

Copyright © 2018 by Author/s and Licensed by Lectito BV, Netherlands. This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Information Systems Engineering
& Management, 2018, 3(2), 15
ISSN: 2468-4376

SWARE: A Methodology for Software Aging and Rejuvenation Experiments

Matheus Torquato 1*, Jean Araujo 2, I. M. Umesh 3, Paulo Maciel 4

1 Federal Institute of Alagoas (IFAL), Campus Arapiraca, Arapiraca, AL, BRAZIL
2 Federal Rural University of Pernambuco (UFRPE), Campus Garanhuns, Garanhuns, PE, BRAZIL
3 Bharathiar University, Coimbatore, INDIA
4 Federal University of Pernambuco (UFPE), Center of Informatics (CIn), Recife, PE, BRAZIL

*Corresponding Author: matheustor4.professor@gmail.com, matheus.torquato@ifal.edu.br

Citation: Torquato, M., Araujo, J., Umesh, I. M. and Maciel, P. (2018). SWARE: A Methodology for
Software Aging and Rejuvenation Experiments. Journal of Information Systems Engineering & Management, 3(2),
15. https://doi.org/10.20897/jisem.201815

Published: April 07, 2018

ABSTRACT
Reliability and availability are mandatory requirements for numerous applications. Technical apparatus to
study system dependability is essential to support software deployment and maintenance. Software aging is
a related issue in this context. Software aging is a cumulative process which leads systems with long-running
execution to hangs or failures. Software rejuvenation is used to prevent software aging problems. Software
rejuvenation actions comprise system reboot or application restart to bringing software to a stable fresh
state. This paper proposes a methodology to conduct software aging and software rejuvenation experiments.
The approach has three phases: (i) Stress Phase - stress environment with the accelerated workload to induce
bugs activation; (ii) Wait Phase - stop workload submission to observe the system state after workload
submission; (iii) Rejuvenation Phase - find the impacts caused by the software rejuvenation. We named our
methodology as SWARE (Stress-Wait-Rejuvenation). To validate the SWARE methodology, we present a
case study. This case study consists of an experiment of VM Live Migration as rejuvenation mechanism for
VMM software aging. The considered testbed is a Private Cloud with OpenNebula and KVM 1.0. The
obtained results show that VM live migration is useful as rejuvenation for VMM software aging.

Keywords: software aging and rejuvenation, reliability, dependability, availability, cloud computing

INTRODUCTION

High availability and reliability are crucial for different software systems. In Cloud Computing, for example,
software reliability and availability stay as concerns for customers (CISCO, 2012; CDW, 2015; Kim, 2009). Previous
works introduce software aging as a pertinent issue in this area (Araujo et al., 2011a; Araujo et al., 2011b; Matos et
al., 2012; Torquato et al., 2015; Umesh and Srinivasan, 2017).

The software aging phenomenon consists in a gradual increase in software failure rate or performance
degradation during its execution (Parnas, 1994). These effects usually happen because of errors accumulation in
software state. This accumulation can lead software to hangs and total failures (Grottke et al., 2008; Huang et al.,
1995). Systems with long-time of execution may suffer from software aging effects (Huang et al., 1995). On Cloud
Computing systems, the VMM (Virtual Machine Monitor) is liable to suffer software aging, as presented in (Matos
et al., 2012; Torquato et al., 2015).

Software rejuvenation is the countermeasure to software aging. Software rejuvenation consists of a proactive
technique to clean software aging effects by rolling it back to a stable status. Software rejuvenation usually lies on
an application restart or a system reboot (Cotroneo et al., 2014). Previous works propose a schedule to submit

mailto:matheustor4.professor@gmail.com
mailto:matheus.torquato@ifal.edu.br
https://doi.org/10.20897/jisem.201815
http://www.lectitopublishing.nl/
http://www.lectitopublishing.nl/journal-for-information-systems-engineering-management

Torquato et al. / SWARE: A Methodology for Software Aging and Rejuvenation Experiments

2 / 13 © 2018 by Author/s

software rejuvenation actions (Melo et al., 2013a; Melo et al., 2013b) to minimize system downtime caused by these
operations. Other techniques use genetic algorithms and time series forecasting to predict software aging behavior
and support software rejuvenation actions (Umesh et al., 2017a; Umesh et al., 2017b). More details of software
aging and rejuvenation are in Software Aging and Rejuvenation section.

Due to characteristics of software aging, it is hard to determine its roots. Errors, memory leaks and other aging-
related symptoms are non-expected events (Torquato et al., 2015). A proper approach to deal with software aging
and rejuvenation issues is to investigate and analyze them in an isolated environment. By running experiments and
tests to understand software aging symptoms and rejuvenation effectiveness.

