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ABSTRACT 
Reliability and availability are mandatory requirements for numerous applications. Technical apparatus to 
study system dependability is essential to support software deployment and maintenance. Software aging is 
a related issue in this context. Software aging is a cumulative process which leads systems with long-running 
execution to hangs or failures. Software rejuvenation is used to prevent software aging problems. Software 
rejuvenation actions comprise system reboot or application restart to bringing software to a stable fresh 
state. This paper proposes a methodology to conduct software aging and software rejuvenation experiments. 
The approach has three phases: (i) Stress Phase - stress environment with the accelerated workload to induce 
bugs activation; (ii) Wait Phase - stop workload submission to observe the system state after workload 
submission; (iii) Rejuvenation Phase - find the impacts caused by the software rejuvenation. We named our 
methodology as SWARE (Stress-Wait-Rejuvenation). To validate the SWARE methodology, we present a 
case study. This case study consists of an experiment of VM Live Migration as rejuvenation mechanism for 
VMM software aging. The considered testbed is a Private Cloud with OpenNebula and KVM 1.0. The 
obtained results show that VM live migration is useful as rejuvenation for VMM software aging. 
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INTRODUCTION 

High availability and reliability are crucial for different software systems. In Cloud Computing, for example, 
software reliability and availability stay as concerns for customers (CISCO, 2012; CDW, 2015; Kim, 2009). Previous 
works introduce software aging as a pertinent issue in this area (Araujo et al., 2011a; Araujo et al., 2011b; Matos et 
al., 2012; Torquato et al., 2015; Umesh and Srinivasan, 2017). 

The software aging phenomenon consists in a gradual increase in software failure rate or performance 
degradation during its execution (Parnas, 1994). These effects usually happen because of errors accumulation in 
software state. This accumulation can lead software to hangs and total failures (Grottke et al., 2008; Huang et al., 
1995). Systems with long-time of execution may suffer from software aging effects (Huang et al., 1995). On Cloud 
Computing systems, the VMM (Virtual Machine Monitor) is liable to suffer software aging, as presented in (Matos 
et al., 2012; Torquato et al., 2015).  

Software rejuvenation is the countermeasure to software aging. Software rejuvenation consists of a proactive 
technique to clean software aging effects by rolling it back to a stable status. Software rejuvenation usually lies on 
an application restart or a system reboot (Cotroneo et al., 2014). Previous works propose a schedule to submit 
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software rejuvenation actions (Melo et al., 2013a; Melo et al., 2013b) to minimize system downtime caused by these 
operations. Other techniques use genetic algorithms and time series forecasting to predict software aging behavior 
and support software rejuvenation actions (Umesh et al., 2017a; Umesh et al., 2017b). More details of software 
aging and rejuvenation are in Software Aging and Rejuvenation section. 

Due to characteristics of software aging, it is hard to determine its roots. Errors, memory leaks and other aging-
related symptoms are non-expected events (Torquato et al., 2015). A proper approach to deal with software aging 
and rejuvenation issues is to investigate and analyze them in an isolated environment. By running experiments and 
tests to understand software aging symptoms and rejuvenation effectiveness. 

To support this type of research, this paper presents a methodology to support software aging and rejuvenation 
experiments. The approach is named SWARE (Stress-WAit-REjuvenation). The SWARE approach has three 
phases. (A) Stress Phase, which aims to observe workload exposure impacts in the internal software state. (B) Wait 
Phase which observes software behavior after the stress workload submission. This phase seeks to highlight 
software aging effects in the system. As software aging is a cumulative process, its effects may remain even after 
workload exposure. If the software returns to a stable state without software rejuvenation action, there is no 
evidence of software aging symptoms. (C) Rejuvenation Phase, with the goal to perceive consequences of software 
rejuvenation action (Melo, 2014; Torquato et al., 2015). This phase highlights the effectiveness of software 
rejuvenation action to mitigate software aging effects observed in the Wait Phase.  

The phases adjustment depends on selected software for aging testing. The phases are sequential. The end of a 
phase triggers the start of next. The proposed approach does not comprise the detection of Time to Aging Related 
Failure (TTARF). SWARE Methodology section contains details about proposed approach. 

