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Abstract

Background: Electronic health records (EHRs) contain patients’health information over time, including possible early indicators
of disease. However, the increasing amount of data hinders clinicians from using them. There is accumulating evidence suggesting
that machine learning (ML) and deep learning (DL) can assist clinicians in analyzing these large-scale EHRs, as algorithms thrive
on high volumes of data. Although ML has become well developed, studies mainly focus on engineering but lack medical
outcomes.

Objective: This study aims for a scoping review of the evidence on how the use of ML on longitudinal EHRs can support the
early detection and prevention of disease. The medical insights and clinical benefits that have been generated were investigated
by reviewing applications in a variety of diseases.

Methods: This study was conducted according to the PRISMA (Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) guidelines. A literature search was performed in 2022 in collaboration with a medical information specialist in
the following databases: PubMed, Embase, Web of Science Core Collection (Clarivate Analytics), and IEEE Xplore Digital
Library and computer science bibliography. Studies were eligible when longitudinal EHRs were used that aimed for the early
detection of disease via ML in a prevention context. Studies with a technical focus or using imaging or hospital admission data
were beyond the scope of this review. Study screening and selection and data extraction were performed independently by 2
researchers.

Results: In total, 20 studies were included, mainly published between 2018 and 2022. They showed that a variety of diseases
could be detected or predicted, particularly diabetes; kidney diseases; diseases of the circulatory system; and mental, behavioral,
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and neurodevelopmental disorders. Demographics, symptoms, procedures, laboratory test results, diagnoses, medications, and
BMI were frequently used EHR data in basic recurrent neural network or long short-term memory techniques. By developing
and comparing ML and DL models, medical insights such as a high diagnostic performance, an earlier detection, the most important
predictors, and additional health indicators were obtained. A clinical benefit that has been evaluated positively was preliminary
screening. If these models are applied in practice, patients might also benefit from personalized health care and prevention, with
practical benefits such as workload reduction and policy insights.

Conclusions: Longitudinal EHRs proved to be helpful for support in health care. Current ML models on EHRs can support the
detection of diseases in terms of accuracy and offer preliminary screening benefits. Regarding the prevention of diseases, ML
and specifically DL models can accurately predict or detect diseases earlier than current clinical diagnoses. Adding personally
responsible factors allows targeted prevention interventions. While ML models based on textual EHRs are still in the developmental
stage, they have high potential to support clinicians and the health care system and improve patient outcomes.

(J Med Internet Res 2024;26:e48320) doi: 10.2196/48320
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Introduction

Rationale
Digitizing meaningful health information has been proven to
contribute to diagnostics. Electronic health records (EHRs) are
a digital repository of patient data and contain retrospective,
current, and prospective information supporting health care [1].
EHRs contain a wealth of clinical information about early
symptoms of a disease and registries of medical treatments [2].
These can be textual or imaging data and include both
unstructured clinical notes and structured, coded data. One
important aspect of textual EHRs is that they may include risk
and preventive factors and early signs before a disease manifests.
Especially for patients with multiple visits, many possible
indicators are gathered in EHRs, resulting in possible early
indications of disease. Therefore, for a good risk assessment,
clinicians need the patient’s health information, physical
examinations, laboratory test results, and history [3] available
in EHRs.

In the past 15 years, an explosion in the volume of data
registered in EHR systems has occurred [4]. In 2012, the yearly
increase in the volume of stored data was up to 150% for
hospitals [5]. Not only the number of records continues to
increase over time, but EHRs are also quite extensive because
of large free texts [6]. Even though the completeness and
correctness of EHRs have been found to be at a high level [7],
the usability during medical visits lags behind due to this rising
volume and variety of EHR data [8]. Consequently, it has even
become an experienced usability issue for clinicians to review
clinical results and health information from the past [9]. This
is quite problematic as some clinicians spend, on average, 32.1%
of their time on EHRs reviewing medical care and notes from
the past [10]. The increasing EHR workload causes exhaustion
and burnout among clinicians [11], negatively affecting the
health care quality. This can result in diagnostic errors (missed,
delayed, or incorrect diagnoses) because of missed signs [12]
registered in the past. In 67.4% of the cases, missing the chief
presenting symptoms in EHRs was the reason for missed
diagnoses. Overall, meaningful health records have the potential
to support risk assessment and early diagnosis, but the increasing

amount of data hinder clinicians from using them to their full
potential.

It is currently known that supportive tools can simplify complex
diagnostic tasks and reduce potential diagnostic errors [13].
There is accumulating evidence suggesting that machine learning
(ML) can assist clinicians in analyzing large-scale EHRs as they
thrive on high volumes of data. ML is able to fit models
specifically adapted to patterns in the data and, compared to
traditional statistics, is able to handle multidimensional data
[14]. Deep learning (DL) is a subdomain of ML that uses neural
networks with multiple (hidden) layers, incorporating complex
interactions between variables [15]. Examples of well-developed
ML models are based on imaging data for disease detection
[16,17] and textual EHRs of hospitalization or intensive care
data for predicting disease progression or therapy success [18].
One of the most promising aspects of DL in the context of EHRs
containing historical and present clinical data is the ability to
incorporate temporality into the model, that is, to base possible
risk assessments on hidden patterns over time in clinical
parameters. Indeed, DL models have also proved to be more
effective by incorporating temporal information (ie,
longitudinally processed) rather than cross-sectional information
only [19]. Although the techniques of many ML (including DL)
models have proved to be effective on EHRs, their focus is often
on the engineering of architectures and frameworks [20], but
they lack medical outcomes.