To support this type of research, this paper presents a methodology to support software aging and rejuvenation
experiments. The approach is named SWARE (Stress-WAit-REjuvenation). The SWARE approach has three
phases. (A) Stress Phase, which aims to observe workload exposure impacts in the internal software state. (B) Wait
Phase which observes software behavior after the stress workload submission. This phase seeks to highlight
software aging effects in the system. As software aging is a cumulative process, its effects may remain even after
workload exposure. If the software returns to a stable state without software rejuvenation action, there is no
evidence of software aging symptoms. (C) Rejuvenation Phase, with the goal to perceive consequences of software
rejuvenation action (Melo, 2014; Torquato et al., 2015). This phase highlights the effectiveness of software
rejuvenation action to mitigate software aging effects observed in the Wait Phase.

The phases adjustment depends on selected software for aging testing. The phases are sequential. The end of a
phase triggers the start of next. The proposed approach does not comprise the detection of Time to Aging Related
Failure (TTARF). SWARE Methodology section contains details about proposed approach.

Case Study section has an experimental setup which uses the proposed approach. This experiment consists of
an investigation of software aging and rejuvenation on OpenNebula/KVM 12 Private Cloud (Torquato et al.,
2015). In this case study, we investigate software aging symptoms in KVM 1.0 component using an accelerated
workload. We also checked rejuvenation effectiveness through a VM Live Migration process. The obtained results
are in the Results and Analysis section. From results, it is possible to understand system behavior during the three
phases of the experiment. Rejuvenation Phase results show that VM Live Migration enables software rejuvenation
of KVM software. We also present a numerical analysis of the results obtained from the Wait and Rejuvenation
phases. These results show that the system may require more than 12 days to recover without software
rejuvenation.

Related Works section has the related works comparison, and Conclusions and Future Work section presents our
conclusions and future works. This paper is an improvement and extension of our previous articles (Torquato et
al., 2017) and (De Melo et al., 2017).

SOFTWARE AGING AND REJUVENATION

Software aging is the accumulation of aging-related bugs effects. Aging-related bugs often appear when the
system reaches conditions (e.g., lack of computational resources) which are difficult to reproduce (Vaidyanathan
and Trivedi, 2001). The consequences of bugs activation lead to software performance degradation (or its failure
rate increases). Software aging can influence the system from hangs to total failures (Huang et al., 1995).

A feasible way to determine software aging existence is to observe system monitoring reports to find anomalous
behavior (Valentim et al., 2016; Cotroneo et al., 2014). The paper (Garg et al., 1998) presents a methodology based
on SNMP distributed tool for monitoring OS resources on a LAN of UNIX machines to observe software aging
existence.

The paper (Huang et al., 1995) presents first definitions of software rejuvenation. We can define software aging
as a proactive technique to avoid aging effects to reach critical levels. Software rejuvenation is also considered a
cost-effective because it does not require knowledge about roots of aging effects (Cotroneo et al., 2014). The
rejuvenation actions rely on restart an application to conduct it to a clean state, without aging effects accumulated.
Some papers propose scheduling of software rejuvenation actions (Melo et al., 2013a; Melo et al., 2013b) to
determine when to perform rejuvenation actions to maximize overall system availability.

Experiments to measure and observe software aging symptoms may have a long duration. Some papers (Matos
et al., 2012; Araujo et al., 2011a) proposes an investigation with accelerated experiments. Thus, it is possible to
observe software internal state alterations in a shorter time.

SWARE METHODOLOGY

The experiment methodology is obtained from the papers (Torquato et al., 2017) and (De Melo et al., 2017).
This methodology has two preliminary steps. First, the selection of software component to test. Second, the choice

Journal of Information Systems Engineering & Management, 3(2), 15

© 2018 by Author/s 3 / 13

of a specific workload to stress this component. For example, a specific workload for Web Server is a workload of
connections high rate of requests. The workload exposure aims to induce the system to operate in different levels
of usage, seeking to trigger aging-related bugs. It is essential to ensure that workload does not cause premature
failures. And, the monitoring activity should not cause high system intrusion.

After these preliminary steps, we can apply the proposed approach. As aforementioned, the SWARE
methodology has three phases (Stress, Wait and Rejuvenation). The details of each are in next sections.

Stress Phase

This phase aims to stress the system with the selected workload. The stress workload leads to system internal
state degradation. Monitoring reports of this phase should present an increase in software failure rate or a decrease
in software performance. Figure 1 depicts the expected behavior of internal system state.

The stress phase duration varies according to workload submitted to the system. Workload submission stops
when resources usage or performance degradation reach a critical level. At this point, probably aging bugs already
be activated as the system passes through different usage states.

Wait Phase

The primary goal of Wait phase is to observe software aging symptoms existence. Software aging effects remain
in the system even without incoming workload. After Stress Phase, there are two possibilities: (i) system recovers
from workload overhead and returns to a stable state; (ii) or system persists degraded. If the software returns to a
stable state without rejuvenation action, there is no evidence of software aging existence. In that conditions, the
workload submitted to the system only causes overhead in resources usage.

Figure 1. Stress phase expected behavior

Figure 2. Software aging evidence

Figure 3. Absence of software aging evidence

Torquato et al. / SWARE: A Methodology for Software Aging and Rejuvenation Experiments

4 / 13 © 2018 by Author/s

Figure 2 presents a possible behavior of system state which highlights software aging evidence. Figure 3 shows
a likely behavior of the system state which does not highlight evidence of software aging.