Case Study section has an experimental setup which uses the proposed approach. This experiment consists of 
an investigation of software aging and rejuvenation on OpenNebula/KVM 12 Private Cloud (Torquato et al., 
2015). In this case study, we investigate software aging symptoms in KVM 1.0 component using an accelerated 
workload. We also checked rejuvenation effectiveness through a VM Live Migration process. The obtained results 
are in the Results and Analysis section. From results, it is possible to understand system behavior during the three 
phases of the experiment. Rejuvenation Phase results show that VM Live Migration enables software rejuvenation 
of KVM software. We also present a numerical analysis of the results obtained from the Wait and Rejuvenation 
phases. These results show that the system may require more than 12 days to recover without software 
rejuvenation.  

Related Works section has the related works comparison, and Conclusions and Future Work section presents our 
conclusions and future works. This paper is an improvement and extension of our previous articles (Torquato et 
al., 2017) and (De Melo et al., 2017).  

SOFTWARE AGING AND REJUVENATION 

Software aging is the accumulation of aging-related bugs effects. Aging-related bugs often appear when the 
system reaches conditions (e.g., lack of computational resources) which are difficult to reproduce (Vaidyanathan 
and Trivedi, 2001). The consequences of bugs activation lead to software performance degradation (or its failure 
rate increases). Software aging can influence the system from hangs to total failures (Huang et al., 1995).  

A feasible way to determine software aging existence is to observe system monitoring reports to find anomalous 
behavior (Valentim et al., 2016; Cotroneo et al., 2014). The paper (Garg et al., 1998) presents a methodology based 
on SNMP distributed tool for monitoring OS resources on a LAN of UNIX machines to observe software aging 
existence.  

The paper (Huang et al., 1995) presents first definitions of software rejuvenation. We can define software aging 
as a proactive technique to avoid aging effects to reach critical levels. Software rejuvenation is also considered a 
cost-effective because it does not require knowledge about roots of aging effects (Cotroneo et al., 2014). The 
rejuvenation actions rely on restart an application to conduct it to a clean state, without aging effects accumulated. 
Some papers propose scheduling of software rejuvenation actions (Melo et al., 2013a; Melo et al., 2013b) to 
determine when to perform rejuvenation actions to maximize overall system availability.  

Experiments to measure and observe software aging symptoms may have a long duration. Some papers (Matos 
et al., 2012; Araujo et al., 2011a) proposes an investigation with accelerated experiments. Thus, it is possible to 
observe software internal state alterations in a shorter time.  

SWARE METHODOLOGY 

The experiment methodology is obtained from the papers (Torquato et al., 2017) and (De Melo et al., 2017). 
This methodology has two preliminary steps. First, the selection of software component to test. Second, the choice 
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of a specific workload to stress this component. For example, a specific workload for Web Server is a workload of 
connections high rate of requests. The workload exposure aims to induce the system to operate in different levels 
of usage, seeking to trigger aging-related bugs. It is essential to ensure that workload does not cause premature 
failures. And, the monitoring activity should not cause high system intrusion.  

After these preliminary steps, we can apply the proposed approach. As aforementioned, the SWARE 
methodology has three phases (Stress, Wait and Rejuvenation). The details of each are in next sections.  

Stress Phase 

This phase aims to stress the system with the selected workload. The stress workload leads to system internal 
state degradation. Monitoring reports of this phase should present an increase in software failure rate or a decrease 
in software performance. Figure 1 depicts the expected behavior of internal system state.  

The stress phase duration varies according to workload submitted to the system. Workload submission stops 
when resources usage or performance degradation reach a critical level. At this point, probably aging bugs already 
be activated as the system passes through different usage states.  

Wait Phase 

The primary goal of Wait phase is to observe software aging symptoms existence. Software aging effects remain 
in the system even without incoming workload. After Stress Phase, there are two possibilities: (i) system recovers 
from workload overhead and returns to a stable state; (ii) or system persists degraded. If the software returns to a 
stable state without rejuvenation action, there is no evidence of software aging existence. In that conditions, the 
workload submitted to the system only causes overhead in resources usage. 

 
Figure 1. Stress phase expected behavior 

 
Figure 2. Software aging evidence 

 
Figure 3. Absence of software aging evidence 
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Figure 2 presents a possible behavior of system state which highlights software aging evidence. Figure 3 shows 
a likely behavior of the system state which does not highlight evidence of software aging. 

The duration of Wait phase should be long enough to ensure that system persists in a degraded state. Usually, 
to achieve this goal, Wait Phase should during approximately the same time of Stress phase.  

Rejuvenation Phase 

A requisite for Rejuvenation Phase start is the software rejuvenation action selection. This selection depends 
on the component stressed in the previous phase. Software rejuvenation usually relies on restart application or 
system reboot, but in some situations, other types of rejuvenation may also be valid.  