Objectives
It is a loss of information if ML developments remain unknown
in health care because of the technical perspective of most
authors. Especially given that artificial intelligence (AI) is a
black box, it is important to clarify the clinical benefits and
additional medical insights that can be achieved through these
techniques. Therefore, the aim of this review was to perform a
scoping review of the evidence on how the use of ML on
longitudinal EHRs can support the early detection and
prevention of diseases. A preliminary search was conducted,
and no current or underway systematic or scoping reviews on
the topic were identified. Only 1 review on longitudinal EHRs
has been conducted [2], but it focused on methodologies. This
study will contribute to what is already known by scoping the
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substantive medical insights that ML models yield. Given the
aim of this study, the following research questions were
addressed:

1. Which diseases have been detected in longitudinal EHRs
using ML techniques?

2. What EHR data have been used by ML methods for the
early detection and prevention of diseases?

3. What medical insights are generated by developing and
using ML models on longitudinal EHRs?

4. What clinical benefits may be reached through the
application of ML models on longitudinal EHRs?

Methods

The conduct and reporting of this scoping review adhere to the
PRISMA-ScR (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses extension for Scoping Reviews)
statement [21]. A protocol has been registered in the Open
Science Framework (DOI: NY2TE).

Eligibility Criteria
Articles were included if they reported on early detection for
timely prevention of diseases by using ML on longitudinal
EHRs; the full description of eligible participants, concept,
context, and types of sources can be found in the protocol.
Overall, studies were screened according to several criteria.

Focus
Studies must have a clear focus on health care instead of a
technical focus (eg, the article must include disease-specific
information and interpretation, preferably executed and written
from a health care perspective, and reflect on health or related
care outcomes). Studies with a dominant technical focus or an
engineering challenge or those using non–real-world data were
assumed to be ineligible for this review.

Purpose
ML (including DL) should be aimed at predicting, detecting,
or contributing to the risk assessment of diseases. Models aiming
for data extraction, clustering, or patient selection for trials did
not fit this concept. The purpose also affects the technique used.

Outcome
The prediction target of ML must be (the onset of) a disease or
a medical event. By using the International Classification of
Diseases, 11th Revision [22], we ensured that the primary
outcomes were a disease or related medical event (ie, the cause
of morbidity or mortality). Thus, studies that predicted disease
severity once diagnosed, success of treatment, adverse drug
reactions, phenotypes, or events that were not the cause of
morbidity or mortality and did not focus on timely prevention
were beyond the scope of this research. If the outcome was
mortality, these articles were excluded because it is always a
consequence of a disease or medical event.

Essential Elements of ML
Studies must incorporate the essential elements of ML, such as
training, testing, or validation steps. DL was assumed as a
subdomain within ML and, therefore, was included as well.

Data
According to the broadest definition of an EHR [1], data were
assumed as EHR data if these contained information supporting
continuing, efficient, and quality integrated health care or
describing the health status of a patient regardless of the
collecting database. Studies must use manually entered EHR
data, including textual and numeric values. Both structured
(numeric or coded) and unstructured (clinical notes) data were
accepted as eligible EHR data. EHRs with solely imaging data
(such as x-rays or electrocardiograms) were beyond the scope
of this review. EHRs from animals were excluded.

Longitudinal
Studies must use EHRs over time registered at multiple visits
(before registering a disease or medical event).

Context
Studies were included if they were conducted in the context of
disease prevention. Optimal prevention in health care settings
can be reached when participants at risk or signs of a disease
are detected as early as possible, and therefore, these studies
were eligible in the context of secondary prevention. Secondary
prevention emphasizes early disease detection in subclinical
forms and seeks to prevent the onset of illness [23]. Studies
conducted using data gathered in intensive care settings during
a hospital admission or data gathered at the emergency
department cannot be viewed in the context of disease
prevention because only tertiary preventive measures can be
taken to reduce the effects or severity of the established disease
as it is too late to influence the onset of disease.

Sample Size
Because ML is data driven (instead of conventional models that
are hypothesis driven), only predictions based on >1000
participants in total were considered eligible. This threshold is
based on theory (eg, calculations for multivariable predictions
of binary outcomes [24]) and practice (eg, the range of sample
sizes for disease prediction models on EHRs seen in the
literature).

Study Design
Only study designs with clinical, real-world data were
considered. If secondary research, such as other reviews, met
the aforementioned criteria, the reference list was considered
depending on the research question. Conference papers were
also considered because of the high quality of evidence in
computer science.

