characterized by multiple waves. A natural problem in this context is
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Figure 8: Forecast of new cases after reinitialization.

that there is very little data pertinent to the new wave available in its initial stages. The
package employs a reinitialization method using priors in a way that allows data from before
the beginning of the new wave to be used in estimation. The package also includes several
functions for generating plots and forecasts.

The package is demonstrated using COVID-19 data from South Africa, but it can be used to
model and forecast any time series variable where a growth curve-like trajectory is expected.
Examples might include sales of a new product, innovation adoption or website traffic.
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Appendix

Incorporating seasonal terms into the state space model

When we add a seasonal term to the model, the observation equation in the dynamic Gompertz
curve (2) becomes

ln gt = δt + νt + εt, εt ∼ NID(0, σ2ε), t = s, ..., T,

where νt is the seasonal component, δt remains defined by (3), and εt remains the iid Normal
disturbance.

There are two options for specifying the evolution of the seasonal component. We can either
use a trigonometric seasonal or a dummy variable seasonal. In our application, we use a
trigonometric seasonal, although the two specifications are closely related. Indeed, Proietti
(2000) shows that, under certain conditions, the two approaches are equivalent.

In the trigonometric seasonal approach, the seasonal pattern is captured by a set of trigono-
metric terms at the seasonal frequencies λj = 2πj

2 for j = 1, . . . s∗, where s∗ = s
2 if s, the

periodicity of the seasonal effect, is even, and s∗ = s−1
2 if s is odd (Durbin and Koopman

2012). Our applications use daily data and we set s = 7 to capture day-of-the-week effects.

Letting νj,t be the effect of season j at time t, the seasonal terms evolve according to

νt =
s∗∑
j=1

νj,t, (13)

where

νj,t = νj,t−1 cosλj + ν∗j,t−1 sinλj + ωj,t (14)

ν∗j,t = −νj,t−1 sinλj + ν∗j,t−1 cosλj + ω∗j,t, j = 1, . . . , s∗, (15)

and ωj,t and ω∗j,t are mutually independent, iid N(0, σ2ω) variables.

When reinitializing the model with seasonal terms, P r1 is a block-diagonal matrix based on
Pr+1 which sets the covariances between (δt, γt)

′ and (ν1,t, ν2,t, . . . , νs∗,t)
′ to be zero. The co-

variance between δt and γt, as well as the covariances between ν1,t, ν2,t, . . . , νs∗,t, are permitted
to be non-zero and come directly from Pr+1.
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