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Abstract

Generative Adversarial Networks (GANs) are a popular method for learning distributions
from data by modeling the target distribution as a function of a known distribution. The
function, often referred to as the generator, is optimized to minimize a chosen distance
measure between the generated and target distributions. One commonly used measure for
this purpose is the Wasserstein distance. However, Wasserstein distance is hard to compute
and optimize, and in practice entropic regularization techniques are used to facilitate its
computation and improve numerical convergence. The influence of regularization on the
learned solution, however, remains not well-understood. In this paper, we study how several
popular entropic regularizations of Wasserstein distance impact the solution learned by a
Wasserstein GAN in a simple benchmark setting where the generator is linear and the
target distribution is high-dimensional Gaussian. We show that entropy regularization of
Wasserstein distance promotes sparsification of the solution, while replacing the Wasserstein
distance with the Sinkhorn divergence recovers the unregularized solution. The significant
benefit of both regularization techniques is that they remove the curse of dimensionality
suffered by Wasserstein distance. We show that in both cases the optimal generator can be
learned to accuracy ε with O(1/ε2) samples from the target distribution without requiring
to constrain the discriminator. We thus conclude that these regularization techniques can
improve the quality of the generator learned from empirical data in a way that is applicable
for a large class of distributions.
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License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v25/21-1295.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v25/21-1295.html


Reshetova, Bai, Wu, and Özgür

1. Introduction

Generative Adversarial Networks (GANs) have become a popular framework for learning
data distributions and sampling as they have achieved impressive results in various domains,
including image super resolution (Ledig et al., 2017), image-to-image translation (Isola
et al., 2017), text to image synthesis (Reed et al., 2016) and analyzing social networks (De
et al., 2016). As opposed to traditional methods of fitting a parametric distribution, GANs’
objective is to find a mapping from a known distribution to the unknown data distribution
or its empirical approximation. The mapping is set to a minimizer of a chosen distance
measure between the generated and target distribution.

In the original GAN framework, the distance measure is the Jensen-Shannon divergence
(Goodfellow et al., 2014). This measure was later replaced by the Wasserstein distance
(Arjovsky et al., 2017), and the follow-up works showed that Wasserstein GANs can help
resolve several issues related to the original formulation, such as the lack of continuity, mode
collapse (Arjovsky et al., 2017) and vanishing gradients (Gulrajani et al., 2017).

Despite these advantages, minimizing the Wasserstein distance between the target (data)
and the generated distribution is a computationally challenging task. Indeed, computing
the Wasserstein distance between two empirical distributions involves the resolution of a
linear program whose cost can quickly become prohibitive whenever the size of the support
of these measures or the number of samples exceeds several hundreds. A popular approach
to facilitate the computation of the Wasserstein distance is to regularize it with an entropic
term which makes the problem strongly convex and hence solvable by matrix scaling algo-
rithms (Cuturi, 2013; Balaji et al., 2019). More recent results have shown that this also
results in faster convergence and stability of the first-order methods used for optimizing
Wasserstein GANs (Sanjabi et al., 2018).

However, the impact of these regularization methods on the generator learned by the
Wasserstein GAN remains poorly understood. This is partly due to the fact that GANs
are primarily evaluated on real data, typically images, and although clearly valuable, such
evaluations are often subjective due to lack of clear baselines for benchmarking. In this
paper, we follow the philosophy advocated by Feizi et al. (2017) and focus on a simple
benchmark setting where solutions can be explicitly characterized and compared. Following
Feizi et al. (2017), we assume that the generator is linear and the target distribution is high-
dimensional Gaussian. The population solution for the Wasserstein GAN in this setup has
been characterized by Feizi et al. (2017), who further showed that even in this simple
setting the learning problem suffers from the curse of dimesionality—the empirical solution
learned on n samples of the target distribution converges to the population solution as
Ω(n−2/d), where d is the dimension of the target distribution support. To resolve this
sample complexity issue, Feizi et al. (2017) then propose to restrict the discriminator to be
quadratic. This insight is arguably based on knowing that the sought target distribution is
Gaussian, in which case the optimal discriminator is indeed quadratic and this restriction
does not impact the optimal generator. However, this insight does not generalize beyond the
linear/Gaussian setting as for non-Gaussian data the generator obtained under a quadratic
discriminator is not necessarily the one minimizing the Wasserstein distance between the
generated and the target distributions.
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In this paper, by focusing on the linear generator and Gaussian distribution setting
(Feizi et al., 2017), we explore how regularization impacts what generator is learned and
how it leads to better generalization. We study two slightly different ways of regularizing:
entropic regularization (Cuturi, 2013) and Sinkhorn divergence (Genevay et al., 2018). Ex-
tending our previous results (Reshetova et al., 2021), we show that the former introduces
bias to the solution as if one were to constrain the nuclear norm of the covariance matrix of
generator’s output distribution, while Sinkhorn divergence results in the same solution as
the unregularized Wasserstein GAN (Feizi et al., 2017). We then show, in the more general
case of sub-gaussian distributions and Lipschitz generators, that these regularizations re-
sult in sample complexity of Od(1/

√
n), thus overcoming the curse of dimensionality (Feizi

et al., 2017) without explicitly constraining the discriminator. This indicates that adding
regularization implicitly constrains the discriminator in a way suitable for a large class of
distributions.

2. Preliminaries

In this section, we provide some background on optimal transport and optimal transport
GANs.

2.1 Wasserstein GANs

Let P(X ) be the set of all probability measures with support X⊆ Rd and finite second
moments. For Z,Y ⊆ Rd, PZ ∈ P(Z) and PY ∈ P(Y), denote by Π(PZ , PY ) the set of all
couplings of PZ and PY , that is all joint probability measures from P(Z×Y) with marginal
distributions being PZ and PY . The squared Wasserstein distance between PZ , PY ∈ P(Rd)
under `2 metric, or simply the squared 2-Wasserstein distance, is defined as

W 2
2 (PZ , PY ) = inf

π∈Π(PZ ,PY )
Eπ
[
‖Z − Y ‖2

]
. (1)

Here we denote Eπ the expectation with respect to the measure π. Since π is a coupling of
PZ , PY , the marginals of (Z, Y ) ∼ π are correspondingly PZ and PY and (1) is well-defined.
It can be verified that 2-Wasserstein distance is a metric between probability distributions
in P(Rd); in particular, it is symmetric with respect to its two arguments, satisfies the
triangle inequality, and W2(PY , PY ) = 0.

The main objective of GANs is to find a mapping G(·), called generator, that comes
from a set of functions G ⊆ {G : X → Y} and maps a latent random variable X ∈ X with
some known distribution to a variable Y ∈ Y with some target probability measure PY . In
the population case, we assume that we have access to PY , the true distribution of Y , while
in the empirical case one has access to only a finite sample {Yi}ni=1, hence the empirical
distribution of Y . Using the squared 2-Wasserstein distance to measure the dissimilarity
between the generated and target distribution leads to the following learning problem of
GAN, referred to as W2GAN :

min
G∈G

W 2
2

(
PG(X), PY

)
. (2)

A remarkable feature of the Wasserstein distance is that strong duality holds for the
minimization problem described in (1), and hence the objective, squared 2-Wasserstein
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distance, in (2) can be equivalently written in its dual form (Villani, 2009, Theorem 5.10
and equation 5.12):

W 2
2 (PG(X), PY ) = sup

ψ∈L1(PG(X)),φ∈L1(PY )

ψ(G(x))−φ(y)≤‖G(x)−y‖2

E [ψ(G(X))− φ(Y ))]

= sup
φ∈Conv(G(X ))

E
[
‖G(X)‖2 − 2φ(G(X)) + ‖Y ‖2 − 2φ∗(Y ))

]
(3)

where Conv(Z) is the set of all (lower semicontinuous) convex functions on Z and L1(PZ)
is the set of all functions whose absolute value has a finite expectation: φ ∈ L1(PZ) ⇐⇒
E[|φ(Z)|] <∞.

Note that the above optimization problem is maximizing a concave objective over a set
of functions (discriminators), instead of optimizing over couplings as in the primal form (1).
This naturally leads to the min-max game formulation of GANs, where the generator seeks
to generate samples that are close to the real data training samples, and it competes with
a discriminator that seeks to distinguish between real and generated samples.

The function φ can then be parametrized by a neural network resulting in the following
architecture

X ∼ PX
Generator
G : X → Y

G(X)

Y ∼ PY

Discriminator
φ : G(X )→ R

Discriminator
φ∗ : Y → R

loss
W 2

2

2.2 Entropic Wasserstein GANs

In practice, the Wasserstein distance in (1) is often regularized to facilitate its computation
leading to the entropy regularized 2-Wasserstein distance (Cuturi, 2013):

W 2
2,λ(PZ , PY ) = inf

π∈Π(PZ ,PY )
Eπ
[
‖Z − Y ‖2

]
+ λIπ(Z;Y ) (4)

where the regularization term is the mutual information Iπ(Z;Y ) calculated according to
the the joint distribution π. The corresponding entropic W2GAN is defined as

min
G∈G

W 2
2,λ

(
PG(X), PY

)
. (5)

While the entropic Wasserstein distance allows for faster computation, note that it can be
strictly larger than zero even if the generated distribution is exactly the same as the target
distribution, that is W 2

2,λ(PY , PY ) 6= 0. This issue can be resolved by adding corrective
terms to (4) (see Genevay et al., 2018), which leads to the Sinkhorn divergence:

Sλ(PG(X), PY ) = W 2
2,λ(PG(X), PY )−

(
W 2

2,λ(PG(X), PG(X)) +W 2
2,λ(PY , PY )

)
/2. (6)
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One can easily check that Sλ(PY , PY ) = 0 for any PY . The corresponding Sinkhorn W2GAN
is given by:

min
G∈G

Sλ(PG(X), PY ). (7)

Analogous to the case of the Wasserstein distance, the entropic Wasserstein distance
also has a dual formulation which makes it suitable for GAN optimization problems. This
dual formulation does not involve optimizing over all couplings, but instead the search space
is the set of all essentially bounded functions (Chizat et al., 2018):

W 2
2,λ(PG(X), PY ) = sup

ψ∈L∞(PY ),φ∈L∞(PG(X ))
E [ψ(Y ) + φ(G(X))] + λ

− λE(X,Y )∼PX×PY

[
e
φ(G(X))+ψ(Y )−‖G(X)−Y ‖22

λ

]
, (8)

where L∞(PY ) is the set of all essentially bounded functions, φ ∈ L∞(PY ) ⇐⇒ ∃C > 0 :
P{φ(Y ) > C} = 0.