Search
After several preliminary searches, 5 bibliographic databases
(PubMed, Embase, Web of Science Core Collection [Clarivate
Analytics], IEEE Xplore Digital Library, and computer science
bibliography) were searched for relevant literature from
inception to April 28, 2022. Searches were devised in
collaboration with a medical information specialist (KAZ). The
following search terms, including synonyms, closely related
words, and keywords, were used as index terms or free-text
words: “neural network,” “electronic medical record,” and
“prediction.” We used only search terms capturing specific ML
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techniques that are able to predict or classify. The search strategy
was adapted for each included database or information source.
The searches contained no methodological search filter or date
or language restrictions that would limit results to specific study
designs, dates, or languages. We searched computer science
bibliography for conference proceedings and hand searched
meeting abstracts. Duplicate articles were excluded using the
R package ASYSD (R Foundation for Statistical Computing),
an automated deduplication tool [25], followed by manual
deduplication in EndNote (version X20.0.3; Clarivate Analytics)
by the medical information specialist (KAZ). The full search
strategy used for each database is detailed in Multimedia
Appendix 1.

Study Selection
Following the search, all identified citations were collated and
uploaded into Rayyan (Rayyan Systems Inc) [26] and EndNote
(version X7.8). In total, 2 reviewers (LS and FCB)
independently screened all potentially relevant titles and
abstracts for eligibility. If necessary, the full-text article was
checked against the eligibility criteria. Differences in judgment
were resolved through a consensus procedure. The full texts of
the selected articles were obtained for further review. As the
aim was not to search for “the best available” evidence but to
identify and perform a scoping review of all evidence, a critical
appraisal was not systematically carried out.

Data Extraction
Data were extracted from the papers included in the scoping
review by 2 independent reviewers (LS and FCB) using a data
extraction form developed in Microsoft Excel (Microsoft Corp).
This form was composed based on full-text findings relevant
to the research question and was discussed by the research team.
The data extraction sheet captured details about study
characteristics, health care discipline, generated medical insights,
and clinical benefits for health care and the way EHRs were
processed temporally. Multimedia Appendix 2 provides the list
and definitions of all data items. This form was piloted using
the first 5 articles and was revised and slightly adjusted during
the process of extracting data. The extraction of ML techniques

was modified to include the extraction of all techniques that
were internally compared by appointing the central model and
the comparison. Any disagreements between the reviewers were
resolved through discussion with additional reviewers. Authors
were contacted to request missing or additional data where
required.

Synthesis of Results
Extracted data were synthesized into results by frequency counts
of concepts and qualitative narratives. Study characteristics,
detected diseases, and EHR variables were listed in tabular
form. The content of these tables was sorted by disease outcomes
according to the International Classification of Diseases, 11th
Revision disease categories from the World Health Organization.
For data concerning medical insights and clinical benefits, a
qualitative content analysis was carried out according to the
guidance for scoping review knowledge syntheses [27,28]. After
each study’s key findings were extracted, these were classified
into concepts (1-6) and described using a narrative summary.
We decided to describe both similarities and exceptions of the
generated results and potential impact.

Results

Selection of Evidence
The literature search generated a total of 895 references. After
removing duplicates of references that were selected from >1
database, 483 (54%) of the references remained. By screening
titles and abstracts, 426 (88.2%) of the articles were excluded.
Of the remaining 57 articles, 2 (4%) could not be retrieved
because they contained unpublished work. In the second phase,
55 full texts were reviewed for eligibility, and ultimately, 20
(36%) articles were included. Reports were mostly excluded
due to wrong data, a technical focus, the absence of a
longitudinal aspect, or models based on N<1000. No additional
studies were found by checking reference lists. After the final
screening, most included articles (18/20, 90%) were found in
PubMed. The flowchart of the search and selection process is
presented in Figure 1.
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Figure 1. Flowchart of study selection. ML: machine learning. DBLP: DataBase systems and Logic Programming.

Characteristics of the Included Studies
Of the 20 included articles [29-48], 19 (95%) were published
between 2018 and 2022, and 1 (5%) was published in 2016.
The aim of these studies to develop an ML or DL model and
examine whether it was able to detect the disease of interest in
longitudinal EHRs. Detected diseases or related medical events
were hepatocellular carcinoma [29], type 2 diabetes or
prediabetes mellitus [30,31], mental health conditions [32],
dementia [33,36], cognitive impairment [34], psychosis [35],

heart failure [37], cardiac dysrhythmia [38], cardiovascular and
cerebrovascular events [39], cardiovascular disease [40], knee
osteoarthritis [41], kidney function decline [42,43], extreme
preterm birth [44], opioid overdose [45], and suicide attempts
[46]. One study proposed a health index [47] based on the
prediction of 3 important health events, and another study
predicted future disease in the next hospital visit [48]. Sample
sizes ranged from thousands to millions. In total, 10% (2/20)
of the studies used an external validation data set [35,39]. Table
1 shows the included studies and the detected diseases.
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Table 1. Overview of the included studies and detected diseases.

Sample size, NAim of the studyDisease or medical
event

Study, year

Neoplasms

48,151To examine whether deep learning recurrent neural network models that use raw

longitudinal data extracted directly from EHRsa outperform conventional regres-
sion models in predicting the risk of developing hepatocellular carcinoma

Hepatocellular carcino-
ma

Ioannou et al [29],
2020

Endocrine, nutritional, or metabolic diseases (diabetes)

18,844To identify patients without diabetes that are at a high risk of HbA1c elevationPrediabetes—HbA1c
b

elevation

Alhassan et al [30],
2021

9947To propose a new prognostic approach for type 2 diabetes mellitus given an EHR
and without using the current invasive techniques that are related to the disease

Type 2 diabetes melli-
tus

Pimentel et al [31],
2018

Mental, behavioral, and neurodevelopmental disorders

35,451To evaluate the utility of machine learning models and longitudinal EHR data to
predict the likelihood of developing mental health conditions following the first
diagnosis of mild traumatic brain injury

Mental health condi-
tions (anxiety, depres-
sion, and adjustment
disorder)

Dabek et al [32],
2022

93,120To detect existing dementia before any evidence that the GPc had done so, that
is, before they had started recording memory loss symptoms or initiating the
process of dementia diagnosis

DementiaFord et al [33],
2019

3265To predict the progression from cognitively unimpaired to mild cognitive impair-
ment and also analyze the potential for patient clustering using routinely collected
EHR data

Mild cognitive impair-
ment

Fouladvand et al
[34], 2019

102,030 (train-
ing)+43,690

To develop and validate an innovative risk prediction model (DETECTd) to detect
individuals at risk of developing a first episode of psychosis through EHRs that
contain data from both primary and secondary care

The first episode of
psychosis

Raket et al [35],
2020

(external valida-
tion)

11,166To identify cases of undiagnosed dementia by developing and validating a weakly
supervised machine learning approach that incorporated the analysis of both
structured and unstructured EHR data

DementiaShao et al [36],
2019

Diseases of the circulatory system

32,787To explore whether the use of deep learning to model temporal relations among
events in EHRs would improve model performance in predicting initial diagnosis
of heart failure compared to conventional methods that ignore temporality

Heart failureChoi et al [37],
2016

11,055To predict cardiac dysrhythmias using EHR data for earlier diagnosis and treatment
of the condition, thus improving overall cardiovascular outcomes

Cardiac dysrhythmiaGuo et al [38],
2021

74,535 (train-
ing)+59,738
(validation)

To develop and compare machine learning models predicting high-risk vascular
diseases for patients with hypertension so that they can manage their blood pressure
based on their risk level

Cardiovascular and
cerebrovascular
events

Park et al [39],
2019

109,490To apply machine learning and deep learning models to 10-year cardiovascular
event prediction by using longitudinal EHRs and genetic data

Cardiovascular dis-
ease

Zhao et al [40],
2019

Diseases of the musculoskeletal system or connective tissue

1,201,058To develop a deep learning model (Deep-KOAe) that can predict the risk of knee
osteoarthritis within the next year by using non–image-based electronic medical
record data from the previous 3 years

Knee osteoarthritisNingrum et al [41],
2021

Diseases of the genitourinary system

871 (data set 1);
498 (data set 2)

To examine the ability of a prognostic test (KidneyIntelX) that uses machine
learning algorithms to predict rapid kidney function decline and kidney outcomes

in 2 discrete, high-risk patient populations: type 2 diabetes and APOL1-HRf

Rapid kidney function
decline

Chauhan et al [42],
2020

118,584To predict the rapid decline in kidney function among patients with chronic kidney
disease by using a big hospital database and develop a machine learning–based
model

Decline of kidney

function (eGFRg)

Inaguma et al [43],
2020

Conditions originating in the perinatal period
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Sample size, NAim of the studyDisease or medical
event

Study, year

25,689To investigate the extent to which deep learning models that consider temporal
relations documented in EHRs can predict extreme preterm birth

Extreme preterm birthGao et al [44],
2019

External causes of morbidity (self-harm)

5,231,614To build a deep learning model that can predict patients at high risk of opioid
overdose and identify the most relevant features

Opioid overdoseDong et al [45],
2021

1470 (data set
1); 8033 (data
set 2); 26,055
(data set 3)

To evaluate machine learning applied to EHRs as a potential means of accurate
large-scale risk detection and screening for suicide attempts in adolescents appli-
cable to any clinical setting with an EHR

Suicide attemptsWalsh et al [46],
2018

Multi-disease or other

383,322 (train-
ing); 95,746
(testing 1);
102,625 (testing
2)

To propose a novel health index developed by using deep learning techniques
with a large-scale population-based EHR

Health indexHung et al [47],
2020

7105 (data set
1); 4170 (data
set 2)

To explore how to predict future disease risks in the next hospital visit of a patient
when discharged from a hospital

Multi-diseaseWang et al [48],
2020

aEHR: electronic health record.
bHbA1c: glycated hemoglobin.
cGP: general practitioner.
dDETECT: Dynamic Electronic Health Record Detection.
eKOA: knee osteoarthritis.
fAPOL1-HR: apolipoprotein L1 high-risk.
geGFR: estimated glomerular filtration rate.

EHR Data
The EHRs of patients used in the included studies were
originally recorded in hospitals or primary care centers.
Especially for the detection of mental and behavioral disorders,
EHRs were often extracted from military health records [32,36],
and for neurodevelopmental and cardiovascular disorders, EHRs
were mostly extracted from general practices [33,37]. Most
studies (16/20, 80%) used structured EHRs
[29-33,35,38-43,45-48], sometimes combined with unstructured
data [34,36,37,44], to estimate the risk of a disease or medical
event. Demographic information (statically used), symptoms,
laboratory (blood) test results, diagnoses, medications, BMI,
and clinical notes were commonly used data from EHRs. In
addition, the EHR length and hospital admission and visit history
were frequently added to the model. Lifestyle data were included
for cardiovascular diseases. Clinical and social signs were more
frequently used for self-harm and mental, behavioral, and
neurodevelopmental disorders. For the prediction of kidney and
diabetes outcomes, laboratory test results were frequently
extracted. If EHRs were unstructured, natural language
processing methods were conducted as a precursor to analyze
clinical notes. The central techniques were a basic recurrent
neural network (RNN) or long short-term memory (LSTM)
[29,31,34,35,39,44,45,49], often compared with logistic
regression, support vector machine, or random forest. When
techniques were used that could not handle temporal data, a
temporal aspect was created in the data. Although not
extensively specified, a slope and intercept of variables [31,36];

a mean [30]; minimum, maximum, median, and SD measures
[42]; the addition of a time-weight (eg, 0.9 × days from reference
point+decay) [43]; different time stamps [42]; or dividing the
data into time blocks [33,46] were used. Multimedia Appendix
3 [29-48] provides an overview of the EHR data used and the
techniques applied.

Medical Insights

Overview
Disease detection and prevention can be supported by using
ML or DL on longitudinal EHRs. First, the development and
training of such models on EHRs can generate new medical
insights (1-4). Second, when those models are applied (eg, for
additional analyses or to “new” data in clinical practice), the
following clinical benefits may be achieved (5 and 6). These
insights will be summarized in the following sections.

Medical Insight 1: Diagnostic Performance
The use of ML and DL models on EHRs could support the
detection of diseases with a high diagnostic accuracy.
Performance metrics such as the area under the receiver
operating characteristic curve (AUROC), sensitivity (recall),
specificity, accuracy, precision, and the area under the
precision-recall curve evaluated the detecting ability of the
model. The AUROC was by far the most frequently reported
metric because it illustrates the diagnostic ability for a binary
classification (disease or nondisease) by using the sensitivity
versus the specificity. Although it is not our intention to identify
the best-performing model, it was observed that the AUROC
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of central models varied between 0.73 and 0.97. In 40% (8/20)
of the studies, the optimal model had a “good” detection
(AUROC between 0.7 and 0.8), 35% (7/20) of the studies
succeeded in having a “very good” detection (AUROC between
0.8 and 0.9), and 15% (3/20) of the studies reached an
“excellent” detecting performance (AUROC between 0.9 and
1.0) [36,41,46] according to the classification of diagnostic
accuracy by Simundic [50]. For the best disease detection,
multiple models were compared within the study, or the central
model was compared with existing detection tools. The authors
of 30% (6/20) of the studies claimed that their model produced
a (slightly) higher performance than “conventional” or
“traditional” models or ML models in the literature
[29,34,37,38,44,45]. In 15% (3/20) of the studies, the central
model performed better compared with currently used
approaches such as a validated clinical model [42], a
surveillance tool on which current health indexes are based [47],
and a gold standard in routine clinical practice according to the
American College of Cardiology and the American Heart
Association [40]. In one study, the prediction scores of the
model were validated by experts who agreed 100% through
manual record reviewing [36]. The diagnostic accuracy of the
included models was not dependent on disease categories but
relied on the EHR data given to the model. Many studies (7/20,
35%) mentioned that diseases could be detected more accurately
(ie, the predictive performance was increased) when the EHRs
were closer to the date of diagnosis [32,33,46] and with an
increase in the number of predictors [37,40,43,48]. Overall, the
ability of the included models to classify nonhealthy and healthy
individuals was close to the registered diagnoses in the EHRs.

Medical Insight 2: Earlier Detection
In 45% (9/20) of the studies, ML and DL models observed all
available EHR data to classify patients as a case or control (ie,
ML vs human detection) [30,33,34,36,38,39,42,43,45].
However, in the other studies (10/20, 50%), models were able
to detect diseases earlier than the moment they were diagnosed
by cl inic ians  in  EHRs ( ie ,  predict ion)
[29,31,32,35,37,40,41,44,46-48]. By dividing the participants’
EHRs into 2 pieces, X years were observed (observation period),
and based on these data, it was possible to predict the risk of
developing a disease or medical event in the future (prediction
period). In other words, the prediction was made at an earlier
time (x=0) than when it was diagnosed in practice (end of black
bars). In some studies (5/20, 25%), it was part of the research
to identify what time frame encompasses enough predictive
information and, therefore, how much earlier an (accurate)
detection was possible [32,33,37,43,46]. For example, Walsh
et al [46] used 2 years of EHRs and extended their prediction
window more and more to find the earliest moment of an
accurate prediction. Raket et al [35] predicted whether a
psychosis would occur 1 year before its onset, whereas Zhao et
al [40] used 7 years of EHRs to predict the occurrence of
cardiovascular events in the following 10 years. Figure 2 [29-48]
illustrates the different time frames of longitudinal EHRs and
their results according to a possible earlier detection. How much
earlier a disease can be detected has a varying clinical meaning
and, therefore, needs its own interpretation.
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Figure 2. Detection, observation, and prediction periods per disease. A timeline of the electronic health record (EHR) periods that were used. The
moment of the prediction (via machine learning) was scaled at x=0. Bars to the left (negative numbers) represent retrospective EHRs from years in the
past, and bars to the right (positive values) represent predictions into the future. C: cancer; eGFR: estimated glomerular filtration rate; H: hospitalization;
M: mortality.

Medical Insight 3: Important Predictors
Another way to support disease detection and prevention was
by generating insights into factors, topics, predictors, or
indicators contributing to disease prediction
[30,31,33,35-41,43-46]. In unstructured clinical notes, relevant
topics, related words, and medical concepts were found that

contributed to disease detection [36,44]. These words concerned
daily living, behavior, and medical history. ML and DL models
using structured EHRs generated the most contributing factors
and their individual contribution to the outcome
[30,31,33,35,37-41,43,45,46]. The most contributing predictors
reported among all disease categories were (related to) age,
blood pressure, BMI, cholesterol, smoking, and specific
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medication. Concerning mental, behavioral, and
neurodevelopmental disorders, additional predictors were related
to depression, personal difficulties, and personality changes.
Some of these identified predictors were new for their discipline
(eg, specific medication) [35,41,44] or not yet incorporated into
gold standards for clinical diagnostic guidelines (eg, genetic
information) [40]. In addition to this, insights into the
importance of (known) predictors were generated. For example,
Raket et al [35] identified what factors were responsible for the
biggest positive and negative change in risk estimation (eg,
differential white blood cells) and, therefore, indicated the most
effective targets for preventive interventions. Other models
found that the contribution of some predictors was not as high
as assumed (eg, stress on diabetes) [31]; factors that seemed
individually irrelevant turned out to have cumulative important
predictive value [35], and the instability of factors, not the factor
itself, was a predictor for one disease [40]. The aforementioned
factors were identified during model development, but applying
such a model to new EHRs would generate responsible factors
for that individual.

Medical Insight 4: Other Health Care Indicators
In total, 10% (2/20) of the studies used EHRs not to predict the
risk of a disease but to create other health indicators. Hung et
al [47] developed a health index based on 3 DL predictions of
impactful and costly health indicators (mortality, hospitalization,
and cancer). This health index also generated insights into the
population’s health and was found to be close to the “true risk”
and, therefore, a better indicator than baseline models. Another
study claimed to forecast what disease an individual would have
at the next hospital visit [48]. Their results showed that the
developed model generated well-performing results in
forecasting medical diagnoses aggregated in 3- and 4-digit

International Classification of Diseases, 9th and 10th Revision
codes.

Clinical Benefits

Clinical Benefit 5: Preliminary Screening
In 25% (5/20) of the studies, ML models were used to support
(preliminary) screening on longitudinal EHRs [29,35,36,42,46].
After developing ML and DL models, risk classes could be
generated as a precursor for physical screening. Approximately
90% of the diagnosed cases were concentrated in the highest
(10%) risk class. Other studies assessed the utility of ML and
DL models by thresholds for the proportion needed to be
screened versus the detection possibility [29,42]. For example,
to detect 90% of all validated patients with hepatocellular
carcinoma, the highest 66% of risk scores (predicted by a DL
model) needed to be screened, whereas to detect 80% of all
cases, screening from only the highest 51% of risk scores was
required [29]. Chauhan et al [42] reasoned the other way around
and focused on efficiency. From the 10% highest risk scores
for kidney failure, the positive predictive value was 68%.
Moreover, the cost benefits for screening options using DL on
EHRs were investigated [35]. Disease detection using a DL
model was associated with a positive net benefit–to–cost benefit
ratio for a single-point risk assessment (1:3) and continuous-time
risk assessment (1:16). Reasons for preliminary screening in
EHRs were to prioritize those with the highest risk for

disciplines with long waiting lists [29,42], before costly or more
invasive examinations (eg, image or biomechanical retrieval)
[35,41], or to detect cases that might be missed by the current
pathway and go undetected [35,36,46].

Clinical Benefit 6: Possible Clinical Benefits
Only 10% (2/20) of the included studies were validated using
an external data set, but none of the models have been
implemented in clinical practice (yet). Consequently, the benefits
for health were not evaluated. However, the authors interpreted
their findings and suggested opportunities and possible health
care benefits for clinical practice. The authors of 35% (7/20) of
the studies mentioned that, if their models were applied in
clinical practice, this may improve personalized health care
[34-36,42,45-47]. Personalized health care was related to a
personalized risk prediction, an individual-level index or output,
a tailored care plan, and targeted care and screening. The authors
of 60% (12/20) of the studies claimed that prevention could be
improved by using their ML and DL models
[31-38,42,44,45,47]. Early and timely detection and
interventions before disease manifestation were often mentioned.
In one case, the use of DL on EHRs could not directly prevent
the targeted outcome, but by better preparing health care in an
appropriate setting, indirect health outcomes could be prevented
[44]. Additional suggestions to improve health care were focused
on policies. It was suggested to base health policies on risk
classes at a nationwide level [39,42]. Moreover, (predicted)
future health conditions may be a better base for health care
policies than traditional surveillance models reflecting health
conditions from years before [47]. In addition to this, DL support
can reduce the clinical workload. Even if the positive predictive
value to select a screening population is low, a model with an
excellent sensitivity can reduce the clinician’s workload by 70%
[44]. All studies assumed EHR data to be valuable information
to improve health care. The author of one study suggested that
even imperfect data can be used as a silver standard to develop
risk models [36].

Discussion

Summary of Evidence
The first research question in this study sought to determine
which diseases have been detected in longitudinal EHRs using
ML techniques. Results showed that a variety of diseases could
be detected or predicted, particularly diabetes; kidney diseases;
diseases of the circulatory system; and mental, behavioral, and
neurodevelopmental disorders [22]. Comparing our findings
with those of prior work, only a third of EHR prediction models
predict diseases; meanwhile, mortality and hospitalization
remain the most prevalent outcomes [51]. Among the studies
that have predicted diseases, cancer is the most frequently
predicted disease based on EHRs. Another systematic review
used clinical notes to identify chronic diseases [52]. It also found
diseases of the circulatory system as the most prevalent and
explained this by the structure of the data. Not only the structure
but also the length of the EHR horizon before diagnosis may
explain the diseases that can be detected or predicted. As we
determined the scope of diseases that may be prevented, the
length of historic data before the diagnosis (in existence of early
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signs) reflects the “preventive stage” before the onset of the
disease. The literature confirms that the longest EHR time
horizon (8-10 years) has been found for diabetes and
cardiovascular and kidney diseases [51], which were also
prevalent diseases in our scoping review. In the end, the diseases
that can be detected rely on available EHR data and, therefore,
previous medical visits.

The second research question determined the scope of what
EHR data have been used by ML techniques for the early
detection and prevention of diseases. This scoping review found
that age, sex, BMI, symptoms, procedures, laboratory test
results, diagnoses, medications, and clinical notes are frequently
used. Diseases that could be detected earlier than when they are
currently diagnosed did not use other EHR variables. In addition,
the most important predictors found in multiple studies were
age, blood pressure, BMI, cholesterol, smoking, and medication.
The consistency in the used and most important EHR variables
underlines the importance of establishing generalized regulation
and standardization of these variables across electronic health
software, especially for variables overlapping in various health
disciplines [53]. This would also address well-known challenges
and limitations with EHR data, which will be discussed later in
this section. According to the literature on the use of EHR data,
it seems that a larger variable set improves disease prediction
[51]. Their systematic review concluded that studies must
leverage the full breadth of EHR data by using longitudinal
data. In addition, we found that large longitudinal EHR data
can successfully be analyzed via RNN and, derived from it,
LSTM. These are both neural network architectures that are
able to find patterns while incorporating temporality, making
them effective for time-series predictions. Other types of neural
networks (eg, convolutional neural networks) are well-known
for their performance on images [15]. Similar results for
techniques were identified in a review on the same topic from
a technical perspective [2]. They concluded that RNN
(specifically LSTM) was the most prominent technique to
capture complex time-varying EHRs. Another review on AI
techniques to facilitate earlier diagnoses of cancer also stated
that neural networks were the dominant technique applied to
EHRs [54]. Our results showed that there was no consistent
way to process EHR variables temporally when techniques other
than LSTM and RNN were used. Therefore, we can conclude
that a basic RNN and LSTM are the most suitable techniques
to analyze multivariable, longitudinal EHRs.

The third research question of this review was to determine the
scope of medical insights that could be generated. Our results
showed that, with the development and training of ML and DL
models on EHRs, (1) a high diagnostic accuracy was reached,
(2) the most responsible predictors could be identified, (3)
diseases could be detected earlier than when they are currently
diagnosed, and (4) additional health care indicators were created.
The most prominent medical insight was the detection
performance of the models. However, how good the
performance should be is ambiguous. For example, DL models
used to facilitate earlier cancer diagnoses had AUROC values
ranging from 0.55 to 0.99 [54], indicating performance from
almost random guessing to near-perfect detection. Looking into
a more mature domain, the diagnostic accuracy of sepsis

predictions ranged from between 0.68 and 0.99 in the intensive
care unit to between 0.96 and 0.98 in hospital and between 0.87
and 0.97 in the emergency department [55]. This metric is
ideally as high as possible because it induces a high sensitivity
(true positives) and specificity (true negatives). For comparison,
the diagnostic accuracy of a gut feeling (meta-analysis on cancer
diagnosis) had a sensitivity of only 0.40 and a specificity of
0.85 [56]. The diagnostic accuracy of physical examination (for
the detection of cirrhosis) had a sensitivity between 0.15 and
0.68 and a specificity between 0.75 and 0.98 [57]. If ML can
increase both the sensitivity and specificity of disease detection,
nonhealthy persons can be found, and delayed diagnoses can
be reduced without overtreating healthy persons misdiagnosed
as cases [58]. If the developed model is further evaluated in
false-negative and false-positive groups, it may be possible that
the model detects even more (true) cases than those registered
by clinicians. This is already the case for many DL techniques
on imaging data [59]. For now, an even more important finding
is the ability of some models to detect disease manifestation
earlier than the moment of diagnosis registration in EHRs. These
examples of earlier detection are aligned with a study on the
onset of diseases [60] that concluded that “slowly progressive
diseases are often misperceived as relatively new” (ie, the onset
could have been detected earlier). They found that, in 31% of
diagnosed cases, the onset of their disease had started >1 year
before their diagnosis. When disease predictions are early and
accurate enough, it can facilitate disease prevention [23].
Especially with the addition of personally responsible factors
and the biggest changers in risk prediction, prevention
interventions may be more effective because they are more
targeted to the individual. When medical prevention and
interventions become based on the unique profile of each
individual, personalized health care is delivered [61]. After all,
the aforementioned medical insights only show the bright side
of ML and DL models.

