# EMULATION OF CYBER-PHYSICAL SYSTEMS ON FPGA



Maelic Louart<sup>+\*</sup>, Jean-Christophe Le Lann<sup>+</sup>, Frédéric Le Roy<sup>+</sup>, Abdel Boudraa<sup>\*</sup>, Jean-Jacques Szkolnik<sup>\*</sup>



<sup>+</sup>Lab-STICC, UMR CNRS 6285, ENSTA Bretagne, 29806 Brest cedex 9, France; \*IRENav, EA3634, BCRM Brest CC 600, Ecole Navale, 29240 Brest Cedex 9, France

## Introduction

### Cyber-physical system (CPS) context:

• CPS is a tight integration of computation with physical processes [1]. At a large scale a CPS is composed of several embedded systems interacting with each other in an environment.

## **CPS** simulation problematics:

• CPS are heterogeneous systems mixing discrete and continuous aspects, software and hardware components and multiple disciplines (mechanical, electrical and software engineering);

#### • CPS modeling and simulation are a open problem: Complex modeling tool, long execution time.

#### Inspiration:

• Miller, Vahid, and Givargis who implemented on FPGA digital mockup of some human organs (lungs, heart, etc) to simulate their behavior (2011-2014) [2].

#### Our proposal:

• We simulate both CPS cyber and physical parts on a same FPGA.

#### METHOD

### Our method comes from three **practical observations**:

- The quasi-systematic availability of highly domain-specific C/C++ codes able to simulate behavior parts of almost every CPS (physical, mechanical, chemical phenomena, etc.);
- The growing robustness of high level synthesis (HLS) tools able to synthesize hardware code from C++ code;
- The interesting characteristics of recent FPGAs (high computational power, large amount of resources, parallelism concepts easy to implement, and a native synchronization of computations).

#### Method application:

- Method divides CPS into components: one of them simulates CPS environment (physical part) and the other CPS' embedded systems;
- Dataflow directive implement FIFO or PIPO buffers between components with handshake protocol.



**Figure 1:** Overview of the approach for CPS simulator design

## Limitation:

• Limited to directed acyclic graph.



Figure 2: Directed acyclic graph

## APPLICATION TO AUTOMATIC IDENTIFICATION SYSTEM

#### Case study:

• A set of vessels that move and exchange radio messages relying on a dedicated maritime protocol named automatic identification system (AIS).

#### **Objective:**

• Creation of a simulation framework to generate a wide variety of scenarios generating AIS signals within varied environmental conditions. AIS signals are tedious to be collected in real environment.



Figure 3: FPGAs as a AIS Simulation platforms

#### List of simulation framework components:

- **Emitter** that acts as an AIS transponder which, from an NMEA frame, sends a modulated AIS signal;
- Channel that simulates the environment to apply some physical laws to the AIS signals (SNR, carrier frequency offset, pass loss (Friis model:  $\frac{P_r}{P_t} = G_r G_t \left(\frac{\lambda}{4\pi R}\right)^2$ );
- Receiver that acts as a AIS transponder, which demodulates AIS signals to extract NMEA frame. It is an efficient prototype, it was tested on true baseband signals recorded near Brest;
- **Piloting** that allows a classical interaction with such a simulator (start, stop) and adjusts the simulated environment parameters;
- **Monitoring** that observes the dynamics of selected signals from the simulator.

scenarios



: Detailed model of FPGA simulator

## SYNTHESIS AND SIMULATION RESULTS

## Synthesis results:

|           | BRAM    | DSP    | FF        | LUT       |
|-----------|---------|--------|-----------|-----------|
| Simulator | 293(7%) | 66(0%) | 30508(1%) | 41665(3%) |
| Emitter   | 97      | 1      | 8718      | 16357     |
| Channel   | 97      | 13     | 1478      | 4312      |
| Receiver  | 99      | 52     | 19904     | 20754     |

Table 1: Resources used by each component

## Remark:

• Low FPGA occupency => Many Emitters can be simulated at the same time and environment can be made more complex.

## Evaluation of the Receiver GMSK demodulation considering environmental conditions (SNR, CFO):



**Figure 4:** Bit error rate evolution related to SNR and carrier frequency error (CFO)

## Simulation time results:

• During every simulation, 1000 messages are received by the *Receiver* successively from every *Emitter*.

| Number Emitters | Software | Hardware | Gain | FPGA usage |
|-----------------|----------|----------|------|------------|
| 1               | 576s     | 3.14s    | 183  | 7%         |
| 5               | 856s     | 3.14s    | 272  | 24%        |
| 10              | 1210s    | 3.14s    | 386  | 46%        |
| 22 (pred.)      | 2050s    | 3.14s    | 654  | 98%        |

**Table 2:** Simulation times obtained on FPGA and processor for various Emitters number simulated at the same time

- **Software**: a standard Intel Core I5 processor at 1.7 GHz with 16 Gb RAM;
- Hardware: a Xilinx Ultrascale+ HBM FPGA on a VCU128 board.

## Remarks:

- Performance gain is already  $\times 183$  compared to software simulation for only one *Emitter*;
- Performance gain was obtained without applying optimization directives to the code such as loop unrolling or pipeline which still leaves a speed-up margin for the FPGA simulation;
- Although the number of components *Emitter* was increased, the hardware simulation time remained the same => FPGA scalable characteristic.

## DISCUSSION

- Outside directed acyclic graph of architecture, Vitis HLS cannot synthesize CPS;
- Other high-level synthesis tools, allowing actor-based modeling without limit in the complexity of the architecture, using, among others pure dataflow semantics are to be experimented;
- Already Vitis HLS can be used to synthesize components, which are then exported as IP components to Vivado, to be assembled there according to the desired architecture.

## Conclusion

- We demonstrate that FPGA can be seen as a plateforme of choice to simulate both cyber and physical parts of large CPSs;
- Speedup  $\times 654$  compared to pure software simulation;
- The user can interact with the simulator changing the environmental parameters, monitoring the simulation (start, stop) and observing the signals exchanged by the components.

## REFERENCES

- [1] EA. Lee and SA. Seshia. *Introduction to embedded systems: A cyber-physical systems approach*. Mit Press, 2017.
- [2] B. Miller, F. Vahid, and T. Givargis. Application-specific codesign platform generation for digital mockups in cyber-physical systems. In *Electronic System Level Synthesis Conf. (ESLsyn)*, pages 1–6. IEEE, 2011.