Rejuvenation phase starts with the software rejuvenation action submission. The primary goal of this phase is 
to observe impacts of rejuvenation action on internal system state. Figures 4 and 5 present variations in software 
state when software rejuvenation is useful or not. 

Figure 6 presents a flowchart with a summary of proposed approach. 

 
Figure 4. Software rejuvenation is not effective to counteract software aging detected 

 
Figure 5. Software rejuvenation is effective 

 
Figure 6. Proposed Approach 
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CASE STUDY 

System Architecture 

The considered Cloud Computing testbed uses OpenNebula VIM 3.6 and VMM KVM 1.0. The environment 
has four Physical Machines (PMs) and one Virtual Machine (VM). The VM runs an Apache Web Server with a 
simple HTML page on Ubuntu Server 12.04 operating system. FrontEnd Machine is responsible for managing 
Cloud Environment. Main Node is the PM which executes VM. Standby Node is a spare host to receive VM Live 
Migration purposes. Stresser is an external machine which is responsible for sending workload and monitor Cloud 
system. All components are in a Private Network. The Table 1 has the Physical Machine configurations. Figure 
7 depicts the testbed architecture. 

Workload Selection 

The selected workload to stress KVM is a sequential operation of mounting and unmounting 15 Virtual Disks 
(of 1GB) on VM (Matos et al., 2012). The pseudo-algorithm of this workload is in Algorithm 1.  

  
Algorithm 1 – Software aging workload 
loop 
   while AttachedDisks < 15 do 
      Mount(Disk1GB); 
      Wait(15 seconds); 
   end while 
   while AttachedDisks >= 1 do 
      Unmount(Disk1GB); 
      Wait(15 seconds); 
   end while 
end loop 

 
 Besides the mount and unmount workload, we decide to add a workload to Apache Web Server. We want to 

observe Web Server performance impacts during the experiment. To select the workload, we conducted a capacity 
test considering the same testbed used in software aging experiment. The capacity test uses the httperf tool with 
Autobench (Mosberger and Jin, 1998). This benchmark tool sends requests to the Web Server and collects results 
as response time (in milliseconds) and the number of errors observed. In httperf, the response time is the time 
between sending the first byte of a request and receiving the first byte of reply. And, the amount of errors takes 
account of errors such as connection timeout, socket timeout and connection refused. The rate of requests is  

Observing these results, we selected the workload of 2000 requests per second. The results show that the server 
can handle this rate of requests with low response time and errors. Figure 10 shows a summary of the selected 
workload to software aging and rejuvenation experiments.  

Table 1. Physical Machine Configurations 
Name Description Processor RAM Software 

FrontEnd Cloud Manager Intel Core i3 – 3.10 GHz 4GB Ubuntu Server 12.04 (kernel 3.2.0-23), OpenNebula 
3.6 

Main Node, Standby Node Execution Nodes Intel Core i3 – 3.10 GHz 4GB Ubuntu Server 12.04 (kernel 3.2.0-23), KVM 1.0 

Stresser Cloud Monitor and 
Stresser 

Intel Core 2 Quad – 2.66 
GHz 4GB Ubuntu Desktop 12.10 (kernel 3.5.0-36), Autobench 

and monitoring tools 
 

 
Figure 7. Testbed architecture 
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Software Rejuvenation Strategy 

OpenNebula/KVM Clouds allow system managers to perform VM Live Migration. VM Live Migration consists 
in remapping a VM from a PM to another with reduced operation downtime (Clark et al., 2005). Previous studies 
(Machida et al., 2013; Melo et al., 2013a) shows VM Live Migration as a support mechanism to VMM software 
rejuvenation. Figure 11 presents software rejuvenation strategy used in the experiments. 

 
Figure 8. Capacity Test Results – Response Time (ms) 

 
Figure 9. Capacity Test Results – Amount of Errors observed 

 
Figure 10. Selected Workload 

 
Figure 11. Software rejuvenation strategy 
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On Stress Phase, the system is receiving workload to stress VMM software. In this early stage, the system does 
not present software aging effects yet. The Standby Node VMM is active but not receiving any system requests. 
Wait Phase starts when system status suffers from software aging. As Main Node VMM manages VM, software 
aging effects will affect VM performance too. VM Live Migration triggers the Rejuvenation Phase.  

When VM arrives in the Standby Node, it can leverage a fresh state VMM. Thus, previous VMM software aging 
effects will not affect VM performance or failure rate. Finally, the Main Node restart removes software aging status.  