The duration of Wait phase should be long enough to ensure that system persists in a degraded state. Usually,
to achieve this goal, Wait Phase should during approximately the same time of Stress phase.

Rejuvenation Phase

A requisite for Rejuvenation Phase start is the software rejuvenation action selection. This selection depends
on the component stressed in the previous phase. Software rejuvenation usually relies on restart application or
system reboot, but in some situations, other types of rejuvenation may also be valid.

Rejuvenation phase starts with the software rejuvenation action submission. The primary goal of this phase is
to observe impacts of rejuvenation action on internal system state. Figures 4 and 5 present variations in software
state when software rejuvenation is useful or not.

Figure 6 presents a flowchart with a summary of proposed approach.

Figure 4. Software rejuvenation is not effective to counteract software aging detected

Figure 5. Software rejuvenation is effective

Figure 6. Proposed Approach

Journal of Information Systems Engineering & Management, 3(2), 15

© 2018 by Author/s 5 / 13

CASE STUDY

System Architecture

The considered Cloud Computing testbed uses OpenNebula VIM 3.6 and VMM KVM 1.0. The environment
has four Physical Machines (PMs) and one Virtual Machine (VM). The VM runs an Apache Web Server with a
simple HTML page on Ubuntu Server 12.04 operating system. FrontEnd Machine is responsible for managing
Cloud Environment. Main Node is the PM which executes VM. Standby Node is a spare host to receive VM Live
Migration purposes. Stresser is an external machine which is responsible for sending workload and monitor Cloud
system. All components are in a Private Network. The Table 1 has the Physical Machine configurations. Figure
7 depicts the testbed architecture.

Workload Selection

The selected workload to stress KVM is a sequential operation of mounting and unmounting 15 Virtual Disks
(of 1GB) on VM (Matos et al., 2012). The pseudo-algorithm of this workload is in Algorithm 1.

Algorithm 1 – Software aging workload
loop
 while AttachedDisks < 15 do
 Mount(Disk1GB);
 Wait(15 seconds);
 end while
 while AttachedDisks >= 1 do
 Unmount(Disk1GB);
 Wait(15 seconds);
 end while
end loop

 Besides the mount and unmount workload, we decide to add a workload to Apache Web Server. We want to

observe Web Server performance impacts during the experiment. To select the workload, we conducted a capacity
test considering the same testbed used in software aging experiment. The capacity test uses the httperf tool with
Autobench (Mosberger and Jin, 1998). This benchmark tool sends requests to the Web Server and collects results
as response time (in milliseconds) and the number of errors observed. In httperf, the response time is the time
between sending the first byte of a request and receiving the first byte of reply. And, the amount of errors takes
account of errors such as connection timeout, socket timeout and connection refused. The rate of requests is

Observing these results, we selected the workload of 2000 requests per second. The results show that the server
can handle this rate of requests with low response time and errors. Figure 10 shows a summary of the selected
workload to software aging and rejuvenation experiments.

Table 1. Physical Machine Configurations
Name Description Processor RAM Software

FrontEnd Cloud Manager Intel Core i3 – 3.10 GHz 4GB Ubuntu Server 12.04 (kernel 3.2.0-23), OpenNebula
3.6

Main Node, Standby Node Execution Nodes Intel Core i3 – 3.10 GHz 4GB Ubuntu Server 12.04 (kernel 3.2.0-23), KVM 1.0

Stresser Cloud Monitor and
Stresser

Intel Core 2 Quad – 2.66
GHz 4GB Ubuntu Desktop 12.10 (kernel 3.5.0-36), Autobench

and monitoring tools

Figure 7. Testbed architecture

Torquato et al. / SWARE: A Methodology for Software Aging and Rejuvenation Experiments

6 / 13 © 2018 by Author/s

Software Rejuvenation Strategy

OpenNebula/KVM Clouds allow system managers to perform VM Live Migration. VM Live Migration consists
in remapping a VM from a PM to another with reduced operation downtime (Clark et al., 2005). Previous studies
(Machida et al., 2013; Melo et al., 2013a) shows VM Live Migration as a support mechanism to VMM software
rejuvenation. Figure 11 presents software rejuvenation strategy used in the experiments.

Figure 8. Capacity Test Results – Response Time (ms)

Figure 9. Capacity Test Results – Amount of Errors observed

Figure 10. Selected Workload

Figure 11. Software rejuvenation strategy

Journal of Information Systems Engineering & Management, 3(2), 15

© 2018 by Author/s 7 / 13

On Stress Phase, the system is receiving workload to stress VMM software. In this early stage, the system does
not present software aging effects yet. The Standby Node VMM is active but not receiving any system requests.
Wait Phase starts when system status suffers from software aging. As Main Node VMM manages VM, software
aging effects will affect VM performance too. VM Live Migration triggers the Rejuvenation Phase.

When VM arrives in the Standby Node, it can leverage a fresh state VMM. Thus, previous VMM software aging
effects will not affect VM performance or failure rate. Finally, the Main Node restart removes software aging status.

