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Abstract 

Objective: This study aims to develop an interpretable machine learning (ML) model to accurately 
predict the probability of achieving total pathological complete response (tpCR) in patients with locally 
advanced breast cancer (LABC) following neoadjuvant chemotherapy (NAC). 
Methods: This multi-center retrospective study included pre-NAC clinical pathology data from 698 
LABC patients. Post-operative pathological outcomes divided patients into tpCR and non-tpCR groups. 
Data from 586 patients at Shanghai Ruijin Hospital were randomly assigned to a training set (80%) and a 
test set (20%). In comparison, data from our hospital's remaining 112 patients were used for external 
validation. Variable selection was performed using the Least Absolute Shrinkage and Selection Operator 
(LASSO) regression analysis. Predictive models were constructed using six ML algorithms: decision trees, 
K-nearest neighbors (KNN), support vector machine, light gradient boosting machine, and extreme 
gradient boosting. Model efficacy was assessed through various metrics, including receiver operating 
characteristic (ROC) curves, precision-recall (PR) curves, confusion matrices, calibration plots, and 
decision curve analysis (DCA). The best-performing model was selected by comparing the performance 
of different algorithms. Moreover, variable relevance was ranked using the SHapley Additive exPlanations 
(SHAP) technique to improve the interpretability of the model and solve the "black box" problem. 
Results: A total of 191 patients (32.59%) achieved tpCR following NAC. Through LASSO regression 
analysis, five variables were identified as predictive factors for model construction, including tumor size, 
Ki-67, molecular subtype, targeted therapy, and chemotherapy regimen. The KNN model outperformed 
the other five classifier algorithms, achieving area under the curve (AUC) values of 0.847 (95% CI: 
0.809-0.883) in the training set, 0.763 (95% CI: 0.670-0.856) in the test set, and 0.665 (95% CI: 
0.555-0.776) in the external validation set. DCA demonstrated that the KNN model yielded the highest 
net advantage through a wide range of threshold probabilities in both the training and test sets. 
Furthermore, the analysis of the KNN model utilizing SHAP technology demonstrated that targeted 
therapy is the most crucial factor in predicting tpCR. 
Conclusion: An ML prediction model using clinical and pathological data collected before NAC was 
developed and verified. This model accurately predicted the probability of achieving a tpCR in patients 
with LABC after receiving NAC. SHAP technology enhanced the interpretability of the model and 
assisted in clinical decision-making and therapy optimization. 
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Introduction 
Breast cancer (BC) constitutes the most prevalent 

cancer among women worldwide and is a leading 
cause of cancer-related mortality in this demographic 
[1]. Although there has been a growing public 
awareness of BC and substantial progress in detection 
technologies that have improved the rates of early 
detection, around 6-7% of patients in China till receive 
a diagnosis of locally advanced breast cancer (LABC) 
at the time of diagnosis [2]. LABC typically refers to 
BC with significant involvement of the lymph nodes 
in the axillary region without evidence of distant 
metastasis during diagnosis [3]. This stage of BC 
presents particular challenges due to the difficulty of 
surgical removal, high risk of distant metastasis, and 
poor prognosis, leading to a relatively high clinical 
mortality rate. Therefore, relying entirely on surgical 
treatment frequently leads to suboptimal disease 
control. This underscores the critical importance of 
integrated treatment strategies in improving patient 
outcomes. Neoadjuvant chemotherapy (NAC) serves 
as the standard preoperative treatment for patients 
with LABC [4]. It helps to lower the stage of the cancer 
as well as optimize surgical plans, leading to higher 
success rates for breast-conserving surgeries and 
sentinel lymph node biopsies. NAC also allows 
targeted treatments based on the tumor's response to 
chemotherapy. The achievement of total pathological 
complete response (tpCR) is a critical indicator of 
NAC efficacy, with patients attaining tpCR 
demonstrating significantly better overall and 
disease-free survival than those who do not achieve 
tpCR. However, currently, only approximately 
20-40% of patients reach tpCR post-NAC [5-7], and 
chemotherapy can induce adverse reactions such as 
bone marrow suppression, hepatic and renal 
impairment, and cardiac failure in some patients [8, 
9]. Therefore, it is imperative to accurately predict the 
effectiveness of chemotherapy at an early stage to 
maximize patient benefit and minimize the potential 
negative consequences linked to NAC. 

Presently, clinical assessment methods for NAC 
efficacy primarily include macroscopic observation of 
morphological changes in the tumor during NAC and 
microscopic evaluation of tumor cell numbers 
post-NAC [10, 11]. Utilizing pre-NAC clinical- 
pathological data to predict NAC efficacy could 
facilitate the timely adjustment of treatment plans and 
develop personalized strategies to improve patient 
outcomes. This could also increase the chances of 
achieving a tpCR and ultimately improve the 
prognosis for patients. Consequently, this study 
aimed to develop a machine learning (ML) model 
based on pre-NAC clinical pathology data to predict 

the probability of achieving tpCR in LABC patients 
following NAC. SHapley Additive exPlanations 
(SHAP) technology was incorporated to provide 
intuitive explanations of the ML model's predictions 
and assist clinicians in devising more personalized 
diagnostic and treatment plans. 