Our final research question sought the (possible) clinical benefits
that could be obtained from using ML on EHRs. We found that
preliminary screening was a clinical benefit of applying such
models on longitudinal EHRs. Patients were accurately classified
into risk classes to prioritize those with the highest risk, and a
positive net benefit was found. In addition, the authors of the
studies stated that their results (although they were not clinically
evaluated) may contribute to a more personalized health care,
prevention possibilities, and health care policies and reduce the
clinicians’ workload. These benefits are perfectly aligned with
the near-future vision, strategies, and action foci set by the
World Health Organization [62,63]. In particular, the emerging
clinical staff shortage makes the future health care system more
dependent on technical innovations and the health care system
will be forced to be digitally assisted [64]. However, to be
adopted in medical practice, ML and DL models require external
validation, the absence of bias and drift, and transparency for
clinicians. In prior work, benefits have rarely been clinically
evaluated either. Even in a more mature health domain regarding
ML, the intensive care unit, only 2% of the AI applications are
clinically evaluated [65]. In their systematic review, the clinical
readiness of AI was explored, but no AI model was found to be
integrated into routine clinical practice at the time of writing.
The limited amount of publications evaluating the clinical
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benefits of the application of ML on EHRs indicates the research
gap in the literature. Future studies should explore the follow-up
of these AI attempts and the reasons for success or failure in
practice.

Up until now, we have only discussed possible beneficial results
of using ML and DL on EHRs. However, we cannot ignore the
possible risks, obstacles, challenges, or issues. Multiple
(systematic) reviews have summarized these well-known issues,
challenges, and limitations regarding the application of ML and
DL on EHRs [2,51,66,67]. Viewed generally across all studies,
practical obstacles influence the scientific and clinical
implementation process: ethical considerations, privacy
guidelines, legal procedures, equity, and data protection and
security [68]. Beyond these obstacles, existing predictions face
limitations due to their reliance on the data. First, key issues of
using EHRs are irregularity, heterogeneity, sparsity (eg, missing
data), temporality, the lack of gold-standard labels, and the
volume and quality of data [2,51,66,67]. Second, ML and DL
models have limited transparency and interpretability, face
domain complexity (vs engineering expertise), may include
biases, and often lack external validation. It is not possible to
assign specific issues to specific studies; they all suffer more
or less from the aforementioned issues. Our point is to become
aware of the downside as well. Therefore, all our principal
findings must be interpreted with this last discussion point in
mind. In our opinion, a consistent, reliable, and valid way of
EHR registration will improve the (use of) data and could be
the first step toward a data-based health care system. This need
for movement and improvement is important not only for
research but also for practical convenience for clinicians and,
consequently, to succeed in improving health outcomes.

Limitations
A limitation of this scoping review is the time between the
search and the publication. As ML and DL have become a
popular topic and the amount of research has grown drastically
over the last years, new research could have been published
between the literature search and the publishing of this scoping
review. Consequently, some of our findings may have been
overtaken by the progress in research.

Another limitation was the data synthesis regarding the
performance outcomes per technique. Due to a wide variety of
internal analyses, outcomes were not directly comparable, and

therefore, the data extraction and data synthesis were difficult.
Some studies just noted the optimal performance value achieved
by the central model, while other studies compared a variety of
techniques and noted various performance values for different
subgroups, different metrics, and different time windows and
with the addition of various technical improvements. A few
authors discussed their ultimate results and mentioned that their
model was better than literature, that is, “traditional” or
“conventional,” attempts, which were not always clearly defined.
We have attempted to follow the authors’ description to avoid
incorrect comparisons. However, some comparisons may have
become vague or skewed during data synthesis. Nevertheless,
we scoped the optimal AUROC for each study at the meta level.

As we used a broad definition of EHR, we included a greater
range of data. This means that the results are not based solely
on data directly extracted from clinical record systems but also
on data extracted by an intermediate organization, such as
insurance companies. Therefore, readers must interpret the
results of ML and DL models with this in mind.

Conclusions
Longitudinal EHRs have valuable potential to support the early
detection of a variety of diseases. For various diseases, EHR
data concerning diagnoses, procedures, vital signs, medication,
laboratory tests, BMI, and (early) symptoms have a high
predictive value. To analyze multivariable, longitudinal EHRs,
a basic RNN and LSTM are the most suitable techniques. For
the detection of diseases, using ML (including DL) on EHRs
proved to be highly accurate. When the detection occurs at the
same moment as the diagnosis of clinicians, it seems not directly
relevant for the prevention of diseases. However, the detection
of diseases offers the clinical benefits of preliminary screening
to prioritize patients from the highest risk class. The prevention
of diseases can be supported by ML models that are able to
predict or detect diseases earlier than the current clinical
practice. The additional information about the most important
predictors of the individual and the biggest risk changers allow
targeted prevention interventions and, therefore, personalized
care. Improved health care policies and workload reduction are
frequently cited benefits but have not yet been evaluated in
clinical practice. Both ML and DL attempts for disease detection
and prevention still remain in the testing and prototyping phase
and have a long way to go to be clinically applied.
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