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Abstract

We consider a general trace regression model with multiple structural changes and propose
a universal approach for simultaneous exact or near-low-rank matrix recovery and change-
point detection. It incorporates nuclear norm penalized least-squares minimization into a
grid search scheme that determines the potential structural break. Under a set of general
conditions, we establish the non-asymptotic error bounds with a nearly-oracle rate for the
matrix estimators as well as the super-consistency rate for the change-point localization.
We use concrete random design instances to justify the appropriateness of the proposed
conditions. Numerical results demonstrate the validity and effectiveness of the proposed
scheme.

Keywords: High-dimensional data, low-rank estimation, multiple change-point detection,
non-asymptotic bounds, rate-optimal estimators

1. Introduction

High-dimensional low-rank matrix recovery has witnessed rapid development as well as
tremendous success in both theoretical analysis and practical application. It appears in a
wide variety of real-life scenarios, including recommendation systems (Ramlatchan et al.,
2018), compressed sensing (Golbabaee and Vandergheynst, 2012), surveillance and environ-
mental monitoring (Nobre and Stroup, 1994), economics and finance (Espinosa-Vega and
Sole, 2010), and causal inference (Athey et al., 2021), to name a few. Suppose we have
N observations {(yi,Xi)}Ni=1, where yi ∈ R is a response variable and Xi ∈ Rm1×m2 is a
matrix of covariates. Consider the trace regression model

yi = 〈Xi , Θ?〉+ εi, i = 1, . . . , N,
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where Θ? ∈ Rm1×m2 is the unknown low-rank matrix to be estimated, and εi is some
unobserved noise. It is worth mentioning that a great number of interesting setups, such as
multivariate regression, matrix completion, compressed sensing and vector auto-regressive
processes can be encoded into this model (Negahban and Wainwright, 2011; Rohde and
Tsybakov, 2011; Koltchinskii et al., 2011).

In real-life high-dimensional or big data applications, the underlying data-generating
mechanism may encounter abrupt changes or transitions along time or some other variable.
For instance, in a recommendation system, user preference for some products and services
could change with time or vary with their age or income. In public health surveillance,
reported case occurrences from multiple sites (which often implies a low-rank structure)
may encounter sudden changes due to some policy interventions. To accommodate such
scenarios, we consider the framework of matrix estimation in the presence of change-points
or threshold effects, to wit,

yi = 〈Xi , Θ?
s〉+ εi, τ

?
s < ti ≤ τ?s+1, s = 0, . . . , s?; i = 1, . . . , N, (1)

where ti ∈ [0, 1] is some threshold variable (e.g., ti = i/N being the time index), s? and
0 < τ?1 < · · · < τ?s? < 1 denote respectively the number and locations of the change-points,
with the convention of τ?0 = 0 and τ?s?+1 = 1, and Θ?

s is the unknown exact or near low-rank
matrix in the data segment corresponding to ti ∈ (τ?s , τ

?
s+1] for s = 0, 1, . . . , s?. Of interest

is to simultaneously recover Θ?
s’s and τ?s ’s from the observations {(yi,Xi, ti)}Ni=1. Below we

illustrate these definitions with some concrete examples.

Example 1 (Multivariate regression with change-points) Suppose we have n obser-
vations {(ya,xa, ta)}na=1, where ta ∈ [0, 1] is the threshold variable, xa ∈ Rm1 is the variable
of covariates and ya ∈ Rm2 is the multidimensional response variable. Each response-
covariates-threshold triple is linked via the model

ya = Θ?
s
>xa +wa, τ

?
s < ta ≤ τ?s+1, s = 0, . . . , s?; a = 1, . . . , n,

where τ?s ’s are the change-points, Θ?
s ∈ Rm1×m2 are the corresponding low-rank matrices,

and wa ∈ Rm2 are the noises. This model can be formulated into Model (1) by setting

ti = ta,Xi = xae
>
b , yi = e>b ya, εi = e>b wa, i = 1, . . . , N(= nm2),

where we use the map (a, b) 7→ i = (a− 1)m2 + b, and eb ∈ Rm2 denotes the canonical basis
vector with a single one in position b, for a = 1, . . . , n and b = 1, . . . ,m2.

Example 2 (Compressed sensing with change-points) Working with Model (1), sup-
pose that the design matrices Xi ∈ Rm1×m2 are drawn i.i.d. from a standard Gaussian
ensemble, meaning that each entry is an i.i.d. draw from the N(0, 1) distribution.

Example 3 (Vector auto-regressive (VAR) process with change-points) Suppose we
have n observations {(za, ta)}na=1, where ta ∈ [0, 1] is the threshold variable, and za ∈ Rm are
generated by firstly choosing za according to some initial distribution, and then recursively
setting

za = Θ?
sza−1 +wa, τ

?
s < ta ≤ τ?s+1, s = 0, . . . , s?; a = 2, . . . , n,
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where τ?s ’s are the change-points, Θ?
s ∈ Rm×m are the corresponding low-rank matrices, and

wa’s are the noises. This model can be formulated as a particular instance of Model (1)
with

ti = ta,Xi = ebz
>
a−1, yi = e>b za, εi = e>b wi−1, i = 2, . . . , N,

where i indexes the sample (a, b) and {eb ∈ Rm}Nb=1 are the basis vectors.

For vector-valued covariates, Model (1) is reduced to the linear regression model with
structural breaks, and the goal here is to detect changes in the sparse regression coefficient,
which has attracted considerable attention recently, see, for example, Lee et al. (2016),
Leonardi and Bühlmann (2016), Kaul et al. (2019), Rinaldo et al. (2021) and Wang et al.
(2021b). Despite the popularity of huge volumes of data collected in matrix form nowadays,
there are only a limited number of estimation schemes designed for Model (1). For the VAR
change model in Example 3, if the regression matrices Θ?

s’s are assumed to be sparse in-
stead of low-rank, Safikhani and Shojaie (2022) and Safikhani et al. (2022) proposed a fused
LASSO method and Wang et al. (2019a) suggested a dynamic programming approach. Bai
et al. (2020) assumed that each regression matrix is a superposition of a stable low-rank
component and a time-varying sparse component, and proposed a fused LASSO type esti-
mation scheme. By allowing both the low-rank and sparse components to exhibit changes,
Bai et al. (2023) developed a rolling window detection strategy.

In this paper, we attempt to develop a theoretically guaranteed methodology for low-
rank matrix recovery in the presence of multiple change-points under the framework of
Model (1). We first propose a joint minimization procedure for simultaneous matrix es-
timation and change detection if there is at most one change-point occurring to the data
sequence. To be specific, we minimize the nuclear-norm-penalized least-squares over all
feasible choices of the regression matrices and change-point. The idea of joint minimization
is motivated by Lee et al. (2016), which studied the LASSO for high-dimensional linear
regression with a possible change-point. However, tackling the nuclear norm incurs more
technical difficulties due to its inseparability. Several conditions and techniques used in
Lee et al. (2016) rely heavily on the separability of the `1-norm, and thus appear restric-
tive and hard to generalize. Fortunately, our proposed scheme provably yields not only
desirable matrix estimators that match the optimal error rate of those obtained without
any changes (e.g., Negahban and Wainwright (2011)), but also super-consistent estimation
of the change-point (Chan, 1993; Lee et al., 2016). We further extend this scheme to the
scenario with multiple change-points by considering a two-stage procedure.

1.1 Our contributions

From the methodological aspect, we propose a universal approach for simultaneous low-rank
matrix estimation and multiple change-point detection for the general trace regression model
with threshold effects (i.e., Model (1)). It builds on a recovery scheme that incorporates
least-squares minimization with the nuclear norm penalty. To tailor for multiple change-
points scenarios, we provide a novel thresholding rule followed by additional refinements to
achieve desirable estimation and detection accuracy simultaneously.

From the theoretical aspect, we formulate general conditions under which our estimation
and detection procedure is valid. Those conditions stand as non-trial extensions compared
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with classical results in the literature of low-rank matrix recovery or change-point detection.
They are established under a fixed design setup and aim to incorporate a broad class of de-
signs. When those conditions hold, we have theoretical guarantee for both the change-point
localization and matrix estimation, that is, the convergence rate for the matrix estimators
provably achieves the optimal rate for high-dimensional low-rank recovery without thresh-
old effects, and the detected change-points have the super-consistency property. Moreover,
using multivariate regression (Example 1) as a running example, we establish concrete re-
sults to justify the appropriateness of the general conditions as well as the validity of the
proposed scheme.

1.2 Related literature

In the absence of change-points, a variety of powerful low-rank matrix estimation frame-
works have been developed during the past decades, which cover many real-life application
instances as well as different model setups. For example, Candès and Recht (2009) and
Recht et al. (2010) studied a nuclear norm convex relaxation framework for noiseless matrix
completion under the sampling-without-replacement scheme and different bases. They also
explored reasonable conditions for successful recovery, like incoherence assumptions, which
built up the foundation of the theoretical guarantee. When noises are inevitable, Keshavan
et al. (2010) and Candès and Plan (2011) followed the thread of nuclear norm convex re-
laxation framework, while Negahban and Wainwright (2011) and Koltchinskii et al. (2011),
among others, developed the nuclear norm penalization least-squares estimation, which is
akin to LASSO in vector-based optimizations. These works also established the conver-
gence rates of the proposed estimator under general conditions such as restricted strong
convexity and (generalized) restricted isometry property. Following works made extensions
and adaptation to other aspects, such as robustness (Elsener and van de Geer, 2018), non-
Gaussian data (Fan et al., 2019), missingness quantification (Fithian and Mazumder, 2018),
nonconvex optimization (Chen and Chi, 2018) and so on.

On the other hand, change-point detection also constitutes a canonical problem with
numerous applications and has witnessed the development of many mature schemes. It
dates back to 1950s (Page, 1954), and has gained increasing attention recently for modeling
high-dimensional data, which is often exposed to some degree of heterogeneity in the form of
abrupt changes in the parameters of the underlying data generating process. In particular,
it has been used in the context of high-dimensional mean and covariance models (Cho and
Fryzlewicz, 2015; Wang and Samworth, 2018; Wang et al., 2018; Yu and Chen, 2021; Liu
et al., 2020; Dette et al., 2022), graphical models (Bybee and Atchadé, 2018; Londschien
et al., 2021; Liu et al., 2021), networks (Wang et al., 2021a), and regression models (Lee
et al., 2016; Leonardi and Bühlmann, 2016; Kaul et al., 2019; Wang et al., 2021b; Safikhani
and Shojaie, 2022; Bai et al., 2020, 2023), to name a few.

1.3 Structure of the paper

The remainder of our paper is structured as follows. In Section 2, we first introduce the
joint minimization scheme, together with its theoretical properties and implementation, if
there exists at most one change-point. Then this estimation and detection procedure is
extended to multiple change-points scenarios in Section 3. Numerical studies are presented
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in Section 4. Section 5 concludes the paper. All proofs regarding the theoretical results,
together with additional numerical supports, are deferred to Appendix.

1.4 Notations

For a matrix X, let Xij be its (i, j)-th entry. Likewise, for a vector x, let xi be its ith com-
ponent. For a matrix X ∈ Rm1×m2 , we use rank(X) and ρk(X) to denote respectively the
rank and the k-th singular value of a given matrix X for k = 1, . . . ,m := min{m1,m2}. The

Schattern-q norm of X is defined as ‖X‖Sq =
{∑rank(X)

k=1 %k(X)q
}1/q

. When q = 2,∞, 1,

the Schattern-q norm reduces to the commonly used Frobenius, operator and nuclear
norm, which are denoted as ‖X‖F , ‖X‖op and ‖X‖∗, respectively. For two matrices

X1,X2 ∈ Rm1×m2 , we denote their inner product as 〈X1 , X2〉 = tr
(
X>1X2

)
, where

tr(·) is the trace operator. For vectors, we use ‖·‖1 and ‖·‖2 for the `1 and `2 norms, re-
spectively. The capital letter N is used to denote the sample size under the general trace
regression model (2) and (12). The small letter n, on the contrary, denotes the sample size
in the specific multivariate regression model (Example 1).

2. Matrix estimation with a possible change-point

2.1 Joint minimization scheme

2.1.1 Model and reparameterization

We first confine attention to the at most one change-point (AMOC) scenario, i.e., Model
(1) with s? ≤ 1. To be specific, suppose we have observations {(yi,Xi, ti)}Ni=1 such that

yi = 〈Xi , Θ?
0〉1
{
ti ≤ τ?1

}
+ 〈Xi , Θ?

1〉1
{
ti > τ?1

}
+ εi,

where yi ∈ R is a response, Xi ∈ Rm1×m2 is a matrix of covariates, ti ∈ [0, 1] represents a
threshold variable with an unknown change-point τ?1 splitting the sample into two segments,
Θ?

0,Θ
?
1 ∈ Rm1×m2 are unknown matrices to be estimated in both segments, and εi is a

noise. After reparameterizing Θ? = Θ?
0, ∆? = Θ?

1 − Θ?
0 and τ? = τ?1 , and collecting

Γ? =
(
Θ?>,∆?>)>, the AMOC model is equivalent to

yi = 〈Xi , Θ?〉+ 〈Xi , ∆?〉1
{
ti > τ?

}
+ εi,

= 〈X i(τ
?) , Γ?〉+ εi, (2)

where we denote X i(τ) =
(
X>i ,Xi(τ)>

)>
with Xi(τ) := Xi1

{
ti > τ

}
for any 0 < τ < 1.

2.1.2 Low-rank structure

In many applications, the regression matrices Θ?
s’s (s = 0 and 1) are either low-rank, or

well approximated by low-rank matrices. If we impose low-rank restriction on Θ?
s’s, then

∆? and Γ? are also of low-rank since

max{rank(∆?), rank(Γ?)} ≤ 2 max
{

rank(Θ?
0), rank(Θ?

1)
}

;

see Theorem 25. If Θ?
s’s have a more generally near low-rank structure (Negahban and

Wainwright, 2011), i.e., their singular values fall within an `q-ball Bq(Rq) := {% ∈ Rm :
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∑m
k=1 |%k|q ≤ Rq} for some q ∈ (0, 1) and Rq > 0, where m = min{m1,m2}, then the

transition matrix ∆? should belong to Bq(2Rq) due to the additive property of the Schattern-
q norm; see Rohde and Tsybakov (2011) and the references therein. Note that, by taking
q → 0, Bq(Rq) approaches the low-rank matrix space. Thus we can unify the exact and
near low-rank matrix spaces with the notion of `q-balls by setting q ∈ [0, 1).

2.1.3 Penalized least-squares estimation

The above fact suggests a natural nuclear norm penalized least-squares estimator for Γ? if
the chang-point is known as τ? = τ for some 0 < τ < 1, that is,

Γ̂(τ) = arg min
Γ∈R(2m1)×m2

{SN (Γ; τ) + λN‖Γ‖∗} , (3)

where

SN (Γ; τ) = (2N)−1
N∑
i=1

(yi − 〈X i(τ) , Γ〉)2 , (4)

and λN > 0 is a regularization parameter that will be specified later. Then we can estimate
the change-point τ? by searching for the best τ that yields the minimal value of penalized
least-squares, namely,

τ̂ = arg min
τ∈T

{
SN

(
Γ̂(τ); τ

)
+ λN

∥∥∥Γ̂(τ)
∥∥∥
∗

}
,

where T = [ρ, 1 − ρ] ⊂ [0, 1] represents a parameter space for τ?, and ρ is some boundary
removal parameter that is frequently considered in the change-point detection literature
(Csörgő and Horváth, 1997). At last, we obtain the estimator of Γ? as Γ̂(τ̂). In fact, the
proposed estimator of (Γ?, τ?) can be regarded as a joint minimization problem, i.e.,(

Γ̂(τ̂), τ̂
)

= arg min
Γ∈R(2m1)×m2 ,τ∈T

{SN (Γ; τ) + λN‖Γ‖∗} . (5)

Remark 1 Since the nuclear norm is not separable, i.e., ‖Γ‖∗ 6= ‖Θ‖∗ + ‖∆‖∗ for Γ =(
Θ>,∆>

)>
, another form of penalization one might consider is ‖Θ‖∗ + ‖∆‖∗. Theoret-

ically speaking, these two choices are equivalent to each other if we rescale the penaliza-
tion factor by some constant, which can be established via the fact (‖Θ‖∗ + ‖∆‖∗)/

√
2 ≤

‖(Θ>,∆>)>‖∗ ≤ ‖Θ‖∗+ ‖∆‖∗, see Theorem 25. Alternatively, one might penalize Θ?
0 and

Θ?
1 instead of Θ? = Θ?

0 and ∆? = Θ?
1 − Θ?

0, which leads to solutions with similar theo-
retical properties (more precisely, non-asymptotic bounds with the same rates up to some
constants). This is suggested by the fact that(

Θ
∆

)
=

(
Im1 O
−Im1 Im1

)(
Θ0

Θ1

)
.

The transformation matrix is invertible and has only two distinct (but repeated) singular
values, i.e., 1 and

√
2. By Theorem 26, both the penalization factor of the objective function

and the non-asymptotic bounds can be rescaled up to some constants.
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2.1.4 Multivariate regression example

Regarding Example 1, let X a(τ) =
(
x>a ,x

>
a 1
{
ta > τ

})>
for some τ ∈ T. This change-point

model can be rewritten as ya = Γ?>X a(τ
?) + wa, where Γ? =

(
Θ?>

0 ,Θ?>
1 −Θ?>

0

)>
. In

this case our procedure proceeds as

(
Γ̂(τ̂), τ̂

)
= arg min

Γ∈R(2m1)×m2 ,τ∈T

{
1

2n

n∑
a=1

∥∥∥ya − Γ>X a(τ)
∥∥∥2
2

+ λn‖Γ‖∗

}
,

for some λn > 0.

2.2 Theoretical analysis

2.2.1 Preview

In this section, we will perform a thorough analysis of the statistical properties of the
regularized estimator

(
Γ̂(τ̂), τ̂

)
in (5). In case the discussion becomes too involved due to

its theoretical essence, we give a block of preview of the core results at the beginning as
well as a flow map to explain how the results are organized and guide the audience through
the reading process. Furthermore, we will employ the multivariate regression setting as a
special running example to make a short demonstration of the key results throughout the
process.

Preview of the core results. From a high level, the goal in this section is to establish
finite sample bounds on the estimation error of the estimator pair

(
Γ̂(τ̂), τ̂

)
as well as the

in-sample prediction error under an appropriate set of assumptions. The whole analysis can
be dissected into several components:

• Main results. There are two main results that involve different conditions and tech-
niques for justification.

The first result (Theorem 4) targets the setting where there is no structural change
along the sequence of data points and provides the following finite sample rates on
estimation and prediction error with some conditions and an appropriate choice of
tuning parameter λN :

‖Γ̂− Γ?‖2F . λ2Nr ∨ λN
m∑

k=r+1

ρk(Γ
?), ‖Γ̂− Γ?‖∗ . λNr ∨

m∑
k=r+1

ρk(Γ
?),

1

2N

N∑
i=1

〈
X i(τ̂) , Γ̂− Γ?

〉2
. λ2Nr ∨ λN

m∑
k=r+1

ρk(Γ
?).

The results match those of an “oracle” estimator with the no-change prior knowledge.

The second result (Theorem 7) is tailored to the data-generating process containing
exactly one change-point. It establishes the following finite-sample rates for estimation
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and prediction error as well as change-point detection accuracy:

‖Γ̂− Γ?‖2F . λ2Nr ∨ λN
m∑

k=r+1

ρk(Γ
?), ‖Γ̂− Γ?‖∗ . λNr ∨

m∑
k=r+1

ρk(Γ
?),

1

2N

∥∥∥X(Γ̂; τ̂
)
− X(Γ?; τ?)

∥∥∥2
2
. λN

m∑
k=r+1

ρk(Γ
?) ∨ λ2Nr,

|τ̂ − τ?| . λN

m∑
k=r+1

ρk(Γ
?) ∨ λ2Nr.

The results give the same bounds (up to some constants) as those in Theorem 4 for
the matrix estimation error as well as the prediction error in the presence of threshold
effect. Moreover, Theorem 7 builds the error bound for change-point detection, which
can be viewed as a non-asymptotic version of the super-consistency of τ̂ to τ? for
general low-rank matrix recovery in the presence of a change-point.

Additionally, we provide Corollary 9 and 10, which are concrete statements of Theorem
7 under exact and approximate low-rank cases, respectively.

• Statement of conditions and assumptions. The results rely on some distributional and
structural assumptions on the model, regarding a unique restricted strong convexity
nature of the optimization program (Assumption 1), identifiability and smoothness
of the model with one change-point (Assumptions 2–3), tail of the noise (Assumption
4), etc.

• Intermediate results to complete the logic flow. Towards proving the main results, we
fully exploit the property of the minimization program and establish several interme-
diate lemmas and corollaries that facilitate understanding and discussion. To name a
few, Lemma 2 gives a deterministic inequality that provides instruction on choosing
the correct level of penalization. Corollary 3 establishes prediction consistency for
both settings. With a single change-point, Lemma 5 shows change-point detection
consistency. These results are crucial ingredients for the main theorems.

• Illustration under a concrete random design running example. Assumptions 1–5 shall
be verified under a multivariate regression example in Section 2.2.6. Under appropriate
assumptions on the design and noise (see Assumption 6) and the scenario that Γ? has
exact low rank r, if we choose λn �

√
(m1 +m2)/n, then with high probability,∥∥∥Γ̂− Γ?

∥∥∥2
F
. rλ2n,

∥∥∥Γ̂− Γ?
∥∥∥
∗
. rλn,

1

2n

∥∥∥X(Γ̂; τ̂
)
− X(Γ?; τ?)

∥∥∥2
2
. rλ2n,

and

|τ̂ − τ?| . rλ2n.

Discussion on these rates is deferred to Section 2.2.6, together with the rates derived
under near low-rank scenarios.
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Before moving to the formal presentation of the results, we further introduce some
quick notations. Let y = (y1, . . . , yN )> and ε = (ε1, . . . , εN )>. Given τ ∈ T, define an
observation operator X(·; τ) : R(2m1)×m2 7→ RN , with elements [X(Γ; τ)]i = 〈X i(τ) , Γ〉 for
Γ ∈ R(2m1)×m2 . Intuitively, this linear operator measures the noiseless output signal through
the AMOC model (2) with any given input Γ. Therefore, with the operator X(·; τ), we can
reformulate Model (2) as y = X(Γ?; τ?)+ε. The adjoint of the observation operator, denoted
by X?(·; τ), is the linear mapping from RN to R(2m1)×m2 given by X?(v; τ) =

∑N
i=1 viX i(τ)

for v ∈ RN .

2.2.2 Decomposable subspaces and prediction consistency

The crucial ingredient in our analysis is the specification of certain subspaces onto which
we can project the regression matrices and utilize the low-rank structure. To formalize
the idea, consider the singular value decomposition of the target matrix Γ?. For each
integer r ∈ {1, . . . ,m}, let Ur := [u1, . . . ,ur] ∈ Rm1×r and Vr := [v1, . . . ,vr] ∈ Rm2×r be
the subspaces spanned by the top r left and right singular vectors of Γ?. We introduce
the orthogonal decomposition Rm1×m2 = Sr ⊕ Sr⊥, where Sr is the linear space spanned
by the elements of the form ukx

> and yv>k , k = 1, . . . , r, where x and y are arbitrary,
and Sr⊥ is its orthogonal complement. The orthogonal projection Πr

Γ? onto Sr is given
by Πr

Γ?(M) = P UrM + MP Vr − P UrMP Vr for any matrix M ∈ Rm1×m2 , where P Ur

and P Vr are orthogonal projections onto Ur and Vr. The orthogonal projection Πr⊥
Γ? onto

Sr⊥ is given by Πr⊥
Γ? (M) = (Im1 − P Ur)M(Im2 − P Vr). These projection operators have

appeared in many literature of low-rank matrix estimation, see, for example, Candès and
Recht (2009), Recht (2011) and Negahban and Wainwright (2011).