System Monitoring reports support phases duration decision. Based on principles presented in SWARE
Methodology section, Table 2 shows each phase period for our experiment. The entire process during 13 consecutive
days.

RESULTS AND ANALYSIS

CPU and RAM Monitoring

The Figures 10 and 11 present results of system resources monitoring. To improve results visualization, the
graphics present monitoring data from both PMs: Main Node and Standby Node. Stress Phase and Wait Phase in
these plots are the results from Main Node monitoring and the Rejuvenation Phase is the result from Standby Node
monitoring (which receives VM Live Migration). All plots contain limits of Stress Phase, Wait Phase and
Rejuvenation Phase. The monitoring intervals are 30 seconds.

The CPU utilization results contain four metrics: USER - CPU utilization percentage for User-level processes;
SYS - CPU usage for Kernel-level processes; IO - Waiting for In/Out operations; IDLE - CPU idle percentage,
excluding time waiting for In/Out.

Figure 12 presents results of CPU utilization. In the Stress Phase is possible to observe significant IO requests
rate for CPU. This behavior occurs because PM has to communicate with VM during mount disk workload and
also has to redirect income network traffic to VM. In the Wait Phase, CPU utilization tends to return to normal
levels. But, SYS requests rate remains at higher levels than average (comparing to Rejuvenation Phase). As KVM
resides on Linux Kernel (which is responsible for SYS requests), CPU SYS requests rate may return to normal
state after a cleanup action. Rejuvenation Phase presents SYS requests rate returning to normal levels.

Figure 13 depicts results of RAM monitoring. Results for Wait Phase reveals that RAM consumption persists
at high levels. In this phase, PM continues to receive web requests from the network. But, Rejuvenation Phase
results presents a decreasing usage of RAM resources.

Extra consumption of resource is necessary when a PM receives a VM migration. Thus, there is a peak of RAM
usage at the beginning of Rejuvenation Phase. After this, RAM usage results show a decreasing behavior.

Table 2. Experiment Phases Duration
Phase Duration 1 2 3 4 5 6 7 8 9 10 11 12 13
Stress Phase 6d
Wait Phase 5d
Rej. Phase 2d
Disks Mount and Unmount 6d
Web Requests 13d

Figure 12. Results of CPU utilization results

Torquato et al. / SWARE: A Methodology for Software Aging and Rejuvenation Experiments

8 / 13 © 2018 by Author/s

Web Server Metrics Results

VM depends on VMM to interact with PM resources. Then, VMM state affects the applications and services
which run in VM. Thus, applications and services monitoring may present possible effects of software aging. The
results in this section show monitoring data collected from benchmark tool of Web Server.

Figures 14 and 15 present results of Web Server monitoring. As expected, Web Server suffers effects of high
workload exposure in Stress Phase. Response time and Amount of Errors were increasing during this phase. Wait
Phase results show Errors and Response Time remaining at high levels. Rejuvenation phase brings the system to
a stable state.

Numerical Analysis

In this section, we show the results of a brief numerical analysis of obtained results. We selected the Response
Time results of Web Server (Figure 14) for this analysis. First, we compute the details of the response time of the
Web Server with software aging effects (Wait Phase results) and without software aging (Rejuvenation Phase). The
summary of these results is in Table 3. This analysis aims to analyze the effects of software aging and rejuvenation
in the response time of the Web Server. Therefore, we ignored the results of Stress Phase. It is important to

Figure 13. Results of RAM usage

Figure 14. Results of response time(ms) of Web server

Figure 15. Errors of Web Server

Journal of Information Systems Engineering & Management, 3(2), 15

© 2018 by Author/s 9 / 13

highlight that the Stress Phase goal is only to accelerate software aging bugs activation. The obtained results reveal
that the response time in a Web Server with software aging effects surpass the response time in a Web Server
without software aging effects in more than 860%.

We also perform a trend analysis in the results of Wait Phase. The goal of the trend analysis is to verify the
existence of a trend in the Web Server response time. We used the Mann-Kendall Test. The Mann-Kendall test is
usually applied in software aging tests (Grottke et al., 2006; Garg et al., 1998; Machida et al., 2013). The Mann-
Kendall analysis (Mann, 1945) checks the null hypothesis, H0, which shows that there is no trend in the data during
the time, against the alternative hypothesis, H1, which indicates an upward or a monotonic downward trend in the
data. As software aging is a cumulative process, the Mann-Kendall test can be used to reveal patterns of software
internal state degradation. Among Mann-Kendall tests results, we have the Z-value which is used to accept or
reject the null hypothesis. Z-value close to zero suggests no trend in the data; a high absolute value indicates the
existence of a trend. Figure 16 shows the results and trend of Web Server response time during the Wait Phase.

Table 4 presents the results of statistical analysis made in the data. The results show Mann-Kendall Z-value is
lower than zero. Therefore, it is possible to reject the null hypothesis (no trend in the data). The negative value
indicates a monotonic downward trend in the data. To calculate the slope of the monotonic trend, we used the
Sen method (Sen, 1968). Table 4 also presents the estimated slope and the 95% confidence interval for this slope.