The so-called dual potentials φ, ψ can be parametrized by neural networks resulting in
the following architecture

X ∼ PX
Generator
G : X → Y

G(X)

Y ∼ PY

Discriminator
φ : G(X )→ R

Discriminator
ψ : Y → R

loss
W 2

2,λ

Note that in (8), there are no constraints on the dual potentials, which makes the dual
form suitable to implement with Neural networks, while 2-Wasserstein distance requires con-
vexity/quadratically bounded differences for the dual potential and 1-Wasserstein distance,
another popular metric used in GANs, requires Lipschitz continuity of the dual potential.
The constraints on the discriminators then give rise to various heuristics (Korotin et al.
2019; Liu et al. 2019 for 2-Wasserstein GANs; Arjovsky et al. 2017; Wei et al. 2018 for
1-Wasserstein GANs) since the constraints cannot be handled exactly.

When one of the measures is an empirical distribution supported on {yi}ni=1, which is
often the case in GANs, only the values of ψ on the empirical samples influence the solution,
thus letting ψi = ψ(yi) and plugging in the empirical measure in place of PY simplifies (8)
to

W 2
2,λ(PG(X), PY ) = sup

ψ∈Rn,φ∈L∞(G(X ))

n∑
i=1

ψi
n

+ E [φ(G(X))] + λ (9)

− λE

[
n∑
i=1

e
φ(G(X))+ψi−‖G(X)−yi‖

2
2

λ /n

]

The above form is especially useful for optimization since one of the parametric functions
becomes a vector.
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Given the optimal dual potentials, the optimal coupling can be found as (Janati et al.,
2020),

π(G(x), y) = PG(X)(G(x))PY (y)e
φ(G(x))+ψ(y)−‖G(x)−y‖22

λ . (10)

Even though we are less interested in the computational aspects of optimal transport in
this paper, we note that the optimal dual potentials for entropy regularized 2-Wasserstein
distance can be shown to satisfy the following equations

φ∗(G(x)) = −λ lnE
[
e(ψ∗(Y )−‖Y−G(x)‖22)/λ

]
(11)

ψ∗(y) = −λ lnE
[
e(φ∗(G(X))−‖y−G(X)‖22)/λ

]
(12)

Equations (11),(12) give rise to the celebrated Sinkhorn-Knopp algorithm that allows for
fast computation of entropic optimal transport via iterative updates: at iteration t we set,

φt(G(x)) = −λ lnE
[
e(ψt−1(Y )−‖Y−G(x)‖22)/λ

]
(13)

ψt(y) = −λ lnE
[
e(φt(G(X))−‖y−G(X)‖22)/λ

]
. (14)

Since Sinkhorn divergence is a linear combination of entropy-regularized Wasserstein dis-
tances, it also has a dual form and strong duality holds. The dual form of entropy-regularized
2-Wasserstein distance gives rise to an equivalent formulation of the Sinkhorn divergence
as a linear combination of the dual formulations of entropy-regularized 2-Wasserstein dis-
tances. Since W 2

2,λ(PG(X), PG(X)) and W 2
2,λ(PY , PY ) are symmetric in the dual potentials

and concave, the optimal dual potentials will be equal, that is φx(G(x)) = ψx(G(x)) and
φy(y) = ψy(y) resulting in the following architecture

X ∼ PX
Generator
G : X → Y

G(X)

Y ∼ PY

Discriminator
φ : G(X )→ R

Discriminator
φx : G(X )→ R

Discriminator
ψ : Y → R

Discriminator
φy : Y → R

loss
Sλ

The Discriminator φy is dashed since it depends only on the distribution PY and does not
influence the generator (see Feydy et al., 2019).

3. Population Solution for the Linear/Gaussian Setting

In this section, we aim to compare the optimal solution for GANs when we use the different
measures introduced in the previous section for quantifying the dissimilarity between the
generated and target probability distributions. For this purpose, we focus on the benchmark
setting considered by Feizi et al. (2017), where the generator is linear and the target distri-
bution is Gaussian. The population solution in this setting is the low-dimensional Gaussian
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approximation of a higher-dimensional Gaussian with the regularized 2-Wasserstein distance
as the approximation measure. We can rewrite the general formulation of (2) as:

min
G∈Rd×r

W 2
2 (PGX , PY ) , (15)

where the latent random variable X ∈ Rr follows the standard Gaussian distribution
N (0, Ir), the underlying distribution of data Y ∈ Rd is N (0,KY ), and the optimization
is over all matrices G ∈ Rd×r with d ≥ r so that the generated distribution is PGX .

While this is a toy setting that is almost never encountered in applications, even in
this case the unregularized Wasserstein GAN suffers from the curse of dimensionality (Feizi
et al., 2017). In the case of entropic regularization, the setting leads to a closed-form solution
and an explicit characterization of the impact of the regularization on the generator. The
population solution to the above W2GAN problem has been characterized by Feizi et al.
(2017) as the r-PCA solution of Y , i.e. the covariance matrix KG∗X for PG∗X , where G∗

denotes the minimizer of (15), is a rank-r matrix whose top r eigenvalues and eigenvectors
are the same as those of KY .

We next show that adding entropic regularization to the W2GAN objective changes this
solution to a soft-thresholded r-PCA solution of Y as shown by the following theorem.

Theorem 1 Let Y ∼ N (0,KY ) and X ∼ N (0, Ir) where r ≤ d. The population solution
PG∗X to the entropic W2GAN problem

min
G∈Rd×r

W 2
2,λ (PGX , PY ) , (16)

is given by a soft-thresholded r-PCA solution of Y , i.e., the covariance matrix KG∗X for
PG∗X , where G∗ denotes now the minimizer of (16), is a rank-r matrix whose top r eigen-
vectors are the same as those of KY and the top r eigenvalues are

σ2
i = (λi(KY )− λ/2)+ for i ∈ [1 : r],

where (x)+ := max{x, 0} and {λi(KY )}ri=1 are the top r eigenvalues of KY .

Note that the population solution for the entropic W2GAN is not the same as that for
the unregularized W2GAN, which is not surprising as they optimize two different objective
functions. Nevertheless, Theorem 1 reveals that in the linear/Gaussian case, there is a nat-
ural relationship between the two solutions as the former turns out to be a soft-thresholded
version of the latter. Note that the soft-thresholding promotes sparsity in the eigenvalues
of the covariance matrix of the generated distribution since if many of the eigenvalues of
KY are below the threshold λ/2 the rank of KG∗X can be significantly smaller than KY .

We would like to emphasize that the sparsity is with respect to the generator function
and thus the output distribution covariance matrix. If sparsity is considered in terms of the
optimal transport plan, we note that entropic regularization can compromise the sparsity
that would appear in the unregularized optimal transport plan as shown by Blondel et al.
(2018, Figure 1). This is intuitive as entropic regularization forces a certain amount of
randomization in the transport plan.
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We note that soft thresholding of singular values arises as the optimal solution to a
different problem that has been studied in the context of low rank matrix completion.
Consider the problem:

min
KZ∈Rd×d

‖KZ −KY ‖2F + λ‖KZ‖∗,

where ‖ ·‖∗ is the nuclear norm, i.e. the sum of all singular values of a matrix, which can be
regarded as a relaxation of a low rank constraint. The solution of this problem is shown to
be the soft thresholded PCA solution for r = d, (see Cai et al., 2010, Theorem 2.1), namely
KZ and KY share the same eigenvectors with corresponding eigenvalues thresholded as in
Theorem 1. We note that even though the two problems interestingly lead to the same
solution, they are different problems and this result cannot be applied to a more general or
the empirical setting.

We next investigate the population solution for the Sinkhorn W2GAN and show that,
while it is not the case in general, when restricted to the linear/Gaussian benchmark, sur-
prisingly Sinkhorn W2GAN does recover the regular PCA solution as shown in the following
theorem. We remark that this is not a simple consequence of the property Sλ(PY , PY ) = 0
for any PY of the Sinkhorn divergence, as in the current setting the Sinkhorn divergence
between the optimal generated and target distributions is non-zero. However, it does sug-
gest that the Sinkhorn divergence can lead to solutions closer to the target distribution,
while also possessing other favorable qualities like unbiasedness and sample complexity, as
we investigate in the following section.

Theorem 2 Let Y ∼ N (0,KY ) and X ∼ N (0, Ir) where r ≤ d. The population solution
PG∗X to the Sinkhorn W2GAN problem given by

min
G∈Rd×r

Sλ (PGX , PY ) ,

is given by the r-PCA solution of Y .

3.1 Proofs of Theorems 1 and 2

Proof [Proof of Theorem 1] Let Z = GX, where G ∈ Rd×r. Since X ∼ N (0, Ir), PZ is
a d-dimensional Gaussian distribution whose covariance matrix KZ has rank less than or
equal to r. For any such PZ , denote by SZ the r-dimensional subspace that contains the
support of Z. For any Y ∈ Rd, let YSZ and YS⊥Z

be respectively the projections of Y onto

SZ and its orthogonal complement S⊥Z so that Y = YSZ +YS⊥Z
. Note that for a fixed G, YSZ

and YS⊥Z
can be computed given Y . The entropy regularized 2-Wasserstein distance is then

W 2
2,λ(PY , PZ) = min

π∈Π(PY ,PZ)
Eπ
[
‖Z − Y ‖2

]
+ λIπ(Z;Y )

= min
π∈Π(PY ,PZ)

Eπ
[
‖(Z − YSZ )− YS⊥Z ‖

2
]

+ λIπ(Z;Y )

= min
π∈Π(PY ,PZ)

Eπ
[
‖Z − YSZ‖

2
]

+ E
[
YS⊥Z
‖2
]

+ λIπ(Z;Y ) (17)

= min
π∈Π(PY ,PZ)

Eπ
[
‖Z − YSZ‖

2
]

+ E
[
YS⊥Z
‖2
]

+ λIπ(Z;YSZ). (18)
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The last equality above holds because Iπ(Z;Y ) = Iπ(Z;YSZ , YS⊥Z
) ≥ Iπ(Z;YSZ ) and

moreover, for any coupling π, one can construct π′ such that π′(Z, YSZ , YS⊥Z
) =

π(Z, YSZ )π(YS⊥Z
|YSZ ), i.e. Z−YSZ −YS⊥Z forms a Markov chain. Note that π′ preserves the

values of the first two terms in (17) while Iπ′(Z;YSZ , YS⊥Z
) = Iπ(Z;YSZ ).