Materials and Methods 
Patients selected and study designed 

In this retrospective study, data from 586 
patients with LABC who underwent NAC treatment 
at the Ruijin Hospital, affiliated with Shanghai Jiao 
Tong University, between May 1, 2014, and December 
31, 2021, were selected to construct an ML model. 
Moreover, data from 112 LABC patients treated with 
NAC at Jiaxing Women and Children's Hospital from 
January 1, 2016, to January 31, 2023, were utilized for 
external validation of the optimal ML model (Figure 
1). 

Inclusion and exclusion criteria 
Inclusion criteria for this study were as follows: 

(1) Diagnosis of unilateral primary invasive BC 
confirmed via core needle biopsy; (2) Cytological 
verification of axillary lymph node metastasis; (3) 
Completion of NAC and radical surgical treatment; 
(4) Availability of comprehensive clinical and 
pathological data. Exclusion criteria included: (1) 
Male patients; (2) Incomplete clinical and pathological 
records; (3) Patients who were intolerant to NAC; (4) 
Presence of distant metastases during NAC; (5) 
Patients with recurrent or bilateral BC. 

Treatment regimen 
The administration of chemotherapy regimens 

and courses to patients strictly adhered to the 
guidelines prescribed by the Chinese Society of 
Clinical Oncology for the specific year. All 
participants completed at least four cycles of NAC, 
primarily comprising taxane- and/or anthracycline- 
based chemotherapy drugs, with some regimens also 
integrating platinum-based drugs. Additionally, a 
subset of patients with HER-2-positive status received 
targeted therapy with trastuzumab and/or 
pertuzumab. To evaluate the effectiveness of the 
treatment, ultrasonographic examinations were 
performed after every two cycles. Within four weeks 
following the completion of the last chemotherapeutic 
cycle, patients had surgical procedures, which 
involved either mastectomy or breast-conserving 
surgery, along with axillary lymph node dissection. 

Pathological efficacy assessment 
The pathological response was determined 

based on the histological evaluation of the surgical 
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specimens. A tpCR is defined as the absence of all 
invasive cancer cells in the breast tissue and axillary 
lymph nodes, irrespective of residual ductal 
carcinoma in situ (ypT0/isN0) [5, 12]. 

Data collection 
This study extracted the following clinical data 

from patient records: demographic characteristics 
including age, body mass index (BMI), and 
menopausal status; tumor attributes such as size, 
multifocality, axillary lymph node fusion, and 
histological grade; as well as the status of molecular 
markers, including estrogen receptor (ER), 
progesterone receptor (PR), human epidermal growth 
factor receptor-2 (HER-2), and Ki-67 expression. 
Furthermore, the study examined the molecular 
subtypes and post-operative pathological stages. The 
BMI was computed by dividing the weight at 
diagnosis (in kilograms) by the square of the height 
(in meters). The size of the tumor was assessed by 

ultrasonography. Multifocality refers to the presence 
of two or more tumor foci within the breast. 
Histological grading was categorized into grade III 
and others. The Immunohistochemical (IHC) test for 
ER and PR uses a positivity threshold of ≥ 1% 
expression (Figure 2 A-D). This means that patients 
with ER/PR expression of ≥ 1% are classified as 
hormone receptor (HR) positive [13]. The status of 
HER-2 was initially evaluated through IHC, with 
(+++) indicating positivity, 0 or (+) indicating 
negativity, and (++) requiring further assessment by 
fluorescence in situ hybridization (FISH) to determine 
HER-2 gene amplification (Figure 2 E-H) [14]. BC 
molecular subtyping was simplified into three 
categories: triple-negative BC (TNBC) (HR (-), HER-2 
(-)), HER-2 positive (BC) (HR (-)/HR (+), HER-2 (+)), 
and Luminal (BC) (HR (+), HER-2 (-)). This 
classification aided in understanding the therapeutic 
response of different BC subtypes. 

 
Figure 1. The flowchart of the study. 
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Figure 2. Representative images of ER, PR, and HER-2 by immunohistochemical staining. ER (A) and PR (B) negative expression in the nucleus. ER (C) and PR (D) 
showed strong positive in the nucleus; E.HER-2(0) (no staining or incomplete and faint/barely perceptible membrane staining in ≤10% of tumor cells); F HER-2(+) (incomplete and 
faint/barely perceptible membrane staining in >10% of tumor cells); G HER-2(++) (weak/moderate complete membrane staining in>10% of tumor cells or complete and intense 
membrane staining in ≤10% of tumor cells); H HER-2(+++) (complete and intense membrane staining in>10% of tumor cells); Magnification (X20), Scale bars = 100 µm. 