These results show that the downward trend obeys the following function: y = -0.0009x + 939.6568. We
compute the time to system returns to normal operation. To conduct this calculation, we consider the Web Server
Response Time in the Rejuvenation Phase, which is of 1.063 milliseconds. This calculation shows that the time to
Web Server return to normal operation (with Response Time equals to 1.063 ms) is about 12 days. The Figure 17
below shows the results comparing the Wait Phase and Rejuvenation Phase.

General Discussion

Observing CPU results of Stress Phase in Figure 10, it is possible to notice a similar behavior as presented in
(Matos et al., 2012). Still, in Stress Phase, RAM results (Figure 11) and Web Server response time results (Figure
12) show similar results as on (Grottke et al., 2006).

As software aging causes internal software state degradation, its consequences may persist on software state
until software rejuvenation (or failure) occurs (as explained in SWARE Methodology section). Results of Wait Phase
shows a degraded software state. The numerical analysis reveals that, without rejuvenation actions, the system only
achieves a normal operation state (with Response Time in 1.063 ms) after 12 days. It is important to highlight that
this estimative considers that the workload is constant and of 2000 requests per second.

Table 3. Web Server Response Time Results (ms) Summary
Phase Min. 1st Qu. Median Mean 3rd Qu. Max.

Wait Phase 0.0 848.5 934.9 917.9 1004.8 2888.6
Rejuvenation Phase 0.0 0.5 0.5 1.063 0.600 2982.9

Figure 16. Web Server Response Time of Wait Phase with trend analysis

Table 4. Web Server Response Time Trend Analysis
Parameter Value
Mann-Kendall Z-Value -2.3
Estimated slope -0.0009 ms/s
95% confidence interval for the slope (-0.0001 ms/s, -0.0016 ms/s)

Torquato et al. / SWARE: A Methodology for Software Aging and Rejuvenation Experiments

10 / 13 © 2018 by Author/s

Results of Rejuvenation Phase emphasize software aging evidence on KVM software. After VM migration, VM
arrives on a fresh state KVM software. As VM migration suffices to software internal state degradation removal,
it is possible to corroborate that VM migration is a useful technique to KVM software rejuvenation.

RELATED WORK

The authors of (Matias et al., 2010) present an approach to apply accelerated degradation tests on software
aging experiments. The paper uses a particular aging factor to control the aging effects on the experimental setup.
This aging factor is obtained by sensitivity analyses based on a statistical design of experiment. We also applied
accelerated tests on the Stress Phase of our experiment. Different from the authors of the mentioned paper, the
SWARE approach also comprises software rejuvenation.

The paper (Li et al., 2002) presents a methodology to estimate software aging effects by using time-series
analyses. The authors analyzed the behavior of a Web Server under a varying workload. The primary goal is to
detect and estimate resource exhaustion time due to software aging effects. This paper helps us to define
technologies used in our case study. As presented in the mentioned paper, we also used a Web Server and the
httperf tool in our experimental setup. The paper also presents an extensive statistical analysis used in the resources
estimation. Different from this paper we used a generic workload to induce software aging bugs activation. The
SWARE methodology is simpler to apply as it does not require statistical expertise.

The paper (Grottke et al., 2006) provide valuable inputs on how to perform software aging experiments on a
Web Server. The main goal of the authors is to conduct a software aging analysis of a Web Server. Different from
the results presented in the mentioned paper, we also include the software rejuvenation effectiveness test on
SWARE approach.

The paper (Matias et al., 2006) offers a comprehensive approach to software aging and rejuvenation
experiments on a Web Server. Besides the techniques to observe software aging problems, the authors
implemented a rejuvenation agent to mitigate aging effects in the Web Server. The presented results show
substantial reduction of software aging when the rejuvenation agent is integrated into the environment. The
proposed rejuvenation agent uses a predefined interval to submit software rejuvenation in the environment.
Different from this paper, the Wait Phase of SWARE approach allows the system manager to decide when to
perform rejuvenation action. Therefore, it is possible to reduce overhead caused by recurrent software rejuvenation
actions. Nevertheless, the mentioned paper provides helpful insights into the SWARE methodology.

Cotroneo et al. (Cotroneo et al., 2010) provide a broad investigation of software aging causes in Linux
Operating Systems. The adopted approach aims to trace kernel activities to observe possible software aging effects.
The results of the paper show that the filesystem operation causes significant contribution in software aging
indicators. This result may explain the behavior of Stress Phase of our experiment when the VM filesystem is
dealing with software aging workload. Matias et al. (Matias et al., 2010) also present a methodology to measure
software aging effects through OS kernel observation and instrumentation. Instead of showing specific causes of
software aging, the SWARE approach aims to provide an overview of system status during and after software
aging effects.

Figure 17. Comparison of trend analysis and Wait and Rejuvenation Phases results

Journal of Information Systems Engineering & Management, 3(2), 15

© 2018 by Author/s 11 / 13

The paper (Silva et al., 2006) shows a study of software aging and rejuvenation in a SOAP-based Servers. The
authors ran a variety of scenarios with different configurations. The adopted approach is focused on studies of
software aging and rejuvenation in SOAP-based servers. The SWARE approach aims to be more generic and
flexible to other types of software.