Consider the optimization problem in the entropic W2GAN, i.e. minPZ∈Nd,r W
2
2,λ(PY , PZ),

where the optimization is over the set Nd,r of all d-dimensional Gaussian distributions with
rank not exceeding r. In light of (18), the above is

min
S∈Sd:dim(S)≤r
PZ∈Nd,r:Z∈S
π∈Π(PY ,PZ)

Eπ[‖Z − YS‖2] + E[‖YS⊥‖2] + λIπ(Z;YS), (19)

where Sd is the set of all subspaces of Rd. To solve (19) we first fix S. If columns of U ∈ Rd×r
form an orthonormal basis of S, i.e. S = ImU and UTU = Ir, we replace Z and YS in (19)
by UTZ and UTY respectively. To find optimal π, PZ for S we then solve

min
PZ∈Nd,r:Z∈Im(U)

π∈Π(PZ ,PY )

Eπ[‖UTZ − UTY ‖2] + λIπ(UTZ;UTY )− E[‖UTY ‖2] + E[‖Y ‖2] (20)

Let Z̄ = UTZ and Ȳ = UTY, and let Nr,r be the set of all r-dimensional Gaussian distri-
butions. Then solving Problem (20) is equivalent to solving

min
PZ̄∈Nr,r

min
π∈Π(PZ̄ ,PȲ )

Eπ[‖Z̄ − Ȳ ‖2] + λIπ(Z̄; Ȳ ) (21)

We will proceed by first lower bounding (21) and then providing the coupling and PZ̄
that achieve the lower bound.

WLOG, we can assume Ȳ has diagonal covariance matrix KȲ = diag(Λ1, . . . ,Λr), where
the diagonal elements are in decreasing order. Since Ȳ is also Gaussian this implies that
its components are independent. This in turn implies that Iπ(Z̄; Ȳ ) ≥

∑r
i=1 Iπ(Z̄i; Ȳi), and

hence (21) can be lower bounded by

min
PZ̄∈Nr,r

min
π∈Π(PZ̄ ,PȲ )

Eπ[‖Z̄ − Ȳ ‖2] + λIπ(Z̄; Ȳ )

≥ min
PZ̄∈Nr,r

min
π∈Π(PZ̄ ,PȲ )

r∑
i=1

Eπi [(Z̄i − Ȳi)2] + λIπi(Z̄i; Ȳi) (22)

Note that for fixed Gaussian PZ̄ , PȲ and cross-covariance matrix KZ̄Ȳ the first term
in (21) is fixed and the mutual information term is minimized when π is jointly Gaussian,
i.e. π ∈ N (PZ̄ , PȲ ), where N (µ, ν) denotes a set of jointly Gaussian distributions with
marginals µ, ν. Therefore the minimization in (22) can be restricted to π ∈ N (PZ̄ , PȲ ). If
we let Di = E(Ȳi − Z̄i)2, this in turn yields

Iπi(Z̄i; Ȳi) = h(Ȳi)− h(Ȳi|Z̄i)
= h(Ȳi)− h(Ȳi − Z̄i|Z̄i)
≥ h(Ȳi)− h(Ȳi − Z̄i) (23)

= (1/2) ln(Λi/Di),
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where (23) follows from the fact that conditioning reduces entropy. Since mutual information
is non-negative, we can tighten the bound to Iπi(Z̄i; Ȳi) ≥ max{0, (1/2) ln(Λi/Di}.

Thus, continuing the lower bound from (22) we get

min
PZ̄∈Nr,r

min
π∈Π(PZ̄ ,PȲ )

Eπ[‖Z̄ − Ȳ ‖2] + λIπ(Z̄; Ȳ )

≥
r∑
i=1

min
Di≥0

Di + (λ/2) max{ln(Λi/Di), 0}

=

r∑
i=1

min
0≤Di≤Λi

Di + (λ/2) ln(Λi/Di) (24)

=

r∑
i=1

min
0≤Di≤Λi

g(Di) + (λ/2) ln(Λi),

where (24) follows from the fact that increasing Di beyond Λi leaves the second summand
the same, while increases the first one, so the minimum is attained at Di ≤ Λi and g(x) =
x − λ/2 lnx. As g′(x) = 1 − λ/(2x) < 0 for x < λ/2, the optimal value is attained at
Di = D∗i = min{λ/2,Λi} and plugging it into the bound we get

min
PZ̄∈Nr,r

min
π∈Π(PZ̄ ,PȲ )

Eπ[‖Z̄ − Ȳ ‖2] + λIπ(Z̄; Ȳ ) (25)

≥
r∑
i=1

min{λ/2,Λi}+ (λ/2) ln(Λi/min{λ/2,Λi}) (26)

To prove that the lower bound holds with equality we need (23) to hold with equal-
ity, i.e. Ȳi − Z̄i be independent of Z̄i, so we can choose Ȳ = Z̄ + N, where N ∼
N (0,diag({min{λ/2,Λi}}ri=1) independent of Z̄. Note that since the distribution of Ȳ is
fixed, this in turn fixes the distribution of Z̄. With this choice of a coupling

Eπ[‖Z̄ − Ȳ ‖2] = Eπ[‖N‖2] =
r∑
i=1

D∗i

I(Z̄; Ȳ ) = h(Ȳ )− h(Ȳ − Z̄ | Z̄)

= h(Ȳ )− h(N)

= (1/2)

r∑
i=1

ln(Λi)− ln(D∗i )

Combining the above we get

Eπ[‖Z̄ − Ȳ ‖2] + λIπ(Z̄; Ȳ ) =

r∑
i=1

min{λ/2,Λi}+ (λ/2)
r∑
i=1

ln(Λi/min{λ/2,Λi}),

which matches the lower bound in (25), so Ȳ = Z̄ + N with N ∼ N (0,diag({Di}ri=1))
independent of Z is the optimal coupling.

10
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Before we continue with the proof we make the following remark. Note that when the
condition PZ̄ ∈ Nr,r is dropped we get a lower bound on (21):

Wlower = min
πZ̄|Ȳ

Eπ[‖Z̄ − Ȳ ‖2] + λIπ(Z̄; Ȳ ) (27)

Introduction of a new variable D = E‖Z̄− Ȳ ‖2 leads to the following optimization problem:

min
πZ̄|Ȳ ,D

D + λIπ(Z̄; Ȳ )

subject to D = E[‖Z̄ − Ȳ ‖2]
D ≥ 0

Note that the equality in the constraints can be relaxed to an inequality since the objective
is linear in D, which leads to

min
πZ̄|Ȳ ,D

D + λIπ(Z̄; Ȳ )

subject to D ≥ E[‖Z̄ − Ȳ ‖2]
D ≥ 0

(28)

Finally we can rewrite the full minimization over πZ̄|Ȳ , D as a consecutive one, which leads
to

Wlower = min
D≥0

{
D + λ min

πZ̄|Ȳ :E[‖Z̄−Ȳ ‖2]≤D
Iπ(Z̄; Ȳ )

}
(29)

The inner minimization problem is exactly the Gaussian rate distortion problem (Cover,
1999, Eq. 10.38) that can be solved by noting that the mutual information term is minimized
for a Gaussian distribution, plugging the value of the mutual information in and writing
down the Karush-Kuhn-Tucker optimality conditions. The solution for this problem is given
by reverse waterfilling (Cover, 1999, Theorem 10.3.3), under which the optimal PZ̄ is an
r-dimensional Gaussian which matches the solution we have obtained in (26).

The entropic W2GAN optimization problem (19) is then equivalent to minimizing (26)
over the set of all r−dimensional subspaces of Rd :

min
U∈Rd×r

r∑
i=1

min{Λi, λ/2}+
λ

2
ln

Λi
min{Λi, λ/2}

+ E[‖Y(ImU)⊥‖2]

= min
U∈Rd×r

r∑
i=1

(
Λi + λ/2−max{Λi, λ/2}+

λ

2
ln

max{Λi, λ/2}
λ/2

)
+ E[‖Y(ImU)⊥‖2]

= min
U∈Rd×r

r∑
i=1

(
λ

2
ln

max{Λi, λ/2}
λ/2

−max{Λi, λ/2}
)

+
rλ

2
+ E[‖Y ‖2]

where the optimization is over all U ∈ Rd×r such that UTU = Ir and UTKY U =
diag(Λ1, . . . ,Λr). We now let

f(Λi) = (λ/2) ln (max{Λi, λ/2}/ (λ/2))−max{Λi, λ/2},

11
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and complete the proof by showing

min
U∈Rd×r:UTKY U=diag(Λi,...,Λr)

r∑
i=1

f(Λi) =

r∑
i=1

f(λi(KY ))., (30)

where [λ1(KY ), . . . , λr(KY )] are the largest r eigenvalues of KY .
Indeed, for each U we can construct an orthogonal matrix U ′ = [U U⊥] ∈ Rd×d with the

first r columns equal to U. Then the first r diagonal elements of U ′TKY U
′ are Λ1 . . .Λr,

let the rest be Λr+1 . . .Λd. The eigenvalues of U ′TKY U
′ are λ1(KY ) . . . λd(KY ). By the fact

that the diagonal entries of a symmetric matrix are majorized by its eigenvalues (Marshall
et al., 1979, Theorem 9.B.1), we have

{Λi}di=1 ≺ {λi(KY )}di=1,

where ≺ denotes majorization, i.e. for x, y ∈ Rd :

x ≺ y ⇐⇒ ∀r ≤ d :
r∑
i=1

x(i) ≤
r∑
i=1

y(i) and
d∑
i=1

xi =
d∑
i=1

yi,

where x(i) is the i-th largest element of the vector x.
Therefore,

r′∑
i=1

Λi ≤
r′∑
i=1

Λ(i) ≤
r′∑
i=1

λi(KY ), ∀r′ ≤ r

and
{Λi}ri=1 ≺w {λi(KY )}ri=1,

where ≺w denotes weak majorization, i.e. for x, y ∈ Rr :

x ≺w y ⇐⇒ ∀r′ ≤ r :

r′∑
i=1

xi ≤
r′∑
i=1

yi.

We can now use the majorizing inequality (see Marshall et al., 1979, Proposition 4.B.2)
to complete the proof.

Proposition 3 (Majorizing inequality) The inequality∑
g(xi) ≤

∑
g(yi) (31)

holds for all continuous non-decreasing convex functions g if and only if x ≺w y.