 

Statistical analysis 
This study conducted data processing and 

analysis using Statistical Package for the Social 
Sciences (SPSS) software (version 26) and R 
programming language (version 4.3.2). The receiver 
operating characteristic (ROC) curves were utilized 
for continuous variables to determine the optimal 
cutoff points, thereby converting these continuous 
variables into binary data, which were then presented 
as frequencies (%). Comparisons between categorical 
data groups were performed using the Pearson 
chi-square test. The Least Absolute Shrinkage and 
Selection Operator (LASSO) regression analysis was 

employed to identify independent predictive factors 
closely associated with tpCR. To evaluate the 
presence of multicollinearity among the predictive 
factors, the variance inflation factor (VIF) was 
computed for each variable. A VIF value below 5 
indicated the absence of significant multicollinearity 
[15]. Six distinct ML predictive models were 
developed, and their performance was evaluated 
using a variety of metrics, including ROC curves, 
precision-recall (PR) curves, and confusion matrices. 
Calibration plots were used to compare the calibration 
capabilities of different models, and decision curve 
analysis (DCA) was applied to evaluate the clinical 
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utility of the models. Furthermore, SHAP technology 
analyzed the contribution of each predictive factor to 
the model's predictive outcomes, thereby enhancing 
the interpretability of the models. All statistical 
analyses were conducted using two-tailed tests, with 
a p-value of less than 0.05 considered statistically 
significant. 

Results 
Selection of cutoff values for continuous data 

ROC analysis demonstrated statistically 
significant differences between the ROC curves for 
tumor size and Ki-67 expression (p < 0.05), indicating 
that these variables had discriminative predictive 
value. However, no significant differences were 
observed in the ROC curves for age and BMI (p > 
0.05), indicating a lack of predictive differentiation 
based on these factors alone. The Youden Index was 
employed at points of maximum differentiation on 
the ROC curves for variables with significant 
differences to establish optimal cutoff values for these 
variables. This approach facilitated the bifurcation of 
continuous data into binary categories: tumor size 
was divided at a threshold of 3.14 cm (≤ 3.14 cm and > 
3.14 cm), and Ki-67 expression was categorized at 
47.5% (< 47.5% and ≥ 47.5%). Variables that did not 
show significant variations in their ROC curves were 
divided into two categories based on their median 
values: age was categorized into ≤ 50 years and > 50 
years, and BMI was divided at 23.52 (≤ 23.52 and > 
23.52).  

Baseline characteristics 
This study encompassed a total of 698 patients, 

with ages ranging from 21 to 89 years. Of these, 586 
were recruited from Ruijin Hospital, affiliated with 
Shanghai Jiao Tong University, and randomly 
allocated to the training and test sets in an 8:2 ratio. 
Subsequently, the remaining 112 patients from Jiaxing 
Women and Children's Hospital constituted the 
external validation set. Overall, the distribution of 
variables across the datasets was fundamentally 
consistent, with the exception of age, chemotherapy 
regimen, and Ki-67 levels, which exhibited 
statistically significant differences (P<0.05) as shown 
in Table 1. Based on the outcomes related to tpCR, 
patients were further categorized as tpCR and 
non-tpCR groups. The tpCR rates observed in the 
training, test, and external validation set were 27.6%, 
28.0%, and 25.9%, respectively. Significant statistical 
differences (p < 0.05) were found in the training set for 
variables like tumor size, Ki-67, molecular subtype, 
targeted therapy, and chemotherapy regimen. These 
findings form a crucial foundation for selecting 
variables to further develop predictive models. 

Similar significant differences in molecular subtype, 
targeted therapy, and chemotherapy regimen (p < 
0.05) were also demonstrated in the test set, further 
validating the importance of these variables in the 
model. Concurrently, the external validation set 
highlighted significant differences in Ki-67, molecular 
subtype, and chemotherapy regimen indicators (p < 
0.05), underscoring the clinical applicability of these 
variables (Table 2). 

Feature selection 
The LASSO regression utilizes a penalization 

strategy to effectively compress variables, resulting in 
regression coefficients of certain variables being 
driven to zero. This process enhances variable 
selection and simplification by retaining only those 
variables with non-zero coefficients, achieving 
efficient variable selection and dimensionality 
reduction. The study accurately found the most 
optimal value of the regularization parameter, λ, by 
employing ten-fold cross-validation [16, 17]. More 
precisely, vertical reference lines were marked at the 
minimum value of λ (λ = 0.010) and one standard 
error above this minimum value (λ = 0.062), as 
displayed in Figure 3A. At a log (λ) value of -2.766, 
five key variables with non-zero coefficients were 
identified: tumor size, Ki-67, molecular subtype, 
targeted therapy, and chemotherapy regimen. These 
variables have been demonstrated to significantly 
influence the model's predictive capability, as shown 
in Figure 3B. This methodology reduced the model's 
complexity, and the most influential variables were 
preserved, thereby enhancing the model's predictive 
accuracy and interpretability. 

Multicollinearity test 
Upon conducting multicollinearity tests on the 

five predictive variables obtained, it was observed 
that the tolerance values for tumor size, Ki-67, 
molecular subtype, targeted therapy, and 
chemotherapy regimen were all greater than 0.1 
(0.988, 0.877, 0.805, 0.952, and 0.903). Moreover, the 
VIF were all below 5 (1.012, 1.140, 1.243, 1.050, and 
1.108). Therefore, it can be concluded that there was 
no significant multicollinearity among these variables. 
Hence, each provides unique and independent 
information for the prediction model. 