We start the formal theoretical discussion by providing a preliminary lemma, which is
an inequality that builds up the foundation of our theory.

Lemma 2 (Basic inequality) If λN ≥ supτ∈T 2‖X?(ε; τ)‖op/N , then

1

2N

N∑
i=1

(〈
X i(τ̂) , Γ̂

〉
− 〈X i(τ

?) , Γ?〉
)2

+
λN
2

∥∥∥Πr⊥
Γ?

(
Γ̂− Γ?

)∥∥∥
∗

≤2λN

∥∥∥Πr⊥
Γ? (Γ?)

∥∥∥
∗

+
3λN

2

∥∥∥Πr
Γ?

(
Γ̂− Γ?

)∥∥∥
∗

+RN (Γ?, τ̂ , τ?), (6)

where for given τ, τ ′ ∈ T, RN (Γ?, τ, τ ′) is defined as

RN (Γ?, τ, τ ′) = N−1
N∑
i=1

εi
〈
X i(τ)−X i(τ

′) , Γ?
〉

= N−1
N∑
i=1

εi
〈
Xi(τ)−Xi(τ

′) , ∆?
〉
.

We add some remarks on Lemma 2. First, Lemma 2 is a deterministic result. The
left-hand side of (6) in Lemma 2 contains two terms. The first one corresponds to the

prediction error. The second term, (λN/2)
∥∥∥Πr⊥

Γ?

(
Γ̂− Γ?

)∥∥∥
∗
, combined with a direct pro-

jection term (λN/2)
∥∥∥Πr

Γ?

(
Γ̂− Γ?

)∥∥∥
∗
, measures the magnitude of matrix estimation error

in nuclear norm. (6) holds under the requirement λN ≥ supτ∈T 2‖X?(ε; τ)‖op/N , which puts
a restriction on the specification of the regularization parameter λN . This is a generaliza-
tion of the no-threshold-effect result in Negahban and Wainwright (2011), where they used

9
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λN ≥ 2‖
∑N

i=1 εiXi‖op/N . Our choice here incorporates the change structure information.
We shall use the random multivariate regression example in Section 2.2.6 to show that with
choice λN of the order O(

√
(m1 +m2)/n), this requirement holds with high probability.

Second, the remainder term RN plays an important role in our analysis. Its scale reflects
the noise level (ε part), discontinuity of the design for the change-points (X(τ) part), and
the size of the break ∆?. In the no-change-point setting, the remainder RN is zero because
∆? is zero so the term does not affect the analysis. In the presence of one single change-
point, in general, RN will not vanish. However, we are able to control its scale under a
suitable set of conditions; see Lemma 6 later.

If we further assume that the operator norms of Γ? and Γ̂ have an upper bound, say
γmax/2, then Lemma 2 provides the following upper bound on the prediction error.

Corollary 3 (Prediction consistency) If λN ≥ supτ∈T 2‖X?(ε; τ)‖op/N , then

1

2N

N∑
i=1

(〈
X i(τ̂) , Γ̂

〉
− 〈X i(τ

?) , Γ?〉
)2
≤ 2λN

m∑
k=r+1

ρk(Γ
?) + 6λNrγmax + λN‖∆?‖∗.

Corollary 3 can be translated into the prediction consistency property under a wide range
of asymptotic regimes. For example, if we consider the scaling

λN

m∑
k=r+1

ρk(Γ
?)→ 0, λNrγmax → 0, λN‖∆?‖∗ → 0, (7)

then the prediction error vanishes asymptotically. Such scaling can be validated in many
concrete examples. For example, in the random multivariate regression study in Section
2.3, with penalization level λN �

√
(m1 +m2)/n, a constant order for γmax, and the exact

low-rank assumption, the results in (7) will hold when n→∞ and max{m1,m2} = o(n).

2.2.3 Restricted strong convexity

To control over the certain norm of the matrix estimation error Γ̂ − Γ?, we introduce the
second ingredient in our analysis, viz., restricted strong convexity of the loss function while
taking into account the possible existence of one single change-point.

Assumption 1 (Restricted strong convexity, RSC) The restricted strong convexity con-
dition holds with curvature κ(X) > 0 if

1

2N
‖X(M ; τ)‖22 ≥ κ(X)‖M‖2F , for all M ∈ C(r, δ,Γ?,T), τ ∈ T, (8)

where for some δ ≥ 0,

C(r, δ,Γ?,T) =

{
M ∈ R(2m1)×m2 :

‖M‖F ≥ δ, ‖Πr⊥
Γ? (M)‖∗ ≤ 3‖Πr

Γ?(M)‖∗ + 4
m∑

k=r+1

ρk(Γ
?) + 2‖∆?‖F

}
. (9)

10
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We add some elaboration on Assumption 1. First, the present RSC condition follows
the spirit of that in the context of regularized matrix estimation without any change-point
(Negahban and Wainwright, 2011), to wit, in our notation, there exists some curvature
constant κ > 0 such that (2N)−1

∑N
i=1 〈Xi ,M〉2 ≥ κ‖M‖2F , for all M ∈ C(r, δ,Θ?),

where

C(r, δ,Θ?) =

{
M ∈ Rm1×m2 : ‖M‖F ≥ δ, ‖Πr⊥

Θ?(M)‖∗ ≤ 3‖Πr
Θ?(M)‖∗ + 4

m∑
k=r+1

ρk(Θ
?)

}
.

Nevertheless, due to the presence of a change-point, it demands that the curvature condition
holds in a unified manner, i.e., for every possible position of the change-point τ ∈ T. This
unification guarantees a local strong convexity property and eliminates the scenario where
the “bad” positioning of the change-point ruins the behavior of the estimator. It’s worthy of
noticing that (8) serves as an analog of the unified restricted eigenvalue condition proposed
as in Assumption 2 of Lee et al. (2016), which studied the LASSO for high-dimensional linear
regression with a possible change-point. Second, for the specification of the particular set
where the RSC should hold, (9) has an additional term in the right-hand side of the second
inequality, i.e., 2‖∆?‖F , which accounts for the uncertainty of the change-point positioning
as well as the change magnitude. When there’s no change, ∆? = 0 and thus (9) is reduced
to the classic C(r, δ,Θ?). Moreover, it is remarkable to point out that the δ in the set (9)
is used to account for the term

∑m
k=r+1 ρk(Γ

?) in the near low-rank situation. This means
that for the exact low-rank cases, we can safely set δ = 0. We shall show in the random
multivariate regression example in Section 2.2.6 that this RSC holds with high probability
(see Section 2.2.6 and Proposition 20).

2.2.4 Error rates without threshold effect

With Assumption 1 and the basic inequality (6) in Lemma 2, we can readily obtain some
interesting bounds on the matrix estimation and change-point detection error. A natural
question is whether the proposed scheme still behaves satisfactorily if no threshold effect
exists. If one has the prior information that there’s no change, the Θ? can be optimally
recovered by using a direct trace norm penalized least-squares minimization. If this prior
information is unavailable, it is of great interest whether the proposed scheme can adapt to
such a situation. The answer is actually positive as summarized below.

Theorem 4 (Matrix estimation without threshold effect) Assume ∆? = 0, and that
Assumption 1 holds for some κ(X) > 0. If λN ≥ supτ∈T 2‖X?(ε; τ)‖op/N , then

‖Γ̂− Γ?‖F ≤ δ ∨
6λN
√
r

κ(X)
∨
(

4λN
∑m

k=r+1 ρk(Γ
?)

κ(X)

)1/2

,∥∥∥Γ̂− Γ?
∥∥∥
∗
≤ 16

√
rδ ∨ 128λNr

κ(X)
∨ 8

m∑
k=r+1

ρk(Γ
?),

1

2N

N∑
i=1

〈
X i(τ̂) , Γ̂− Γ?

〉2
≤ 6λN

√
rδ ∨

36λ2Nr

κ(X)
∨ 4λN

m∑
k=r+1

ρk(Γ
?).

11
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Theorem 4 gives compelling non-asymptotic bounds on the matrix estimation error (in
the Frobenius and nuclear norms) and prediction error when no threshold effect or change-
point exists. These bounds have a natural interpretation. Firstly the terms involving δ are
admissible errors. In the exact low-rank scenarios it would no longer be necessary. The
terms containing

∑m
k=r+1 ρk(Γ

?) are known as approximation errors, which account for the
expense to approximate the true matrix using a low-rank estimate. Then the remaining
terms correspond to estimation errors, which measure the accuracy of our estimator for the
low-rank approximation. In particular, comparing the Frobenius bound with the one given
in Theorem 1 of Negahban and Wainwright (2011), i.e.,

∥∥∥Θ̂−Θ?
∥∥∥
F
≤ δ ∨ 32λN

√
r

κ
∨
(

16λN
∑m

k=r+1 ρk(Θ
?)

κ

)1/2

,

which can be regarded as a result of an “oracle” estimator with the no-change prior knowl-
edge, we find that these two bounds coincide with each other up to some constants.

2.2.5 Error rates with threshold effect

Next, we turn to the scenario where there indeed exists a change-point in the threshold
variables {ti} with ∆? 6= 0. We need the following assumption to depict the identifiability
under low-rank and discontinuity of the model structure.

Assumption 2 (Identifiability and discontinuity) Assume Γ? ∈ Bq(Rq) for some Rq >
0 with q ∈ [0, 1), and ∆? 6= 0. For a given R′q ≥ Rq and some η(N,m1,m2) > 0, there
exists some constant c > 0 such that for any τ ∈ T with |τ − τ?| > η(N,m1,m2) and
Γ ∈ {Γ : ‖Γ‖qSq ≤ R

′
q} with Γ− Γ? ∈ C(r, δ,Γ?,T), it holds that

1

2N
‖X(Γ; τ)− X(Γ?; τ?)‖22 > cφ(∆?)|τ − τ?|,

where φ(∆?) > 0 is some monotonically increasing function in certain norm of ∆?.

Assumption 2 implies that there is no low-rank representation that is equivalent to
X(Γ?; τ?) when the sample is split by τ 6= τ?. That is to say, when considering a splitting
point τ located around the true change-point τ?, the resulting prediction difference should be
bounded strictly away from zero, thus rendering τ? identifiable. Furthermore, Assumption 2
specifies a linear growth rate in the prediction error as τ deviates from τ?. The function
φ(∆?) is some curvature function that measures the effect of the change on detection ability,
to wit, a change with a larger value of a certain norm of ∆? corresponds to a higher level
of detection performance. In many cases, it suffices to choose φ(∆?) = ‖∆?‖F . One thing
to note is that we only require this rate to hold for τ locating from τ? farther than a factor
η(N,m1,m2), which measures the change-point detection ability of the current scheme;
more interpretation on η(N,m1,m2) is provided in Remark 8. Lastly, Assumption 2 is also
justifiable under the random multivariate regression example; see Section 2.2.6 as well as
Proposition 22.

With Assumption 2, we can establish the following Lemma 5 to depict the consistency
of the change-point detection scheme.

12
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Lemma 5 (Change detection consistency with threshold effect) Suppose Assump-
tion 2 holds. If λN ≥ supτ∈T 2‖X?(ε; τ)‖op/N , then |τ̂ − τ?| ≤ η?, where

η? = max
{
η(N,m1,m2), {cφ(∆?)}−1

(
2λN

m∑
k=r+1

ρk(Γ
?) + 6λNrγmax + λN‖∆?‖∗

)}
.

Lemma 5 is sufficient to establish the estimation consistency of τ̂ if

φ(∆?)−1λN

m∑
k=r+1

ρk(Γ
?)→ 0, φ(∆?)−1λNrγmax → 0, φ(∆?)−1λN‖∆?‖∗ → 0.

However, we assert here that this is not the best bound we can expect, but will serve
as an initialization step in tightening the detection rate via iteration in further theoretical
analysis. To this end, we need another assumption to guarantee a certain type of smoothness
in the design.

Assumption 3 (Smoothness of design) There exists some constant C > 0, such that
for any τ ∈ T with |τ − τ?| > η(N,m1,m2) and for any Γ satisfying Γ−Γ? ∈ C(r, δ,Γ?,T),
it holds that

|TN (Γ,Γ?, τ, τ?)| ≤ C|τ − τ?| · ‖Γ− Γ?‖∗ · ‖∆?‖∗,

where TN (Γ,Γ?, τ, τ?) = N−1 〈X(Γ− Γ?; τ) , X(Γ?; τ?)− X(Γ?; τ)〉.

Intuitively speaking, by controlling TN we are enforcing some smoothness on the thresh-
old variables {ti} such that no extreme cases like point masses take place. This is suggested
by the second element, X(Γ?; τ?)−X(Γ?; τ), in the inner product we used to define TN , for
which we wish a Lipchitz type of bound with respect to τ . Besides, through this condition,
we can also control the smoothness over Γ, when we consider the first element, X(Γ−Γ?; τ),
in the inner product. These bounds implicitly restrict the magnitude of the design matrix
Xi. While mathematically complicated, this assumption is proved to be valid with high
probability under certain random design circumstances; see Section 2.2.6 and Proposition
23.

Assumption 4 (Sub-Gaussian noises) The noises εi are i.i.d. copies of a mean zero
sub-Gaussian random variable ε, i.e., there exists some K > 0, such that E{exp

(
ε2/K2

)
} ≤

e.

Starting from this assumption we begin to introduce a probabilistic structure for the
noise. Now our choice of λN , i.e. λN ≥ supτ∈T 2‖X?(ε; τ)‖op/N , becomes a random event.
We will hereafter perform our analysis on this event, which bears a probability greater than
1 − αN for some αN < 1. For many concrete designs Xi, either deterministic or random,
it is often possible to show that αN vanishes as N → ∞, leading to a high probability
guarantee for our analysis over the randomness; see, for example, Section 2.2.6.

The next lemma demonstrates a high probability control over the stochastic remainder
RN (Γ?, τ, τ?).

13
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Lemma 6 Let hN (cτ ) = (2cτN)−1
∑

i:|ti−τ?|≤cτ 〈Xi , ∆?〉2 for some cτ > 0. Suppose As-

sumption 4 holds. Then, with probability greater than 1−2e·exp
(
−c′Nλ2N/{K2‖∆?‖−2F hN (cτ )}

)
for some constant c′ > 0, we have

sup
τ :|τ−τ?|<cτ

|RN (Γ?, τ, τ?)| ≤ λN
√
cτ‖∆?‖F .

Note the quantity ‖∆?‖−2F hN (cτ ) in Lemma 6 is in the style of a sample mean. Under some
structure conditions for Xi and ∆?, this term is bounded or grows rather slowly compared
to Nλ2N . For example, if we consider fixed design Xi with bounded operator norm, say
‖Xi‖op ≤ γ′max for some γ′max > 0, then ‖∆?‖−2F hN (cτ ) ≤ rank(∆?)γ′2max, while in low-
rank matrix recovery literature we can usually set Nλ2N � m. Hence it results in a high
probability guarantee. Similar results can be derived for large N under certain random
designs, see, for example, Section 2.2.6.

Now based on Lemma 6 and the comment about the choice of λN , we can condition our
analysis on a high-probability event where several stochastic terms of interest are well con-
trolled. Before presenting our main result, we further impose one more technical assumption
for the involved parameters.

Assumption 5 (Interplay between parameters) The following conditions hold:

120C{cφ(∆?)}−1‖∆?‖∗‖Πr⊥
Γ? (Γ?)‖∗ < 1,

5{cφ(∆?)}−1‖∆?‖Fκ(X)/16 < r,

1728{cφ(∆?)}−1CλNr‖∆?‖∗
κ(X)

< 1,

{cφ(∆?)}−2κ(X)‖∆?‖2F
320[1− 1728{cφ(∆?)}−1CλNr‖∆?‖∗/κ(X)]2

< r,

{cφ(∆?)}−2λNC‖∆?‖∗‖∆?‖2F
96[1− 1728{cφ(∆?)}−1CλNr‖∆?‖∗/κ(X)]2

< 1.

Basically Assumption 5 guarantees small magnitudes for several key quantities in our
analysis, such as λN , ‖Πr⊥

Γ? (Γ?)‖∗, etc. We have commented before that proper scaling of
these quantities can contribute significantly to controlling the errors of interest. These
inequalities can hold simultaneously in many regimes. As one example, consider the regime
where ‖∆?‖F is fixed and Γ? has an exact low rank r. This regime implies that ‖∆?‖∗ ≤√
r‖∆?‖F has the same order as

√
r, and ‖Πr⊥

Γ? (Γ?)‖∗ = 0. The parameter κ(X) is also a
bounded constant when evaluated in many concrete examples (such as the random design
example in Section 2.2.6). The tuning parameter, λN , usually scales with O(N−s) for some
s > 0 thus converges to zero as N → ∞. Therefore, we can check that Assumption 5 is
satisfied under such scaling. More details are explained in Section A.2.

Theorem 7 (Recovery accuracy with threshold effect) Suppose that Assumption 1–
Assumption 5 hold. If λN ≥ supτ∈T

2
N ‖X

?(ε; τ)‖op holds with probability greater than 1−αN ,

then there is some integer m? > 0 and a decreasing sequence {c(k)τ }m
?

k=1 such that the following

14
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bounds hold with probability greater than 1−αN−2e
∑m?

k=1 exp
(
−c′Nλ2N/{K2‖∆?‖−2F hN (c

(k)
τ )}

)
:

∥∥∥Γ̂− Γ?
∥∥∥2
F
≤ δ2 ∨

8λN
∑m

k=r+1 ρk(Γ
?)

κ(X)
∨

128λ2Nr

κ(X)2
,∥∥∥Γ̂− Γ?

∥∥∥
∗
≤ 12

√
2rδ ∨ 12

m∑
k=r+1

ρk(Γ
?) ∨ 192λNr

κ(X)
,

1

2N

∥∥∥X(Γ̂; τ̂
)
− X(Γ?; τ?)

∥∥∥2
2
≤ 6λN

√
2rδ ∨ 6λN

m∑
k=r+1

ρk(Γ
?) ∨

96λ2Nr

κ(X)
,

|τ̂ − τ?| ≤ 20{cφ(∆?)}−1λN
√

2rδ ∨ 20{cφ(∆?)}−1λN
m∑

k=r+1

ρk(Γ
?) ∨

320{cφ(∆?)}−1λ2Nr
κ(X)

.

Theorem 7 gives the same bounds (up to some constants) as those in Theorem 4 for the
matrix estimation error as well as the prediction error in the presence of threshold effect.
In addition, Theorem 7 builds the error bound for change-point detection, which generally
refines that obtained in Lemma 5. To see this, consider the exact low-rank scenario where
we conclude that |τ̂ − τ?| . λ2Nr for fixed κ(X) and φ(∆?). Hence an improvement occurs
by noticing that Lemma 5 gives |τ̂ − τ?| . λNr under such scaling. In fact, this result
can be viewed as a non-asymptotic version of the super-consistency of τ̂ to τ? for general
low-rank matrix recovery in the presence of a change-point.

The most technical part of the proof of Theorem 7 is to entangle the Frobenius and
nuclear norm-based estimation error bounds and the prediction error bound, as well as the
change detection error bound, to push forward the tightening iteration using Theorem 18
and Theorem 19. This procedure requires more techniques due to the complexity of matrix
formulation (especially that based on near-low-rank matrices).

Remark 8 Theorem 7 is proven in an iteration scheme based on nonlinear system analysis
(Vidyasagar, 2002), which accounts for the introduction of m? and decreasing sequence(
c
(k)
τ

)m?
k=1

. These quantities are generally dependent on N,m1,m2 as well as some model

parameters. To ensure a high probability guarantee on the error bounds, it is remarkable

to point out the term
∑m?

k=1 exp
(
−c′Nλ2N/{K2‖∆?‖−2F hN (c

(k)
τ )}

)
should not be too large.

We consider the exact low-rank case with fixed r and κ(X). By the comment following

Lemma 6, Nλ2N/{‖∆
?‖−2F hN (c

(k)
τ )} generally grows linearly with m. Suppose the iteration is

terminated at step m?+1 (meaning that we have the rate & λ2Nr at the m?-th iteration). Now
we choose η(N,m1,m2) � λ2Nr/κ(X)2. It can be checked that the nonlinear systems involved
have a linear convergence rate, which entails the number of iterations m? . log(λ−2N r−1).
In many concrete examples λ−2N r−1 � N/m (see Section 2.2.6), so that m? . log(N/m).
Hence it renders a high probability result if m & log logN .

To better appreciate Theorem 7, we restate it in two concrete scenarios, namely, the
exact and near low-rank matrix recovery.

Corollary 9 (Exact low-rank matrix recovery) Suppose the conditions in Theorem 7
hold. In particular, assume Γ? is an exact low-rank matrix with rank r and Assumption 1
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holds with C(r, 0,Γ?,T) and some κ(X) > 0. Then there is some integer m? > 0 and a

decreasing sequence {c(k)τ }m
?

k=1 such that the following bounds hold with probability greater

than 1− αN − 2e
∑m?

k=1 exp
(
−c′Nλ2N/{K2‖∆?‖−2F hN (c

(k)
τ )}

)
:

∥∥∥Γ̂− Γ?
∥∥∥2
F
≤

128λ2Nr

κ(X)2
,
∥∥∥Γ̂− Γ?

∥∥∥
∗
≤ 192λNr

κ(X)
,

1

2N

∥∥∥X(Γ̂; τ̂
)
− X(Γ?; τ?)

∥∥∥2
2
≤

96λ2Nr

κ(X)
,

|τ̂ − τ?| ≤
320{cφ(∆?)}−1λ2Nr

κ(X)
.

Corollary 10 (Near low-rank matrix recovery) Suppose the conditions in Theorem 7
hold. In particular, assume Γ? ∈ Bq(Rq) for some q ∈ [0, 1) and Assumption 1 holds
with C(Rqλ−qN , δ,Γ?,T) and some κ(X) ∈ (0, 1]. Then there is some integer m? > 0 and a

decreasing sequence {c(k)τ }m
?

k=1 such that the following bounds hold with probability greater

than 1− αN − 2e
∑m?

k=1 exp
(
−c′Nλ2N/{K2‖∆?‖−2F hN (c

(k)
τ )}

)
:

∥∥∥Γ̂− Γ?
∥∥∥2
F
≤ δ2 ∨

128λ2−qN Rq
κ(X)2−q

,
∥∥∥Γ̂− Γ?

∥∥∥
∗
≤ 12

√
2Rqλ

−q/2
N δ ∨

192Rqλ
1−q
N

κ(X)1−q
,

1

2N

∥∥∥X(Γ̂; τ̂
)
− X(Γ?; τ?)

∥∥∥2
2
≤ 6λ

1−q/2
N

√
2Rqδ ∨

96λ2−qN Rq
κ(X)2−q

,

|τ̂ − τ?| ≤ 20{cφ(∆?)}−1λ1−q/2N

√
2Rqδ ∨

320{cφ(∆?)}−2λ2−qN Rq
κ(X)2−q

.

Proof of Corollary 9 is quite straightforward by noticing that δ = 0 and ‖Πr⊥
Γ? (Γ?)‖∗ = 0

under the exact low-rank assumption. The error bounds in Corollary 10 reduces to those
in Corollary 9 when q = 0 and δ = 0. The quantity Rqλ

−q
N acts as the “effective rank”

(Negahban and Wainwright, 2011), which is selected to achieve a trade-off between the
estimation error and approximation error.