Note that −f is a continuous non-decreasing convex function and

{Λi}ri=1 ≺w {λi(KY )}ri=1,

thus by the proposition
r∑
i=1

f(λi(KY )) ≤
r∑
i=1

f(Λi).

12
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Therefore, columns of the optimal U are the top r eigenvectors of KY , and the optimal PZ
has covariance matrix given by

KZ = U [diag(σ2
1, . . . , σ

2
r )|0r×(d−r)]U

T

where σ2
i = (λi(KY )− λ/2)+.

Proof [Proof of Theorem 2] From (18) in the proof of Theorem 1, we have for given G and
S = ImG,

W 2
2,λ(PZ , PY )− E[‖YS⊥‖2] = min

π∈Π(PZ ,PYS )
E[‖Z − YS‖2] + λI(Z;YS) = W 2

2,λ(PZ , PYS ),

and therefore for the Sinkhorn divergence,

Sλ(PZ , PY )− E‖YS⊥‖22 = W 2
2,λ(PZ , PYS )−

(
W 2

2,λ(PZ , PZ) +W 2
2,λ(PY , PY )

)
/2

= Sλ(PZ , PYS ) +
(
W 2

2,λ(PYS , PYS )−W 2
2,λ(PY , PY )

)
/2, (32)

which follows from the definition of Sinkhorn divergence.
Consider the optimization problem in the Sinkhorn divergence GAN, i.e. minPZ Sλ(PZ , PY ).

In light of (32), given Z ∈ S the optimal PZ should be PYS , which makes the first term in
(32) zero while the remaining terms do not depend on PZ . Therefore, it only remains to
optimize over S, and in particular, the problem reduces to

min
S∈Sd:dim(S)≤r

W 2
2,λ(PYS , PYS )/2 + E‖YS⊥‖22. (33)

To calculate W 2
2,λ(PYS , PYS ) we use the result of Janati et al. (2020, Theorem 1) stated

below.

Proposition 4 (Entropy-regularized Wasserstein distance for Gaussian measures)
Let KX ,KY ∈ Rd×d be positive definite and X ∼ N (µX ,KX) and Y ∼ N (µY ,KY ). Define

Dλ = (4A
1
2KYA

1
2 + λ2I/4)

1
2 . Then,

W 2
2,λ(α, β) =‖µX − µY ‖2 + Tr(KX) + Tr(KY )− Tr(Dλ)

+
λ

2

(
d(1− log λ) + log det

(
Dλ +

λ

2

))
With this proposition the objective function in (33) becomes

W 2
2,λ(PYS , PYS )/2 + E‖YS⊥‖22 = TrKYS⊥

+ TrKYS − Tr
(
(4K2

YS + λ2I/4)1/2
)
/2

+ λ ln det
((

4K2
YS + λ2I/4

)1/2
+ λI/2

)
/4 + C

=

r∑
i=1

(
λ

4
ln

(√
4Λ2

i +
λ2

4
+
λ

2

)
− 1

2

√
4Λ2

i +
λ2

4

)
+C ′

where Λi is the ith eigenvalue of UTKYSU for some U ∈ Rd×r such that ImU = S and
UTU = Ir, C is a constant depending only on λ and d and C ′ = TrK + C. The above is

13
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minimized when Λi = λi(KY ) using a similar argument as the one for showing (30), i.e., by
using the majorizing inequality and noting that for the function

f(x) =
√

4x2 + λ2/4/2− λ ln(
√

4x2 + λ2/4 + λ/2)/4,

−f(x) is convex and non-decreasing for λ > 0 and x ≥ 0.

4. Generalization of the Empirical Solution

In this section we discuss the generalization capability of the empirical solutions for
W2GAN, entropic W2GAN and Sinkhorn W2GAN, respectively. Note that in the pop-
ulation case, the underlying distribution of data PY was known in the GAN formulations
(2), (5) and (7). In contrast, here we consider the finite sample case, where empirical distri-
bution QnY extracted from sample Ŷ = {yi}ni=1 is used in the GAN objective (2), (5) and (7)
to approximate PY . We are interested in how fast the empirical solution PGn(X) converges
to the population solution PG∗(X).

It was shown by Feizi et al. (2017) that even in our simple benchmark when generators
are linear and data distribution is high-dimensional Gaussian, the convergence for W2GAN
is slow in the sense that the excess risk

E
[
W 2

2 (PGn(X), PY )−W 2
2 (PG∗(X), PY )

]
= Ω(n−2/d).

That is, to decrease the excess risk by a constant factor the number of samples has to
be increased by a factor of eΩ(d), and hence the generalization capability of W2GAN suffers
from the curse of dimensionality. To overcome this, Feizi et al. (2017) proposed to constrain
the set of discriminators for W2GAN to quadratic. This was motivated by the observation
that constraining the discriminator to be quadratic will not affect the population solution in
the Gaussian setting because the optimal discriminator for W2GAN is indeed quadratic in
this case. On the other hand, it was shown that this constraint will lead to fast convergence
to the optimal solution of (1) when the generator is linear and the data distribution is high-
dimensional Gaussian. More precisely, the convergence is of order Od(n

−1/2) and hence the
issue of curse of dimensionality is resolved in this case.

While constraining the discriminator to be quadratic as done by Feizi et al. (2017) is
conceptually appealing and works for the setup of linear generators and Gaussian data,
this insight does not generalize beyond this special case, i.e. for non-Gaussian data the
generator obtained under a quadratic discriminator is not necessarily the one minimizing
the 2-Wasserstein distance between the generated and the target distributions and in general
can be far from optimality.

In this section, We show in theorems 6 and 7 that under mild conditions on the underly-
ing distribution of data, the latent random variable and the set of generators, convergence
of order Od(n

−1/2) can be achieved for entropic W2GAN and Sinkhorn W2GAN without
the need to constrain the discriminator.

The parametric rate of convergence of entropy-regularized 2-Wasserstein distance (4)
was first discovered in the seminal work of Mena and Niles-Weed (2019). Our work extends
their result to the setting of GANs, the entropic W2GAN, and the Sinkhorn W2GAN in

14
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particular. In the remainder of this section, we first state the result of Mena and Niles-Weed
(2019), then we formally state our generalization results and overview the proof technique
discussing why these results cannot be directly applied to the framework of GANs. Finally,
we provide the full formal proof in subsection 4.4.

4.1 Convergence Rate of Entropic 2-Wasserstein Distance

To formally state the results for the convergence rate, let us first recall the definition of
sub-Gaussianity. A distribution PX is σ2 sub-gaussian for σ ≥ 0 if

E exp
(
‖X‖2/(2rσ2)

)
≤ 2.

Let
σ2(X)=min{σ≥ 0

∣∣E exp(‖X‖2/(2rσ2)) ≤ 2},
denote the sub-gaussian parameter of the distribution of X.

We note that the definition of the Entropic Wasserstein distance in this work differs
from the definition of Mena and Niles-Weed (2019) by a factor of 1/2 in the cost function:
they define an entropy-regularized 2-Wasserstein distance between PX and PY as

inf
π∈Π(PX ,PY )

1

2
E[‖X − Y ‖2] + λIπ(X,Y ),

so all the results of Mena and Niles-Weed (2019) apply to (1/2)W 2
2,2λ(PX , PY ) in our setting.

We state their main result below by modifying it for this factor of 1/2 in the regularization
strength and cost function.

Proposition 5 (Mena and Niles-Weed 2019,Corollary 1 of Theorem 2) If PZ and
PY are σ2 sub-gaussian, then

E
[∣∣W 2

2,λ(PZ , Q
n
Y )−W 2

2,λ(PZ , PY )
∣∣] ≤ Kdλn

−1/2
(
1 + (2σ2/λ)d5d/4e+3

)
, (34)

where Kd is a constant depending on the dimension.

This result establishes the convergence rate of the entropy-regularized Wasserstein dis-
tance to be of order Od(1/

√
n) (ignoring the dimension-dependent constants) compared to

Ω(n−2/d) known for the unregularized version of the Wasserstein distance (Dudley, 1969).
It is also worth noting, that though the dimension was removed from the exponent of n,
the dependence of the constant Kd in (34) still remains exponential in the dimension.

4.2 Generalization Results

We show the generalization of entropic W2GANs and Sinkhorn GANs by providing an upper
bound on their excess risk, which shows how far the true loss of the empirical solution
Gn (the solution found from the empirical distribution) is from the loss function of the
population solution G∗. We consider sub-gaussian latent and target distribution and star-
shaped generator sets, the definition for which we provide below.

A set of generators G is said to be star-shaped with a center at 0 if a line segment
between 0 and G ∈ G also lies in G, i.e.

G ∈ G ⇒ αG ∈ G, ∀α ∈ [0, 1]. (35)
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Note that this includes the set of all linear generators considered in the last section as a
trivial case, as well as the set of linear functions with a bounded norm or a fixed dimension.
This also includes the set of all L-Lipschitz functions as another example.

Theorem 6 Let P
K
−1/2
X X

and PY be sub-gaussian and the generator set G be a set of

linear functions satisfying condition (35). Then the excess risk for entropic W2GAN can
be bounded by

E
[
W 2

2,λ(PGn(X), PY )−W 2
2,λ(PG∗(X), PY )

]
≤ Kdλn

−1/2
(
1 + (2τ2/λ)d5d/4e+3

)
,

where τ2 = max{σ2(K
−1/2
X X)σ2(Y ), σ2(Y )} and Kd is a dimension dependent constant.

Similar results also hold for the set of Lipschitz generators and extend to the Sinkhorn
W2GAN.

Theorem 7 Let PX and PY be sub-Gaussian and the set of generators G consist of L-
Lipschitz functions, i.e. ‖G(X1)−G(X2)‖ ≤ L‖X1 −X2‖ for any X1, X2 in the support of
PX and let G satisfy (35). Then the excess risk for entropic W2GAN

E
[
W 2

2,λ(PGn(X), PY )−W 2
2,λ(PG∗(X), PY )

]
and that for Sinkhorn W2GAN

E
[
Sλ(PGn(X), PY )− Sλ(PG∗(X), PY )

]
can be both upper bounded by

Kdλn
−1/2

(
1 + (2τ2/λ)d5d/4e+3

)
(36)

with τ2 = max{L2σ2(X), σ2(Y )}.

The above theorems essentially say that under certain mild conditions on the latent
and target distributions and the set of generators G, the excess risks for entropic W2GAN
and Sinkhorn W2GAN converge to zero at speed Od(1/

√
n). From the perspective of Feizi

et al. (2017) mentioned earlier, this may suggest that the set of possible discriminators is
implicitly constrained due to the entropic regularization term used in the primal form of
entropy regularized 2-Wasserstein distance.

It is worth mentioning that a related result was proved by Luise et al. (2020, Theorem
2). However, their framework is different from ours as they focus on latent distribution
learning and assume that the target distribution is supported on a low-dimensional mani-
fold of dimension r, in which case they are able to provide convergence rates that depend
on the latent dimension r rather than the ambient dimension d. We note that both results
can be applied to the special case r = d in our setting, i.e., when the target and latent
distributions are of the same dimensionality. In this special case, both the results of Luise
et al. (2020, Theorem 2) and our results in Theorems 6 and 7 above yield similar conver-
gence rates but Luise et al. (2020, Theorem 2) require significantly stronger conditions for
the set of generator functions G. In particular, they require any G ∈ G to be dd/2e + 1
times continuously differentiable with all partial derivatives uniformly bounded with some
constant τ : ‖G‖dd/2e+1,∞ ≤ τ. Namely, it does not apply to G being the set of all linear
functions or L−Lipschitz functions unless r = 1.
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4.3 Overview of Proofs of Theorems 6 and 7

We first note that Proposition 5 (Mena and Niles-Weed, 2019, Theorem 2) cannot be directly
used to bound the excess risk for GANs. Consider the standard way to bound it, which is
to decompose the quantity under the expectation into two following terms:

W 2
2,λ(PGn(X), PY )−W 2

2,λ(PG∗(X), PY ) =
(
W 2

2,λ(PG∗(X), Q
n
Y )−W 2

2,λ(PG∗(X), PY )
)

+
(
W 2

2,λ(PGn(X), PY )−W 2
2,λ(PG∗(X), Q

n
Y )
)

≤
(
W 2

2,λ(PG∗(X), Q
n
Y )−W 2

2,λ(PG∗(X), PY )
)

(37)

+
(
W 2

2,λ(PGn(X), PY )−W 2
2,λ(PGn(X), Q

n
Y )
)
,

where the second inequality holds due to the optimality of Gn. Now, the expected value of
the first summand in (37) can be upper bounded with (34) provided that PG∗(X) and PY
are σ2 sub-gaussian. However, the expectation of the second summand in (37) cannot be
bounded in the same way, primarily because the distribution PGn(X) now depends on QnY .
Additionally, in the case of linear generators discussed in Section 3, there is no known finite
bound on the sub-gaussian norm of the generated distribution as supGn∈G σ

2(Gn(X)) =∞,
so even if the dependence of Gn and the sample QnY was negligible, further bounds on the
sub-gaussian parameter of empirical solution would be necessary.

Instead of following this approach, we rely on the fact that Theorem 2 of Mena and
Niles-Weed (2019) itself relies on a covering number bound of the set of admissible dual
potentials (8), which can be used to separate the dependent Gn and the sample through
a union bound over the covering. In particular, Mena and Niles-Weed (2019) show that
if PZ , PY , and QnY are all σ̃2 sub-gaussian distributions, equivalently σ̃2 is the maximum
sub-gaussian parameter for these three distributions, then for s = dd/2e+1 and for a certain
set of smooth functions Fs defined formally in proposition 9 it holds almost surely that∣∣W 2

2,2(PZ , Q
n
Y )−W 2

2,2(PZ , PY )
∣∣ ≤ 4 sup

f∈Fs

∣∣∣EY∼PY f(Y )− EŶ∼QnY f(Ŷ )
∣∣∣ (1 + σ̃3s). (38)

The sub-Gaussian parameter in (38) is random and depends on the sample. We can set PZ =
PGn(X) as long as PGn(X) is guaranteed to be sub-gaussian with some random parameter
σ̃, which holds for any Lipschitz Gn. This bound comes from the dual form and the fact
that one can choose the dual potential f that is smooth and satisfies f/(1 + σ̃3s) ∈ Fs. It
is also important to note that Fs depends on s (and hence the dimension) but not on the
sub-Gaussian parameter σ̃. We note that we used λ = 2 in (38), because by rescaling the
distributions and the loss function one can obtain a bound for any λ based on the one for
λ = 2 as we will show in the proof of Proposition 5.

Now, one can take the expectation of both sides of (38) and apply Cauchy-Schwartz
inequality to completely separate the dependent σ̃ and QnY , which leads to

E
∣∣W 2

2,2(PGn(X), Q
n
Y )−W 2

2,2(PGn(Z), PY )
∣∣

≤ 4

√√√√E

[
sup
f∈Fs

∣∣∣EY∼PY f(Y )− EŶ∼QnY f(Ŷ )
∣∣∣2]E [(1 + σ̃3s)2]. (39)
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Here the first term in the product also appears in the proof of Theorem 2 by Mena
and Niles-Weed (2019), for which the authors provide an upper bound which we state as
Proposition 10:

E

[
sup
f∈Fs

∣∣∣EY∼PY f(Y )− EŶ∼QnY f(Ŷ )
∣∣∣2] ≤ Cd 1

n
(1 + σ2d+4),

where σ is the sub-gaussian parameter of the distribution PY and Cd is the dimension-
dependent constant. Finally, redefining the constant, simplifying, and plugging the above
into (38) gives

E
∣∣W 2

2,2(PGn(X), Q
n
Y )−W 2

2,2(PGn(Z), PY )
∣∣

≤ Cd
1√
n

(1 + σ2d+4
√

E [σ̃6s]).

Now, the only thing left is to bound the 6s-order moment of the sub-Gaussian parameter
σ̃2 = max{σ2(Gn(X)), σ2(Y ), σ2(Ŷ )} with Ŷ ∼ QnY . By redefining Cd again one can simplify
the above to

E
∣∣W 2

2,2(PGn(X), Q
n
Y )−W 2

2,2(PGn(Z), PY )
∣∣

≤ Cd
1√
n

(
1 + σ2d+4 max

{
E
[
σ2(Gn(X))3s

]
,E
[
σ2(Ŷ )3s

]
, σ2(Y )3s

}1/2
)
. (40)

The moments of the empirical distribution’s sub-Gaussian parameter σ2(Ŷ ) were bounded
by Mena and Niles-Weed (2019, Lemma 4) stated here as Proposition 11 and give the

following: E
[
σ2(Ŷ )3s

]
≤ 2(3s)3sσ2(Y )3s.

We next overview how we bound σ2(Gn) under the conditions of Theorem 6. First,
we upper bound EX∼PX [‖Gn(X)‖2]. Since Gn is the empirical solution, for any G ∈ G it
holds that W 2

2,2(PGn(X), Q
n
Y ) ≤W 2

2,2(PG(X), Q
n
Y ). Now since αGn ∈ G is a feasible point by

assumption (35), it holds that

1 = α∗ = argminα∈[0,1]W
2
2,2(PαGn(X), Q

n
Y )

as if α∗ 6= 1 then G = αGn gives a smaller loss and Gn is not optimal. The optimality
condition leads to E

[
‖Gn(X)‖2

]
≤ TrKŶ , where KŶ is the covariance matrix of Ŷ as

we show in Lemma 12. Since Gn is also linear plugging it into the expectation gives a

bound of σ2(Gn(X)) ≤ TrKŶ σ
2(K

−1/2
X X) as also shown in Lemma 12. Finally the fact

that Tr(KŶ ) ≤ 2dσ2(Ŷ ) obtained by Jensen’s inequality as shown in lemma 13 allows us to

bound σ2(Gn(X)) ≤ σ2(K
−1/2
X X)σ2(Ŷ ). Plugging these bounds into (40) proves theorem

6. The bound of σ2(Gn(X)) under the conditions of Theorem 7 is similar, but requires
separating out the Gn(0) in W 2

2,2(PGn(X), Q
n
Y ) and bounding the difference for the translated

generator function Gn(X) − Gn(0) and then establishing the rate for the term added by
Gn(0). We next proceed with the formal version of the proofs.
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4.4 Proofs

In this section we use QnY to denote the random empirical distribution extracted from

a sample Ŷ = {yi}ni=1 ∼ P⊗nY unless stated otherwise. We also use EŶ [·] denotes the

expectation conditioned on the sample Ŷ and let

σ2
Ŷ(Ŷ ) = min{σ ≥ 0

∣∣∣EŶ exp(‖Ŷ ‖2/(2rσ2)) ≤ 2}

be the sub-gaussian parameter of the distribution of Ŷ conditioned on the sample.
Note that to be able to apply the result of Mena and Niles-Weed (2019) we first need to

bound the sub-gaussian norm of the output distributions σ2(G∗(X)) and σ2(Gn(X)) since
supG∈G σ

2(G(X)) = ∞. We do this in lemmas 12, 13. The rest of the proof follows the
proof of Theorem 2 by Mena and Niles-Weed (2019) with the additional constraint that
σ2
Ŷ(Gn(X)) and QnY are dependent.

To prove the theorem we will need several intermediate results from the proof of Theorem
2 by Mena and Niles-Weed (2019) and two lemmas specific to our setting, and we state them
in the following subsection.

4.4.1 Facts Introduced by Mena and Niles-Weed (2019) and Additional
Lemmas

Proposition 8 (Mena and Niles-Weed, 2019, Proposition 2) Let PX , PY and QnY all be σ̃2

sub-gaussian distributions for a possibly random σ̃2 ∈ [0; +∞). Then for a set of functions
F denoting ‖PY −QnY ‖F = supf∈F |EY∼PY [f(Y )]− EŶ∼QnY [f(Ŷ )]| it holds that

(1/2)
∣∣W 2

2,2(PX , Q
n
Y )−W 2

2,2(PX , PY )
∣∣ ≤ 2‖PY −QnY ‖Fσ̃ ,

where Fσ̃ is a set of functions satisfying for some constants Ck,d, depending on k and d only
and for any multi-index α with |α| = k

|Dα(f − (1/2)‖ · ‖2)(x)| ≤ C ′k,d

{
1 + σ4 if k = 0

σk(σ + σ2)k otherwise

if ‖x‖ ≤
√
dσ and

|Dα(f − (1/2)‖ · ‖2)(x)|

≤ C ′k,d

{
1 + (1 + σ2)‖x‖2 if k = 0

σk(
√
σ‖x‖+ σ‖x‖)k otherwise

if ‖x‖ >
√
dσ.

Note that we also included the definition of Fσ̃ from Proposition 1 of Mena and Niles-
Weed (2019) into the above. The proposition cannot be used directly for proving the result
since the norm depends on the random sub-gaussian parameter σ̃. To overcome that we use
the following proposition that will help decouple the norm and the random sub-gaussian
parameter.
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Proposition 9 Let PX , PY and QnY all be σ̃2 sub-gaussian distributions for a possibly ran-
dom σ̃2 ∈ [0; +∞). Let for s ≥ 2 Fs be a set of functions satisfying

|f(x)| ≤ Cs,d(1 + ‖x‖2)

|Dαf(x)| ≤ Cs,d(1 + ‖x‖s) ∀α : |α| ≤ s

for some constant Cs,d that depends only on s, d. Then∣∣W 2
2,2(PX , Q

n
Y )−W 2

2,2(PX , PY )
∣∣ ≤ 4‖PY −QnY ‖Fs(1 + σ̃3s)

The proof of the proposition follows some of the steps of the proof of Theorem 2 by Mena
and Niles-Weed (2019) and is provided here for completeness.

Proof Note that for large enough constants Cs,d (Cs,d ∝ d + maxk≤s 2kC ′k,d, where C ′k,d
come from the definition of Fσ̃2) for any f ∈ Fσ̃2 it holds that 1

1+σ̃3s f ∈ Fs. Combining
this with Proposition 8 we get∣∣W 2

2,2(PX , Q
n
Y )−W 2

2,2(PX , PY )
∣∣

≤ 4‖PY −QnY ‖Fσ̃

= (1 + σ̃3s) sup
f∈Fσ̃

∣∣∣EY∼PY [ f(Y )

1 + σ̃3s

]
− EŶ∼QnY

[ f(Ŷ )

1 + σ̃3s

]∣∣∣
≤ (1 + σ̃3s) sup

f∈Fs
|EY∼PY [f(Y )]− EŶ∼QnY [f(Ŷ )]|

= 4‖PY −QnY ‖Fs(1 + σ̃3s)

The proof of Mena and Niles-Weed (2019, Theorem 2) also uses a covering number for Fs
to bound E[‖PY −QnY ‖2Fs ]. Since the result will be used in the proofs of Theorems 6 and 7,
we will state it here.

Proposition 10 (Mena and Niles-Weed 2019, Proof of Theorem 2, page 8; Giné and Nickl
2021) For s = dd/2e + 1, for PY being σ2 sub-gaussian and Fs defined in proposition 9 it
holds that

E[‖PY −QnY ‖2Fs ] ≤ Cd
1

n
(1 + σ2d+4)

Finally, we state here (Mena and Niles-Weed, 2019, Lemma 4) that helps bound the even
moments of the sub-gaussian parameter σ̃2 of the (random) empirical distribution QnY .

Proposition 11 (Mena and Niles-Weed, 2019, Lemma 4) If Y is σ2 sub-gaussian then QnY
is σ̃2 sub-gaussian with

E[σ̃2k] ≤ 2kkσ2k

for any positive integer k,
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To prove the theorem we will also need the following lemmas connected to the properties
of G(X).

Lemma 12 Under the assumption (35) the optimal generator

G∗ = arg min
G∈G

W 2
2,λ(PG(X), PZ)

for Z ∈ Rd satisfies E
[
‖G∗(X)‖22

]
≤ TrKZ , and if G∗ is linear then G∗(X) is sub-Gaussian

with σ2(G∗(X)) ≤ rd−1 TrKZσ
2(K

−1/2
X X).

Proof Assume that g2 = E
[
‖G∗(X)‖22

]
> 0. If assumption (35) holds then for any α ∈

[0, 1] : αG∗ ∈ G. Consider G̃∗(X) = G∗(X)/g. By optimality of G∗ for the optimal coupling
π∗ :

g = arg min
α∈[0,g]

W 2
2,λ(PαG̃∗(X), PZ)

= arg min
α∈[0,g]

EX,Z∼π∗
[
‖αG̃∗(X)− Z‖22

]
+ λI(G̃(X);Z)

= arg min
α∈[0,g]

α2 + E
[
‖Z‖2

]
− 2αEX,Z∼π∗

[
G̃∗(X)TZ

]
+ λI(G̃(X);Z)

The above problem is minimization of a quadratic function thus

g = α∗ = min
{
g,EX,Z∼π∗

[
G̃∗(X)TZ

]}
≤
√

TrKZ ,

so E
[
‖G∗(X)‖22

]
≤ TrKZ . For a linear G∗ : E

[
‖G∗X‖22

]
= TrG∗TG∗KX = ‖G∗K1/2

X ‖2F ≤
TrKZ for τ2 = TrKZr

d σ2
(
K
−1/2
X X

)

E e
‖G∗X‖22

2dτ2 = E e
‖G∗K1/2

X
K
−1/2
X

X‖22
2dτ2 ≤ E e

TrKZ‖K
−1/2
X

X‖22
2dτ2 = E e

‖K−1/2
X

X‖22

2rσ2
(
K
−1/2
X

X

)
≤ 2

Lemma 13 For a sub-gaussian Z ∈ Rd the covariance matrix trace is bounded as TrKZ ≤
2dσ2(Z).

Proof

ln 2 ≥ lnE e
‖Z‖22

2dσ2(Z) ≥ ln e
E ‖Z‖22

2dσ2(Z) = TrKZ/
(
2dσ2(Z)

)
.

The first inequality follows from Z being sub-Gaussian and the second one is Jensen’s in-
equality.
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4.4.2 Proof of Theorems 6 and 7

Proof [Proof of Theorem 6] The proof is based on the proof of Theorem 2 by Mena and
Niles-Weed (2019). Denote Cd,i constants depending on the dimension d as we are not
aiming to find the exact dependence of the bound from the dimension. Let λ = 2, we
will generalize to λ 6= 2 exacly as we did in the proof of Proposition 5. First, we rewrite
dλ(G∗, Gn) = W 2

2,λ(PGn(X), PY )−W 2
2,λ(PG∗(X), PY ) to fit Proposition 5:

dλ(G∗, Gn) =
(
W 2

2,λ(PG∗(X), Q
n
Y )−W 2

2,λ(PG∗(X), PY )
)

+
(
W 2

2,λ(PGn(X), PY )−W 2
2,λ(PG∗(X), Q

n
Y )
)

≤
(
W 2

2,λ(PG∗(X), Q
n
Y )−W 2

2,λ(PG∗(X), PY )
)

+
(
W 2

2,λ(PGn(X), PY )−W 2
2,λ(PGn(X), Q

n
Y )
)

(41)

Let ν2 = max{2rσ2(K
−1/2
X X)σ2(Y ), σ2(Y )} ≤ 2rτ2. Then

σ2 (G∗(X)) ≤ rd−1 TrKY σ
2
(
K
−1/2
X X

)
≤ 2rσ2

(
K
−1/2
X X

)
σ2(Y ) ≤ ν2,

with the inequalities following from Lemmas 12, 13 and the definition of ν2. By Proposition
5 applied to the expectation of the first difference in (41):

E
[∣∣W 2

2,λ(PG∗(X), Q
n
Y )−W 2

2,λ(PG∗(X), PY )
∣∣]

≤ Cd,2n−1/2
(
1 +

(
ν2
)d5d/4e+3)

, (42)

As Gn depends on the sample, the proposition cannot be applied directly to the second
difference, but by Proposition 9 for σ̃2 = max

{
σ2
Ŷ (Gn(X)) , σ2

Ŷ(Ŷ ), σ2(Y )
}

and s = dd/2e+
1 :

W 2
2,λ(PGn(X), PY )−W 2

2,λ(PGn(X), Q
n
Y )

≤ 4
(
1 + σ̃3s

)
‖PY −QnY ‖Fs , . (43)

Note that Fs only depends on s and not on the sub-gaussian parameters of Y and GX.
Taking expectation over the sample in (43) we get:(

E
[
W 2

2,λ(PGn(X), PY )−W 2
2,λ(PGn(X), Q

n
Y )
])2

≤ 8E
[
1 + σ̃6s

]
E‖PY −QnY ‖2Fs

≤
(

1 + σ2(Y )d+2
)
n−1Cd,3E

[
1 + σ̃6s

]
(44)

≤
(

1 + ν2d+4
)
n−1Cd,3E

[
1 + σ̃6s

]
, (45)

where (44) follows from Proposition 10 and (45) from the definition of ν. By Lemma 13 we
have TrKŶ ≤ 2dσ2(Ŷ ), so

σ2
Ŷ(Gn(X)) ≤ d−1 TrKŶ rσ

2
(
K
−1/2
X X

)
≤ 2rσ2

(
K
−1/2
X X

)
σ2
Ŷ

(
Ŷ
)
≤ σ2

Ŷ(Ŷ )ν2/σ2(Y ), (46)
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where the first inequality follows from Lemma 12 and the second one from Lemma 13.
Taking expectation of σ̃6s :

E
[
σ̃6s
]

= E
[
max

{
σ2
Ŷ

(
Ŷ
)
, σ2(Y ), σ2

Ŷ (Gn(X))
}3s]

≤ ν6sE
[
max

{
1, σ2
Ŷ

(
Ŷ
)
/σ2(Y )

}3s
]
≤ 2(3s)3sν6s, (47)

where (47) is due to Proposition 11; plugging (47) in (45) gives

E
[
W 2

2,λ(PGn(X), PY )−W 2
2,λ(PGn(X), Q

n
Y )
]

≤
√

2(1 + 2(3s)3sν6s)Cd,3n−1 (1 + νd+2)

≤ Cd,4n−1/2
(
1 +

(
ν2
)d5d/4e+3)

(48)

Combining (48) and (42) we get for λ = 2 :

E [dλ(G∗, Gn)] ≤ Cd,5n−1/2(1 + (ν2)d5d/4e+3)

≤ Kdn
−1/2(1 + (τ2)d5d/4e+3),

Consider λ 6= 2. Then for any λ > 0 :

W 2
2,2(P

Z
√

2/λ
, P

Y
√

2/λ
)

= inf
π∈Π((PZ ,PY ))

2E
[
‖Z − Y ‖2

]
/λ+ 2I(Z;Y )

= 2W 2
2,λ(PZ , PY )/λ

Thus, noting that for a sub-gaussian Z :

E exp

(
‖Z
√

2/λ‖22
2rσ2

Z2/λ

)
= E exp

(
‖Z‖22
2rσ2

Z

)
≤ 2

we conclude that σ2(Z
√
λ/2) = 2σ2(Z)/λ. Plugging the result into the bound (48) we get

E [dλ(G∗, Gn)] ≤ Kdλn
−1/2

(
1 + (2τ2/λ)d5d/4e+3

)
/2. (49)

Proof [Proof of Theorem 7] The proof follows the same path as the proof of Theorem 6
with the only difference being in bounding the sub-Gaussian parameters.

For G ∈ G let G̊(X) = G(X) − G(0) – a shifted function. Note that G̊ need
not be in G. To avoid confusion we let H∗ = argminH∈G Sλ(PH(X), PY ) and Hn =
argminH∈G Sλ(PH(X), Q

n
Y ) – the population and empirical solutions to Sinkhorn W2GANs.

Since

E
[
‖G(X)− Y ‖2

]
= E

[
‖G̊(X)− Y +G(0)‖2

]
= E

[
‖G̊(X)− Y ‖2

]
+ 2G(0)TE[G̊(X)− Y ] + ‖G(0)‖2
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and I(G(X), Y ) = I(G̊(X), Y ), entropy-regularized Wasserstein distance decomposes as
W 2

2,λ(PG(X), PY ) = W 2
2,λ(PG̊(X), PY ) + 2G(0)TE[G̊(X) − Y ] + ‖G(0)‖2 As in the proof of

Theorem 6 we decompose the excess risk:

dλ(G∗, Gn) = W 2
2,λ(PGn(X), PY )−W 2

2,λ(PG∗(X), PY )

≤W 2
2,λ(PG∗(X), Q

n
Y )−W 2

2,λ(PG∗(X), PY )

+W 2
2,λ(PGn(X), PY )−W 2

2,λ(PGn(X), Q
n
Y )

=
(
W 2

2,λ(PG̊∗(X), Q
n
Y )−W 2

2,λ(PG̊∗(X), PY )
)

+
(
W 2

2,λ(PG̊n(X), PY )−W 2
2,λ(PG̊n(X), Q

n
Y )
)

+ 2 (G∗(0)−Gn(0))T
(
EY − EŶ Ŷ

)
, (50)

where the last inequality follows as (41). Similarly, for Sinkhorn W2GAN the excess risk is:

dSλ(H∗, Hn) = Sλ(PHn(X), PY )− Sλ(PH∗(X), PY )

≤
(
Sλ(PH∗(X), Q

n
Y )− Sλ(PH∗(X), PY )

)
+
(
Sλ(PHn(X), PY )− Sλ(PHn(X), Q

n
Y )
)

=
(
W 2

2,λ(PH∗(X), Q
n
Y )−W 2

2,λ(PH∗(X), PY )
)

+
(
W 2

2,λ(PHn(X), PY )−W 2
2,λ(PHn(X), Q

n
Y )
)

=
(
W 2

2,λ(PH̊∗(X), Q
n
Y )−W 2

2,λ(PH̊∗(X), PY )
)

+
(
W 2

2,λ(PH̊n(X), PY )−W 2
2,λ(PH̊n(X), Q

n
Y )
)

+ 2 (H∗(0)−Hn(0))T
(
EY − EŶ Ŷ

)
(51)

The RHS of (51) and (50) are the same as the RHS of (41). Note that for any G ∈ G and
for σ2 = σ2(X)rL2/d by the L-Lipschitzness of G :

E e
‖G̊(X)‖22

2dσ2 = E e
‖G(X)−G(0)‖22

2dσ2 ≤ E e
L2‖X‖22

2dσ2 = E e
‖X‖22

2rσ2(X) ≤ 2,

thus G̊(X) and H̊(X) are both sub-Gaussian, max{σ2(G̊(X)), σ2(H̊(X))} ≤ σ2(X)rL2/d ≤
τ2.

The next part of the proof follows the proof of Theorem 6 with ν2 = τ2, and G̊n and
H̊n in place of Gn, G̊∗ and H̊∗ in place of G∗ for the entropic and Sinkhorn W2GAN
cases respectively. Indeed, for entropic W2GAN eqs. (42), (43) and (45) only require that
max{σ2(G̊n(X)), σ2(G̊∗(X)), σ2(Y )} ≤ ν2. As σ2

Ŷ(G̊n(X)) ≤ L2σ2(X), in place of (47) we

have for σ̃2 = max
{
σ2
Ŷ

(
G̊n(X)

)
, σ2
Ŷ(Ŷ ), σ2(Y )

}
and s = dd/2e+ 1 :

E
[
σ̃6s
]
≤ E

[
max

{
σ2
Ŷ

(
Ŷ
)
, σ2(Y ), σ2

Ŷ (Gn(X))
}3s]

≤ E
[
max

{
σ2
Ŷ

(
Ŷ
)
, σ2(Y ), L2σ2(X)

}3s]
≤ ν6sE

[
max

{
1, σ2
Ŷ

(
Ŷ
)
/σ2(Y )

}3s
]
≤ 2(3s)3sν6s,
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where the last inequality is due to Proposition 11. So, eq. (48) and (49) hold, i.e.

Edλ(G∗, Gn) ≤ Kdλn
−1/2

(
1 + (2τ2/λ)d5d/4e+3

)
/2 + 2E

[
(G∗(0)−Gn(0))T

(
EY − EŶ Ŷ

)]
≤ Kdλn

−1/2
(
1 + (2τ2/λ)d5d/4e+3

)
/2 + 2

√
E‖Gn(0)‖22

√
TrKY /n, (52)

where the last inequality follows from the independence of G∗(0) and the sample and the
Cauchy-Schwarz inequality.

For Sinkhorn W2GAN the above results in

EdSλ(H∗, Hn) ≤ Kdλn
−1/2

(
1 + (2τ2/λ)d5d/4e+3

)
/2 + 2

√
E‖Hn(0)‖22

√
TrKY /n (53)

We will now bound the last term of (52) via Lemma 12 and Lipschitzness of G :

E‖Gn(0)‖22 ≤ 2E‖Gn(X)−Gn(0)‖22 + 2E‖Gn(X)‖22 ≤ 2L2 TrKX + 2 TrKY ≤ 8dτ2,

where the last inequality follows from Lemma 13. (52) thus becomes:

Edλ(G∗, Gn) ≤ Kdλn
−1/2

(
1 + (2τ2/λ)d5d/4e+3

)
/2 + 2

√
8dτ2 TrKY /n

≤ Kdλn
−1/2

(
1 + (2τ2/λ)d5d/4e+3

)
/2 + 8dτ2/

√
n, (54)

where the last inequality fllows from Lemma 13. Redefining Kd completes the proof for
Entropic W2GAN excess risk.

To complete the proof we need to bound E‖Hn(0)‖22. We first note that 0 ∈ G, so by
optimality of Hn :

Sλ(PHn(X), Q
n
Y ) ≤ Sλ(δ0, Q

n
Y ) = EŶ‖Ŷ ‖

2
2 −W 2

2,λ(QnY , Q
n
Y )/2 ≤ EŶ‖Ŷ ‖

2
2, (55)

where δ0 is a point mass at 0. As Sλ(PH̊n(X), Q
n
Y ) ≥ 0 :

Sλ(PHn(X), Q
n
Y ) = Sλ(PH̊n(X), Q

n
Y ) + ‖H(0)‖22 + 2H(0)TEŶ

[
Ŷ − H̊n(X)

]
≥ ‖Hn(0)‖22 + 2Hn(0)TEŶ

[
Ŷ − H̊n(X)

]
(56)

Combining (55) and (56) and taking the expectation over the sample Ŷ we get:

2dτ2 ≥ TrKY = EEŶ‖Ŷ ‖
2
2

≥ E‖Hn(0)‖22 − 2E
[
‖Hn(0)‖EŶ

[
‖Ŷ ‖+ L‖X‖

]]
≥ E‖Hn(0)‖22 − 2

√
E‖Hn(0)‖22(

√
TrKY + L

√
TrKX)

≥ E‖Hn(0)‖22 − 4
√

E‖Hn(0)‖22
√

2dτ2

The above inequality implies that E‖Hn(0)‖22 ≤ 40dτ2. From (53):

EdSλ(H∗, Hn) ≤ Kdλn
−1/2

(
1 + (2τ2/λ)d5d/4e+3

)
/2 + 2

√
E‖Hn(0)‖22

√
TrKY /n

≤ Kdλn
−1/2

(
1 + (2τ2/λ)d5d/4e+3

)
/2 + 2

√
40dτ2

√
2dτ2/n

≤ Kdλn
−1/2

(
1 + (2τ2/λ)d5d/4e+3

)
/2 + 20dτ2/

√
n

Redefining Kd completes the proof.
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5. Computational Convergence

For the sake of completeness, in this section, we discuss some results on the computa-
tional convergence of entropic optimal transport and Sinkhorn divergence and emphasize
the advantages of these regularization methods from an optimization perspective. A more
detailed discussion is given by Sanjabi et al. (2018); Feydy et al. (2019). As was previously
mentioned, entropic regularization makes the problem strongly convex, which in turn facili-
tates convergence. Note that since the optimal solution to (4) is known to satisfy (12),(11),
Sinkhorn-Knopp iterates (13),(14) or any other method can be used to solve the inner
problem close to optimality. In contrast, computing the unregularized optimal transport
requires the use of linear programming techniques which are computationally infeasible in
many machine learning applications.

Moreover, Sanjabi et al. (2018, Theorem 3.1) show that under mild conditions on the
generator set G and the distributions of PY , PX , entropy-regularized Wasserstein distance is
Lipschitz smooth, i.e. has a Lipschitz continuous gradient with respect to the parameters of
the generator. If we let the generator set G be parametrized by θ ∈ Θ, i.e. G = {Gθ | θ ∈ Θ})
then

| 5θ W
2
2,λ(PGθ1 (X), PY )−5θW

2
2,λ(PGθ2 (X), PY )| ≤ L‖θ1 − θ2‖,

where L is a constant depending on PX , PY ,G and λ. Moreover, the optimal coupling π∗(θ)
is a Lipschitz continuous function of θ :

‖π∗(θ1)− π∗(θ2)‖1 ≤
L0

λ
‖θ1 − θ2‖

The above indicates that small changes in the generator parameter θ result in small changes
in the optimal coupling. Therefore, after the gradient step on the generator parameters θ,
finding the regularized Wasserstein distance is easier since the discriminator parameters
from the previous step are close to the optimal ones for the current step, while the Lips-
chitz smoothness of regularized Wasserstein distance in θ results in faster convergence of
optimization.

Note that first-order optimization methods commonly used for neural network opti-
mization require calculating the gradients 5θW

2
2,λ(PGθ(X), PY ), which requires knowing the

optimal dual potentials, but since they are found numerically, they can only be computed
up to some positive accuracy, so the smoothness of the gradient of the entropic Wasser-
stein distance with respect to the accuracy up to which the dual potentials are calculated
plays a crucial role in the convergence of the optimization. More precisely, if the inner
problem of calculating Entropic Wasserstein distance is solved up to a certain accuracy ε,
it can be shown that the gradient step on the outer problem of finding G is O(

√
ε/λ)-

close to optimal, which makes training stable (see Sanjabi et al., 2018, Theorem 4.1). In
contrast, the training of W2GAN, i.e. based on the unregularized squared Wasserstein dis-
tance, is known to be unstable even for the linear generator G and quadratic discriminator
(Feizi et al., 2017) when r < d, and the training methods for Wasserstein GAN (Arjovsky
et al., 2017; Gulrajani et al., 2017) do not converge locally with simultaneous or alternating
gradient descent (Mescheder et al., 2018).

Finally, we note the following optimization convergence result by Sanjabi et al. (2018,
Theorem 4.2.). Under mild conditions on G, PX , PY it can be shown that when stochastic
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gradient is used to solve

min
θ
f(θ) = min

θ
W 2

2,λ(PGθ(X), PY ),

where G(·) is parametrized by θ, the random iterates θ1, . . . , θT satisfy

min
t=1...T

E[‖∇f(θt)‖2] ≤ O(1/
√
T ) +O(ε/λ).

Here constants in O(·) depend on the class of generators G ∈ G and the distributions PX , PY ,
and T is the number of iterations of stochastic gradient descent and ε is the precision,
to which the inner problem is solved. The expectation is over the randomness in the
algorithm. The theorem implies that if there are enough iterations to get the discriminator
close to optimality the training reaches a stable point of small E[‖∇f(θt)‖2]. Since Sinkhorn
divergence is a linear combination of entropy-regularized Wasserstein distances, a similar
result holds for it and the optimization is stable.

6. Experiments

In our experiments we aim to contrast and compare the performance of Sinkhorn GAN (la-
bel: SGAN) and 1-Wasserstein GAN WGAN (label: WGAN) for linear generators. Entropic
W2GAN is omitted from the comparison due to the fact that it leads to a biased solution
as shown in Theorem 1. Following the experimental evaluations of Feizi et al. (2017), we
generate n = 105 samples from a d = 32 dimensional Gaussian distribution N (0,K) where
K is a random positive semi-definite matrix normalized to have Frobenius norm 1. We
train WGAN with weight clipping (Arjovsky et al., 2017) labeled WGAN-WC, and WGAN
with gradient penalty (Gulrajani et al., 2017) labeled WGAN-GP—two common methods
to ensure Lipschitzness of the discriminators. We use the linear generator and a neural
network discriminator with hyper-parameter settings as recommended by Gulrajani et al.
(2017). The discriminator neural network has three hidden layers, each with 64 neurons
and ReLU activation functions.

The pseudocode of our optimization for Sinkhorn GAN can be found in Algorithm 1.
The algorithm is similar to the algorithm of Sanjabi et al. (2018), where we assume that
the generators are parametrized by θ, i.e. G(X) = Gθ(x) and we apply stochastic gra-
dient descent on θ. Note that at every step of the gradient descent algorithm, we need
to calculate the gradient of the Sinkhorn divergence, ∇θSλ(PGθ(X), PY ). From the defini-
tion of the Sinkhorn divergence in (6), to compute ∇θSλ(PGθ(X), PY ) we need to compute
∇θW 2

2,λ(PGθ(X), PGθ(X)) and ∇θW 2
2,λ(PGθ(X), PY ). (The third term W 2

2,λ(PY , PY ) is irrele-
vant since it doesn’t depend on the generator.) From (8) follows the dual representation:

W 2
2,λ(PGθ(X), PY ) = sup

ψ∈L∞(Y)
φ∈L∞(Gθ(X ))

E [ψ(Y ) + φ(Gθ(X))] + λ

− λE(X,Y )∼PX×PY

[
e
φ(Gθ(X))+ψ(Y )−‖Gθ(X)−Y ‖22

λ

]
(57)

W 2
2,λ(PGθ(X), PGθ(X)) = sup

φx∈L∞(Gθ(X ))
2E [φx(Gθ(X))] + λ

− λE(X1,X2)∼PX×PXe
φx(Gθ(X1))+φx(Gθ(X2))−‖Gθ(X1)−Gθ(X2)‖22

λ , (58)
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Now assume that we have access to approximations of the optimal dual potentials for (57),
which for simplicity we also denote by φ and ψ. Then by using (10), we can obtain an
approximation of the optimal coupling given by

π(Gθ(x), y) = PGθ(X)(Gθ(x))PY (y)e
φ(Gθ(x))+ψ(y)−‖Gθ(x)−y‖22

λ

= PGθ(X)(Gθ(x))PY (y)µ(x, y). (59)

Using the above in place of the coupling in the primal formulation of the entropic 2-
Wasserstein distance we can then compute an approximation of the desired gradient

∇θW 2
2,λ(PGθ(X), PY ) ≈ E(X,Y )∼PX×PY [µ(X,Y )∇θ(‖Gθ(X)− Y ‖2)].

Analogously, if φx(·) is an approximate optimal dual potential for (58) then

∇θW 2
2,λ(PGθ(X), PGθ(X)) ≈ E(X1,X2)∼PX×PX [µx(X1, X2)∇θ(‖Gθ(X1)−Gθ(X2)‖2)],

where

µx(x1, x2) = e
φx(Gθ(x1))+φx(Gθ(x2))−‖Gθ(x1)−Gθ(x2)‖22

λ . (60)

Finally, the gradient of the Sinkhorn divergence is approximated via

∇θSλ(PGθ(X), PY ) ≈ E(X,Y )∼PX×PY [µ(X,Y )∇θ(‖Gθ(X)− Y ‖2)]

− E(X1,X2)∼PX×PX [µx(X1, X2)∇θ(‖Gθ(X1)−Gθ(X2)‖2)]

Since the expectations cannot be calculated exactly, we further approximate the gradient
with an empirical expectation over a batch of size S, which results in a mini-batch stochastic

gradient descent on Sλ(PG(X), PY ) : for a sample x1, · · · , xS i.i.d.∼ PX , y
1, · · · , yS i.i.d.∼ PŶ the

gradient approximation is given by

∇θSλ(PGθ(X), PY ) ≈ 1

S2

S∑
i,j=1

[µ(xi, yj)∇θ(‖Gθ(xi)− yj‖2)]

− 1

S2

S∑
i,j=1

µx(xi, xj)∇θ(‖Gθ(xi)−Gθ(xj)‖2)]

We note that the optimal dual potentials for W 2
2,λ(PG(X), PG(X)) for Gaussian X and

a linear generator can indeed be found analytically as a function of G, but since it is not
possible to analytically compute the potentials in the case of a more complex G(·) and since
we do not use the linearity of G(·) when computing the unregularized Wasserstein distance,
to give the models a fair comparison, we find W 2

2,λ(PG(X), PG(X)) numerically.
Note that in the above discussion, we assumed that we have access to approximations of

the optimal dual potentials. These optimal dual potentials can be computed in two different
ways. The first way is to compute them via the Sinkhorn-Knopp algorithm(Feydy et al.,
2019), labelled SGAN-NP, which allows us to omit the discriminator network from the GAN
and compute the dual potentials in a non-parametric fashion. Another way of calculating
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Algorithm 1 SGD for GANs

INPUT: PX , PŶ , λ, S, θ0, step sizes {αt > 0}T−1
t=0

for t = 0, · · · , T − 1 do
Sample I.I.D. points x1t , · · · , xSt ∼ PX , y1t , · · · , ySt ∼ PŶ
Call the oracle to find ε-approximate maximizers (φt, ψt), φ

x
t for the dual formulations (57),

(58)
Compute

gt =
1

S2

∑
i,j

(
µt(Gθ(x

i
t), y

j
t )∇θ(‖Gθ(xit)− y

j
t ‖2) (61)

− 1

2
µxt (xit, x

j
t )∇θ(‖Gθ(xit)−Gθ(x

j
t )‖2)

)
where µt, µ

x
t are computed using (φt, ψt) and φxt based on (59), (60).

Update θt+1 ← θt − αtgt
end for

approximations of the dual potentials is to represent the dual potentials as neural networks
and update them using stochastic gradient descent on (8), labelled SGAN-P.

On the one hand, using neural networks helps preserve the history of the seen ex-
amples and might help the dual potentials generalize better. On the other hand, using
Sinkhorn-Knopp algorithm is more precise for computing the Sinkhorn divergence between
the empirical distributions. We compared the two approaches and didn’t find any signifi-
cant differences. To compare WGAN and SGAN as they minimize different objectives, we
evaluate their performance by calculating Frobenius distance between the covariance ma-
trix of the generated distribution PG(X) and the covariance matrix of the target distribution
PY (true covariance, bottom row). We also calculate the Frobenius distance between the
covariance matrix of the generated distribution PG(X) and the optimal covariance matrix
for W2GAN (1) PG∗(X) (optimal covariance, bottom row) in Figure 1 for two values of the
dimensions of the latent random variable, r = 4 and r = 8. We run the experiments for 500
epochs with a batch size of 200. In these experiments, we observe that different versions of
SGAN enjoy similar behavior and the covariance matrix of the output distribution is closer
to the one of the target distribution compared to standard Wasserstein GANs. We note
that the distance to the true covariance has a higher floor here, since the error cannot be
zero, i.e. the d-dimensional Gaussian distribution cannot be approximated as a function of
the r-dimensional one with error converging to 0.

7. Conclusion

In this work we provide a comprehensive complexity analysis of entropy regularized GANs
and explain their robustness. Moreover, in a specific simplified setting, the linear generator
and Gaussian distributions, we derive an analytic expression for the optimal generator. This
results motivates further studies on model-based designing of GANs and GANs stability.
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Figure 1: Training of SGAN and WGANs for latent variable dimension r = 4(left) and
r = 8(right) for a linear generator. The distance is calculated to the optimal
covariance (r-PCA, top) and true covariance (bottom)
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Hicham Janati, Boris Muzellec, Gabriel Peyré, and Marco Cuturi. Entropic optimal trans-
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