Development and evaluation of machine 
learning predictive models 

In this research, six ML predictive models were 
developed, including logistic regression (LR), decision 
tree (DT), support vector machine (SVM), K-nearest 
neighbors (KNN), light gradient boosting machine 
(LightGBM), and extreme gradient boosting 
(XGBoost) models, to predict the probability of 
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achieving a tpCR in patients with LABC following 
NAC. In order to enhance the performance of the 
model, a resampling strategy called five-fold 
cross-validation was used, along with a technique 
called grid search to identify the optimal 
hyperparameters [18]. 

Model efficacy was assessed primarily through 
the comparison of ROC curves, PR curves, and 
confusion matrices. The training set yielded an area 
under the curve (AUC) of 0.847 (95% CI: 0.810-0.883) 
for the KNN model and 0.801 (95% CI: 0.760-0.842) for 
the XGBoost model (Figure 3C). The DeLong test 
revealed a statistically significant difference in the 
AUC values between these two algorithms (p = 0.001). 
In the test set, the AUC values for the KNN and 
LightGBM models were 0.763 (95% CI: 0.670-0.856) 
and 0.745 (95% CI: 0.653-0.836), respectively (Figure 
3D). Based on the DeLong test, there was no 
statistically significant difference in the AUC values of 
these two algorithms (p = 0.561). Due to the unequal 
distribution of outcome events in the dataset, relying 
exclusively on AUC metrics may not provide a 

comprehensive assessment of model performance. 
Thus, PR curves were employed to overcome this 
constraint, providing a more thorough evaluation of 
the model's performance. The KNN model exhibited 
PR values of 0.693 and 0.465, signifying a higher 
average precision compared to other models, as 
depicted in Figures 3E and F. Furthermore, in the 
training set, the confusion matrix for the KNN model 
showed an accuracy rate of 0.741, an F1 score of 0.632, 
and a kappa coefficient of 0.447, which was the 
highest observed accuracy rate. Furthermore, the 
confusion matrix of the KNN model used to analyze 
the test set showed significantly high metrics. The 
accuracy rate was 0.712, the F1 score was 0.595, and 
the kappa coefficient was 0.387, as displayed in Table 
3. Based on these results, the KNN model was found 
to be the most suitable in terms of its predictive 
accuracy and stability. Model calibration was also a 
critical aspect of the evaluation process. Calibration 
plots and Brier scores were utilized to measure the 
discrepancy between model predictions and actual 
events [19].  

 

Table 1. Baseline characteristics of patients with locally advanced breast cancer 

Characteristics Patients (N = 698) Training set (N=468) Test set (N=118) External verification set (N=112) p-value 
Age, year     0.014 
≤50 343 (49.1%) 248 (53.0%) 50 (42.4%) 45 (40.2%) 
>50 355 (50.9%) 220 (47.0%) 68 (57.6%) 67 (59.8%) 
Body mass index, kg/m2     0.407 
≤23.52 346 (49.6%) 240 (51.3%) 53 (44.9%) 53 (47.3%) 
>23.52 352 (50.4%) 228 (48.7%) 65 (55.1%) 59 (52.7%) 
Menopausal status     0.129 
Premenopause 355 (50.9%) 246 (52.6%) 50 (42.4%) 59 (52.7%) 
Postmenopause 343 (49.1%) 222 (47.4%) 68 (57.6%) 53 (47.3%) 
Axillary lymph node fusion     0.121 
No 421 (71.8%) 343 (73.3%) 78 (66.1%) 0 
Yes 165 (28.2%) 125 (26.7%) 40 (33.9%) 0 
Chemotherapy regimen     0.001 
Anthracycline combined with taxane 351 (50.3%) 269 (57.5%) 72 (61.0%) 88 (78.6%) 
Platinum 137 (19.6%) 102 (21.8%) 21 (17.8%) 14 (12.5%) 
Others 210 (30.1%) 97 (20.7%) 25 (21.2%) 10 (8.9%) 
Tumor size, cm     0.035 
>3.14 442 (63.3%) 286 (61.1%) 73 (61.9%) 83 (74.1%) 
≤3.14 256 (36.7%) 182 (38.9%) 45 (38.1%) 29 (25.9%) 
Multifocality     0.167 
No 492 (84.0%) 388 (82.9%) 104 (88.1%) 0 
Yes 94 (16.0%) 80 (17.1%) 14 (11.9%) 0 
Molecular subtype     0.826 
Luminal 302 (43.2%) 198 (42.3%) 51 (43.2%) 53 (47.3%) 
HER-2 positive 237 (34.0%) 159 (34.0%) 40 (33.9%) 38 (33.9%) 
Triple negative 159 (22.8%) 111 (23.7%) 27 (22.9%) 21 (18.8%) 
Targeted therapy     0.484 
No 484 (69.3%) 321 (68.6%) 80 (67.8%) 83 (74.1%) 
Yes 214 (30.7%) 147 (31.4%) 38 (32.2%) 29 (25.9%) 
Ki-67%     0.720 
<47.5 381 (54.6%) 253 (54.1%) 63 (53.4%) 65 (58.0%) 
≥47.5 317 (45.4%) 215 (45.9%) 55 (46.6%) 47 (42.0%) 
Histological grade     0.886 
Others 454 (77.5%) 362 (77.4%) 92 (78.0%) 0 
III 132 (22.5%) 106 (22.6%) 26 (22.0%) 0 
bpCR     0.383 
No 456 (65.3%) 309 (66.0%) 80 (67.8%) 67 (59.8%) 
Yes 242 (34.7%) 159 (34.0%) 38 (32.2%) 45 (40.2%) 
tpCR     0.926 
No 507 (72.6%) 339 (72.4%)  85 (72.0%) 83 (74.1%) 
Yes 191 (27.4%) 129 (27.6%) 33 (28.0%) 29 (25.9%) 
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Table 2. Clinical and pathological characteristics according to tpCR in different sets. 