The paper (Melo et al., 2017) presents an investigation of software aging on OpenStack Cloud Computing
Platform. The authors used a testbed which runs OpenStack, Apache and MySQL database. The presented results
show that the MySQL processes present software aging issues. The authors also used a particular workload to
stress the system and present trend analysis for resources consumption. The considered workload consists of
sequential operations of start and terminates VM instances. We also adopted a sequential workload in our case
study. However, the SWARE approach also comprises the observation of software aging problems and software
rejuvenation effectiveness.

The paper (Meng et al., 2016) presents a comprehensive approach to investigating software aging and
rejuvenation in a J2EE Application Server. The authors used a hierarchical approach to submit software
rejuvenation in the system. The adopted methodology has two main steps: (i) software aging tests and (ii)
application of the hierarchical software rejuvenation mechanism. Our experiments also comprise software aging
and rejuvenation phases. But, we also include the Wait Phase to highlight effects caused by software aging bugs
activation.

CONCLUSIONS AND FUTURE WORK

This paper presented the SWARE methodology. The SWARE is a comprehensive approach to investigating
aging symptoms and rejuvenation effectiveness on software systems. The SWARE approach has three phases
aiming to highlight software aging effects symptoms and rejuvenation effectiveness. (I) Stress Phase, when software
aging workload reaches system to stress investigated component. (II) Wait Phase, to perceive indicators of software
aging. (III) Rejuvenation Phase, which aims to detect rejuvenation action effectiveness on the environment.

Case Study section presents a case study to validate SWARE approach. This case study aims to investigate KVM
software aging and also to study VM Live Migration effectiveness as a software rejuvenation action. The
investigation shows results of software aging symptoms on KVM. Wait Phase highlights software aging effects on
resources consumption and quality of service of a Web Server. Finally, after VM Live Migration it is possible to
notice that degradation effects clean-up. The numerical analysis shows the relevance of the VM Live Migration as
a rejuvenation mechanism. Using mathematical approximations, we conclude that the system may take more than
12 days to recover from aging effects. The VM Live Migration usually takes less than 10 seconds. Therefore, the
system can improve service quality by applying this technique.

The major contribution of this paper is a generic methodology to conduct software aging and rejuvenation
effectiveness investigation. The case study proposed consists of a Cloud Computing environment. But, the
methodology phases guidelines can be reproduced in other types of software systems. This paper also presents (as
a case study) a software aging and rejuvenation study on VM Live Migration as software rejuvenation for KVM
hypervisor. The results of proposed case study show practical results of VM live migration effectiveness as
rejuvenation for KVM.

The approach does not quantify software aging effects. With the lack of statistical techniques on data, it is hard
to define software aging failure time and a proper rejuvenation schedule. The approach may require a substantial
time to produce expected results. The Stress phase may not produce expected results on software aging bugs
activation.

Future research directions aim to investigate further SWARE approach application on different scenarios as
Software Defined Networking, Network Function Virtualization, Virtualized Containers and Fog Computing.
Other research lines seek to improve approach adding multiple component software aging investigations.

ACKNOWLEDGEMENTS

This paper is an extended and improved version of our previous works (Torquato et al., 2017) and (De Melo
et al., 2017).

REFERENCES

Araujo, J., Matos, R., Maciel, P. and Matias, R. (2011). Software aging issues on the eucalyptus cloud computing
infrastructure. In Systems, Man, and Cybernetics (SMC), 2011 IEEE International Conference on (pp. 1411-1416).
IEEE. https://doi.org/10.1109/ICSMC.2011.6083867

https://doi.org/10.1109/ICSMC.2011.6083867

Torquato et al. / SWARE: A Methodology for Software Aging and Rejuvenation Experiments

12 / 13 © 2018 by Author/s

Araujo, J., Matos, R., Maciel, P., Matias, R. and Beicker, I. (2011). Experimental evaluation of software aging effects
on the eucalyptus cloud computing infrastructure. In Proceedings of the Middleware 2011 Industry Track Workshop
(pp. 4). ACM. https://doi.org/10.1145/2090181.2090185

CDW. (2015). Cdw’s cloud 401 report. CDW, Report.
CISCO. (2012). Cisco global cloud networking survey summary and analysis of results worldwide results. CISCO,

Tech. Rep.
Clark, C., Fraser, K., Hand, S., Hansen, J. G., Jul, E., Limpach, C., ... and Warfield, A. (2005). Live migration of

virtual machines. In Proceedings of the 2nd Conference on Symposium on Networked Systems Design & Implementation-
Volume 2 (pp. 273-286). USENIX Association.