System Monitoring reports support phases duration decision. Based on principles presented in SWARE 
Methodology section, Table 2 shows each phase period for our experiment. The entire process during 13 consecutive 
days.  

RESULTS AND ANALYSIS 

CPU and RAM Monitoring 

The Figures 10 and 11 present results of system resources monitoring. To improve results visualization, the 
graphics present monitoring data from both PMs: Main Node and Standby Node. Stress Phase and Wait Phase in 
these plots are the results from Main Node monitoring and the Rejuvenation Phase is the result from Standby Node 
monitoring (which receives VM Live Migration). All plots contain limits of Stress Phase, Wait Phase and 
Rejuvenation Phase. The monitoring intervals are 30 seconds.  

The CPU utilization results contain four metrics: USER - CPU utilization percentage for User-level processes; 
SYS - CPU usage for Kernel-level processes; IO - Waiting for In/Out operations; IDLE - CPU idle percentage, 
excluding time waiting for In/Out. 

Figure 12 presents results of CPU utilization. In the Stress Phase is possible to observe significant IO requests 
rate for CPU. This behavior occurs because PM has to communicate with VM during mount disk workload and 
also has to redirect income network traffic to VM. In the Wait Phase, CPU utilization tends to return to normal 
levels. But, SYS requests rate remains at higher levels than average (comparing to Rejuvenation Phase). As KVM 
resides on Linux Kernel (which is responsible for SYS requests), CPU SYS requests rate may return to normal 
state after a cleanup action. Rejuvenation Phase presents SYS requests rate returning to normal levels.  

Figure 13 depicts results of RAM monitoring. Results for Wait Phase reveals that RAM consumption persists 
at high levels. In this phase, PM continues to receive web requests from the network. But, Rejuvenation Phase 
results presents a decreasing usage of RAM resources. 

Extra consumption of resource is necessary when a PM receives a VM migration. Thus, there is a peak of RAM 
usage at the beginning of Rejuvenation Phase. After this, RAM usage results show a decreasing behavior. 

Table 2. Experiment Phases Duration 
Phase Duration 1 2 3 4 5 6 7 8 9 10 11 12 13 
Stress Phase 6d              
Wait Phase 5d              
Rej. Phase 2d              
Disks Mount and Unmount 6d              
Web Requests 13d              
 

 
Figure 12. Results of CPU utilization results 
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Web Server Metrics Results 

VM depends on VMM to interact with PM resources. Then, VMM state affects the applications and services 
which run in VM. Thus, applications and services monitoring may present possible effects of software aging. The 
results in this section show monitoring data collected from benchmark tool of Web Server.  

Figures 14 and 15 present results of Web Server monitoring. As expected, Web Server suffers effects of high 
workload exposure in Stress Phase. Response time and Amount of Errors were increasing during this phase. Wait 
Phase results show Errors and Response Time remaining at high levels. Rejuvenation phase brings the system to 
a stable state. 

Numerical Analysis 

In this section, we show the results of a brief numerical analysis of obtained results. We selected the Response 
Time results of Web Server (Figure 14) for this analysis. First, we compute the details of the response time of the 
Web Server with software aging effects (Wait Phase results) and without software aging (Rejuvenation Phase). The 
summary of these results is in Table 3. This analysis aims to analyze the effects of software aging and rejuvenation 
in the response time of the Web Server. Therefore, we ignored the results of Stress Phase. It is important to 

 
Figure 13. Results of RAM usage 

 
Figure 14. Results of response time(ms) of Web server 

 
Figure 15. Errors of Web Server 



Journal of Information Systems Engineering & Management, 3(2), 15 

© 2018 by Author/s  9 / 13 

highlight that the Stress Phase goal is only to accelerate software aging bugs activation. The obtained results reveal 
that the response time in a Web Server with software aging effects surpass the response time in a Web Server 
without software aging effects in more than 860%. 

We also perform a trend analysis in the results of Wait Phase. The goal of the trend analysis is to verify the 
existence of a trend in the Web Server response time. We used the Mann-Kendall Test. The Mann-Kendall test is 
usually applied in software aging tests (Grottke et al., 2006; Garg et al., 1998; Machida et al., 2013). The Mann-
Kendall analysis (Mann, 1945) checks the null hypothesis, H0, which shows that there is no trend in the data during 
the time, against the alternative hypothesis, H1, which indicates an upward or a monotonic downward trend in the 
data. As software aging is a cumulative process, the Mann-Kendall test can be used to reveal patterns of software 
internal state degradation. Among Mann-Kendall tests results, we have the Z-value which is used to accept or 
reject the null hypothesis. Z-value close to zero suggests no trend in the data; a high absolute value indicates the 
existence of a trend. Figure 16 shows the results and trend of Web Server response time during the Wait Phase. 

Table 4 presents the results of statistical analysis made in the data. The results show Mann-Kendall Z-value is 
lower than zero. Therefore, it is possible to reject the null hypothesis (no trend in the data). The negative value 
indicates a monotonic downward trend in the data. To calculate the slope of the monotonic trend, we used the 
Sen method (Sen, 1968). Table 4 also presents the estimated slope and the 95% confidence interval for this slope. 

These results show that the downward trend obeys the following function: y = -0.0009x + 939.6568. We 
compute the time to system returns to normal operation. To conduct this calculation, we consider the Web Server 
Response Time in the Rejuvenation Phase, which is of 1.063 milliseconds. This calculation shows that the time to 
Web Server return to normal operation (with Response Time equals to 1.063 ms) is about 12 days. The Figure 17 
below shows the results comparing the Wait Phase and Rejuvenation Phase.  

General Discussion 

Observing CPU results of Stress Phase in Figure 10, it is possible to notice a similar behavior as presented in 
(Matos et al., 2012). Still, in Stress Phase, RAM results (Figure 11) and Web Server response time results (Figure 
12) show similar results as on (Grottke et al., 2006).  

As software aging causes internal software state degradation, its consequences may persist on software state 
until software rejuvenation (or failure) occurs (as explained in SWARE Methodology section). Results of Wait Phase 
shows a degraded software state. The numerical analysis reveals that, without rejuvenation actions, the system only 
achieves a normal operation state (with Response Time in 1.063 ms) after 12 days. It is important to highlight that 
this estimative considers that the workload is constant and of 2000 requests per second. 

Table 3. Web Server Response Time Results (ms) Summary 
Phase Min. 1st Qu.  Median Mean 3rd Qu. Max. 

Wait Phase 0.0 848.5 934.9 917.9 1004.8 2888.6 
Rejuvenation Phase 0.0 0.5 0.5 1.063 0.600 2982.9 

 

 
Figure 16. Web Server Response Time of Wait Phase with trend analysis 

Table 4. Web Server Response Time Trend Analysis 
Parameter Value 
Mann-Kendall Z-Value -2.3 
Estimated slope -0.0009 ms/s 
95% confidence interval for the slope (-0.0001 ms/s, -0.0016 ms/s)  
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Results of Rejuvenation Phase emphasize software aging evidence on KVM software. After VM migration, VM 
arrives on a fresh state KVM software. As VM migration suffices to software internal state degradation removal, 
it is possible to corroborate that VM migration is a useful technique to KVM software rejuvenation.  

RELATED WORK 

The authors of (Matias et al., 2010) present an approach to apply accelerated degradation tests on software 
aging experiments. The paper uses a particular aging factor to control the aging effects on the experimental setup. 
This aging factor is obtained by sensitivity analyses based on a statistical design of experiment. We also applied 
accelerated tests on the Stress Phase of our experiment. Different from the authors of the mentioned paper, the 
SWARE approach also comprises software rejuvenation. 

The paper (Li et al., 2002) presents a methodology to estimate software aging effects by using time-series 
analyses. The authors analyzed the behavior of a Web Server under a varying workload. The primary goal is to 
detect and estimate resource exhaustion time due to software aging effects. This paper helps us to define 
technologies used in our case study. As presented in the mentioned paper, we also used a Web Server and the 
httperf tool in our experimental setup. The paper also presents an extensive statistical analysis used in the resources 
estimation. Different from this paper we used a generic workload to induce software aging bugs activation. The 
SWARE methodology is simpler to apply as it does not require statistical expertise. 

The paper (Grottke et al., 2006) provide valuable inputs on how to perform software aging experiments on a 
Web Server. The main goal of the authors is to conduct a software aging analysis of a Web Server. Different from 
the results presented in the mentioned paper, we also include the software rejuvenation effectiveness test on 
SWARE approach.  

The paper (Matias et al., 2006) offers a comprehensive approach to software aging and rejuvenation 
experiments on a Web Server. Besides the techniques to observe software aging problems, the authors 
implemented a rejuvenation agent to mitigate aging effects in the Web Server. The presented results show 
substantial reduction of software aging when the rejuvenation agent is integrated into the environment. The 
proposed rejuvenation agent uses a predefined interval to submit software rejuvenation in the environment. 
Different from this paper, the Wait Phase of SWARE approach allows the system manager to decide when to 
perform rejuvenation action. Therefore, it is possible to reduce overhead caused by recurrent software rejuvenation 
actions. Nevertheless, the mentioned paper provides helpful insights into the SWARE methodology.  

Cotroneo et al. (Cotroneo et al., 2010) provide a broad investigation of software aging causes in Linux 
Operating Systems. The adopted approach aims to trace kernel activities to observe possible software aging effects. 
The results of the paper show that the filesystem operation causes significant contribution in software aging 
indicators. This result may explain the behavior of Stress Phase of our experiment when the VM filesystem is 
dealing with software aging workload. Matias et al. (Matias et al., 2010) also present a methodology to measure 
software aging effects through OS kernel observation and instrumentation. Instead of showing specific causes of 
software aging, the SWARE approach aims to provide an overview of system status during and after software 
aging effects. 

 
Figure 17. Comparison of trend analysis and Wait and Rejuvenation Phases results 
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The paper (Silva et al., 2006) shows a study of software aging and rejuvenation in a SOAP-based Servers. The 
authors ran a variety of scenarios with different configurations. The adopted approach is focused on studies of 
software aging and rejuvenation in SOAP-based servers. The SWARE approach aims to be more generic and 
flexible to other types of software. 

The paper (Melo et al., 2017) presents an investigation of software aging on OpenStack Cloud Computing 
Platform. The authors used a testbed which runs OpenStack, Apache and MySQL database. The presented results 
show that the MySQL processes present software aging issues. The authors also used a particular workload to 
stress the system and present trend analysis for resources consumption. The considered workload consists of 
sequential operations of start and terminates VM instances. We also adopted a sequential workload in our case 
study. However, the SWARE approach also comprises the observation of software aging problems and software 
rejuvenation effectiveness. 

The paper (Meng et al., 2016) presents a comprehensive approach to investigating software aging and 
rejuvenation in a J2EE Application Server. The authors used a hierarchical approach to submit software 
rejuvenation in the system. The adopted methodology has two main steps: (i) software aging tests and (ii) 
application of the hierarchical software rejuvenation mechanism. Our experiments also comprise software aging 
and rejuvenation phases. But, we also include the Wait Phase to highlight effects caused by software aging bugs 
activation.  

CONCLUSIONS AND FUTURE WORK 

This paper presented the SWARE methodology. The SWARE is a comprehensive approach to investigating 
aging symptoms and rejuvenation effectiveness on software systems. The SWARE approach has three phases 
aiming to highlight software aging effects symptoms and rejuvenation effectiveness. (I) Stress Phase, when software 
aging workload reaches system to stress investigated component. (II) Wait Phase, to perceive indicators of software 
aging. (III) Rejuvenation Phase, which aims to detect rejuvenation action effectiveness on the environment. 

Case Study section presents a case study to validate SWARE approach. This case study aims to investigate KVM 
software aging and also to study VM Live Migration effectiveness as a software rejuvenation action. The 
investigation shows results of software aging symptoms on KVM. Wait Phase highlights software aging effects on 
resources consumption and quality of service of a Web Server. Finally, after VM Live Migration it is possible to 
notice that degradation effects clean-up. The numerical analysis shows the relevance of the VM Live Migration as 
a rejuvenation mechanism. Using mathematical approximations, we conclude that the system may take more than 
12 days to recover from aging effects. The VM Live Migration usually takes less than 10 seconds. Therefore, the 
system can improve service quality by applying this technique. 

The major contribution of this paper is a generic methodology to conduct software aging and rejuvenation 
effectiveness investigation. The case study proposed consists of a Cloud Computing environment. But, the 
methodology phases guidelines can be reproduced in other types of software systems. This paper also presents (as 
a case study) a software aging and rejuvenation study on VM Live Migration as software rejuvenation for KVM 
hypervisor. The results of proposed case study show practical results of VM live migration effectiveness as 
rejuvenation for KVM.  

The approach does not quantify software aging effects. With the lack of statistical techniques on data, it is hard 
to define software aging failure time and a proper rejuvenation schedule. The approach may require a substantial 
time to produce expected results. The Stress phase may not produce expected results on software aging bugs 
activation. 

Future research directions aim to investigate further SWARE approach application on different scenarios as 
Software Defined Networking, Network Function Virtualization, Virtualized Containers and Fog Computing. 
Other research lines seek to improve approach adding multiple component software aging investigations.  
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