Characteristics Patients (N=698) Training set (N=468) P value Test set (N=118) P value External verification set (N=112) P value 
Non-tpCR tpCR  Non-tpCR tpCR  Non-tpCR tpCR  

Age, year    0.366   0.673   .056 
≤50 343(49.1%) 184 (54.3%) 64 (49.6%) 35 (41.2%) 15 (45.5%) 29 (34.9%) 16 (55.2%) 
>50 355(50.9%) 155 (45.7%) 65 (50.4%) 50 (58.8%) 18 (54.5%) 54 (65.1%) 13 (44.8%) 
Body mass index, kg/m2    0.861   0.190   .581 
≤23.52 346 (49.6%) 173 (51.0%) 67 (51.9%) 35 (41.2%) 18 (54.5%) 38 (45.8%) 15 (51.7%) 
>23.52 352 (50.4%) 166 (49.0%) 62 (48.1%) 50 (58.8%) 15 (45.5%) 45 (54.2%) 14 (48.3%) 
Menopausal status    0.708   0.402   0.108 
Premenopause 355 (50.9%) 180 (53.1%) 66 (51.2%) 34 (40.0%) 16 (48.5%) 40 (48.2%) 19 (65.5%) 
Postmenopause 343 (49.1%) 159 (46.9%) 63 (48.8%) 51 (60.0%) 17 (51.5%) 43 (51.8%) 10 (34.5%) 
Axillary lymph node fusion    0.718   0.037    
No 421 (71.8%) 250 (73.7%) 93 (72.1%) 61 (71.8%) 17 (51.5%)  0 0  
Yes 165 (28.2%) 89 (26.3%) 36 (27.9%) 24 (28.2%) 16 (48.5%) 0 0  
Chemotherapy regimen    <0.001   0.003   0.002 
Anthracycline combined with taxane 351 (50.3%) 221 (65.2%) 48 (37.2%) 60 (70.6%) 12 (36.4%) 69 (83.2%) 19 (65.5%) 
Platinum 137 (19.6%) 59 (17.4%) 43 (33.3%) 12 (14.1%) 9 (27.2%)  5 (6.0%) 9 (31.0%) 
Others 210 (30.1%) 59 (17.4%) 38 (29.5%) 13 (15.3%) 12 (36.4%) 9 (10.8%) 1 (3.5%) 
Tumor size, cm    <0.001   0.805   0.217 
>3.14 442 (63.3%) 226 (66.7%) 60 (46.5%) 52 (61.2%) 21 (63.6%) 59 (71.1%) 24 (82.8%) 
≤3.14 256 (36.7%) 113 (33.3%) 69 (53.5%) 33 (38.8%) 12 (36.4%) 24 (28.9%) 5 (17.2%) 
Multifocality    0.989   0.957    
No 492 (84.0%) 281 (82.9%) 107 (82.9%) 75 (88.2%) 29 (87.9%) 0 0  
Yes 94 (16.0%) 58 (17.1%) 22 (17.1%) 10 (11.8%) 4 (12.1%) 0 0  
Molecular subtype    <0.001   0.001   0.004 
Luminal 302 (43.2%) 181 (53.4%) 17 (13.2%) 46 (54.1%) 5 (15.2%) 47 (56.6%) 6 (20.7%) 
HER-2 positive 237 (34.0%) 89 (26.3%) 70 (54.3%) 24 (28.2%) 16 (48.4%) 23 (27.7%) 15 (51.7%) 
Triple negative 159 (22.8%) 69 (20.3%) 42 (32.5%) 15 (17.7%) 12 (36.4%) 13 (15.7%) 8 (27.6%) 
Targeted therapy    <0.001      0.086 
No 484 (69.3%) 259 (76.4%) 62 (48.1%) 63 (74.1%) 17 (51.5%) 0.018 65 (78.3%) 18 (62.1%) 
Yes 214 (30.7%) 80 (23.6%) 67 (51.9%) 22 (25.9%) 16 (48.5%) 18 (21.7%) 11 (37.9%) 
Ki-67%    <0.001   0.137   0.003 
<47.5 381 (54.6%) 203 (59.9%) 50 (38.8%) 49 (57.6%) 14 (42.4%) 55 (66.3%) 10 (34.5%) 
≥47.5 317 (45.4%) 136 (40.1%) 79 (61.2%) 36 (42.4%) 19 (57.6%) 28 (33.7%) 19 (65.5%) 
Histological grade    0.054   0.177    
Others 454 (77.5%) 270 (79.6%) 92 (71.3%) 69 (81.2%) 23 (69.7%) 0 0  
III 132 (22.5%) 69 (20.4%) 37 (28.7%) 16 (18.8%) 10 (30.3%) 0 0  

*Statistically significant: p-value < 0.05. 
 
The KNN model exhibited Brier scores of 0.135 

and 0.182 in the training and test sets, respectively, 
which were significantly below the generally accepted 
threshold of 0.25, indicating excellent calibration 
(Figures 4A and B). The DCA assessed the net 
advantage across several threshold probabilities to 
determine the clinical usefulness of the model. The 
findings from the DCA indicated that all six ML 
models performed better than the default strategy for 
most threshold ranges. Among these models, the 
KNN model showed the most significant overall 
advantage in terms of net benefit, as observed in both 
the training and test sets (Figures 5A and B). 
Consequently, the KNN model was selected as the 
final predictive model. This model offers a 
dependable tool for clinical practice by efficiently 
diagnosing the likelihood of obtaining tpCR in LABC 
patients post-NAC. To further confirm the external 
applicability of the selected model, an independent 
dataset from Jiaxing Women and Children's Hospital 
was employed for external validation. The results 
indicated that the model achieved a high AUC value 
of 0.665 (95% CI: 0.555-0.776), accompanied by a low 
Brier score of 0.220 in the external validation set, as 
demonstrated in Figure 5C and D. Moreover, the 

model displayed the capability to predict breast 
pathological complete remission (bpCR), with AUC 
values of 0.828 (95% CI: 0.790-0.866) and 0.791 (95% 
CI: 0.708-0.875) in the training and test sets, 
respectively. 

Interpretability of machine learning models 
ML models are often perceived as "black boxes" 

due to the opacity of their internal mechanisms, which 
can limit clinicians' trust in the model outcomes. The 
Shapley values of game theory have given rise to 
SHAP technology, which intends to tackle this 
challenge. This methodology offers a straightforward 
and efficient means of elucidating the predicted 
results of models, exposing the connection between 
variables and model estimations, and calculating the 
magnitude and direction of each variable's influence 
on the results. The decision-making process of models 
is transparent because of the visualization techniques 
utilized by SHAP, which makes it suitable for 
interpretive analysis across a variety of ML models 
[20]. To gain a deeper understanding of the 
contribution of different variables within the KNN 
model to the predictive outcomes, the SHAP values of 
each variable were calculated. They were displayed in 
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descending order of importance, thus visually 
demonstrating the extent of each variable's impact on 
the predictions (Figure 6A and B). To validate the 
interpretability of the model, two typical samples 
were selected: one non-tpCR patient and one tpCR 
patient, and each presented their SHAP value 
waterfall graphs separately (Figures 6C and D). The 
predictive score for the tpCR patient was significantly 

higher (0.778) compared to the non-tpCR patient (< 
0.001). Examining these individual waterfall plots 
made it understandable how each variable influences 
the model's final prediction and the interactions 
between different variables. This visualization 
technique enhanced the transparency of the model's 
decision-making process, thereby bolstering 
clinicians' confidence in the model outcomes. 

 

 
Figure 3. (A and B) LASSO regression model. A delineates selecting the most appropriate regularization parameter, λ, employing a ten-fold cross-validation approach within 
the LASSO regression framework. B showcases a coefficient profile plot, which is constructed based on the sequence of log (λ) values, providing insights into the behavior of the 
model's coefficients across different values of λ. C and D display the receiver operating characteristic (ROC) curves for six distinct models within the training and test sets, 
respectively. E and F present these models' precision-recall (PR) curves, comparing their performance in both the training and test sets. 
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Table 3. Predictive performance of six machine learning models 

Subgroup Model Accuracy F1 score Kappa precision recall PR_AUC ROC_AUC (95%CI) Brier score 
Training set KNN 0.741 0.632 0.447 0.520 0.806 0.693 0.847 (0.810, 0.883) 0.135 

LightGBM 0.701 0.600 0.386 0.475 0.814 0.578 0.801 (0.760, 0.842) 0.156 
DT 0.626 0.561 0.300 0.415 0.868 0.587 0.754 (0.708, 0.800) 0.163 
XGBoost 0.694 0.595 0.377 0.469 0.814 0.578 0.801 (0.760, 0.842) 0.161 
SVM 0.694  0.602 0.384 0.470 0.837 0.573 0.800 (0.759, 0.841) 0.163 
LR 0.701  0.600 0.386 0.475 0.814 0.573 0.796 (0.754, 0.837)  0.155 

Test set KNN 0.712  0.595 0.387 0.490 0.758 0.465 0.763 (0.670, 0.856) 0.182 
LightGBM 0.729 0.610 0.414 0.510 0.758 0.423 0.745 (0.653, 0.836) 0.178 
DT 0.627 0.560 0.296 0.418 0.848 0.448 0.686 (0.591, 0.780) 0.188 
XGBoost 0.644 0.543 0.288 0.424 0.758 0.429 0.741 (0.647, 0.834) 0.183 
SVM 0.686  0.565 0.338 0.462 0.727 0.415 0.737 (0.645, 0.828) 0.184 
LR 0.729  0.610 0.414 0.510 0.758 0.425 0.744 (0.652, 0.836)  0.181 

 

 
Figure 4. Calibration plots of six models in the training set (A) and the test set (B). 
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Discussion  
Given the ongoing progress in medical 

technology and changes in treatment philosophies, 
NAC has emerged as a standard therapeutic approach 
for patients with LABC. The assessment of clinical 
response in patients receiving NAC treatment 
predominantly depends on the RECIST 1.1 criteria, 
which evaluate tumor size alterations [21]. However, 
this method often fails to yield satisfactory outcomes. 
Recently, there has been a strong focus on researching 
clinical or molecular biomarkers that can adequately 
predict the effectiveness of NAC. Various possible 
predictive indications, including clinical, pathological, 
radiological, and molecular biology features, have 
been found [7, 15, 22-25]. Comprehensive testing is 
not feasible for every patient due to economic costs 
and operational complexities. ML, a pivotal branch of 
artificial intelligence, can process and analyze vast 
amounts of high-dimensional complex data, 
uncovering nonlinear relationships and subtle factors 
that traditional methods may fail to detect. ML 
facilitates more precise feature identification and 
selection by mitigating subjective biases among 
observers. In recent years, the application of ML in 
medical research has significantly increased, 
especially in disease prediction, where it has shown 
remarkable advantages. Currently, various ML 
models have been developed to predict pCR 
following NAC for BC. Among these, magnetic 
resonance imaging (MRI) is considered the most 
sensitive imaging technique for assessing and 
predicting NAC outcomes, and several ML models 
based on MRI have been developed [26-29]. However, 
these studies are still in their early stages, with 
relatively small patient cohorts, limiting their 
statistical power. Additionally, the high cost and 
complexity of MRI limit its widespread use. In 
addition to imaging features, clinical and pathological 
characteristics can also be used to predict NAC 
response. For instance, Kim and Meti et al. have 
developed ML models based on clinical and 
pathological features to predict pCR after NAC for BC 
[7, 30]. However, these studies have several 
limitations, including the inclusion of some 
early-stage breast cancer patients in their samples, a 
lack of external validation, and insufficient model 
interpretability. Accordingly, this study focused on 
patients with LABC, a group with a poor prognosis, 
and employed readily available clinical pathology 
data as key predictive factors. The objective was to 
develop a simple, reliable, and highly interpretable 
ML predictive model to accurately forecast the early 
probability of achieving tpCR. Accurate treatment 
plans are essential for healthcare providers, as they 
help reduce drug-related toxicity caused by excessive 

therapy and enable rapid modifications to treatment 
regimens. 

In this study, variable reduction and selection 
conducted on the training set identified tumor size, 
Ki-67, molecular subtype, targeted therapy, and 
chemotherapy regimen as significant predictors of 
tpCR in NAC for LABC patients. Tumor size was 
shown to be a key independent factor in predicting 
tpCR post-NAC in patients with LABC. The finding is 
consistent with previous studies showing a strong 
correlation between smaller tumor size and a higher 
probability of obtaining tpCR [31, 32]. The relation 
between this association may arise from the fact that 
patients with smaller tumors often have lower tumor 
burdens, less resistant cell populations, and are more 
responsive to chemotherapy. These factors combined 
contribute to improved results in NAC. Ki-67 levels, 
which are strongly associated with the rate at which 
tumor cells multiply, indicate the fast development 
and division of tumor cells. High levels of Ki-67 
expression indicate that chemotherapy, which targets 
explicitly rapidly dividing cells, may be more 
successful. Therefore, Ki-67 is a significant indicator 
for predicting tpCR in BC patients post-NAC [33]. 
However, the precise threshold for high Ki-67 
expression remains debatable. The present study 
found a high expression threshold for Ki-67 at 47.5%, 
aligning with other research that set this threshold at 
around 50% [34]. Further, due to the biological 
heterogeneity of BC, tpCR rates vary across molecular 
subtypes [35]. Within the training set of the current 
study, 54.3% of patients who achieved tpCR had 
HER-2 positive BC, 32.5% had TNBC, and 13.2% had 
Luminal subtypes. This suggests that the rates of 
tpCR are greater in HER2-positive and TNBC 
subtypes compared to Luminal subtypes, which 
aligns with what has been reported in the previous 
research [36-39]. Particularly, HER-2 positive BC 
patients receiving targeted therapy, such as 
trastuzumab and/or pertuzumab, had significantly 
improved tpCR rates [40, 41]. Moreover, this study 
highlighted the chemotherapy regimen as a crucial 
characteristic for predicting tpCR, with anthracycline 
and taxane combinations being the most common 
NAC regimen [5]. Compared to single-drug regimens, 
the joint application of these two types of drugs 
effectively reduces tumor cell resistance to 
medication. It generates a synergistic effect, 
enhancing cytotoxic activity against tumor cells. 
Similarly, incorporating platinum-based drugs, such 
as carboplatin, into the NAC regimen has been 
contentious; nevertheless, patients receiving 
platinum-based treatments have achieved higher 
tpCR rates [42, 43]. In this study, patients treated with 
the anthracycline-taxane combination regimen 
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exhibited significantly different tpCR rates than 
others. These variations may be strongly linked to a 
more accurate mix of chemotherapy drugs and 
immunotherapy and targeted treatment. Through the 
optimization of drug combinations and the full 
utilization of immunotherapy and targeted treatment 
approaches, a more thorough assault on tumor cells 
may be achieved, leading to enhanced therapeutic 
results and exhibiting a significant advantage in 
clinical practice. Building on this foundation, we 
developed and validated six ML models to predict the 
likelihood of pCR in patients with LABC undergoing 
NAC. After comprehensively comparing the 
performance of all models, we selected the KNN 
model, which was externally validated using an 
independent dataset from our hospital. The KNN 
model demonstrated high predictive accuracy across 
the training, testing, and external validation datasets, 

with AUC of 0.847, 0.763, and 0.665, respectively. In 
contrast, Kim et al. developed six ML models using 11 
clinical and pathological features, with the LightGBM 
algorithm achieving the highest AUC of 0.810 [7]. 
Meti et al. selected seven clinical and pathological 
features to develop five ML models, with the RF 
algorithm achieving the highest AUC of 0.880 [30]. 
Our study's advantage lies in using only five clinical 
and pathological features while attaining comparable 
AUC values, demonstrating the model's simplicity 
and efficiency. This approach not only simplifies data 
collection and model training processes but also 
enhances the model's feasibility and scalability in 
practical applications. Furthermore, external 
validation confirmed the model's robustness and 
reliability, strengthening the credibility of our 
findings. 

 
 

 
Figure 5. The DCA was conducted for six models in both the training set (A) and test set (B) using different threshold probabilities; in the DCA plots, the bottom gray line 
represents the scenario where no patients achieved tpCR following NAC, while the black diagonal line represents the scenario where all patients achieved tpCR after NAC. The 
x-axis of DCA represents the threshold probability, and the y-axis represents the net benefit after subtracting the disadvantages. Theoretically, the further the DCA curve is from 
these two extreme lines, the higher the net clinical benefit of the model. The external validation set contains the AUC (C) and calibration plot (D). 
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Figure 6. A: Aggregate SHAP values for categorical variables; B: Feature importance plot; in the feature importance plot, each predictive variable corresponds to a line segment, 
the length of which indicates the weight of the variable's impact on tpCR. A longer line signifies a higher weight, reflecting the variable's importance in predicting tpCR. C: A 
patient's waterfall plot demonstrating tpCR; D: Individual waterfall plot for a patient who did not achieve tpCR. E [f(x)] represents the baseline prediction probability; f(x) denotes 
the model's final prediction probability for a given input. 

 
In contrast to other investigations, this research 

utilized SHAP technology to clarify the "black box" 
process of the ML model, improving its 
interpretability and therapeutic relevance. SHAP 
assessed the contribution of each predictive variable, 
with a SHAP importance plot visually presenting the 
ranking of variable contributions to the model's 
predictive capacity. The data indicated that targeted 
treatment was the most significant predictor for 
achieving a tpCR. Furthermore, individual waterfall 
plots for tpCR and non-tpCR patients not only 
augmented the model's interpretability but also 
provided clinicians with a more intuitive 
decision-support tool, greatly facilitating the practical 
use of predictive models in clinical settings. 

It is imperative to acknowledge several 
unavoidable limitations inherent in this study. First, 
as a retrospective study, it is intrinsically prone to 
selection bias. Second, the external validation set 
consists of a restricted number of patients, and there 
was missing data for some variables. These factors 
have the potential to undermine the reliability and 

precision of model validation. Consequently, future 
research endeavors will necessitate large-scale, 
multi-center prospective studies for further 
validation. Moreover, the presence of spatial 
heterogeneity in tumors suggests that biopsy samples 
may not accurately reflect the entire tumor, thereby 
impacting the predictive precision of the model. 
Further, given the crucial role of radiological 
assessments in evaluating the efficacy of NAC [4], 
incorporating and integrating radiological data into 
future work will be a key step in optimizing the 
existing model. This approach will provide more 
precise diagnostic information and facilitate a more 
comprehensive evaluation of patient conditions and 
treatment outcomes, thereby better guiding clinical 
decision-making. 

Conclusions 
This study successfully developed an ML 

predictive model based on the KNN algorithm, aimed 
at utilizing pre-NAC clinical pathology data to predict 
the probability of achieving a tpCR in patients with 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

5070 

LABC at an early stage. This model incorporates 
several characteristics that are easily accessible before 
NAC therapy and utilizes SHAP technology to reveal 
the logical basis of its predictions, thereby tackling the 
difficulty of the "black box" problem that arises when 
implementing ML algorithms in clinical practice. The 
model is a dependable clinical prediction tool that 
helps doctors promptly modify treatment plans for 
patients not responding to NAC. This helps avoid 
missing out on the best surgical opportunities because 
of delays and encourages using more individualized 
treatment plans. 
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