Cotroneo, D., Natella, R., Pietrantuono, R. and Russo, S. (2014). A survey of software aging and rejuvenation
studies. ACM Journal on Emerging Technologies in Computing Systems (JETC), 10(1), 8.
https://doi.org/10.1145/2539117

Cotroneo, D., Natella, R., Pietrantuono, R. and Russo, S. (2010). Software aging analysis of the linux operating
system. In Software Reliability Engineering (ISSRE), 2010 IEEE 21st International Symposium on (pp. 71-80). IEEE.
https://doi.org/10.1109/ISSRE.2010.24

de Melo, M. D. E. T., Araujo, J., Umesh, I. M. and Maciel, P. R. M. (2017). SWARE: An approach to support
software aging and rejuvenation experiments. Journal on Advances in Theoretical and Applied Informatics, 3(1), 31-38.
https://doi.org/10.26729/jadi.v3i1.2441

Garg, S., Van Moorsel, A., Vaidyanathan, K. and Trivedi, K. S. (1998). A methodology for detection and estimation
of software aging. In Software Reliability Engineering, 1998. Proceedings. The Ninth International Symposium on (pp. 283-
292). IEEE. https://doi.org/10.1109/ISSRE.1998.730892

Grottke, M., Matias, R. and Trivedi, K. S. (2008). The fundamentals of software aging. In Software Reliability
Engineering Workshops, 2008. ISSRE Wksp 2008. IEEE International Conference on (pp. 1-6). IEEE.
https://doi.org/10.1109/ISSREW.2008.5355512

Grottke, M., Li, L., Vaidyanathan, K. and Trivedi, K. S. (2006). Analysis of software aging in a web server. IEEE
Transactions on Reliability, 55(3), 411–420. https://doi.org/10.1109/TR.2006.879609

Huang, Y., Kintala, C., Kolettis, N. and Fulton, N. D. (1995). Software rejuvenation: Analysis, module and
applications. In Fault-Tolerant Computing, 1995. FTCS-25. Digest of Papers, Twenty-Fifth International Symposium on
(pp. 381-390). IEEE.

Kim, W. (2009). Cloud computing: Today and tomorrow. Journal of object technology, 8(1), 65-72.
https://doi.org/10.5381/jot.2009.8.1.c4

Li, L., Vaidyanathan, K. and Trivedi, K. S. (2002). An approach for estimation of software aging in a web server.
In Empirical Software Engineering, 2002. Proceedings. 2002 International Symposium n (pp. 91-100). IEEE.
https://doi.org/10.1109/ISESE.2002.1166929

Machida, F., Kim, D. S. and Trivedi, K. S. (2013). Modeling and analysis of software rejuvenation in a server
virtualized system with live VM migration. Performance Evaluation, 70(3), 212-230.
https://doi.org/10.1016/j.peva.2012.09.003

Machida, F., Andrzejak, A., Matias, R. and Vicente, E. (2013). On the effectiveness of Mann-Kendall test for
detection of software aging. In Software Reliability Engineering Workshops (ISSREW), 2013 IEEE International
Symposium on (pp. 269-274). IEEE. https://doi.org/10.1109/ISSREW.2013.6688905

Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the Econometric Society, 245-259.
https://doi.org/10.2307/1907187

Matias, R., Barbetta, P. A., Trivedi, K. S. and Freitas Filho, P. J. (2010). Accelerated degradation tests applied to
software aging experiments. IEEE Transactions on reliability, 59(1), 102-114.
https://doi.org/10.1109/TR.2009.2034292

Matias, R. and Paulo Filho, J. F. (2006). An experimental study on software aging and rejuvenation in web servers.
In Computer Software and Applications Conference, 2006. COMPSAC'06. 30th Annual International (vol. 1, pp. 189-
196). IEEE. https://doi.org/10.1109/COMPSAC.2006.25

Matias, R., Beicker, I., Leitão, B. and Maciel, P. R. M. (2010). Measuring software aging effects through OS kernel
instrumentation. In Software Aging and Rejuvenation (WoSAR), 2010 IEEE Second International Workshop on (pp. 1-
6). IEEE. https://doi.org/10.1109/WOSAR.2010.5722094

Matos, R., Araujo, J., Alves, V. and Maciel, P. (2012). Characterization of software aging effects in elastic storage
mechanisms for private clouds. In Software Reliability Engineering Workshops (ISSREW), 2012 IEEE 23rd
International Symposium on (pp. 293-298). IEEE. https://doi.org/10.1109/ISSREW.2012.82

Melo, M., Maciel, P., Araujo, J., Matos, R. and Araujo, C. (2013). Availability study on cloud computing
environments: Live migration as a rejuvenation mechanism. In Dependable Systems and Networks (DSN), 2013
43rd Annual IEEE/IFIP International Conference on (pp. 1-6). IEEE.

https://doi.org/10.1145/2090181.2090185
https://doi.org/10.1145/2539117
https://doi.org/10.1109/ISSRE.2010.24
https://doi.org/10.26729/jadi.v3i1.2441
https://doi.org/10.1109/ISSRE.1998.730892
https://doi.org/10.1109/ISSREW.2008.5355512
https://doi.org/10.1109/TR.2006.879609
https://doi.org/10.5381/jot.2009.8.1.c4
https://doi.org/10.1109/ISESE.2002.1166929
https://doi.org/10.1016/j.peva.2012.09.003
https://doi.org/10.1109/ISSREW.2013.6688905
https://doi.org/10.2307/1907187
https://doi.org/10.1109/TR.2009.2034292
https://doi.org/10.1109/COMPSAC.2006.25
https://doi.org/10.1109/WOSAR.2010.5722094
https://doi.org/10.1109/ISSREW.2012.82