2.2.6 A random design study: multivariate regression with a possible
change-point

Up to now, we are mainly investing our efforts in fixed design cases for general estimation
and detection results. The assumptions we proposed have natural theoretical and practical
interpretations, which serve as indispensable foundations for our main theorems. However,
some of them involve complex data structure and mathematical formulation, thus raising an
interesting question: whether these assumptions are realistic and verifiable in practice? In
this section, we use multivariate regression to show how those assumptions can be justified
with high probability. We introduce the following assumption on the random design and
noise.

Assumption 6 (Random design and noise) Suppose {(εa,xa, ta)}na=1 are independent
random elements satisfying ta ∼ U(0, 1), xa are i.i.d. sub-gaussian random vectors with
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parameter σ2 and covariance spectral conditions σ2 ≤ ρmin(Σ) ≤ ρmax(Σ) ≤ σ2, and εa are
i.i.d. sub-gaussian random vectors with parameter σ2.

Theorem 11 Assume Γ? ∈ Bq(Rq) for some q ∈ [0, 1). If the regularization parameter
λn is chosen such that λn = 20σσ

√
(m1 +m2)/n, then there are a sequence of positive

constants C, {Ck}5k=0 and an integer m? � (1− q/2) log {n/(m1 +m2)} such that, for n >
Cm1, with probability at least

1− 3C1 exp{−C2(m1 +m2)} − C3 exp(−C4n)− 2em? exp
{
−C5‖∆?‖−2F (m1 +m2)

}
,

we have ∥∥∥Γ̂− Γ?
∥∥∥2
F
≤ C0Rq

(
σσ

σ2

)2−q (m1 +m2

n

)(1−q/2)
,

∥∥∥Γ̂− Γ?
∥∥∥
∗
≤ C0Rq

(
σσ

σ2

)1−q (m1 +m2

n

)(1/2−q/2)
,

1

2n

∥∥∥X(Γ̂; τ̂
)
− X(Γ?; τ?)

∥∥∥2
2
≤ C0Rq

(
σσ

σ2

)2−q (m1 +m2

n

)(1−q/2)
,

|τ̂ − τ?| ≤ C0Rq

(
σσ

σ2

)2−q (m1 +m2

n

)(1−q/2)
.

Theorem 11 establishes the non-asymptotic bounds on the matrix estimation error and
prediction error for both exact and near low-rank scenarios. These bounds align perfectly
with classical results in low-rank multivariate regression (Negahban and Wainwright, 2011).
Besides, it also gives the change-point detection error bound, which is reduced to r(m1 +
m2)/n for the exact low-rank circumstances (i.e., q = 0). This rate entails the super-
consistency phenomenon for change-point estimation in low-rank multivariate regression,
extending the well-known results for linear regression under both low dimension (Chan,
1993) and high dimension (Lee et al., 2016); see Table 1.

Table 1: Convergence rates for change-point detection in existing literature

Model Convergence Rate Literature

Linear regression, low dimension O(1/n) Chan (1993)
Linear regression, high dimension O(s log(p)/n), s: exact sparsity Lee et al. (2016)

Reduced rank VAR O(rm/n), r: exact rank Bai et al. (2023)

Low-rank multivariate regression O(Rq{(m1 +m2)/n}1−q/2), q ∈ [0, 1) Current work

2.3 Implementation: proximal gradient descent

The implementation of the proposed method involves solving a sequence of optimization
problems (3) at all feasible values of change-point τ ∈ T, each of which is composed of a
smooth loss function (i.e., the least-squares loss) and a non-smooth penalty term (i.e., the
nuclear norm penalty). The solution of (3) has been widely discussed in the literature and
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one can typically apply the proximal gradient descent method, see, for example, Nesterov
(2013), Ji and Ye (2009) and Toh and Yun (2010).

To wit, for any Γ′, we introduce the majorization quadratic approximation of SN (Γ) :=
SN (Γ; τ) at Γ′, i.e.,

SMajor(Γ; Γ′) := SN (Γ′) +
〈
∇SN (Γ′) , Γ− Γ′

〉
+
L

2
‖Γ− Γ′‖2F (10)

for some L > 0. Then solving (3) can be done in an iterative way, where at each itera-
tion, we update Γ′ by Γ′′ := arg minΓ {SMajor(Γ; Γ′) + λ‖Γ‖∗}. In fact, the minimizer Γ′′

can be expressed using the singular value soft-thresholding operator (Toh and Yun, 2010),
namely, Γ′′ = Soft

(
Γ′ − L−1∇SN (Γ′);L−1λ

)
, where for any matrix G with singular value

decomposition G = U>Gdiag{(ρi(G))}VG,

Soft(G; ξ) = U>G diag{((%i(G)− ξ)+)}VG (11)

x+ = max{x, 0}.

Remark 12 (Algorithmic convergence) In the current manuscript, we are focusing on
the statistical properties of the estimators obtained from the joint minimization program. In
general cases, the algorithmic behavior of the proximal gradient descent is not covered by
the current manuscript. Nevertheless, in Proposition 32, we provide rigorous algorithmic
justification for the random multivariate regression example studied in Section 2.2.6. Con-
cretely, Proposition 32 states that, for the random design setting, for each given grid point
τk, it takes O(log ζ−2) steps to reach the tolerance ζ2, which demonstrates a fast exponen-
tial convergence to the global minimum. When ζ2 is set to be properly small, the detected
change-point coincides with the global optimum too. See Section D.1 for a more detailed
exposition.

In practice, the regularization parameter λN is chosen through cross-validation. See
Section D.2 for more details.

3. Extension to multiple change-points scenario

In this section, we extend the proposed procedure to the scenario with multiple change-
points, to wit, yi = 〈Xi , Θi〉+ εi, where

Θi = Θ?
s, τ

?
s < ti ≤ τ?s+1, s = 0, . . . , s?; i = 1, . . . , N. (12)

Of interest is to simultaneously recover the low-rank matrices Θ?
s’s and change-points τ?s ’s

(with the convention of τ?0 = 0 and τ?s?+1 = 1), together with the number of change-points
s?, from the response-covariates-threshold triple observations {(yi,Xi, ti)}Ni=1.

To handle multiple change-points, we shall first find some rough estimators of change-
points, and then refine them to deliver a desirable error rate. The spirit of refinements
over inefficient or sub-optimal initial change-point estimators is popular in the literature
of multiple change-point detection (Harchaoui and Lévy-Leduc, 2010; Zou et al., 2014),
and has been further explored for high-dimensional change detection, see, for example,
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Wang et al. (2021a) and Bai et al. (2023). However, to obtain consistent and (near) rate-
optimal estimators of the regression matrices, existing methods typically need the removal
of the detected change-points together with large enough neighborhoods (Safikhani and
Shojaie, 2022; Safikhani et al., 2022; Bai et al., 2023). In other words, change detection and
parameter estimation are performed separately, which may be inefficient in practice.

3.1 Preview of the results

The primary results in this section are two-fold:

• Algorithm development : we attempt to fulfill the refinements of both the change-point
and regression matrix estimators in a joint manner in the proposed Algorithm 1. In
the first stage, we obtain some initial change-point estimators based on a sequence
of maximally selected change differences in conjunction with a novel thresholding
rule, which are built on the consistency results on estimated low-rank matrices as
developed in Section 2. It does not necessarily produce consistent change-point esti-
mators (in their locations) but should identify the correct number of change-points
with high probability. In the second stage, we suggest a joint refinement procedure
for both change-point and regression matrix estimators with desirable error bounds
by recasting the original problem into a sequence of sub-problems each with a sin-
gle change-point, thus making the proposed joint minimization scheme in Section 2.1
applicable.

• Theoretical investigation: Theorem 14 provides theoretical justification of the pro-
posed Algorithm 1. It establishes the estimation error bounds for matrix recovery
and change-point detection:

‖Γ̂s − Γ?s‖2F . λ2Nr, |τ̂s − τ?s | . λ2Nr, s = 1, . . . , s?.

The error rates for matrix recovery again match the oracle rates, and the bound
for change-point detection demonstrates the super consistency phenomenon as in the
single change-point setting.

Corollary 15 further applies Theorem 14 to the multivariate regression setting and
establishes the following error rates:

‖Γ̂s − Γ?s‖2F .
r(m1 +m2)

n
, |τ̂s − τ?s | .

r(m1 +m2)

n
, s = 1, . . . , s?.

3.2 An algorithm for joint multiple change-point detection and matrix
estimation

Algorithm 1 previews the two-stage procedure for joint multiple change-point detection
and matrix estimation. Stage I is composed of two steps, by which we shall find s̃ initial
change-point estimators, i.e., τ̃1, . . . , τ̃s̃. In Step (i), it collects a set of rough change-point
estimators by using a moving-window strategy. Each window Ti = [ti−ω, ti+ω] is of length
2ω. If ω is selected not too large, we can expect that there is at most one change-point
occurring in Ti. Hence we can apply the joint minimization scheme proposed in Section 2.1
to the data set corresponding to threshold variables in Ti. The resulting estimator of the
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Algorithm 1: Joint multiple change-point detection and matrix estimation

Input: Response-covariates-threshold triple observations D := {(yi,Xi, ti)}Ni=1,
moving-window parameter 0 < ω < 1, regularization parameter λN > 0 and
stopping threshold ζN > 0

Output: Estimated change-points {τ̂s}s̃s=1 and the associated low-rank matrices

{Θ̂s}s̃s=1

/* Stage I: Rough change-point estimators */

/* Step (i): Change-point indicators */

1 Set the searching grid G = {ti}Gi=1 ∩ [ω, 1− ω] such that

G = d1− 2ω

ω/2
e; t0 = ω, tG = 1− ω; ti = ω +

ω

2
· i, for i = 1, . . . , G.

2 for ti ∈ G do
3 (1) Set Ti := [ti − ω, ti + ω] and DTi = {(yj ,Xj , tj) ∈ D : tj ∈ Ti}
4 (2) Apply the joint minimization scheme in Section 2.1 to DTi with the

regularization parameter λ2ωN
5 (3) Record the resulting estimator of the change magnitude by ∆̂i

/* Step (ii): Sequential maximizers */

6 Set s = 1 and τ̃1 := arg maxti∈G‖∆̂i‖F
7 while ‖∆̂τ̃s‖F > ζN do
8 s← s+ 1

9 τ̃s := arg maxti∈G\∪s−1
j=1 [τ̃j−2ω,τ̃j+2ω]‖∆̂i‖F

10 Record the resulting change-points until stopping as {τ̃s}s̃s=1

/* Stage II: Local refinements */

11 for s = 1, . . . , s̃ do
12 (1) Set Is = [(τ̃s−1 + τ̃s)/2, (τ̃s + τ̃s+1)/2]
13 (2) Apply the joint minimization scheme in Section 2.1 to {(yj ,Xj , tj) : tj ∈ Is}

with the regularization parameter λ|Is|N
14 (3) Record the detected change-point as τ̂s and the estimated low-rank matrices

as Θ̂s
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change magnitude is denoted by ∆̂i. According to Theorem 4, if Ti contains no change-
point, then ∆̂i would in general be small in either the Frobenius or nuclear norm. On
the other hand, by Theorem 7, a large value of ∆̂i may indicate that ti is located around
some change-point, provided that the change signal is not too weak. Hence ∆̂i serves as
a very good indicator of whether there exists certain change. To fix ideas, here we adopt
‖∆̂i‖F . However, we cannot select all ti’s corresponding to large values in ‖∆̂i‖F ’s, which
could generally result in redundant change-point estimates; that is why Step (ii) comes
in. In Step (ii), we propose searching for a sequence of maximizers in conjunction with a
thresholding rule to avoid overestimation. It is obvious that τ̃1 = arg maxti∈G‖∆̂i‖F can be
set as the most “significant” change-point. Upon the determination of the first s−1 (s ≥ 2)
change-point candidates, we identify the next one as

τ̃s = arg maxti∈G\∪s−1
j=1 [τ̃j−2ω,τ̃j+2ω]‖∆̂i‖F ,

where in each step some neighborhoods (of length 4ω) of previously detected change-points
have been removed to screen out redundant change-points. This is essentially a “forward”
detection procedure, and similar to the binary segmentation algorithm in the change-point
literature. To consistently recover the number of change-points, after each recursive, we
stop if ‖∆̂τ̃s‖F < ζN for some threshold ζN that will be specified later.

In Stage II, we perform local refinements over the change-points {τ̃s}s̃s=1 detected pre-
viously. For this purpose, let Is = [(τ̃s−1 + τ̃s)/2, (τ̃s + τ̃s+1)/2] for s = 1, . . . , s̃, with the
convention of τ̃0 = 0 and τ̃s̃+1 = 1. Then, for each s, we again apply the joint minimization
scheme (cf. Section 2.1) to the data set corresponding to threshold variables in Is. The
proposed refinement scheme simultaneously results in a new change-point estimator (i.e.,
τ̂s) and an estimator of the associated low-rank matrices (i.e., Θ̂s), for s = 1, . . . , s̃.

Remark 13 (Computational cost of Algorithm 1) Algorithm 1 requires O(N) times
to solve the nuclear-norm penalized least-squares minimization, even when multiple change-
points are present. In Step (i) in Stage I, each moving-window Ti is of length 2ω, thus
requiring solving O(2ωN) rounds of minimization. In total there are O(ω−1) running win-
dows. Hence the total number of minimization programs becomes O(N). Step (ii) requires
searching for the maximums of a sequence of values, which does not involve solving the
optimization program. Similarly, Stage II amounts to O(N) rounds of minimization.

3.3 Theoretical inverstigation of Algorithm 1

To facilitate theoretical analysis, we confine attention to the exact low-rank circumstances.
Let dmin = mins=1,...,s?+1{τ?s − τ?s−1} be the minimal distance between two consecutive
change-points, and ∆min = mins=1,...,s? ‖∆?

s‖2F and ∆max = maxs=1,...,s? ‖∆?
s‖2F be the

minimal and maximal change magnitude in the Frobenius norm, respectively. We define an
event

EN := {s̃ = s? and max
s=1,...,s̃

|τ̃s − τ?s | ≤ dmin/6}. (13)

By the construction of our procedure, it can be shown that, on EN , |Is| ≥ 2dmin/3.
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Theorem 14 Suppose Assumption 7–Assumption 12 in Appendix (parallel to those in
Corollary 9) hold. Assume there exists some λN > 0 such that λ2ωN = (2ω)−1/2λN ,
λ|Is|N ≤ (2dmin/3)−1/2λN , and

λN ≥ sup
0<t(i)<t(j)<1

sup
τ∈[t(i),t(j)]

2

N(t(j) − t(i))
‖

∑
k:tk∈[t(i),t(j)]

εkX k(τ)‖op

holds with probability greater than 1− αN for some αN > 0. If the threshold ζN is selected
such that ζN = C ′λ2Nr/κ(X)2 for large enough C ′ > 0 and the minimal change magnitude
∆min > ζN , then

(i) the event EN holds with probability greater than 1−αN−2em?N2 exp{−cNλ2N/(K2∆max)}
for some constant c > 0 and m? > 0;

(ii) there exist some constants C1, C2 > 0 such that∥∥∥Γ̂s − Γ?s

∥∥∥2
F
≤ C1λ

2
Nr

κ(X)2
, |τ̂s − τ?s | ≤

C2{φ(∆?)}−1λ2Nr
κ(X)

hold uniformly for s = 1, . . . , s̃ with probability greater than 1−αN−2em̃?N2 exp{−c̃Nλ2N/(K2∆max)}
for some constant c̃ > 0 and m̃? > 0.

Theorem 14 implies that the estimation rate dmin/6 for event EN is the guarantee with high
probability for Stage I of Algorithm 1, which we do not require to decrease as N →∞. The
goal of Stage I is to construct a sequence of non-overlapping windows, each of which covers
a true change-point. Then in Stage II, Algorithm 1 performs local refinement based on the
sequence of intervals {Is}s∈[s̃] and gives the estimation rates that decrease with the sample
size N . Further, if we consider the multivariate regression model with multiple change
points and a data generating process under Assumption 6, we can prove the following result:

Corollary 15 If the regularization parameter λn is chosen such that λn = Cσσ0
√

(m1 +m2)/n
for some C > 0, then there are a sequence of positive constants {Ck}7k=0 and an integer
m? � (1− q/2) log {n/(m1 +m2)} such that, for n > C0m1, with probability at least

1−3C1n
2 exp{−C2(m1+m2)}−C3n

2 exp(−C4n)−2C5m
?n2 exp

{
−C6‖∆?‖−2F (m1 +m2)

}
,

we have ∥∥∥Γ̂s − Γ?s

∥∥∥2
F
≤ C7

r(m1 +m2)

n
and |τ̂s − τ?s | ≤ C8

r(m1 +m2)

n
.

Remark 16 (Alternative choices in Stage I) The thresholding rule-based procedure pro-
vides a consistent selection of the number of change-points by exploiting the low-rank struc-
ture of the underlying regression matrices. Other choices that ensure a high probability result
for the event EN in (13) are also possible. For example, we may consider a score method by
transferring the target problem into high-dimensional mean change detection, upon which
state-of-the-art mean change detection methods (Cho and Fryzlewicz, 2015; Wang and Sam-
worth, 2018; Wang et al., 2019b; Yu and Chen, 2021) can be leveraged to obtain initial
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change-point estimators. Let {Zi}Ni=1 be the scores such that detecting changes in Θi’s can
be framed into detecting changes in E(Zi)’s. In some scenarios such as compressed sensing
or phase retrieval, the scores can be directly set as Zi = yivec(Xi) if Xi’s are i.i.d.. To see
this, we observe that E(Zi) = Ξvec(Θi), where Ξ = E

{
vec(Xi)vec(Xi)

>}. In certain cases
Xi’s are not i.i.d.; for example, in multivariate regression (cf. Example 1), Xi = xae

>
b ,

whose distribution varies with the position b ∈ {1, . . . ,m2}. Fortunately, we can directly
deal with {(ya,xa)}na=1 and define scores as Za = vec(xay

>
a ) for a = 1, . . . , n. Observe that

E(Za) = Ξvec(Θa) where Ξ = Im2 ⊗ E(XaX
>
a ). As a consequence, detecting changes in

Θa’s amounts to detecting changes in E(Za)’s. Let A be a prescribed mean change detection
algorithm which will be applied to {Zi}Ni=1. The output of A({Zi}Ni=1) can be used as the
initializers in Stage I. However, existing theories could not be directly applied to provide a
high-probability guarantee over EN , since the underlying covariance matrix of Zi also shifts.
It is of independent interest to study the high-dimensional mean change detection problem
in the presence of heterogeneous covariances.

Remark 17 (Number of change-points) In Theorem 14 and Corollary 15, we assume
a fixed number of change-points s? to ease the presentation of theoretical results. However,
we highlight that this is not required to prove the estimation consistency of the change-
points and low-rank matrix signals. Take Corollary 15 as an example. When the number
of change-points s? grows, the moving window detection approach adopted in Algorithm 1
Stage I will give a sequence of data segments {Is}s∈[s?] around each true change-point, with
high probability. Each Is has a size of order O(n/s?), which results in the following local
estimation rates with high probability:

∥∥∥Γ̂s − Γ?s

∥∥∥2
F
≤ C7

s?r(m1 +m2)

n
and |τ̂s − τ?s | ≤ C8

s?r(m1 +m2)

n
. (14)

To guarantee consistency, (14) requires s?r(m1 +m2)/n → 0. This suggests a trade-off
among sample size n, number of change-points s?, rank r and dimension m1 +m2. Asymp-
totically, if s? � na, r � nb, m1 + m2 � nc, where a, b ≥ 0 and c > 0, then (14) requires
a+ b+ c < 1 for consistency.

4. Numerical study

In this section, we run several synthetic experiments to show the validity and effective-
ness of the proposed scheme in change-point detection as well as low-rank matrix recovery.
A real-data example is also investigated, which reveals the benefit of incorporating struc-
tural changes for matrix estimation. The algorithm is implemented in MATLAB and the
source code can be accessed through the public GitHub repository: https://github.com/
LeiShi-rocks/LowRank_ChangePoints.

4.1 Single change-point scenario

We consider two simulation settings for low-rank matrix recovery with a single change-point,
i.e., multivariate regression (Example 1) and compressed sensing (Example 2).
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4.1.1 multivariate regression

The true change-point is set as τ? = 0.5. The matrix signals are square matrices with rank
r = 5. In Example 1, the thresholding variables are simply taken as xa = a/n, the covariates
are generated independently from a multivariate standard Gaussian distribution Nm(0, Im),
and the noises are i.i.d. copies from Nm(0, 0.12Im). We vary the configuration of several
synthetic parameters to present a comprehensive numeric study. More concretely, we focus
the following settings respectively: (i) the dimension is fixed as m1 = m2 = m = 50
and the sample size n ranges over {500, 1000, 2000}; (ii) the dimension m1 = m2 = m
takes values in m ∈ {50, 75, 100} while the sample size scales with the dimension, i.e.,
n = 5mr. The true signals are generated from the singular vectors of standard Gaussian
ensembles (see Section D.3 for more details) with ‖Θ?

1‖F = ‖Θ?
2‖F = 1 and a break ‖Θ?

1 −
Θ?

2‖F = 0.1. We introduce some benchmark procedures. The first one is to directly perform
matrix estimation by ignoring the change-point (NC, for no-change). The second is to run
matrix estimation with the known of the true change-point (Oracle). The third is first
to vectorize each matrix covariate and then to apply the LASSO-based change detection
method proposed by Lee et al. (2016) (Vec). The following criteria are reported, i.e., distance
of the estimated change-point and the truth, estimation error of the low-rank matrices in
both Frobenius norm and nuclear norm and estimated rank. Results over 100 replications
are summarized in Table 2.

For change-point detection, our method is more accurate and more stable than the Vec
based detection method in all experiments. In terms of matrix recovery, it achieves high
accuracy in both Frobenius and nuclear norms and performs comparably well as the Oracle.
On the contrary, the Vec behaves poorly since it distorts the low-rank structure. Note that
in this setting the NC gives more accurate matrix estimation results, which is due to the fact
that Θ?

1 and Θ?
2 share the same first four singular vectors and demonstrate a small break

size (see Section D.3). In Appendix we also presented results under a relatively large break
situation where the NC method becomes inferior. Besides, our method also demonstrates
a satisfactory result on rank recovery.

4.1.2 compressed sensing

Similar to last setting, we set τ? = 0.5 and the true signals are square matrices with r = 5.
We consider two different specifications of the sample size and dimension, i.e., m = 40,
N ∈ {1500, 2000, 2500}) and m ∈ {20, 35, 50}}, N = 10mr. The covariates are generated
independently from standard Gaussian ensembles and the noise are i.i.d. Gaussian variables
from N(0, 0.12). Results over 100 replications are summarized in Table 3. Similar to the
multivariate regression setting, our method demonstrates high accuracy in both change-
point detection and matrix recovery in a wide range of settings.

4.2 Multiple change-points scenario

In this section, we present the numerical results of matrix estimation with multiple change-
points under the multivariate regression setting. We set m1 = m2 = m = 40 and r = 5.
Then we generate n = 2000 independent covariates from Nm(0, Im) and i.i.d. noise from
Nm(0, 0.12Im). Three change-points are introduced, i.e., τ?1 = 0.25, τ?2 = 0.50 and τ?3 =
0.75. For change-point detection, we report the number of estimated change-points as well
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Table 2: Multivariate regression with a single change-point

Method |τ̂ − τ?| Θ̂1 Θ̂2

‖Θ̂1 −Θ?
1‖2F ‖Θ̂1 −Θ?

1‖∗ rank ‖Θ̂2 −Θ?
2‖2F ‖Θ̂2 −Θ?

2‖∗ rank

Regime: Varying n with (m,n) = (50, 500)
Ours 0.031(0.028) 0.352(0.036) 1.497(0.068) 5.40(0.55) 0.347(0.030) 1.484(0.060) 5.37(0.53)

Oracle - 0.347(0.027) 1.484(0.048) 5.33(0.49) 0.346(0.024) 1.479(0.044) 5.29(0.50)
NC - 0.225(0.014) 1.201(0.033) 6.03(4.47) 0.225(0.013) 1.198(0.032) 6.03(4.47)
Vec 0.040(0.033) 0.899(0.102) 5.581(0.307) 50.00(0) 0.939(0.106) 5.706(0.314) 50.00(0)

Regime: Varying n with (m,n) = (50, 1000)
Ours 0.017(0.016) 0.206(0.017) 1.146(0.043) 5.13(0.39) 0.202(0.016) 1.134(0.038) 5.05(0.22)

Oracle - 0.203(0.014) 1.138(0.035) 5.10(0.33) 0.202(0.014) 1.134(0.033) 5.03(0.17)
NC - 0.135(0.007) 0.930(0.024) 5.88(0.46) 0.135(0.007) 0.929(0.024) 5.88(0.46)
Vec 0.025(0.025) 0.451(0.035) 3.981(0.155) 50.00(0) 0.454(0.037) 3.996(0.159) 50.00(0)

Regime: Varying n with (m,n) = (50, 2000)
Ours 0.006(0.006) 0.107(0.007) 0.831(0.025) 5.00(0) 0.108(0.007) 0.838(0.025) 5.00(0)

Oracle - 0.107(0.007) 0.831(0.024) 5.00(0) 0.108(0.007) 0.836(0.026) 5.00(0)
NC - 0.084(0.004) 0.732(0.019) 5.99(0.30) 0.085(0.004) 0.734(0.018) 5.99(0.30)
Vec 0.010(0.010) 0.229(0.011) 2.847(0.071) 50.00(0) 0.228(0.009) 2.842(0.059) 50.00(0)

Regime: Varying m with (m,n) = (25, 625)
Ours 0.024(0.022) 0.233(0.032) 3.317(0.240) 5.00(0) 0.233(0.026) 3.335(0.081) 5.00(0)

Oracle - 0.214(0.022) 3.359(0.239) 5.00(0) 0.218(0.019) 3.366(0.069) 5.00(0)
NC - 0.662(0.040) 3.047(0.107) 8.16(0.55) 0.670(0.036) 3.050(0.095) 8.16(0.55)
Vec 0.028(0.027) 0.256(0.022) 5.042(0.336) 25.00(0) 0.257(0.025) 5.092(0.145) 25.00(0)

Regime: Varying m with (m,n) = (50, 1250)
Ours 0.016(0.018) 0.224(0.019) 3.460(0.051) 5.00(0) 0.224(0.024) 3.464(0.072) 5.00(0)

Oracle - 0.213(0.014) 3.486(0.042) 5.00(0) 0.213(0.016) 3.491(0.056) 5.00(0)
NC - 0.668(0.021) 3.225(0.048) 9.45(0.50) 0.666(0.024) 3.225(0.049) 9.45(0.50)
Vec 0.022(0.022) 0.457(0.026) 7.022(0.170) 50.00(0) 0.457(0.026) 7.022(0.162) 50.00(0)

Regime: Varying m with (m,n) = (75, 1875)
Ours 0.014(0.014) 0.226(0.022) 3.486(0.056) 5.00(0) 0.226(0.023) 3.484(0.060) 5.00(0)

Oracle - 0.213(0.013) 3.519(0.036) 5.00(0) 0.213(0.013) 3.514(0.037) 5.00(0)
NC - 0.667(0.017) 3.306(0.034) 9.99(0.17) 0.665(0.018) 3.304(0.035) 9.99(0.17)
Vec 0.019(0.018) 0.642(0.023) 8.815(0.183) 75.00(0) 0.655(0.035) 8.887(0.170) 75.00(0)

as the accuracy of detection, measured by the following two criteria

OE = sup
s=1,··· ,s?

inf
s′=1,··· ,ŝ

|τ̂s′ − τ?s |, UE = sup
s′=1,··· ,ŝ

inf
s=1,··· ,s?

|τ̂s′ − τ?s |.

This pair of quantities measures the over- and under-segmentation errors, respectively, for
which a desirable estimator should strike a balance. For matrix recovery, we introduce
analogous concepts to measure the estimation error, i.e.,

MOE = sup
s=1,··· ,s?

inf
s′=1,··· ,ŝ

‖Θ̂s′ −Θ?
s‖2F , MUE = sup

s′=1,··· ,ŝ
inf

s=1,··· ,s?
‖Θ̂s′ −Θ?

s‖2F .

Besides, we report the maximal and minimal estimated rank across segments. Results over
100 replications are summarized in Table 4 and Figure 1.

When the magnitude of the change signal is small, detection and estimation are in gen-
eral harder. Nevertheless, our method can recover the number and location of change-points
with high accuracy. Besides, we can see that the refinement step plays an indispensable
role in augmenting and stabilizing the performance of the roughly selected change-points.
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Table 3: Compressed sensing with a single change-point

Method |τ̂ − τ?| Θ1 Θ2

‖Θ̂1 −Θ?
1‖2F ‖Θ̂1 −Θ?

1‖∗ rank ‖Θ̂2 −Θ?
2‖2F ‖Θ̂2 −Θ?

2‖∗ rank

Regime: Varying N with (m,N) = (40, 1500)
Ours 0.007(0.003) 0.246(0.029) 1.318(0.092) 5.41(1.06) 0.255(0.029) 1.358(0.104) 5.83(1.55)

Oracle - 0.240(0.027) 1.298(0.083) 5.33(0.92) 0.239(0.022) 1.295(0.068) 5.23(0.85)
NC - 0.798(0.041) 3.125(0.086) 17.52(0.73) 0.797(0.042) 3.124(0.099) 17.52(0.73)
Vec 0.103(0.085) 0.937(0.101) 4.696(0.151) 40.00(0) 1.074(0.211) 5.267(0.578) 40.00(0)

Regime: Varying N with (m,N) = (40, 2000)
Ours 0.006(0) 0.161(0.015) 1.050(0.049) 5.00(0) 0.165(0.016) 1.065(0.049) 5.00(0)

Oracle - 0.157(0.015) 1.038(0.047) 5.00(0) 0.159(0.014) 1.042(0.045) 5.00(0)
NC - 0.730(0.043) 3.031(0.092) 19.07(0.77) 0.744(0.031) 3.060(0.075) 19.07(0.77)
Vec 0.020(0.029) 0.677(0.055) 4.210(0.152) 40.00(0) 0.720(0.119) 4.366(0.368) 40.00(0)

Regime: Varying N with (m,N) = (40, 2500)
Ours 0.006(0) 0.120(0.010) 0.902(0.037) 5.00(0) 0.123(0.011) 0.916(0.041) 5.00(0)

Oracle - 0.117(0.010) 0.887(0.037) 5.00(0) 0.117(0.010) 0.891(0.037) 5.00(0)
NC - 0.700(0.034) 2.977(0.073) 19.93(0.70) 0.699(0.038) 2.975(0.089) 19.93(0.70)
Vec 0.008(0.006) 0.507(0.028) 3.715(0.109) 40.00(0) 0.530(0.044) 3.810(0.161) 40.00(0)

Regime: Varying m with (m,N) = (20, 1000)
Ours 0.006(0) 0.158(0.021) 1.005(0.066) 5.00(0) 0.159(0.020) 1.010(0.060) 5.00(0)

Oracle - 0.153(0.020) 0.986(0.062) 5.00(0) 0.156(0.019) 0.999(0.060) 5.00(0)
NC - 0.675(0.051) 2.487(0.102) 11.21(0.57) 0.682(0.055) 2.504(0.105) 11.21(0.57)
Vec 0.007(0.006) 0.232(0.028) 1.806(0.109) 20.00(0) 0.239(0.045) 1.831(0.166) 19.99(0.10)

Regime: Varying m with (m,N) = (35, 1750)
Ours 0.006(0) 0.162(0.017) 1.050(0.056) 5.00(0) 0.167(0.017) 1.066(0.054) 5.00(0)

Oracle - 0.158(0.017) 1.034(0.055) 5.00(0) 0.162(0.015) 1.045(0.044) 5.00(0)
NC - 0.725(0.040) 2.924(0.094) 17.06(0.71) 0.730(0.039) 2.937(0.083) 17.06(0.71)
Vec 0.012(0.013) 0.583(0.040) 3.712(0.127) 35.00(0) 0.617(0.068) 3.817(0.215) 35.00(0)

Regime: Varying m with (m,N) = (50, 2500)
Ours 0.006(0) 0.163(0.014) 1.063(0.044) 5.00(0) 0.166(0.015) 1.076(0.050) 5.04(0.40)

Oracle - 0.159(0.014) 1.049(0.042) 5.00(0) 0.158(0.013) 1.047(0.040) 5.00(0)
NC - 0.758(0.032) 3.233(0.079) 22.32(0.80) 0.762(0.033) 3.242(0.077) 22.32(0.80)
Vec 0.067(0.072) 0.863(0.090) 5.065(0.158) 50.00(0) 0.965(0.201) 5.545(0.626) 49.99(0.10)

Table 4: Multivariate regression with multiple change-points

Criterion
Small breaks Large breaks

Rough Refined Rough Refined

Change detection
ŝ 3.12(0.36) - 3.00(0) -

OE 0.027(0.038) 0.009(0.027) 0.002(0.001) 0.001(0.001)
UE 0.041(0.055) 0.024(0.050) 0.002(0.001) 0.001(0.001)

Matrix recovery

MOE - 0.291(0.029) - 0.115(0.006)
MUE - 0.313(0.088) - 0.115(0.006)

max r̂k - 5.07(0.26) - 5.00(0)
min r̂k - 5.00(0) - 5.00(0)

Meanwhile, thanks to the success of change-point localization, the matrix recovery tasks
can be completed with high accuracy as well, in terms of both Frobenius error and rank
recovery. On the other hand, when the signal is large, it is not surprising that the scheme
can handle both change-point detection and matrix estimation more easily. The trajectory
of ‖∆̂‖2F in Figure 1 reflects the contrast of difficulty with different magnitudes of change
signal.
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Figure 1: Trajectories of ‖∆̂i‖2F across intervals under the multivariate regression model with mul-
tiple change-points

4.3 Real-data analysis

In this section, we study the air pollution problem induced by inhalable particulate matter
(PM). According to California Air Resources Board1, PM is a complex mixture of many
chemical species, including solids and aerosols composed of small droplets of liquid, dry
solid fragments, and solid cores with liquid coatings. Particles are defined by their diameter
for air quality regulatory purposes. Those with a diameter of 10 microns or less (PM10)
are inhalable into the lungs and can induce adverse health effects, such as repository dis-
ease and cardiovascular disorders. Fine particulate matter is defined as particles that are
2.5 microns or less in diameter (PM2.5). PM may be either directly emitted from sources
(primary particles) or formed in the atmosphere through chemical reactions of gases (sec-
ondary particles) such as sulfur dioxide (SO2), nitrogen oxides (NOx), and certain organic
compounds.

We investigate the relationship between the concentration of PM and four air pollutants:
sulfur dioxide (SO2), carbon monoxide (CO), nitrogen dioxide (NO2), and ozone (O3). Our
study is based on an hourly air pollutants dataset from 12 nationally controlled air-quality
monitoring sites collected by the Beijing Municipal Environmental Monitoring Center. The
time period is from March 1st, 2013 to February 28th, 2017. The original data file and
descriptions are available at the UCI Machine Learning Repository: https://archive.

ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data.

The original dataset contains a small portion of missing values, which are scattered in
a relatively random pattern across time, sites, and pollution. For simplicity, we remove the
days with missing measurements. The dataset is standardized to have mean 0 and variance
1. Then we aggregate the PM2.5 and PM10 concentrations across 12 sites to create the
outcome matrix

Y = (Y1, · · · , Y12︸ ︷︷ ︸
PM2.5

| Y13, · · · , Y24︸ ︷︷ ︸
PM10

) ∈ R1100×24.

1. https://ww2.arb.ca.gov/resources/inhalable-particulate-matter-and-health
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The covariate matrix X can be constructed similarly:

X = (X1, · · · , X12︸ ︷︷ ︸
SO2

| X13, · · · , X24︸ ︷︷ ︸
CO

| X25, · · · , X36︸ ︷︷ ︸
NO2

| X37, · · · , X48︸ ︷︷ ︸
O3

) ∈ R1100×48.

We assume the multivariate linear regression structure with potential change-points (Exam-
ple 1) to model the dataset, and the goal is to detect the possible breaks as well as recover
the mechanism matrices Θ?

s ∈ R48×24 of interest.

To study the performance of our method, we split the dataset into two parts: a test
set {Ytest,Xtest} with 20% of the total observations (Ntest = 220) and a training set
{Ytrain,Xtrain} with the remaining 80% (Ntrain = 880). Then the training set is further
divided into 5 folds and we apply cross-validation to tune the number of change-points, with
4 folds for model training and 1 fold for validation. More specifically, we apply Algorithm 1
by choosing different stopping thresholds ζN and construct models with varying numbers of
change-points. Let “train-cv” and “validation-cv” represent the sample in training folds and
validation folds, respectively, and let “test-cv” represent the testing sample. The training,
validation, and test errors based on the k-th split are measured respectively by

Errtrain-cv,k =
1

m2Ntrain-cv
‖Ytrain-cv,k − Ŷtrain-cv,k‖2F ,

Errvalidation-cv,k =
1

m2Nvalidation-cv
‖Yvalidation-cv,k − Ŷvalidation-cv,k‖2F ,

Errtest,k =
1

m2Ntest
‖Ytest,k − Ŷtest,k‖2F .

Table 5 reports the training, validation, and test errors of the algorithm. We see that there
is a natural trade-off between the number of change-points selected ŝ and the prediction
error: when ŝ is small, the model is too simple and can not fully capture the structure
of the underlying mechanism; when ŝ is too large, the test error will be inflated due to
overfitting. In our case, ŝ = 2 achieves an ideal balance between the two edges. In this case,
the selected change-points are ŝ1 = 0.3928, ŝ2 = 0.9160, corresponding to the middle of
February in 2015 and the end of November 2016, respectively. The first time point possibly
marks a critical moment when the air pollutants began to impact the formulation of PM
in Beijing more significantly. The second change-point might imply the improvement of air
pollution conditions, since the Chinese government took many actions in 2016 to improve
the air quality, including improving the law system, promoting clean energy, encouraging
the development of green industries, etc.2

5. Conclusion

In this paper, we study the trace regression model with a threshold variable and multiple
change-points. We first develop a grid-search based nuclear norm penalized least-squares
scheme for simultaneous change-point detection and high-dimensional low-rank matrix re-
covery under the AMOC circumstances, and then extend it to the multiple change-points

2. For example, see the official “13th Five-Year Plan Outline” released in 2016 by the Chinese government:
https://www.uschina.org/policy/official-13th-five-year-plan-outline-released.
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Table 5: Train-validation-test errors for the air pollution data

#change-points 0 1 2 3 4

Train Error 0.1842 0.1770 0.1591 0.1427 0.1268

Validation Error 0.2836 0.2092 0.2079 0.2202 0.2258

Test Error 0.1925 0.1746 0.1728 0.1761 0.1772

scenarios. Under a set of general sufficient conditions, we establish consistency of the
change-point localization and the convergence upper bound on matrix signal recovery for
the proposed procedure, which aligns well with the classic results in both worlds.

The present work imposes Gaussian or sub-Gaussian distributional assumptions, which
are quite common in the literature. However, real-life data typically possess less satisfactory
moment or tail properties such as Cauchy or log-Gaussian noise or could be contaminated
by outliers. It is thus of great importance to incorporate robustness into the proposed
scheme, for example, by using some robust loss function or truncation-based procedures
(Tan et al., 2023; Fan et al., 2021). In addition, it is also of great interest to develop a
pre-estimation procedure for testing the existence of any change-point, by exploiting the
low-rank structures. We save these interesting questions for future endeavors.

Acknowledgments

All authors contributed equally to this work and are listed in alphabetical order. We would
like to acknowledge the action editor, Zaid Harchaoui, and anonymous referees for their
valuable comments and suggestions, which have improved the manuscript greatly. Zou was
supported by the National Key R&D Program of China (Grant Nos. 2022YFA1003703,
2022YFA1003800) and the National Natural Science Foundation of China (Grant Nos.
11925106, 12231011, 11931001, 12226007, 12326325). Wang was supported by the Na-
tional Key R&D Program of China (Grant Nos. 2021YFA1000100, 2021YFA1000101,
2022YFA1003800) and the Natural Science Foundation of Shanghai (Grant No. 23ZR1419400).

29



Shi, Wang and Zou

Appendix A. Key results

Appendix A outlines the key results regarding the proofs of Theorem 7, Corollary 10 and
Theorem 11 for single change-point scenario and Theorem 14 and Corollary 15 for multiple
change-point scenario. Further technical details are deferred to Appendix B and some
well-known facts that will be used in the proofs are presented in Appendix C.

A.1 Single change-point scenario

Lemma 18 (Error bounds for matrix estimation with threshold effect) Suppose that

Assumption 1, Assumption 3 and Assumption 4 hold. If |τ̂ − τ?| ≤ cτ and
∥∥∥Γ̂− Γ?

∥∥∥
∗
≤ cΓ,

then, with probability greater than 1−αN−2e·exp
(
−c′Nλ2N/{K2‖∆?‖−2F hN (cτ )}

)
for some

constant c′ > 0, it holds that∥∥∥Γ̂− Γ?
∥∥∥2
F
≤ δ2 ∨

8λN‖Πr⊥
Γ? (Γ?)‖∗
κ(X)

∨
128λ2Nr

κ(X)2
∨

4λN
√
cτ‖∆?‖F
κ(X)

∨ 4CcΓcτ‖∆?‖∗
κ(X)

, (15)∥∥∥Γ̂− Γ?
∥∥∥
∗
≤ 12

√
2rδ ∨ 12‖Πr⊥

Γ? (Γ?)‖∗

∨ 192λNr

κ(X)
∨ 6
√
cτ‖∆?‖F ∨ 24

√
2CcΓcτr‖∆?‖∗

κ(X)
, (16)

1

2N

∥∥∥X(Γ̂; τ̂
)
− X(Γ?; τ?)

∥∥∥2
2
≤ 6λN

√
2rδ ∨ 6λN‖Πr⊥

Γ? (Γ?)‖∗ ∨
96λ2Nr

κ(X)

∨ 3λN
√
cτ‖∆?‖F ∨ 12λN

√
2CcΓcτr‖∆?‖∗

κ(X)
. (17)

Lemma 19 (Improved error bound for change-point detection with threshold effect)

Suppose Assumption 2 and Assumption 4 hold. If |τ̂ − τ?| ≤ cτ and
∥∥∥Γ̂− Γ?

∥∥∥
∗
≤ cΓ, then,

with probability greater than 1 − αN − 2e · exp
(
−c′Nλ2N/{K2‖∆?‖−2F hN (cτ )}

)
for some

constant c′ > 0, it holds that

|τ̂ − τ?| ≤ η?,

where

η? = max

{
η(N,m1,m2), {cφ(∆?)}−1

(
3λN

2
cΓ + λN

√
cτ‖∆?‖F

)}
.

The proofs of Theorem 18 and Theorem 19 are deferred to Appendix B.

Proof of Theorem 7

Proof Part I. First assume
∥∥∥Γ̂− Γ?

∥∥∥
F
≥ δ. Under such circumstances, the terms asso-

ciated with δ in the bounds provided in Theorem 18 can be omitted. At the beginning we
take a glimpse of the bounds in Theorem 18. Each of the three bounds consist of five terms.
The first term is an admissible error term determined primarily by δ. For the prediction

30



Low-Rank Matrix Estimation in the Presence of Change-Points

error (17) and the nuclear norm error (16), each pair of corresponding terms of the last four
are proportional with respect to a factor λN/2. For example, as to the second term, i.e.,
6λN‖Πr⊥

Γ? (Γ?)‖∗ for the prediction error and 12‖Πr⊥
Γ? (Γ?)‖∗ for nuclear norm error, it holds

{6λN‖Πr⊥
Γ? (Γ?)‖∗}/{12‖Πr⊥

Γ? (Γ?)‖∗} = λN/2. While similar proportion relation also holds
for the second to fourth terms of the Frobenius norm error bound (15) and the nuclear norm
error, it fails for the last term pair in this case. However, another relation holds between
the last term and the third term:(

192λNr

κ(X)

/
24

√
2CcΓcτr‖∆?‖∗

κ(X)

)2

=
128λNr

κ(X)2

/4CcΓcτ‖∆?‖∗
κ(X)

.

These relations show that, once the maximum is attained at a certain term for the nuclear
norm bound (16), the same order can be assumed for the terms in the Frobenius bound
(15) as well as the prediction error (17). Using this fact we divide our proof into four cases:

Case I.

12‖Πr⊥
Γ? (Γ?)‖∗ ∨

192λNr

κ(X)
∨ 6
√
cτ‖∆?‖F ∨ 24

√
2CcΓcτr‖∆?‖∗

κ(X)
= 12‖Πr⊥

Γ? (Γ?)‖∗.

In this case it’s not hard to verify that the bounds in Theorem 18 reduce respectively to∥∥∥Γ̂− Γ?
∥∥∥
∗
≤ 12‖Πr⊥

Γ? (Γ?)‖∗,
1

2N

∥∥∥X(Γ̂; τ̂
)
− X(Γ?; τ?)

∥∥∥2
2
≤ 6λN‖Πr⊥

Γ? (Γ?)‖∗.

Using Theorem 19, we can also derive a bound on the detection error, i.e.,

|τ̂ − τ?| ≤ 20{cφ(∆?)}−1λN‖Πr⊥
Γ? (Γ?)‖∗.

Using the above results, we can update cτ = 20{cφ(∆?)}−1λN‖Πr⊥
Γ? (Γ?)‖∗ and cΓ =

12‖Πr⊥
Γ? (Γ?)‖∗. Since the last term in the bound (15) does not follow the linear proportion re-

lation, a special treatment is required. By Assumption 5 that 120C{cφ(∆?)}−1‖∆?‖∗‖Πr⊥
Γ? (Γ?)‖∗ ≤

1, we have∥∥∥Γ̂− Γ?
∥∥∥2
F
≤

8λN‖Πr⊥
Γ? (Γ?)‖∗
κ(X)

∨ 4CcΓcτ‖∆?‖∗
κ(X)

=
8λN‖Πr⊥

Γ? (Γ?)‖∗
κ(X)

∨
(

4C‖∆?‖∗
κ(X)

· 12‖Πr⊥
Γ? (Γ?)‖∗ · 20{cφ(∆?)}−1λN‖Πr⊥

Γ? (Γ?)‖∗
)

≤
8λN‖Πr⊥

Γ? (Γ?)‖∗
κ(X)

.

Case II.

12‖Πr⊥
Γ? (Γ?)‖∗ ∨

192λNr

κ(X)
∨ 6
√
cτ‖∆?‖F ∨ 24

√
2CcΓcτr‖∆?‖∗

κ(X)
=

192λNr

κ(X)
.

Similar to Case I, the bounds in Theorem 18 now reduce respectively to∥∥∥Γ̂− Γ?
∥∥∥2
F
≤

128λ2Nr

κ(X)2
,
∥∥∥Γ̂− Γ?

∥∥∥
∗
≤ 192λNr

κ(X)
,

1

2N

∥∥∥X(Γ̂; τ̂
)
− X(Γ?; τ?)

∥∥∥2
2
≤

96λ2Nr

κ(X)
.
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Moreover, the detection error rate is

|τ̂ − τ?| ≤
320{cφ(∆?)}−1λ2Nr

κ(X)
.

Next we hope to apply Theorem 18 and Theorem 19 to cope with the rest cases. Let

c
(m)
τ , c

(m)
Γ denote the bounds on |τ̂ − τ?| and

∥∥∥Γ̂− Γ?
∥∥∥
∗

in the m-th iteration, respectively.

In light of (22) and Lemma 5, we start the iteration with

c
(1)
Γ = 4‖Πr⊥

Γ? (Γ?)‖∗ + 2‖∆?‖∗ + 16rγmax,

c(1)τ = {cφ(∆?)}−1
(

2λN

m∑
k=r+1

ρk(Γ
?) + 6λNrγmax + λN‖∆‖∗

)
.

Case III.

c
(m)
Γ = 6

√
c
(m−1)
τ ‖∆?‖F .

This implies by Theorem 19 that

c(m)
τ = {cφ(∆?)}−1

(
3λN

2
c
(m)
Γ + λN

√
c
(m−1)
τ ‖∆?‖F

)
= 10{cφ(∆?)}−1λN

√
c
(m−1)
τ ‖∆?‖F .

This system has exactly one converging fixed point beyond 0, which is

c∞Γ := 60{cφ(∆?)}−1λN‖∆?‖F , c∞τ := 100{cφ(∆?)}−2λ2N‖∆?‖2F .

Let c?Γ and c?τ be the bounds on ‖Γ̂−Γ?‖∗ and |τ̂ − τ?| as appeared in Theorem 7. We find
that c∞Γ < c∗Γ and c∞τ < c?τ hold strictly when r > 5{cφ(∆?)}−1‖∆?‖Fκ(X)/16, which is
guaranteed by Assumption 5.

Case IV.

c
(m)
Γ = 24

√
2Cc

(m−1)
τ c

(m−1)
Γ r‖∆?‖∗
κ(X)

:= B1

√
c
(m−1)
τ

√
c
(m−1)
Γ .

Again, using Theorem 19 we obtain

c(m)
τ = {cφ(∆?)}−1

(
3λN

2
c
(m)
Γ + λN

√
c
(m−1)
τ ‖∆?‖F

)
= {cφ(∆?)}−1 3λN

2
B1

√
c
(m−1)
τ

√
c
(m−1)
Γ + {cφ(∆?)}−1λN

√
c
(m−1)
τ ‖∆?‖F

:= B2

√
c
(m−1)
τ

√
c
(m−1)
Γ +B3

√
c
(m−1)
τ .

This system has one pair of converging fixed points provided that

B1B2 = {cφ(∆?)}−1 3λN
2
B2

1 =
1728{cφ(∆?)}−1CλNr‖∆?‖∗

κ(X)
< 1, (guaranteed by Assumption 5)
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which is

c∞Γ := B2
1

(
B3

1−B1B2

)2

, c∞τ :=

(
B3

1−B1B2

)2

.

Based on Assumption 5, simple algebra shows that the limits are strictly smaller than
c∞Γ < c?Γ and c∞τ < c?τ .

Now, as a summary of the results in Case III and Case IV, we’ve shown that, if the
dominating term is not c?Γ, then starting from our initial points, we are guaranteed to
reach a bound lower than c?Γ within certain steps (say m?) through the iteration scheme we
proposed in view of Theorem 18 and Theorem 19. Finally, combining the four cases along

with the assumption of
∥∥∥Γ̂− Γ?

∥∥∥
F
≥ δ in the beginning, we reach the conclusion.

Part II. Then we consider
∥∥∥Γ̂− Γ?

∥∥∥
F
≤ δ. According to (27) and (28), we have

1

2N

∥∥∥X(Γ̂; τ̂
)
− X(Γ?; τ?)

∥∥∥2
2
≤6λN

√
2rδ ∨ 6λN‖Πr⊥

Γ? (Γ?)‖∗ ∨ 3λN
√
cτ‖∆?‖F ,∥∥∥Γ̂− Γ?

∥∥∥
∗
≤12
√

2rδ ∨ 12‖Πr⊥
Γ? (Γ?)‖∗ ∨ 6

√
cτ‖∆?‖F .

Note that these two inequalities are derived using the basic inequality and has nothing to

do with the RSC assumption, therefore still hold when
∥∥∥Γ̂− Γ?

∥∥∥
F
≤ δ. With an analysis

similar to Cases I, II and III in Part I, we can derive that, with possible m? rounds of
iteration,

1

2N

∥∥∥X(Γ̂; τ̂
)
− X(Γ?; τ?)

∥∥∥2
2
≤6λN

√
2rδ ∨ 6λN‖Πr⊥

Γ? (Γ?)‖∗ ∨
96λ2Nr

κ(X)
,∥∥∥Γ̂− Γ?

∥∥∥
∗
≤12
√

2rδ ∨ 12‖Πr⊥
Γ? (Γ?)‖∗ ∨

192λNr

κ(X)
.

The change in the third term is attributed to an iteration scheme when the original third
term dominates the bound. Further, we can obtain the detection error bound

|τ̂ − τ?| ≤ 20{cφ(∆?)}−1λN
√

2rδ ∨ 20{cφ(∆?)}−1λN‖Πr⊥
Γ? (Γ?)‖∗ ∨

320{cφ(∆?)}−1λ2Nr
κ(X)

.

Proof of Corollary 10

Proof We begin by finding a threshold value γ for the singular values of Γ?, and set the
“effective rank” to be r := |{j : ρj(Γ

?) > γ}|, that is, the number of singular values greater
than γ. With this choice, we have

‖Πr⊥
Γ? (Γ?)‖∗ =

m∑
k=r+1

ρk(Γ
?) = γ

m∑
k=r+1

ρk(Γ
?)γ−1 ≤ γ

m∑
k=r+1

{ρk(Γ?)γ−1}q ≤ γ1−qRq.
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Meanwhile we have Rq ≥
∑m

k=1 ρk(Γ
?)q ≥ rγq, which gives r ≤ Rqγ

−q. Now letting

γ = λN/κ(X), we further have ‖Πr⊥
Γ? (Γ?)‖∗ ≤ λ1−qN Rq/κ(X)1−q and r ≤ λ−qN Rqκ(X)q. Sub-

stituting these quantities into the general bounds in Theorem 7 concludes the proof.

Proof of Theorem 11

To prove Theorem 11, we will apply Corollary 10 by first verifying that the involving
assumptions are satisfied for multivariate regression. In particular, Theorem 20, Theorem 22
and Theorem 23 show that Assumption 1, Assumption 2 and Assumption 3 hold with
high probability, respectively. In particular, Theorem 21 is required in the verification of
Assumption 2. Their proofs are deferred to Appendix B.

Proposition 20 (RSC for multivariate regression) If n > Cm1, then

P
(
κ(X)‖Γ‖2F ≤

1

2n
‖X(Γ; τ)‖22 ≤ κ′(X)‖Γ‖2F , ∀ τ ∈ T and Γ ∈ R(2m1)×m2

)
≥ 1− C1 exp(−C2n), (18)

where κ(X) = ρσ2/2 for some constant ρ > 0 and κ′(X) = 3ρσ2/2.

Lemma 21 (Uniform spectral concentration for a sample covariance process) Suppose
{xa}na=1 are i.i.d. copies of some mean zero sub-Gaussian random vector x with parameter
σ2. Assume that the covariance matrix Σ satisfies σ2 ≤ ρmin(Σ) ≤ ρmax(Σ) ≤ σ2, and
{Ba(τ), τ ∈ T := (0, τ?0 ]}na=1 are i.i.d copies of the stochastic process B(τ) = 1

{
U < τ

}
, 0 <

τ ≤ τ?0 < 1, where U ∼ Uniform(0, 1). Assume the following Bernstein-type inequality
holds:

∀ v ∈ Sm1−1 and τ ∈ T, P

(∣∣∣∣∣
n∑
a=1

(
v>xax

>
a v − v>Σv

)
·Ba(τ)

∣∣∣∣∣ >√c1nτδ + c2δ

)
< exp(−δ).

Consider log(n) = o(m1). For large enough n,m1 and constants c, C > 0, under the
condition C0Rq > 1, with probability greater than 1−C(1 + n+m−11 log(n)n3) exp(−cm1),

it holds uniformly for all τ ∈ T, τ ≥ C0Rqm1

n that∥∥∥∥∥n−1
n∑
a=1

{
xax

>
a Ba(τ)− τΣ

}∥∥∥∥∥
op

≤ c′
√
τm1

n
≤ c′√

C0Rq
τ.

Proposition 22 (Identifiability and discountinuity for multivariate regression) If
n > Cm1, then

P
( 1

2n
‖X(Γ, τ)− X(Γ?, τ?)‖22 >

3σ2‖∆?‖2F
160

|τ − τ?|, ∀ τ ∈ T such that |τ − τ?| > cm1

n

and ∀ Γ ∈ R(2m1)×m2

)
≥ 1− C1 exp(−C2n).

Proposition 23 (Smoothness of multivariate regression design) If n > Cm1, then

P
(
|TN (Γ,Γ?, τ, τ?)| ≤ Cσ2|τ − τ?| · ‖Γ− Γ?‖ · ‖∆?‖∗, ∀ τ ∈ T,Γ ∈ Rm1×m2

)
≥ 1−C1 exp(−C2n).
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Then we need to specify several quantities appeared in the statement of Corollary 10
under the multivariate regression model.

• The convexity parameter κ(X). By (18), we establish κ(X) = ρσ2/2.

• Tuning parameter λn and the associated probabilistic rate αn. Note that

sup
τ∈T

2

n
‖X?(ε; τ)‖ op = sup

τ∈T

∥∥∥∥∥ 2

n

n∑
a=1

X a(τ)ε>a

∥∥∥∥∥
op

≤

∥∥∥∥∥ 2

n

n∑
a=1

xaε
>
a

∥∥∥∥∥
op

+ sup
τ∈(0,1)

∥∥∥∥∥ 2

n

n∑
a=1

xa(τ)ε>a

∥∥∥∥∥
op

.

Now the first term is just the analogous stochastic term for tuning parameter selection
under the no-change case as in Negahban and Wainwright (2011). Mimicking the proof
of Lemma 3 therein, we can establish that

P

∥∥∥∥∥ 2

n

n∑
a=1

xaε
>
a

∥∥∥∥∥
op

≥ 10σσ

√
m1 +m2

n

 ≤ c1 exp(−c2(m1 +m2)).

As τ ranges, the second term is formulated as a partial sum process. According to
Lévy’s inequality,

P

sup
τ∈T

∥∥∥∥∥ 2

n

n∑
a=1

xa(τ)ε>a

∥∥∥∥∥
op

≥ 10σσ

√
m1 +m2

n


≤2P

∥∥∥∥∥ 2

n

n∑
a=1

xaε
>
a

∥∥∥∥∥
op

≥ 10σσ

√
m1 +m2

n


≤2c1 exp(−c2(m1 +m2)).

To sum up, with probability at least 1− 3c1 exp(−c2(m1 +m2)) we have

sup
τ∈T

2

n
‖X?(E; τ)‖ op ≤ 20σσ

√
m1 +m2

n
.

Thus we pick

λn = 20σσ

√
m1 +m2

n
, with αn = 3c1 exp(−c2(m1 +m2)).

• The minimal detection length η(N,m1,m2). Comparing with our final bounds, it can
be set as η(N,m1,m2) = cm1

n for some c > 0.

• The averaging term hn(c
(k)
τ ) as in Lemma 6. For a general cτ , apply

hn(cτ ) = (2cτn)−1
b(τ?+cτ )nc∑

a=d(τ?−cτ )ne

∥∥∥∆?>xa

∥∥∥2
2

≤

∥∥∥∥∥∥(2cτn)−1
b(τ?+cτ )nc∑

a=d(τ?−cτ )ne

xax
>
a

∥∥∥∥∥∥
op

‖∆?‖2F .
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Applying Theorem 6.5 of Wainwright (2019), we can establish a high probability
bound on the operator norm of Wishart matrix (also see more details in the proof of
Theorem 20) provided that cτn > Cm1:

P

∥∥∥∥∥∥(2cτn)−1
b(τ?+cτ )nc∑

a=d(τ?−cτ )ne

xax
>
a

∥∥∥∥∥∥
op

≤ 2σ2

 ≥ 1− C1 exp(−C2n),

which suggests with probability greater than 1− C1 exp(−C2n)

hn(cτ ) ≤ 2σ2‖∆?‖2F .

Note this conclusion is based on a prerequisite involving cτ , i.e., cτn > Cm1. Since

we are considering a finite decreasing sequence
(
c
(k)
τ

)m?
k=1

, it suffices to have c
(m?)
τ n >

Cm1. If no such C existed, we would have c
(m?)
τ = o(m1/n). This aligns with (even

outperforms in near low-rank case) the desired rate we are establishing. Checking the
iteration steps in the proof of Theorem 7, this is impossible since the iteration would
have stopped. Thus we conclude it is enough to consider such a unified C.

By managing the constants it suffices to have n > Cm1 for some constant C > 0.

• The rate of the step size m?. This has been discussed in Remark 8.

Finally, it remains to check Assumption 5. Aggregating the above results, clearly these
inequalities hold if n, m1 and r (choosing the effective rank in the near low-rank case) is
large enough.

A.2 Verify Assumption 5 in concrete examples

As one example, consider the regime where ‖∆?‖F is fixed and Γ? has exact low rank r. This
regime implies that ‖∆?‖∗ ≤

√
r‖∆?‖F has the same order as

√
r, and ‖Πr⊥

Γ? (Γ?)‖∗ = 0.
The parameter κ(X) is also a bounded constant when evaluated in many concrete examples
(such as the random design example in Section 2.2.6). The tuning parameter, λN , usually
scales with O(N−s) for some s > 0 thus converges to zero as N → ∞. Therefore, we can
check that Assumption 5 is satisfied under such scaling. By introducing some additional
universal constants C1, C2, C3, Assumption 5 can be simplified to those given in Table 6.

Table 6: Simplified version of Assumption 5

Original Simplified

120C{cφ(∆?)}−1‖∆?‖∗‖Πr⊥
Γ? (Γ?)‖∗ < 1 0 < 1

5{cφ(∆?)}−1‖∆?‖Fκ(X)/16 < r R0 < r

1728{cφ(∆?)}−1CλNr‖∆?‖∗/κ(X) < 1 C1λNr
3/2 < 1

{cφ(∆?)}−2κ(X)‖∆?‖2F
320[1−1728{cφ(∆?)}−1CλNr‖∆?‖∗/κ(X)]2 < r C2/(1− C1λNr

3/2) < r
{cφ(∆?)}−2λNC‖∆?‖∗‖∆?‖2F

96[1−1728{cφ(∆?)}−1CλNr‖∆?‖∗/κ(X)]2 < 1 C3λN/(1− C1λNr
3/2) < 1
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We can choose r to be an integer (either bounded or moderately growing) and c to be
a constant that is large enough to meet the second and fourth condition of Table 6. When
λN → 0, all the conditions can still be justified.

A.3 Assumptions and Proofs of Theorem 14 and Corollary 15

Let t(1) ≤ t(2) ≤ · · · ≤ t(N) be the order statistics of {ti}Ni=1. Let Tij = [t(i), t(j)] be the
interval such that dij := t(j) − t(i) ≥ d for some d > 0 and it contains at most one change-
point. If Tij contains no change-point, let Θij be the corresponding regression matrix

and define ∆ij = 0. If Tij contains some change-point τ?k ∈ Tij , let Θ>ij and Θ′
>
ij be the

regression matrices before and after the change-point, and define ∆ij = 0. For each case,
we denote Γij = (Θij ,∆

>
ij)
>. We consider without loss of generality that there exist some

tj such that tj = ti ± ω in Stage I and one can find tj1 and tj2 such that Is = [tj1 , tj2 ] in
Stage II. Otherwise, we can modify our two-stage procedure by replacing each end of Ti
(and Is) by the closest tj . Let Tij = [t(i) + ρ, t(j) − ρ] ∈ Tij for some boundary removal
parameter ρ > 0. We assume that ω, ρ and the number of change-points s? are all fixed.
We first introduce some assumptions that are parallel to those in Corollary 9 but tailored
for multiple change-point scenario.

Assumption 7 The restricted strong convexity condition holds with curvature κ(X) > 0 in
the sense that

1

2dijN

∑
k:tk∈Tij

〈X k(τ) ,M〉2 ≥ κ(X)‖M‖2F , for all M ∈ C(r,Γij), τ ∈ Tij ,

where

C(r,Γij) =

{
M ∈ R(2m1)×m2 : ‖Πr⊥

Γij (M)‖∗ ≤ 3‖Πr
Γij (M)‖∗ + 2‖∆ij‖F

}
.

Assumption 8 Consider ∆ij 6= 0 with the change-point τ?k . There exists some constants
η(N,m1,m2) > 0 and c > 0 such that for any τ ∈ Tij with |τ − τ?k | > η(N,m1,m2) and for
any Γ with Γ− Γij ∈ C(r,Γij), it holds that

1

2dijN

∑
k:tk∈Tij

(〈X k(τ) , Γ〉 − 〈X k(τ
?
k ) , Γij〉)2 > cφ(∆ij)|τ − τ?k |.

Assumption 9 Consider ∆ij 6= 0 with the change-point τ?k . There exists some constant
C > 0 such that for any τ ∈ Tij with η(N,m1,m2) < |τ−τ?k | < cτ for some η(N,m1,m2) > 0
and cτ > 0, and for any Γ with Γ− Γij ∈ C(r,Γij) ∩ {M : ‖M‖∗ ≤ cΓ} for some cΓ > 0,
it holds that

|TN (Γ,Γij , τ, τ
?
k )| ≤ Ccτ cΓ‖∆ij‖∗,

where

TN (Γ,Γij , τ, τ
?
k ) = (dijN)−1

∑
k:tk∈Tij

〈X k(τ) , Γ− Γij〉 〈X k(τ
?
k )−X k(τ) , Γij〉 .
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Assumption 10 The noises εi are i.i.d. copies of a mean zero sub-Gaussian random vari-
able ε, i.e., there exists some K > 0, such that E{exp

(
ε2/K2

)
} ≤ e.

Assumption 11 There exist some constants {Ci}6i=1 such that

C1{φ(∆ij)}−1‖∆ij‖Fκ(X) < r,

C2{φ(∆ij)}−1λNr‖∆ij‖∗
κ(X)

< 1,

C3{φ(∆ij)}−2κ(X)‖∆ij‖2F
[1− C4{φ(∆ij)}−1λNr‖∆ij‖∗/κ(X)]2

< r,

C5{φ(∆ij)}−2λN‖∆ij‖∗‖∆ij‖2F
[1− C6{φ(∆ij)}−1λNr‖∆ij‖∗/κ(X)]2

< 1.

Assumption 12 For cτ > 0, hN (cτ ) = (2cτN)−1
∑

i:|ti−τ?|≤cτ 〈Xi , ∆?〉2 is bounded.

Note that Assumption 12 is parallel to Assumption 5 in Lee et al. (2016) which studied
the LASSO estimation in linear regression models with a single change-point, and greatly
facilities our theoretical analysis. In fact, this assumption could be removed and the result-
ing high probability result then depends on these hN in a similar way like that appears in
Theorem 7.

In Stage I, we choose Tij = Ti = [ti − ω, ti + ω]. Under Assumption 7–Assumption 11,
by using arguments similar to those in the proof of Corollary 9, we can show that, with
probability greater than 1−αN−2em̃?N2 exp{−c̃Nλ2N/(K2∆max)} for some constant c̃ > 0
and m̃? > 0

‖∆̂i −∆ij‖2F ≤
C1λ

2
2ωNr

κ(X)2

for some C1 > 0. Hence if ∆ij = 0, then ‖∆̂i‖2F ≤
C1λ22ωNr

κ(X)2
, and if ∆ij 6= 0 with some

change-point τ?k , then ‖∆̂i‖2F ≥ ‖∆ij‖2F −
C1λ22ωNr

κ(X)2
. As a result, if we select ζN =

C′λ22ωNr
κ(X)2

for some C ′ > C1, then we can conclude that ŝ = s?. In other words, the event EN holds
with high probability. In Stage II, by choosing Tij = Is and using similar arguments the
conclusion follows.

By using arguments similar to those in the proofs of Theorem 11 and Theorem 14,
Corollary 15 follows directly. Hence we omit the proof.

Appendix B. Technical details

Proof of Lemma 2

Proof By the definition of Γ̂ and τ̂ , for any Γ and τ ∈ T, we have

1

2N

∥∥∥y − X
(
Γ̂; τ̂

)∥∥∥2
2

+ λN‖Γ̂‖∗ ≤
1

2N
‖y − X (Γ; τ)‖22 + λN‖Γ‖∗.
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Using (2), the inequality becomes

1

2N

N∑
i=1

(
〈X i(τ

?) , Γ?〉 −
〈
X i(τ̂) , Γ̂

〉
+ εi

)2
+ λN‖Γ̂‖∗

≤ 1

2N

N∑
i=1

(〈X i(τ
?) , Γ?〉 − 〈X i(τ) , Γ〉+ εi)

2 + λN‖Γ‖∗.

Some basic algebra yields

1

2N

N∑
i=1

(
〈X i(τ

?) , Γ?〉 −
〈
X i(τ̂) , Γ̂

〉)2
− 1

2N

N∑
i=1

(〈X i(τ
?) , Γ?〉 − 〈X i(τ) , Γ〉)2

≤ 1

N

N∑
i=1

εi

(〈
X i(τ̂) , Γ̂

〉
− 〈X i(τ) , Γ〉

)
+ λN‖Γ‖∗ − λN‖Γ̂‖∗

=
1

N

N∑
i=1

εi

(〈
X i(τ̂) , Γ̂

〉
− 〈X i(τ̂) , Γ〉

)
+

1

N

N∑
i=1

εi (〈X i(τ̂) , Γ〉 − 〈X i(τ) , Γ〉) + λN‖Γ‖∗ − λN‖Γ̂‖∗

≤ (λN/2)‖Γ̂− Γ‖∗ + λN‖Γ‖∗ − λN‖Γ̂‖∗ +RN (Γ, τ̂ , τ).

Here for the last inequality we used the dual norm inequality, i.e., for any A,B ∈ Rm1,m2 ,
〈A , B〉 ≤ ‖A‖op‖B‖∗. Substituting (τ,Γ) with (τ?,Γ?), we obtain

1

2N

N∑
i=1

(
〈X i(τ

?) , Γ?〉 −
〈
X i(τ̂) , Γ̂

〉)2
≤ (λN/2)‖Γ̂− Γ?‖∗ + λN‖Γ?‖∗ − λN‖Γ̂‖∗ +RN (Γ?, τ̂ , τ?).

(19)

Note that

‖Γ?‖∗ − ‖Γ̂‖∗ = ‖Γ?‖∗ − ‖Πr
Γ?Γ

? + Πr⊥
Γ? (Γ?) + Πr

Γ?(Γ̂− Γ?) + Πr⊥
Γ? (Γ̂− Γ?)‖∗

≤ ‖Γ?‖∗ − ‖Πr
Γ?Γ

? + Πr⊥
Γ? (Γ̂− Γ?)‖∗ + ‖Πr⊥

Γ? (Γ?) + Πr
Γ?(Γ̂− Γ?)‖∗

≤ ‖Γ?‖∗ − ‖Πr
Γ?Γ

?‖∗ − ‖Πr⊥
Γ? (Γ̂− Γ?)‖∗ + ‖Πr⊥

Γ? (Γ?)‖∗ + ‖Πr
Γ?(Γ̂− Γ?)‖∗

≤ 2‖Πr⊥
Γ? (Γ?)‖∗ + ‖Πr

Γ?(Γ̂− Γ?)‖∗ − ‖Πr⊥
Γ? (Γ̂− Γ?)‖∗. (20)

Here the second inequality is due to the triangle inequality, and the third inequality is an
application of the decomposibility of nuclear norm with respect to projection Πr

Γ?(·) plus the
triangle inequality (see the proof of Negahban and Wainwright (2011) and Klopp (2014)).
Now combining this with (19), we have

1

2N

N∑
i=1

(
〈X i(τ

?) , Γ?〉 −
〈
X i(τ̂) , Γ̂

〉)2
≤ (λN/2)‖Γ̂− Γ?‖∗ + λN‖Γ?‖∗ − λN‖Γ̂‖∗ +RN (Γ?, τ̂ , τ?)

≤ (λN/2)‖Γ̂− Γ?‖∗ + 2λN‖Πr⊥
Γ? (Γ?)‖∗ + λN‖Πr

Γ?(Γ̂− Γ?)‖∗ − λN‖Πr⊥
Γ? (Γ̂− Γ?)‖∗

+RN (Γ?, τ̂ , τ?) (applying (20))

≤ 2λN‖Πr⊥
Γ? (Γ?)‖∗ + (3λN/2)‖Πr

Γ?(Γ̂− Γ?)‖∗ − (λN/2)‖Πr⊥
Γ? (Γ̂− Γ?)‖∗

+RN (Γ?, τ̂ , τ?), (decomposing Γ̂− Γ? by projection and applying the triangle inequality)
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which gives

1

2N

N∑
i=1

(
〈X i(τ

?) , Γ?〉 −
〈
X i(τ̂) , Γ̂

〉)2
+
λN
2
‖Πr⊥

Γ? (Γ̂− Γ?)‖∗

≤2λN‖Πr⊥
Γ? (Γ?)‖∗ +RN (Γ, τ̂ , τ) +

3λN
2
‖Πr

Γ?(Γ̂− Γ?)‖∗.

Proof of Corollary 3

Proof First, we notice that, for all A ∈ R(2m1)×m2 ,

Πr
Γ?(A) = P UrA+AP Vr − P UrAP Vr = P UrA(I − P Vr) +AP Vr . (21)

Therefore, it follows that rank
(
Πr

Γ?(A)
)
≤ 2r, ‖Πr

Γ?(A)‖op ≤ 2‖A‖op and ‖Πr
Γ?(A)‖∗ ≤√

2r‖A‖F .
By the basic inequality (6), we have

1

2N

N∑
i=1

(
〈X i(τ

?) , Γ?〉 −
〈
X i(τ̂) , Γ̂

〉)2
≤2λN‖Πr⊥

Γ? (Γ?)‖∗ +RN (Γ?, τ̂ , τ?) +
3λN

2

∥∥∥Πr
Γ?(Γ̂− Γ?)

∥∥∥
∗
.

We consider the three terms on the right-hand side respectively. Apparently, we have
‖Πr⊥

Γ? (Γ?)‖∗ =
∑m

k=r+1 σj(Γ
?). Using the definition of RN (Γ?, τ̂ , τ?), it follows that

RN (Γ?, τ̂ , τ?) = N−1
N∑
i=1

εi 〈Xi(τ̂)−Xi(τ
?) , ∆?〉

≤ ‖∆?‖∗ ·

∥∥∥∥∥N−1
N∑
i=1

εi (Xi(τ̂)−Xi(τ
?))

∥∥∥∥∥
op

(the dual norm inequality)

≤ ‖∆?‖∗ ·

∥∥∥∥∥N−1
N∑
i=1

εi (X i(τ̂)−X i(τ
?))

∥∥∥∥∥
op

≤ λN‖∆?‖∗.

Meanwhile, applying the result we state following (21), we obtain

3λN
2

∥∥∥Πr
Γ?

(
Γ̂− Γ?

)∥∥∥
∗
≤ 3λN

2
rank

(
Πr

Γ?

(
Γ̂− Γ?

))∥∥∥Πr
Γ?

(
Γ̂− Γ?

)∥∥∥
op
≤ 6λNrγmax.

To sum up, we have

1

2N

N∑
i=1

(
〈X i(τ

?) , Γ?〉 −
〈
X i(τ̂) , Γ̂

〉)2
≤2λN‖Πr⊥

Γ? (Γ?)‖∗ + λN‖∆?‖∗ + 6λNrγmax.

As a by-product, using the basic inequality again, we can also derive

‖Γ̂− Γ?‖∗ ≤ 4‖Πr⊥
Γ? (Γ?)‖∗ + 2‖∆?‖∗ + 16rγmax. (22)
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Proof of Theorem 4

Proof When no threshold effect exists, ∆? = 0, and the term RN (Γ?, τ̂ , τ?) in the right-
hand side of the basic inequality (6) vanishes. Meanwhile, noticing that 〈X i(τ

?) , Γ?〉 =
〈X i(τ̂) , Γ?〉, the prediction error term, i.e., the first term on the left-hand side, becomes

(2N)−1
N∑
i=1

(
〈X i(τ

?) , Γ?〉 −
〈
X i(τ̂) , Γ̂

〉)2
= (2N)−1

N∑
i=1

〈
X i(τ̂) , Γ̂− Γ?

〉2
.

To sum up, the inequality (6) then becomes

1

2N

N∑
i=1

〈
X i(τ̂) , Γ̂− Γ?

〉2
+
λN
2
‖Πr⊥

Γ? (Γ̂− Γ?)‖∗ ≤ 2λN‖Πr⊥
Γ? (Γ?)‖∗ +

3λN
2
‖Πr

Γ?(Γ̂− Γ?)‖∗.

(23)

This implies that

λN
2
‖Πr⊥

Γ? (Γ̂− Γ?)‖∗ ≤ 2λN‖Πr⊥
Γ? (Γ?)‖∗ +

3λN
2
‖Πr

Γ?(Γ̂− Γ?)‖∗

= 2λN

m∑
k=r+1

ρk(Γ
?) +

3λN
2
‖Πr

Γ?(Γ̂− Γ?)‖∗,

which further shows that the error Γ̂− Γ? lies in C(r, δ,Γ?,T) defined in Assumption 1.

Therefore, for the case when
∥∥∥Γ̂− Γ?

∥∥∥
F
> δ, we can apply the RSC condition, and

obtain

κ(X)
∥∥∥Γ̂− Γ?

∥∥∥2
F
≤ 1

2N

N∑
i=1

〈
X i(τ̂) , Γ̂− Γ?

〉2
≤ 2λN

∥∥∥Πr⊥
Γ? (Γ?)

∥∥∥
∗

+
3λN

2

∥∥∥Πr
Γ?

(
Γ̂− Γ?

)∥∥∥
∗

(using (23))

≤ 3λN
√
r
∥∥∥Γ̂− Γ?

∥∥∥
F

+ 2λN

m∑
k=r+1

ρk(Γ
?) (using the results following (21))

≤ 6λN
√
r
∥∥∥Γ̂− Γ?

∥∥∥
F
∨ 4λN

m∑
k=r+1

ρk(Γ
?). (24)

Applying the basic inequality again, we have

1

2N

N∑
i=1

〈
X i(τ̂) , Γ̂− Γ?

〉2
+
λN
2

∥∥∥Γ̂− Γ?
∥∥∥
∗
≤ 2λN‖Πr⊥

Γ? (Γ?)‖∗ + 2λN

∥∥∥Πr
Γ?

(
Γ̂− Γ?

)∥∥∥
∗

≤ 2λN

m∑
k=r+1

ρk(Γ
?) + 4λN

√
r
∥∥∥Γ̂− Γ?

∥∥∥
F

≤ 4λN

m∑
k=r+1

ρk(Γ
?) ∨ 8λN

√
r
∥∥∥Γ̂− Γ?

∥∥∥
F
.

(25)
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Now we substitute
∥∥∥Γ̂− Γ?

∥∥∥
F

with the bound we’ve derived in (24), and obtain

8λN
√
r
∥∥∥Γ̂− Γ?

∥∥∥
F
≤

48λ2Nr

κ(X)
∨ 8λN

√
r

(
4λN

∑m
k=r+1 ρk(Γ

?)

κ(X)

)1/2

≤
48λ2Nr

κ(X)
∨

(
64λ2Nr

κ(X)
∨ 4λN

m∑
k=r+1

ρk(Γ
?)

)

=
64λ2Nr

κ(X)
∨ 4λN

m∑
k=r+1

ρk(Γ
?).

Here the second inequality is derived using
√
ab ≤ a∨b for all positive a and b. Summarizing

these results, we have

1

2N

N∑
i=1

〈
X i(τ̂) , Γ̂− Γ?

〉2
+
λN
2

∥∥∥Γ̂− Γ?
∥∥∥
∗
≤

64λ2Nr

κ(X)
∨ 4λN

m∑
k=r+1

ρk(Γ
?),

which further gives

1

2N

N∑
i=1

〈
X i(τ̂) , Γ̂− Γ?

〉2
≤

64λ2Nr

κ(X)
∨ 4λN

m∑
k=r+1

ρk(Γ
?),

∥∥∥Γ̂− Γ?
∥∥∥
∗
≤ 128λNr

κ(X)
∨ 8

m∑
k=r+1

ρk(Γ
?).

Recall that our above analysis starts from
∥∥∥Γ̂− Γ?

∥∥∥
F
≥ δ. For Γ̂ such that

∥∥∥Γ̂− Γ?
∥∥∥
F
≤

δ, using (25) again, we have

1

2N

N∑
i=1

〈
X i(τ̂) , Γ̂− Γ?

〉2
≤ 8λN

√
rδ ∨ 4λN

m∑
k=r+1

ρk(Γ
?),

∥∥∥Γ̂− Γ?
∥∥∥
∗
≤ 16

√
rδ ∨ 8

m∑
k=r+1

ρk(Γ
?).

Then we conclude that ∥∥∥Γ̂− Γ?
∥∥∥
F
≤ δ ∨ 6λN

√
r

κ(X)
∨
(

4λN
∑m

k=r+1 ρk(Γ
?)

κ(X)

)1/2

,∥∥∥Γ̂− Γ?
∥∥∥
∗
≤ 16

√
rδ ∨ 128λNr

κ(X)
∨ 8

m∑
k=r+1

ρk(Γ
?),

1

2N

N∑
i=1

〈
X i(τ̂) , Γ̂− Γ?

〉2
≤ 8λN

√
rδ ∨

64λ2Nr

κ(X)
∨ 4λN

m∑
k=r+1

ρk(Γ
?).
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Proof of Lemma 5

Proof Suppose that |τ̂ − τ?| > η?. Then

1

2N

∥∥∥y − X(Γ̂; τ̂)
∥∥∥2
2

+ λN

∥∥∥Γ̂∥∥∥
∗
− 1

2N
‖y − X(Γ?; τ?)‖22 − λN‖Γ

?‖∗

=
1

2N

∥∥∥X(Γ̂; τ̂)− X(Γ?; τ?)
∥∥∥2
2
− 1

N

N∑
i=1

εi

(〈
X i(τ̂) , Γ̂

〉
− 〈X i(τ̂) , Γ?〉

)
−RN (Γ?, τ̂ , τ?) + λN

∥∥∥Γ̂∥∥∥
∗
− λN‖Γ?‖∗

≥ 1

2N

∥∥∥X(Γ̂; τ̂)− X(Γ?; τ?)
∥∥∥2
2
− λN

2

∥∥∥Γ̂− Γ?
∥∥∥
∗

−RN (Γ?, τ̂ , τ?) + λN

∥∥∥Γ̂∥∥∥
∗
− λN‖Γ?‖∗ (the dual norm inequality)

≥ 1

2N

∥∥∥X(Γ̂; τ̂)− X(Γ?; τ?)
∥∥∥2
2
− 2λN

∥∥∥Πr⊥
Γ? (Γ?)

∥∥∥
∗

− 3λN
2

∥∥∥Πr
Γ?

(
Γ̂− Γ?

)∥∥∥
∗
−RN (Γ?, τ̂ , τ?) (using (20) and the triangle inequality)

≥ 1

2N

∥∥∥X(Γ̂; τ̂)− X(Γ?; τ?)
∥∥∥2
2
− 2λN

m∑
k=r+1

ρk(Γ
?)− 6λNrγmax − λN ‖∆‖∗ (using the result following (21))

>cφ(∆?)η? − 2λN

m∑
k=r+1

ρk(Γ
?)− 6λNrγmax − λN‖∆‖∗ ≥ 0 (by Assumption 2).

This immediately leads to a contradiction, since Γ̂ is the minimizer of the loss.

Proof of Lemma 6

Proof Without loss of generality, we consider ti = i/N . SinceRN (Γ?, τ, τ?) = −RN (Γ?, τ?, τ),
we only need to consider one side, for example, τ ≤ τ?. Then we have

RN (Γ?, τ, τ?) = N−1
∑

τ<i/N≤τ?
εi 〈Xi , ∆?〉 .

Now applying Lévy’s inequality (see Theorem 29), we have

P

 sup
τ :τ?−cτ<τ≤τ?

N−1

∣∣∣∣∣∣
∑

τ<i/N≤τ?
εi 〈Xi , ∆?〉

∣∣∣∣∣∣ ≥ λN√cτ‖∆?‖F


≤ 2P

∣∣∣∣∣∣N−1
∑

τ?−cτ<i/N≤τ?+cτ

εi 〈Xi , ∆?〉

∣∣∣∣∣∣ ≥ λN√cτ‖∆?‖F

 := I.
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Applying Hoeffding’s inequality (Vershynin, 2018), with some absolute constant c > 0, we
have

I ≤ 2e · exp

(
−

cλ2N‖∆
?‖2F cτ

K2N−2
∑

i:|ti−τ?|≤cτ 〈Xi , ∆?〉2

)

= 2e · exp

(
−
cNλ2N‖∆

?‖2F
2K2hN (cτ )

)
which concludes the proof.

Proof of Theorem 18

Proof Lemma 6 and the basic inequality (6) imply that, with probability greater than
1− αN − 2e · exp

(
−c′Nλ2N/{K2‖∆?‖−2F hN (cτ )}

)
for some constant c′ > 0,

1

2N

∥∥∥X(Γ̂; τ̂
)
− X(Γ?; τ?)

∥∥∥2
2

+
λN
2

∥∥∥Πr⊥
Γ?

(
Γ̂− Γ?

)∥∥∥
∗

≤2λN

∥∥∥Πr⊥
Γ? (Γ?)

∥∥∥
∗

+RN (Γ?, τ̂ , τ?) +
3λN

2

∥∥∥Πr
Γ?

(
Γ̂− Γ?

)∥∥∥
∗

≤2λN‖Πr⊥
Γ? (Γ?)‖∗ +

3λN
2

∥∥∥Πr
Γ?

(
Γ̂− Γ?

)∥∥∥
∗

+ λN
√
cτ‖∆?‖F ,

which further suggests the error matrix Γ̂−Γ? ∈ C(r, δ,Γ?,T) for
∥∥∥Γ̂− Γ?

∥∥∥
F
≥ δ. Therefore

we can apply the RSC condition to obtain

κ(X)
∥∥∥Γ̂− Γ?

∥∥∥2
F
≤ 1

2N

∥∥∥X(Γ̂− Γ?; τ̂
)∥∥∥2

2

≤ 1

2N

∥∥∥X(Γ̂; τ̂
)
− X(Γ?; τ?) + X(Γ?; τ?)− X(Γ?; τ̂)

∥∥∥2
2

≤ 1

2N

∥∥∥X(Γ̂; τ̂
)
− X(Γ?; τ?)

∥∥∥2
2

+
1

N

〈
X
(
Γ̂− Γ?; τ̂

)
, X(Γ?; τ?)− X(Γ?; τ̂)

〉
(using 〈a+ b , a+ b〉 = 〈a , a〉+ 2 〈a , b〉+ 〈b , b〉 ≤ 〈a , a〉+ 2 〈a+ b , b〉)

≤ 1

2N

∥∥∥X(Γ̂; τ̂
)
− X(Γ?; τ?)

∥∥∥2
2

+ CcΓcτ‖∆?‖∗ (by Assumption 3)

≤ 2λN

∥∥∥Πr⊥
Γ? (Γ?)

∥∥∥
∗

+
3λN

2

∥∥∥Πr
Γ?

(
Γ̂− Γ?

)∥∥∥
∗

+ λN
√
cτ‖∆?‖F + CcΓcτ‖∆?‖∗

(using the basic inequality)

≤ 2λN‖Πr⊥
Γ? (Γ?)‖∗ +

3
√

2rλN
2

‖Γ̂− Γ?‖F + λN
√
cτ‖∆?‖F + CcΓcτ‖∆?‖∗

(by the implication of (21)).

To sum up, we’ve proved the following bound:∥∥∥Γ̂− Γ?
∥∥∥2
F
≤ δ2 ∨

72λ2Nr

κ(X)2
∨

8λN‖Πr⊥
Γ? (Γ?)‖∗
κ(X)

∨
4λN
√
cτ‖∆?‖F
κ(X)

∨ 4CcΓcτ‖∆?‖∗
κ(X)

. (26)
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For the prediction error, we obtain

1

2N

∥∥∥X(Γ̂; τ̂
)
− X(Γ?; τ?)

∥∥∥2
2

≤2λN‖Πr⊥
Γ? (Γ?)‖∗ +

3λN
2

∥∥∥Πr
Γ?

(
Γ̂− Γ?

)∥∥∥
∗

+ λN
√
cτ‖∆?‖F

≤2λN‖Πr⊥
Γ? (Γ?)‖∗ +

3λN
√

2r

2

∥∥∥Γ̂− Γ?
∥∥∥
F

+ λN
√
cτ‖∆?‖F

≤6λN‖Πr⊥
Γ? (Γ?)‖∗ ∨ 3λN

√
cτ‖∆?‖F ∨

9λN
√

2r

2

∥∥∥Γ̂− Γ?
∥∥∥
F

(27)

≤9λN
√

2r

2
δ ∨

54λ2Nr

κ(X)
∨ 3λN

√
cτ‖∆?‖F ∨ 6λN‖Πr⊥

Γ? (Γ?)‖∗ ∨ 9λN

√
2CcΓcτr‖∆?‖∗

κ(X)
(applying (26)).

For the estimation error in nuclear norm, we have∥∥∥Γ̂− Γ?
∥∥∥
∗
≤
∥∥∥Πr⊥

Γ?

(
Γ̂− Γ?

)∥∥∥
∗

+
∥∥∥Πr

Γ?

(
Γ̂− Γ?

)∥∥∥
∗

≤4‖Πr⊥
Γ? (Γ?)‖∗ + 4

∥∥∥Πr
Γ?

(
Γ̂− Γ?

)∥∥∥
∗

+ 2
√
cτ‖∆?‖F

(by the basic inequality (6) and Lemma 6)

≤4‖Πr⊥
Γ? (Γ?)‖∗ + 4

√
2r
∥∥∥Γ̂− Γ?

∥∥∥
F

+ 2
√
cτ‖∆?‖F

≤12‖Πr⊥
Γ? (Γ?)‖∗ ∨ 12

√
2r
∥∥∥Γ̂− Γ?

∥∥∥
F
∨ 6
√
cτ‖∆?‖F (28)

≤12‖Πr⊥
Γ? (Γ?)‖∗ ∨ 6

√
cτ‖∆?‖F ∨ 12

√
2rδ ∨ 192λNr

κ(X)
∨ 24

√
2CcΓcτr‖∆?‖∗

κ(X)
(applying (26)).

Proof of Theorem 19

Proof The proof proceeds in a similar spirit to that of Lemma 5. Recall we have shown
that Γ̂− Γ? ∈ C(r, δ,Γ?,T). Suppose that |τ̂ − τ?| > η?. Then

1

2N

∥∥∥y − X
(
Γ̂; τ̂

)∥∥∥2
2

+ λN

∥∥∥Γ̂∥∥∥
∗
− 1

2N
‖y − X(Γ?; τ?)‖22 − λN‖Γ?‖∗

=
1

2N

∥∥∥X(Γ̂; τ̂
)
− X(Γ?; τ?)

∥∥∥2
2
− 1

N

N∑
i=1

εi

(〈
X i(τ̂) , Γ̂

〉
− 〈X i(τ̂) , Γ?〉

)
−RN (Γ?, τ̂ , τ?) + λN

∥∥∥Γ̂∥∥∥
∗
− λN‖Γ?‖∗

≥ 1

2N

∥∥∥X(Γ̂; τ̂
)
− X(Γ?; τ?)

∥∥∥2
2
− λN

2
‖Γ̂− Γ?‖∗ −RN (Γ?, τ̂ , τ?) + λN

∥∥∥Γ̂∥∥∥
∗
− λN‖Γ?‖∗

≥ 1

2N

∥∥∥X(Γ̂; τ̂
)
− X(Γ?; τ?)

∥∥∥2
2
− 3λN

2

∥∥∥Γ̂− Γ?
∥∥∥
∗
−RN (Γ?, τ̂ , τ?)

≥cφ(∆?)η? − 3λN
2
cΓ − λN

√
cτ‖∆?‖F .
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where the second inequality follows from (20), and the last from Assumption 2. This
immediately leads to a contradiction, since Γ̂ is the minimizer of the loss.

Proof of Theorem 20

Proof Let ρmax(M) and ρmin(M) denote the maximal and minimal singular value of a
matrix M . Denote X (τ) = (X i(τ)). We have

1

2n
‖X(Γ; τ)‖22 =

1

2n

m2∑
j=1

‖X (τ)Γ·j‖22

≥ 1

2n

m2∑
j=1

ρmin(X (τ)) ‖Γ·j‖22

= ρmin

(
1

2n
X (τ)

)
‖Γ‖2F .

It suffices to find a lower bound on ρmin
(
(2n)−1X (τ)

)
that holds uniformly for τ ∈ T.

Let

Σ̂(τ) = n−1X (τ)>X (τ)

=

[
n−1

∑n
a=1 xax

>
a n−1

∑n
a=1 xax

>
a 1
{
ta > τ

}
n−1

∑n
a=1 xax

>
a 1
{
ta > τ

}
n−1

∑n
a=1 xax

>
a 1
{
ta > τ

}]
:=

[
Σ̂S Σ̂S(τ)

Σ̂S(τ) Σ̂S(τ)

]
.

It’s not hard to show that

Σ(τ) := Var{X a(τ)} =

[
1 1− τ

1− τ 1− τ

]
⊗Σ := V (τ)⊗Σ.

Over T = [ρ, 1− ρ] one can show that there exists ρ, ρ > 0, such that

inf
τ∈T

ρmin {V (τ)} ≥ ρ, sup
τ∈T

ρmax {V (τ)} ≤ ρ.

The spectrum property of Kronecker product then guarantees a pair of uniform bounds on
Σ(τ):

inf
τ∈T

ρmin {Σ(τ)} ≥ ρσ2, sup
τ∈T

ρmax {Σ(τ)} ≤ ρσ2.

By Theorem 25,

sup
τ∈T

∥∥∥Σ̂(τ)−Σ(τ)
∥∥∥
op
≤
∥∥∥Σ̂S −Σ

∥∥∥
op︸ ︷︷ ︸

(I)

+3 sup
τ∈T

∥∥∥Σ̂S(τ)− (1− τ)Σ
∥∥∥
op︸ ︷︷ ︸

(II)

. (29)
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Applying Theorem 28 (see Theorem 6.5 of Wainwright (2019)), for (I) we have

P
(
σ−2

∥∥∥Σ̂S −Σ
∥∥∥
op
≥ C1

{√
m1

n
+
m1

n

}
+ δ

)
≤ C2 exp(−C3nmin{δ, δ2}).

Take δ = C
√
m1/n. When n > Cm1, we have

P
(
σ−2

∥∥∥Σ̂S −Σ
∥∥∥
op
≥ C1

√
m1

n

)
≤ C2 exp(−C3m1).

This implies with probability greater than 1− C2 exp(−C3m1)∥∥∥Σ̂S −Σ
∥∥∥
op
≤ C ′ρσ2.

For (II), we first make one step of discretization. Let TS = {i ·10−m1 , i = 1, . . . , 10m1}∩
T. Notice that

(II) ≤ sup
τ∈TS

∥∥∥Σ̂S(τ)− (1− τ)Σ
∥∥∥
op︸ ︷︷ ︸

(III)

+ sup
τ,τ ′∈T,|τ−τ ′|≤10−m1

∥∥∥(Σ̂S(τ)− (1− τ)Σ
)
−
(
Σ̂S(τ ′)− (1− τ ′)Σ

)∥∥∥
op︸ ︷︷ ︸

(IV)

. (30)

For (III), we first show that for each fixed τ ∈ T, xa(τ) are i.i.d. mean zero sub-Guassian
vectors with parameter σ2. For v ∈ Rm1 with ‖v‖2 = 1,

E
{

exp
(
λxa(τ)>v

)}
= τ + (1− τ)E

{
exp

(
λx>a v

)}
≤ τ + (1− τ) exp

(
λ2σ2

2

)
≤ exp

(
λ2σ2

2

)
,

which concludes that xa(τ) ∼ SG(σ2). Applying Theorem 28 to each τ ∈ TS , we have

P
((
ρσ2
)−1 ∥∥∥Σ̂S(τ)− (1− τ)Σ

∥∥∥
op
≥ C1

{√
m1

n
+
m1

n

}
+ δ

)
≤ C2 exp(−C3nmin{δ, δ2}).

When n > Cm1, again choosing δ = C
√
m1/n, we have

P
((
ρσ2
)−1 ∥∥∥Σ̂S(τ)− (1− τ)Σ

∥∥∥
op
≥ C1

√
m1

n

)
≤ C2 exp(−C3m1).

Then with probability greater than 1− C2 exp(−C3m1)∥∥∥Σ̂S(τ)− (1− τ)Σ
∥∥∥
op
≤ C ′ρσ2.
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Taking union bound over TS with |TS | = 10m1 , if we choose C3 to be large enough, with
probability at least 1− C2 exp(−C3m1)

sup
τ∈TS

∥∥∥Σ̂S(τ)− (1− τ)Σ
∥∥∥
op
≤ C ′ρσ2.

It remains to bound (IV). Suppose τ > τ ′. Note Σ̂S(τ) − Σ̂S(τ ′) is equivalent to Σ̂S{1 −
(τ − τ ′)} in distribution. The intuition is (IV) only concentrates on small intervals whose
length is controlled under 10−m1 , which is negligible:

sup
τ,τ ′∈T,|τ−τ ′|≤10−m1

∥∥∥(Σ̂S(τ)− (1− τ)Σ
)
−
(
Σ̂S(τ ′)− (1− τ ′)Σ

)∥∥∥
op

d
= sup
τ,τ ′∈T,|τ−τ ′|≤10−m1

∥∥∥Σ̂S{1− (τ − τ ′)} − (τ − τ ′)Σ
∥∥∥
op

≤ sup
τ,τ ′∈T,|τ−τ ′|≤10−m1

∥∥∥Σ̂S{1− (τ − τ ′)}
∥∥∥
op︸ ︷︷ ︸

(IV.1)

+σ2010−m1 . (31)

To bound the term (IV.1), we first find a 1/4 net B for the unit sphere Sm1−1 with cardinality∣∣Sm1−1
∣∣ ≤ 9m1 . Exercise 4.4.3 in Vershynin (2018) asserts that

sup
τ,τ ′∈T,|τ−τ ′|≤10−m1

∥∥∥Σ̂S{1− (τ − τ ′)}
∥∥∥
op
≤ 2 max

v∈B
sup

τ,τ ′∈T,|τ−τ ′|≤10−m1

1

n

n∑
a=1

v>xax
>
a v1

{
τ ′ < ta < τ

}
︸ ︷︷ ︸

(IV.2)

.

(32)

Let Ek denotes the event that there exists a subset of {ta, a = 1, . . . , n} with k elements
that belong to one interval (τ ′, τ) ⊂ T with length smaller than 10−m1 , that is,

Ek = {∃(τ ′, τ) ⊂ T, such that |(τ ′, τ) ∩ {ta, a = 1, . . . , n}| = k}.

Besides we let En+1 = ∅. Now for each v ∈ B,

sup
τ,τ ′∈T,|τ−τ ′|≤10−m1

1

n

n∑
a=1

v>xax
>
a v1

{
τ ′ < ta < τ

}
≤maxa=1,...,n(v>xax

>
a v)

n
· sup
τ,τ ′∈T,|τ−τ ′|≤10−m1

(
n∑
a=1

1
{
τ ′ < ta < τ

})

=
maxa=1,...,n(v>xax

>
a v)

n
·

(
n∑
k=1

k · 1
{
Ek\Ek+1

})

≤ maxa=1,...,n(v>xax
>
a v)

n︸ ︷︷ ︸
(V)

+
maxa=1,...,n(v>xax

>
a v)

n

(
n∑
k=1

k · 1
{
Ek\Ek+1

})
︸ ︷︷ ︸

(VI)

. (33)
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Clearly we have En+1 ⊂ En ⊂ · · · ⊂ E2 ⊂ E1. When k ≥ 2, we have

E
(
1
{
Ek\Ek+1

})
≤ E

(
1
{
Ek
})
≤ E

(
1
{
E2
})
≤
(
n
2

)∫
|τ−τ ′|<10−m1

1 dτdτ ′ ≤ 10−m1n2.

For (V),

P
(

maxa=1,...,n(v>xax
>
a v)

n
≥ σ2δ

)
≤nP

(
v>xax

>
a v

n
≥ σ2δ

)
≤ nC1 exp(−C2n).

Taking δ = cm1/n and C2 large enough, we have

P
(

maxa=1,...,n(v>xax
>
a v)

n
≥ cσ2m1

n

)
≤ C1 exp(−C2m1).

When n > Cm1, we have

P
(

maxa=1,...,n(v>xax
>
a v)

n
≥ C1ρσ

2

)
≤ C1 exp(−C2m1).

For (VI), we directly apply Markov’s inequality

P [VI > δ] ≤ δ−1E

[
maxa=1,...,n(v>xax

>
a v)

n
·

(
n∑
k=2

k · 1
{
Ek\Ek+1

})]
≤δ−1C log(n)

n
n310−m1 .

With δ = C ′ρσ2 we have

P
[
VI > C ′ρσ2

]
≤ C(σ2)−1 log(n)n210−m1 .

Combining (V) and (VI) we have

P

[
sup

τ,τ ′∈T,|τ−τ ′|≤10−m1

1

n

n∑
a=1

v>xax
>
a v1

{
τ ′ < ta < τ

}
> C ′ρσ2 + C ′ρσ2

]
≤P(V > C ′ρσ2) + P(VI > C ′ρσ2)

≤C exp(−Cm1) + Cm−11 log(n)n310−m1 .

Furthermore, taking union over the net B (taking the constants and n to large enough if
needed), we proved that with probability greater than 1−C1 exp(C2m1)−C3m

−1
1 log(n)n3 exp(−C4m1),

sup
τ,τ ′∈T,|τ−τ ′|≤10−m1

∥∥∥Σ̂S{1− (τ − τ ′)}
∥∥∥
op
≤ Cσ2.

To sum up, we’ve shown the following uniform control:

sup
τ∈T

∥∥∥Σ̂(τ)−Σ(τ)
∥∥∥
op
≤ I + 3× II (see (29))

≤ I + 3× (III + IV) (see (30))

≤ I + 3× (III + IV.1 + σ2010−m1) (see (31))

≤ I + 3× (III + 2× IV.2 + σ2010−m1) (see (32))

≤ I + 3×
{

III + 2 max
B

(V + VI) + σ210−m1

}
(see (33))

≤ C ′′ρσ2.

49



Shi, Wang and Zou

with probability greater than 1 − C1 exp(C2m1) − C3 log(n)n2 exp(−C4m1) provided n >
C0m1. We can choose Ck to be large enough, we can control

C ′′ <
ρ

2ρ
.

Then following a similar argument as in Wainwright (2009) we have

ρmin

{
Σ̂(τ)

}
= min

β∈R2m1 ,‖β‖2=1
β>Σ̂(τ)β

= min
β∈R2m1 ,‖β‖2=1

{
β>Σ(τ)β + β>

(
Σ̂(τ)−Σ(τ)

)
β
}

≥ ρmin {Σ(τ)} −
∥∥∥Σ̂(τ)−Σ(τ)

∥∥∥
op
≥ (ρ− C ′′ρ)σ2 ≥

ρσ2

2
,

and on the other direction,

ρmax

{
Σ̂(τ)

}
= max

β∈R2m1 ,‖β‖2=1
β>Σ̂(τ)β

= max
β∈R2m1 ,‖β‖2=1

{
β>Σ(τ)β + β>

(
Σ̂(τ)−Σ(τ)

)
β
}

≤ ρmax {Σ(τ)}+
∥∥∥Σ̂(τ)−Σ(τ)

∥∥∥
op
≤ (ρ+ C ′′ρ)σ2 ≤ 3ρσ2

2
.

Lemma 24 Suppose {Xi}ni=1 are i.i.d. copies of some mean zero sub-exponential random
variable X and {Bi(τ), τ ∈ T := (0, τ?0 ]}ni=1 are i.i.d copies of the stochastic process B(τ) =
1
{
U < τ

}
, 0 < τ ≤ τ?0 < 1, where U ∼ Uniform(0, 1). Assume the following Bernstein

type inequality holds:

∀ τ ∈ T, P

(∣∣∣∣∣
n∑
i=1

Xi ·Bi(τ)

∣∣∣∣∣ >√c1nτδ + c2δ

)
< 2 exp(−δ).

1. For any integer d > 0, with probability greater than 1−2·10d exp(−δ)−2n exp(−c′δ1)−
Cδ−12 log(n)n210−d, it holds uniformly for all τ ∈ T that∣∣∣∣∣

n∑
i=1

Xi ·Bi(τ)

∣∣∣∣∣ ≤ 1

2

(√
c1nτδ + c2δ

)
+
δ1 + δ2

4
.

Here C, c′ are constants.

2. For any integer d > 0, with probability greater than 1− 10d exp(−δ)−Cδ−11 10−dn3, it
holds uniformly for all τ ∈ T that∣∣∣∣∣

n∑
i=1

{Bi(τ)− τ}

∣∣∣∣∣ ≤ 1

2

√
c1nτδ +

1

2

√
c1nδ

10d
+
n10−d

2
+

1 + δ1
2

.
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Proof
Part 1. Let Td = {10−d · k, k = 1, · · · , n} ∩ (0, τ?0 ]. Taking one step discretization, for

any τ ∈ T, there is τ ′ ∈ Td, such that |τ − τ ′| < 10−d. Then∣∣∣∣∣
n∑
i=1

Xi ·Bi(τ)

∣∣∣∣∣ ≤
∣∣∣∣∣
n∑
i=1

Xi ·Bi(τ ′)

∣∣∣∣∣︸ ︷︷ ︸
(I)

+ sup
0<τ<τ ′≤τ?0 ,
|τ−τ ′|<10−d

∣∣∣∣∣
n∑
i=1

Xi · {Bi(τ ′)−Bi(τ)}

∣∣∣∣∣
︸ ︷︷ ︸

(II)

.

For (I), simply taking union bound, we have

P

(
∀ τ ∈ Td,

∣∣∣∣∣
n∑
i=1

Xi ·Bi(τ)

∣∣∣∣∣ >√c1nτδ + c2δ

)
≤ 2 · 10d exp(−δ).

For (II), we have

sup
0<τ<τ ′≤τ?0 ,
|τ−τ ′|<10−d

∣∣∣∣∣
n∑
i=1

Xi · {Bi(τ ′)−Bi(τ)}

∣∣∣∣∣ ≤ sup
0<τ<τ ′≤τ?0 ,
|τ−τ ′|<10−d

n∑
i=1

|Xi| · 1
{
τ ≤ Ui < τ ′

}
.

Let Ek denotes the event that there exists a subset of {Ui, i = 1, . . . , n} with k elements
that belong to one interval (τ ′, τ) ⊂ T with length smaller than 10−d, that is,

Ek = {∃(τ ′, τ) ⊂ T, such that |(τ ′, τ) ∩ {Ui, i = 1, . . . , n}| = k}.

Besides we let En+1 = ∅. Now for each v ∈ B,

sup
0<τ<τ ′≤τ?0 ,
|τ−τ ′|<10−d

n∑
i=1

|Xi| · 1
{
τ ≤ Ui < τ ′

}

≤ max
i=1,...,n

|Xi| · sup
τ,τ ′∈T,|τ−τ ′|≤10−d

(
n∑
i=1

1
{
τ ′ < Ui < τ

})

= max
i=1,...,n

|Xi| ·

(
n∑
k=1

k · 1
{
Ek\Ek+1

})

≤ max
i=1,...,n

|Xi|︸ ︷︷ ︸
(III)

+ max
i=1,...,n

|Xi|

(
n∑
k=1

k · 1
{
Ek\Ek+1

})
︸ ︷︷ ︸

(IV)

.

Clearly we have En+1 ⊂ En ⊂ · · · ⊂ E2 ⊂ E1. When k ≥ 2, we have

E
(
1
{
Ek\Ek+1

})
≤ E

(
1
{
Ek
})
≤ E

(
1
{
E2
})
≤
(
n
2

)∫
|τ−τ ′|<10−d

1 dτdτ ′ ≤ 10−dn2.

For (III), by the condition of sub-exponential tail for X,

P
(

max
i=1,...,n

|Xi| ≥ δ1
)
≤nP (|Xi| ≥ δ1) ≤ 2n exp(−c′δ1).
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For (IV), we directly apply Markov’s inequality

P (IV > δ2) ≤ δ−12 E

[
max

i=1,··· ,n
|Xi| ·

(
n∑
k=2

k · 1
{
Ek\Ek+1

})]
≤δ−12 C log(n)n310−d.

To sum up, we’ve proved that with probability at least

1− 10d exp(−δ)− n exp(−c′δ1)− Cδ−12 log(n)n310−d,

it holds uniformly for τ ∈ T that∣∣∣∣∣
n∑
i=1

Xi ·Bi(τ)

∣∣∣∣∣ ≤ 1

2

(√
c1nτδ + c2δ

)
+

1

2

√
c1nδ

10d
+
δ1 + δ2

4
.

Part 2. Following a similar discretization procedure we can prove the second uniform
bound, i.e., with probability greater than 1− 10d exp(−δ)−Cδ−11 10−dn3, it hold uniformly
for τ ∈ T that ∣∣∣∣∣

n∑
i=1

{Bi(τ)− τ}

∣∣∣∣∣ ≤ 1

2

√
c1nτδ +

1

2

√
c1nδ

10d
+
n10−d

2
+

1 + δ1
2

.

Proof of Theorem 21

Proof Note we have∥∥∥∥∥n−1
n∑
a=1

(
xax

>
a Ba(τ)− τΣ

)∥∥∥∥∥
op

≤

∥∥∥∥∥n−1
n∑
a=1

(
xax

>
a −Σ

)
Ba(τ)

∥∥∥∥∥
op

+

∥∥∥∥∥n−1
n∑
a=1

(Ba(τ)− τ) Σ

∥∥∥∥∥
op

=

∥∥∥∥∥n−1
n∑
a=1

(
xax

>
a −Σ

)
Ba(τ)

∥∥∥∥∥
op

+

∣∣∣∣∣n−1
n∑
a=1

(Ba(τ)− τ)

∣∣∣∣∣.
We bound the above to terms respectively.

First we find a 1/4 net B for the unit sphere Sm1−1 with cardinality
∣∣Sm1−1

∣∣ ≤ 9m1 .
Exercise 4.4.3 in Vershynin (2018) asserts that∥∥∥∥∥

n∑
a=1

(
xax

>
a −Σ

)
Ba(τ)

∥∥∥∥∥
op

≤2 max
v∈Sm1−1

∣∣∣∣∣
n∑
a=1

v>
(
xax

>
a −Σ

)
vBa(τ)

∣∣∣∣∣ .
For each v, note Za = v>xax

>
a v is a scaled chi-squared distribution. We verify the sum-

mation satisfies the Bernstein type inequality as in the statement of Theorem 24 for every
τ ∈ T.
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Following the proof of Theorem 6.5 in Wainwright (2019), the moment generating func-
tion (MGF) of the summation is bounded by

E exp

{
n−1

n∑
a=1

u (Za − EZa)Ba(τ)

}
=(E exp

{
un−1 (Za − EZa)Ba(τ)

}
)n

=(EBa(τ)E exp
{
un−1 (Za − EZa)Ba(τ)

}
)n

≤(EBa(τ)E exp
{

2un−1εZaBa(τ)
}

)n.

Now by performing Taylor’s expansion on the exponential function mimicking Wainwright
(2019), we can show that

E exp

{
n−1

n∑
a=1

u (Za − EZa)Ba(τ)

}
≤ exp(

Cτσ4u2

n
), for all |u| < n

C ′σ2
, (34)

which suggests for any positive δ,

P

(∣∣∣∣∣
n∑
a=1

(Za − EZa) ·Ba(τ)

∣∣∣∣∣ > σ2
√
c1nτδ + c2σ

2δ

)
< 2 exp(−δ).

Now apply Theorem 24 with d = m1, δ = δ1 = δ2 = cm1 for some constant c > 0, and
we then have

P

(
∀ τ ∈ T,

∣∣∣∣∣n−1
n∑
a=1

(
v>xax

>
a v − v>Σv

)
Ba(τ)

∣∣∣∣∣ > c′σ2
(√

τm1

n
+
m1

n

))
<2 · 10m1 exp(−cm1) + 2n exp(−cm1) + Cm1

−1 log(n)n310−m1

<C(1 + n+m−11 log(n)n3) exp(−cm1) (for large enough c, C > 0).

For τ ≥ C0Rqm1

n for some C0Rq > 1, the above bound implies

P

(
∀ τ ∈ T, τ ≥ C0Rqm1

n
,

∣∣∣∣∣n−1
n∑
a=1

(
v>xax

>
a v − v>Σv

)
Ba(τ)

∣∣∣∣∣ > c′σ2
√
τm1

n

)
< C(1 + n+m−11 log(n)n3) exp(−cm1).

Now taking union bound over B and picking large enough constants c′, c, C, we have proved

P

∀ τ ∈ T, τ ≥ C0Rqm1

n
,

∥∥∥∥∥n−1
n∑
a=1

(
xax

>
a −Σ

)
Ba(τ)

∥∥∥∥∥
op

> c′σ2
√
τm1

n


< C(1 + n+m−11 log(n)n3) exp(−cm1).

In words, with probability at least 1−C(1+n+m−11 log(n)n3) exp(−cm1) it holds uniformly

for τ ∈ T, τ ≥ C0Rqm1

n that∥∥∥∥∥n−1
n∑
a=1

(
xax

>
a −Σ

)
Ba(τ)

∥∥∥∥∥
op

≤ c′σ2
√
τm1

n
≤ c′σ2√

C0Rq
τ.
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Now using Part 2 of Theorem 24 with d = m1 and δ = δ1 = cm1, for the empirical
distribution function class {Ba(τ)}, with probability greater than

1− 10m1 exp(−cm1)− Cm−11 10−m1n3,

it hold uniformly for τ ∈ T that∣∣∣∣∣n−1
n∑
a=1

{Ba(τ)− τ}

∣∣∣∣∣ ≤ 1

2

√
cτm1

n
+
cm1

2n
.

With τ ≥ C0Rqm1

n we further have∣∣∣∣∣n−1
n∑
a=1

{Ba(τ)− τ}

∣∣∣∣∣ ≤ c′√
C0Rq

τ.

To sum up, we’ve shown that, for large enough n,m1 and constants c, C > 0, under the
condition C0Rq > 1, with probability greater than 1−C(1 +n+m−11 log(n)n3) exp(−cm1),

it holds uniformly for all τ ∈ T, τ ≥ C0Rqm1

n that∥∥∥∥∥n−1
n∑
a=1

{
xax

>
a Ba(τ)− τΣ

}∥∥∥∥∥
op

≤ c′σ2
√
τm1

n
≤ c′σ2√

C0Rq
τ.

Proof of Theorem 22

Proof We first consider τ < τ?. The other direction can be proved analogously. Note that

1

2n
‖X(Γ, τ)− X(Γ?, τ?)‖22 =

1

2n

n∑
a=1

‖(Θ−Θ?)>xa‖21
{
ta ≤ τ

}
(I)

+
1

2n

n∑
a=1

‖(Θ−Θ? + ∆)>xa‖21
{
τ < ta ≤ τ?

}
(II)

+
1

2n

n∑
a=1

‖(Θ−Θ? + ∆−∆?)>xa‖21
{
ta > τ?

}
. (III)

We hope to show the above summation is larger than c|τ? − τ | for some positive constant
c (independent of τ) with high probability.

Taking expectation, we get

E(I) = 0.5τ 〈Θ−Θ? , Θ−Θ?〉Σ ,
E(II) = 0.5(τ? − τ) 〈Θ−Θ? + ∆ , Θ−Θ? + ∆〉Σ ,
E(III) = 0.5(1− τ?) 〈Θ−Θ? + ∆−∆? , Θ−Θ? + ∆−∆?〉Σ .
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We consider the concentration of Term I. Similar to the proof of Theorem 20, it can
be shown that xa1

{
ta ≤ τ

}
∼ SG(σ2) with covariance τΣ. Provided n > Cm1 for some

C > 0, with probability greater than 1− C1 exp(−C2n),

∥∥∥∥∥ 1

2n

n∑
a=1

xax
>
a 1
{
ta ≤ τ

}
− 0.5τΣ

∥∥∥∥∥
op

≤ C ′τ, ∀ τ ∈ T.

which implies

|I− E(I)| ≤

∥∥∥∥∥ 1

2n

n∑
a=1

xax
>
a 1
{
ta ≤ τ

}
− 0.5τΣ

∥∥∥∥∥
op

· 〈Θ−Θ? , Θ−Θ?〉Σ

≤ C ′τ 〈Θ−Θ? , Θ−Θ?〉Σ .

Now

I = E(I) + I− E(I) ≥ E(I)− |I− E(I)| ≥ C ′τ 〈Θ−Θ? , Θ−Θ?〉Σ

with probability at least 1 − C1 exp(−C2n). Similar results hold for the other terms too.
To sum up we proved that, provided n > Cm1, with probability at least 1−C1 exp(−C2n)

I ≥ C ′τ 〈Θ−Θ? , Θ−Θ?〉Σ ,
II ≥ C ′(τ? − τ) 〈Θ−Θ? + ∆ , Θ−Θ? + ∆〉Σ ,

III ≥ C ′(1− τ?) 〈Θ−Θ? + ∆−∆? , Θ−Θ? + ∆−∆?〉Σ .

Conditioning on the above event and taking summation over the three lower bounds,
we see that

I + II + III ≥ C ′{(τ? − τ) 〈Θ−Θ? −∆? , Θ−Θ? −∆?〉Σ
+ (1− τ?) 〈Θ−Θ? + ∆−∆? , Θ−Θ? + ∆−∆?〉Σ}

≥ C ′σ2 (τ? − τ)(1− τ?)
1− τ

‖∆?‖2F (using Theorem 30)

≥ C ′σ2 ρ(τ? − τ)

1− ρ
‖∆?‖2F =

C ′σ2ρ

1− ρ
(τ? − τ)‖∆?‖2F (using τ ∈ T = [ρ, 1− ρ]).

To sum up, we can pick c = C′σ2ρ
1−ρ ‖∆

?‖2F > 0 since we assumed ∆? 6= 0. Then the
result holds with probability at least 1− C1 exp(−C2n).
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Proof of Theorem 23

Proof Without loss of generality, we only show the case where τ < τ?. Some algebra leads
to

|TN (Γ,Γ?, τ, τ?)|

=

∣∣∣∣∣n−1
n∑
a=1

x>a {(Θ−Θ?) + (∆−∆?)}∆?>xa1
{
τ < ti < τ?

}∣∣∣∣∣
=

∣∣∣∣∣tr
(
{(Θ−Θ?) + (∆−∆?)}>

[
n−1

n∑
i=1

xax
>
a 1
{
τ < ti < τ?

}]
∆?

)∣∣∣∣∣
≤

∥∥∥∥∥ 1

n

n∑
i=1

xax
>
a 1
{
τ < ti < τ?

}∥∥∥∥∥
op

· ‖(Θ−Θ?) + (∆−∆?)‖F · ‖∆?‖F (35)

≤ C ′σ2|τ − τ?| · ‖∆?‖∗ · ‖(Θ−Θ?) + (∆−∆?)‖∗ (using the bounded moment condition)

≤ C ′σ2|τ − τ?| · ‖∆?‖∗ ·
√

2‖Γ− Γ?‖∗ (by Theorem 25).

Note Step (35) applies previous results about uniform convergence of the sample matrix
convergence, and the operator norm is bounded by C ′σ2|τ − τ?| with probability at least
1− C1 exp(−C2n). That is, we have

P
(
|TN (Γ,Γ?, τ, τ?)| ≤ Cσ2|τ − τ?| · ‖Γ− Γ?‖ · ‖∆?‖∗, ∀ τ ∈ T,Γ ∈ Rm1×m2

)
≥ 1−C1 exp(−C2n).

Appendix C. Several useful facts

Proposition 25 (Inequalities on joint nuclear and operator norm) For two matri-
ces A,B ∈ Rm1×m2, it holds that

max{‖A‖op, ‖B‖op} ≤ ‖(A>,B>)>‖op ≤
√
‖A‖2op + ‖B‖2op ≤ ‖A‖op + ‖B‖op

(‖A‖∗ + ‖B‖∗)/
√

2 ≤ ‖(A>,B>)>‖∗ ≤ ‖A‖∗ + ‖B‖∗ (36)

Proof First, it’s easy to prove the right-hand side of both inequalities, noting that

‖(A>,B>)>‖2op = ‖AAT +BBT ‖op ≤ ‖A‖2op + ‖B‖2op ≤ (‖A‖op + ‖B‖op)2, (37)

and

‖(A>,B>)>‖∗ ≤ ‖(A>,0)> + (0,B>)>‖∗ ≤ ‖A‖∗ + ‖B‖∗.

Also, the left-hand side of the operator norm inequality is easy to derive using the equality
in (37).
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To prove the left-hand side of (36), we use the duality between nuclear norm and the
operator norm. Note that

‖(A>,B>)>‖∗ = max
‖(C>,D>)>‖op≤1

〈
(A>,B>)> , (C>,D>)>

〉
= max
‖CCT+DDT ‖op≤1

〈
(A>,B>)> , (C>,D>)>

〉
≥ max
‖CCT ‖op≤1/2,
‖DDT ‖op≤1/2

〈A , C〉+ 〈B , D〉

= max
‖C‖op≤1/

√
2,

‖D‖op≤1/
√
2

〈A , C〉+ 〈B , D〉

=
1√
2

(‖A‖∗ + ‖B‖∗).

Proposition 26 (Inequalities on norm for the multiplication of matrices) Suppose
A ∈ Rm1×m1 ,B ∈ Rm1×m2 and A is inversible. It holds

‖A−1‖−1op ‖B‖∗ ≤ ‖AB‖∗ ≤ ‖A‖op‖B‖∗,
‖A−1‖−1op ‖B‖F ≤ ‖AB‖F ≤ ‖A‖op‖B‖F .

Proof For ‖AB‖∗ we have

‖AB‖∗ = sup
‖C‖op=1

〈AB , C〉 = sup
‖C‖op=1

〈
B , A>C

〉
≤ ‖B‖∗‖A>C‖op ≤ ‖A‖op‖B‖∗.

Apply this result to A−1 ·AB, we have

‖B‖∗ ≤ ‖A−1‖op‖AB‖∗,

implying a lower bound
‖AB‖∗ ≥ ‖A−1‖−1op ‖B‖∗.

For ‖AB‖F , we have

‖AB‖2F =

m2∑
k=1

‖AB·k‖22 ≤
m2∑
k=1

‖A‖2op‖B·k‖22 ≤ ‖A‖2op‖B‖2F .

The lower bound follows similarly.

Proposition 27 (Vectorization and Gaussianity) X ∈ Rm1×m2 is a random matrix
from Gaussian ensemble Nm1m2(0,Σ), i.e., XV ∼ Nm1m2(0,Σ). U1 ∈ Rm1×m1 and
U2 ∈ Rm2×m2 are orthogonal matrices. Then U1XU2 is a random matrix from Gaus-
sian ensemble Nm1m2(0,Σ′), where Σ′ = (U1 ⊗U2)Σ(U1 ⊗U2).
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Proof Use (U1XU2)
V = (U1 ⊗U2)X

V.

The following proposition is taken from Theorem 6.5 of Wainwright (2019).

Proposition 28 (Spectral concentration of Wishart matrices) There are universal
constants {cj}3j=0 such that, for any row-wise σ-sub-Gaussian random matrix X ∈ Rm1×m2.

Let Σ be the population covariance for each row, then the sample covariance matrix Σ̂ =
n−1

∑n
i=1 xix

>
i satifies the bounds

E
{

exp(λ‖Σ̂−Σ‖op)
}
≤ exp

(
c0
λ2σ4

n
+ 4d

)
, for all |λ| < n

64e2σ2
,

and hence

P

{
‖Σ̂−Σ‖op

σ2

}
≥ c2 exp(−c3nmin{δ, δ2}), for all δ ≥ 0.

The following proposition for Lévy’s inequality is taken from Proposition A.1.2 of van der
Vaart and Wellner (1996):

Proposition 29 (Lévy’s inequality) Let X1, . . . , Xn be independent, symmetric stochas-
tic processes indexed by an arbitrary set. Let Sk =

∑k
i=1Xi be the partial sum. Then for

every λ > 0 we have the inequalities

P
(

max
k≤n
‖Sk‖ > λ

)
≤ 2P (‖Sn‖ > λ) ,P

(
max
k≤n
‖Xk‖ > λ

)
≤ 2P (‖Sn‖ > λ) .

Proposition 30 (Closed solution for one minimization program) Let A1,A2 be some
constant matrix in Rm1×m2. τ?1 and τ2 are positive constants. Then it holds

τ?1 ‖A1 −A‖2F + τ2‖A−A2‖2F ≥
τ?1 τ2
τ?1 + τ2

‖A1 −A2‖2F .

where the equality is attained at

A =
τ?1A1 + τ2A2

τ?1 + τ2
.

Proof Simply setting the derivative with respect to A to zero, one can obtain

−2τ?1 (A1 −A) + 2τ2 (A−A2) = 0,

which give

A =
τ?1A1 + τ2A2

τ?1 + τ2
.

Now taking this solution into the program generates the tight lower bounds.
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Proposition 31 (Generalization of Hanson-Wright inequality) Let {xi}ni=1 be i.i.d
copies of x ∼ N(0, Im). Let Ai be m×m matrices. Then, for every t > 0, it holds

P

{∣∣∣∣∣
n∑
i=1

(
x>i Aixi − E

(
x>Aix

))∣∣∣∣∣ > t

}
≤ 2 exp

{
−cmin

(
t2∑n

i=1 ‖Ai‖2F
,

t

maxi=1,··· ,n ‖Ai‖op

)}
Proof The case where n = 1 is the famous Hanson-Wright inequality(see Rudelson and
Vershynin (2013); Vershynin (2018)). The proof to the generalization is simple if we observe
the summation

n∑
i=1

(
x>i Aixi − E

(
x>Aix

))
can be aggregated into a large quadratic form in Gaussian vectors:

n∑
i=1

(
x>i Aixi − E

(
x>Aix

))
=
(
x>1 ,x

>
2 , · · · ,x>n

)

A1

A2

. . .

An



x1

x2
...
xn

 .

Now apply the original Hanson-Wright to complete the proof.

Appendix D. Additional algorithmic details and numerical supports

D.1 Proximal gradient descent for solving joint minimization scheme (5)

In this section, we summarize the implementation details for the proposed joint single
change-point detection and matrix estimation (5) in Algorithm 2 and 3 below.

In the rest of this section, we consider the random multivariate regression example in
Section 2.2.6 and perform an algorithmic convergence analysis. For ease of reading, we
quickly summarize the following quantities appeared from Algorithm 2 and 3:

• τk: k-th candidate grid searching point;

• Γ̂k: minimizer of (3) given search point τk;

• Γ̂
(l)

k : the l-th step of the proximal gradient descent algorithm for solving (3) given
search point τk;

• k̂: the index where SN (Γ̂k, τk) is minimized;

• k̂(l): the index where at the step l, SN (Γ̂
(l)

k , τk) is minimized;

• τ̂ (l): the time point that minimizes SN (Γ̂
(l)

k , τk).

• τ̂ , Γ̂: global minimizer of (5).

We state the result as the proposition below:

59



Shi, Wang and Zou

Algorithm 2: Joint single change-point detection and matrix estimation

Input: Observed data (yi,Xi, ti), for i = 1, · · · , n; regularization parameter λN ;
floor curvature L(0); ceiling curvature Lmax; updating rate η; convergence
tolerance tol and maximal iteration T .

Output: Estimator Γ̂, τ̂ .
/* Step (i): pick K candidate grid searching points */

1 Set candidate grid searching points:

τk =
1

2
{(1− 2ω)/K · (k − 1) + (1− 2ω)/K · k},

for k = 1, · · · ,K.
/* Step (ii): solve program (3) at each τk with accelerated proximal

gradient descent (Algorithm 3) */

2 for k = 1, . . . ,K do
3 Run Algorithm 3 with the given inputs and testing break position τk;

4 Return estimator Γ̂k and objk.

/* Step (iii): minimization over grid searching points */

5 Set k̂ = arg mink=1,··· ,K objk.

6 Return τ̂ = τ
k̂

and Γ̂ = Γ
k̂
.

Algorithm 3: Proximal gradient descent for (3)

Input: Same input as Algorithm 2; testing break position τ .
Output: Estimator Γ̂; objective value obj.

1 Set l = 1 and Γ(0) = 0;

2 Calculate the sub-gradient G(l) = ∇SN (Γ; τ)|Γ=Γ(l) .

3 Set L = min{ηL(l−1), Lmax}.
4 while L < Lmax do

5 Compute Ω = Soft
(
Γ(l) − L−1G(l);L−1λN

)
based on (11);

6 Calculate SN (Ω; τ) based on (4) and SMajor(Ω; Ω(l)) based on (10);

7 if SN (Ω; τ) ≤ SMajor(Ω; Ω(l)) then

8 Set Γ(l+1) = Ω, L(l) = L
9 break

10 else
11 Set L = min{L/η, Lmax}.

12 Repeat above steps until the stop criterion is meet: ‖Γ(l+1) − Γ(l)‖F /‖Γ(l)‖F ≤ tol

or the maximal number of iteration T is hit.
13 Set Γ̂ = Γ(l+1) and record objective value obj = SN (Γ; τ) + λN‖Γ‖∗.
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Proposition 32 Assume Γ? has exact low rank R with ‖Γ?‖∗ ≤ s. For n > Cm1, with
probability greater than

1− 3C1 exp{−C2n},

For n > Cm1 and any given tolerance parameter ζ2,

SN (Γ̂
(l)

k ; τk)− SN (Γ̂k; τk) ≤ ζ2, ‖Γ̂
(l)

k − Γ̂k‖2F ≤
4ζ2

ρσ20
, (38)

for all steps l satisfying

l ≥
2 log{ζ−2(SN (Γ

(0)
k ; τk)− SN (Γ̂(τk); τk))}

log(12/11)
+ log2 log2(

sλN
ζ2

)

{
1 +

log 2

log(12/11)

}
. (39)

Furthermore, recall k? as the minimizing index for Step (iii) of Algorithm 2. For the toler-
ance smaller than the gap:

ζ2 <

{
min
k 6=k̂

SN (Γ̂k; τk))− SN (Γ̂; τ̂)

}
, (40)

and l with

l ≥
2 log{ζ−2 maxk∈[K](SN (Γ

(0)
k ; τk)− SN (Γ̂(τk); τk))}

log(12/11)
+ log2 log2(

sλN
ζ2

)

{
1 +

log 2

log(12/11)

}
,

(41)

we have τ̂ (l) = τ̂ .

Proposition 32 is adapted from Theorem 2 of Agarwal et al. (2010), which states that
when using PGD for penalized M-estimation, the excess loss decays geometrically up to
any squared error ζ2 given certain conditions. In our setting, for each given τk, it takes
O(log ζ−2) steps to reach the tolerance ζ2, which demonstrates a fast exponential conver-
gence to the global minimum. When ζ2 is set to be properly small, the detected change-point
τ̂ (l) coincides with the global optimum too.
Proof [Proof of Proposition 32] Proposition 32 is based on Theorem 2 of Agarwal et al.
(2010), which states that when using PGD for penalized M-estimation, the excess loss decays
geometrically up to any squared error ζ2 given the so-called restricted strong convexity
(RSC) and restricted strong smoothness (RSM) conditions. Our Proposition 20 verifies the
RSC and RSM conditions uniformly at a sequence of searching points with high probability
in the multivariate regression setting:

If n > Cm1, then

P
(
κ(X)‖Γ‖2F ≤

1

2n
‖X(Γ; τ)‖22 ≤ κ′(X)‖Γ‖2F , ∀ τ ∈ T and Γ ∈ R(2m1)×m2

)
≥ 1− C1 exp(−C2n),

where κ(X) = ρσ20/2 for some constant ρ > 0 and κ′(X) = 3ρσ20/2.
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Therefore, by substituting the quantities of Agarwal et al. (2010), Theorem 2 with the
counterpart in our setting, we can conclude (38) for the steps (39).

To prove τ̂ (l) = τ̂ , simply notice that for ζ2 satisfying (40), l with (41), and any k 6= k̂

SN (Γ̂
(l)

k ; τk) ≥ SN (Γ̂k; τk) ≥ SN (Γ̂; τ̂) + ζ2 ≥ SN (Γ̂
(l)

k̂
; τ̂),

which concludes the proof.

D.2 Determining penalization level λN

In practice, the regularization parameter λN is chosen through cross-validation. Suppose the
threshold variable ti is reorganized in an increasing order. Our cross-validation procedure
proceeds as follows: (i) Splitting: given data D = {(yi,Xi, ti) : i = 1, . . . , N}, we split the
data into K folds D1, . . . ,DK in an incremental manner:

Dk = {(yi,Xi, ti) : i = k + [N/K] ∗ l, l = 0, . . . ,K − 1},

where [N/K] is the largest integer smaller than N/K. (ii) Validating: we pick a sequence
of K candidate values, λN ∈ {λN,1, . . . , λN,K}. For k = 1, . . . ,K, we choose in turn Dk as
the prediction set Dk,test and the union of the rest Dk’s as the training set Dk,train. Then we
apply the proposed program with penalization λk on Dk,train and compute the prediction
error on the testing data. The final penalization level λ?N is determined as the one that
gives the smallest prediction error.

We add some additional remarks for the above cross-validation procedure. First, the
splitting step (i) is completed in an incremental manner. This is crucial because it guarantees
that, when there are change-points in the data, the relative location of the change-points
in each of the subset Dk remains almost identical as the full data D. Second, the candidate
values for λN can be usually motivated by theory and picked in some principled way. For
example, in multivariate regression, our Theorem 11 suggests the penalization of the order
c(m1+m2

n )1/2. Therefore, in terms of tuning we can choose a sequence of c ∈ {c1, . . . , cK} to
further construct λN ∈ {λN,1, . . . , λN,K}.

D.3 Construction of signals

We generate the low-rank signals from the singular vectors of Gaussian ensembles. To
ensure a large break, Θ?

0 and Θ?
1 are separately constructed in the following way: first

generate a random matrix M s ∈ Rm×100 (s = 0, 1) with i.i.d. standard Gaussian variables.
Let U sSsV

>
s be the singular value decomposition of M s. Then Θs is given by Θ?

s =
U r
sV

r>
s /
√
r, s = 0, 1. To generate signals with a small break, we take one single standard

Gaussian ensemble M in Rm×100 and get its SVD M = USV >. Aggregating some of the
singular vectors into new matrices: U r

0 = U r
1 = [u1, · · · , ur];V r

0 = [v1, · · · , vr−1, vr]; V 1 =
[v1, · · · , vr−1, vr+1]. Also define D = diag{

√
4.75/4,

√
4.75/4,

√
4.75/4,

√
4.75/4,

√
0.25}.

Now construct Θ?
s = 1√

r
U sDV

>
s , s = 0, 1. This way, it is easy to show that Θ?

0 and Θ?
1

share the same left singular vectors and ‖Θ?
0 −Θ?

1‖2F = 0.1.

D.4 Multivariate regression with large signals
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D.5 Plots of estimated change-points and objective trajectories
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(a) Boxplot for τ̂ under MR with small signal
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(c) Boxplot for τ̂ under MR with large signal
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(e) Boxplot for τ̂ under CS with large signal

0 0.2 0.4 0.6 0.8 1

Position 

800

850

900

950

1000

1050

1100

1150

1200

1250

O
b

je
c
ti

v
e
 v

a
lu

e

(f) Objective path under CS (N = 2500) with large
signal

Figure 2: Boxplot for τ̂ and objective path under different models with varying sample size

64



Low-Rank Matrix Estimation in the Presence of Change-Points

ML, 25 ML, 50 ML, 75 VL, 25 VL, 50 VL, 75

Method and Dimension

0.4

0.45

0.5

0.55

0.6

E
s
ti

m
a
te

d
 c

h
a
n

g
e
 p

o
in

t
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(c) Boxplot for τ̂ under MR with large signal
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(e) Boxplot for τ̂ under CS with large signal
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Figure 3: Boxplot for τ̂ and objective path under different models with varying dimension

D.6 Data analysis: comparison with other methods

We make some additional numerical comparison for the air pollution data analysis conducted
in Section 4.3.

In Table 8 below, we compare three straightforward estimation and prediction schemes
without considering a change-point structure. “OLS” stands for a direct output from or-
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dinary least squares; “`1 penalization” adds `1 penalty to induce sparsity pattern for the
mechanism matrix; “Nuclear norm” stands for the nuclear norm penalization that is used
to induce a low-rank structure. From the results we can see that, when no change-point
is included, adding both `1 and nuclear norm penalty can slightly improve the prediction
accuracy. Moreover, a low-rank model gives better prediction results than a sparse model.
However, the improvement from either penalization does not demonstrate a significant edge.

Table 8: Test error for different methods without change-points for the air pollution data

Methods OLS `1 penalization Nuclear norm

Test error 0.1931 0.1928 0.1925

In Table 9 below, we further compare `1 penalization and nuclear norm penalization
with change-point structure incorporated. We can see that for each given number of change-
points within the range of 1 to 4, nuclear norm penalization always demonstrates higher
prediction accuracy. Overall, nuclear norm penalization with two change-points outperform
the rest, which is still consistent with the conclusion for the real data analysis (Section 4.3)
in the main paper.

Table 9: Test error for different methods with change-points for the air pollution data

# change-points 1 2 3 4

Methods
Nuclear norm 0.1746 0.1728 0.1761 0.1772
`1 penalization 0.1825 0.1884 0.1797 0.1817

D.7 Multivariate regression with a single change-point near the boundary

In this section, we conduct some numerical experiments to test the performance of the algo-
rithm when the change-point is close to the boundary. The setup is based on multivariate
regression with one change-point, and the location of the change point is set to two locations:
τ? = 0.1 and τ? = 0.2. The results are reported in Table 10. We can see that the proposed
method can successfully detect the location of the change point and recover the true signal
with a near-oracle performance. The no-change point algorithm gives a result that recovers
the matrix signal in the segment that has more data but fail to recover the signal that has
few data points. Meanwhile, LASSO based methods work poorly for recovering the true
matrix signals as the matrix elements are not sparse due to construction.

D.8 Numerical experiments for multiple change-points detection with random
locations

In this section, to test how robust the proposed algorithm is to the locations of the change-
points, we present numerical experiments on multiple change-point detection where three
change-points are generated randomly from (0, 1/3], (1/3, 2/3] and (2/3, 1), respectively.
The remaining setup is kept the same. Table 11 reports the results.
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Table 10: Multivariate regression with a single change point near the boundary

Method |τ̂ − τ?| Θ̂1 Θ̂2

‖Θ̂1 −Θ?
1‖2F ‖Θ̂1 −Θ?

1‖∗ ‖Θ̂2 −Θ?
2‖2F ‖Θ̂2 −Θ?

2‖∗
Regime: τ? = 0.1

Ours 0.0045(0) 0.475(0.027) 3.074(0.072) 0.113(0.003) 3.150(0.082)
Oracle - 0.447(0.024) 2.995(0.066) 0.113(0.004) 3.136(0.090)

NC - 1.671(0.023) 4.897(0.065) 0.106(0.003) 1.714(0.077)
Vec 0.0045(0) 0.751(0.035) 4.387(0.104) 0.133(0.007) 4.128(0.117)

Regime: τ? = 0.2
Ours 0.0045(0) 0.272(0.013) 2.698(0.057) 0.127(0.004) 3.768(0.075)

Oracle - 0.259(0.016) 2.650(0.058) 0.126(0.004) 3.775(0.079)
NC - 1.351(0.012) 4.496(0.057) 0.171(0.004) 2.054(0.075)
Vec 0.0045(0) 0.481(0.032) 3.810(0.044) 0.151(0.006) 4.521(0.037)

Table 11: Mutiple change-points detection with random change-point locations

Criterion
Small breaks Large breaks

Rough Refined Rough Refined

Change detection
ŝ 3.18(0.70) - 3.00(0) -

OE 0.077(0.121) 0.060(0.110) 0.002(0.001) 0.001(0.001)
UE 0.095(0.093) 0.095(0.104) 0.002(0.001) 0.001(0.001)

Matrix recovery

MOE - 0.410(0.030) - 0.315(0.024)
MUE - 0.460(0.047) - 0.315(0.024)

max r̂k - 5.39(0.53) - 6.60(1.12)
min r̂k - 5.00(0) - 5.00(0)
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