Journal of Information Systems Engineering & Management, 3(2), 15

© 2018 by Author/s 13 / 13

Melo, M., Araujo, J., Matos, R., Menezes, J. and Maciel, P. (2013). Comparative analysis of migration-based
rejuvenation schedules on cloud availability. In Systems, Man, and Cybernetics (SMC), 2013 IEEE International
Conference on (pp. 4110-4115). IEEE. https://doi.org/10.1109/SMC.2013.701

Melo, M. D. (2014). Modelos de disponibilidade para nuvens privadas: Rejuvenescimento de software habilitado
por agendamento de migracao de vms.

Melo, C., Araujo, J., Alves, V. and Maciel, P. R. M. (2017). Investigation of Software Aging Effects on the
OpenStack Cloud Computing Platform. JSW, 12(2), 125-137.

Meng, H., Hei, X., Zhang, J., Liu, J. and Sui, L. (2016). Software aging and rejuvenation in a j2ee application server.
Quality and Reliability Engineering International, 32(1), 89-97. https://doi.org/10.1002/qre.1729

Mosberger, D. and Jin, T. (1998). httperf—a tool for measuring web server performance. ACM SIGMETRICS
Performance Evaluation Review, 26(3), 31-37. https://doi.org/10.1145/306225.306235

Parnas, D. L. (1994). Software aging. In Software Engineering, 1994. Proceedings. ICSE-16., 16th International Conference
on (pp. 279-287). IEEE. https://doi.org/10.1109/ICSE.1994.296790

Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall's tau. Journal of the American statistical
association, 63(324), 1379-1389. https://doi.org/10.1080/01621459.1968.10480934

Silva, L., Madeira, H. and Silva, J. G. (2006). Software Aging and Rejuvenation in a SOAP-based Server. In Network
Computing and Applications, 2006. NCA 2006. Fifth IEEE International Symposium on (pp. 56-65). IEEE.

Torquato, M., Araujo, J. and Maciel, P. (2015). Estudo experimental de envelhecimento de software em nuvens
kvm/opennebula: Live migration como mecanismo de suporte ao rejuvenescimento de software. In XIII
Workshop em Clouds e Aplicacoes in conjunction with 33rd Brazilian Symposium on Computer Networks and Distributed
Systems (SBRC2015). Vitoria, ES, Brazil: Universidade Federal do Espırito Santo (UFES) (pp. 1-14).
https://doi.org/10.23919/CISTI.2017.7975806

Torquato, M., Maciel, P., Araujo, J. and Umesh, I. M. (2017). An approach to investigate aging symptoms and
rejuvenation effectiveness on software systems. In Information Systems and Technologies (CISTI), 2017 12th Iberian
Conference on (pp. 1-6). IEEE.

Umesh, I. and Srinivasan, G. N. (2017). Dynamic software aging detection-based fault tolerant software
rejuvenation model for virtualized environment. In Proceedings of the International Conference on Data Engineering and
Communication Technology. Springer, pp. 779–787. https://doi.org/10.1007/978-981-10-1678-3_75

Umesh, I. M., Srinivasan, G. N. and Torquato, M. (2017). Software Aging Forecasting Using Time Series Model.
Indonesian Journal of Electrical Engineering and Computer Science, 7(3), 839-845.

Umesh, I. M., Srinivasan, G. N. and Torquato, M. (2017). Software Rejuvenation Model for Cloud Computing
Platform. International Journal of Applied Engineering Research, 12(19), 8332-8337.

Vaidyanathan, K. and Trivedi, K. S. (2001). Extended classification of software faults based on aging. In Fast
Abstract, Int. Symp. Software Reliability Eng., Hong Kong.

Valentim, N. A., Macedo, A. and Matias, R. (2016). A systematic mapping review of the first 20 years of software
aging and rejuvenation research. In Software Reliability Engineering Workshops (ISSREW), 2016 IEEE International
Symposium on (pp. 57-63). IEEE. https://doi.org/10.1109/ISSREW.2016.42

https://doi.org/10.1109/SMC.2013.701
https://doi.org/10.1002/qre.1729
https://doi.org/10.1145/306225.306235
https://doi.org/10.1109/ICSE.1994.296790
https://doi.org/10.1080/01621459.1968.10480934
https://doi.org/10.23919/CISTI.2017.7975806
https://doi.org/10.1007/978-981-10-1678-3_75
https://doi.org/10.1109/ISSREW.2016.42

	INTRODUCTION
	SOFTWARE AGING AND REJUVENATION
	SWARE METHODOLOGY
	Stress Phase
	Wait Phase
	Rejuvenation Phase

	CASE STUDY
	System Architecture
	Workload Selection
	Software Rejuvenation Strategy

	RESULTS AND ANALYSIS
	CPU and RAM Monitoring
	Web Server Metrics Results
	Numerical Analysis
	General Discussion

	RELATED WORK
	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES

