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Abstract

Negative control variables are increasingly used to adjust for unmeasured confounding bias
in causal inference using observational data. They are typically identified by subject mat-
ter knowledge and there is currently a severe lack of data-driven methods to find negative
controls. In this paper, we present a statistical test for discovering negative controls of a
special type—disconnected negative controls—that can serve as surrogates of the unmea-
sured confounder, and we incorporate that test into the Data-driven Automated Negative
Control Estimation (DANCE) algorithm. DANCE first uses the new validation test to
identify subsets of a set of candidate negative control variables that satisfy the assump-
tions of disconnected negative controls. It then applies a negative control method to each
pair of these validated negative control variables, and aggregates the output to produce
an unbiased point estimate and confidence interval for a causal effect in the presence of
unmeasured confounding. We (1) prove the correctness of this validation test, and thus of
DANCE; (2) demonstrate via simulation experiments that DANCE outperforms both naive
analysis ignoring unmeasured confounding and negative control method with randomly se-
lected candidate negative controls; and (3) demonstrate the effectiveness of DANCE on a
challenging real-world problem.
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1. Introduction

There are many causal questions in science and medicine that can not be solved with ran-
domized experiments now or in the foreseeable future. For such questions, our best estimates
must thus rely on observational data instead. The rich field of causal inference has developed
in response to this, providing support for these efforts and developing methods that offer
some level of assurance and confidence for learning causal information from observational
data (Pearl, 2009; Rubin, 1974). Many causal inference methods assume that there are no
unmeasured common causes of treatment and outcome, but it is generally believed that in
reality unmeasured confounders are widespread. This is a serious limitation to the meth-
ods that make such assumptions. One of the most frequently used approaches to mitigate
unmeasured confounding is the instrumental variable (IV) approach (Angrist and Keueger,
1991; Angrist et al., 1996; Hernán and Robins, 2006), which has been previously studied
extensively (Greenland, 2000; Baiocchi et al., 2014; Garabedian et al., 2014; Burgess et al.,
2017; Swanson et al., 2018).

A more recently developed strategy is negative control (NC) methods (Lipsitch et al.,
2010; Shi et al., 2020b; Tchetgen Tchetgen et al., 2020). Negative controls are variables
associated with the unmeasured confounders but not causally related to either the treat-
ment or outcome variables of primary interest. Intuitively, such known-null effects form the
basis of falsification strategies to test whether adjustment for observed covariates suffices
to control for confounding bias: one expects no significant association between the negative
control and the treatment or outcome of interest if there is no uncontrolled confounding;
on the other hand, the unanticipated presence of an association between the negative con-
trol and the treatment or outcome of interest constitutes compelling evidence of residual
confounding bias. For example, in a study about the effects of influenza vaccination on in-
fluenza hospitalization, injury/trauma hospitalization was considered as a negative control
as it was not causally affected by influenza vaccination, but may be subject to the same
confounding mechanism mainly driven by health-seeking behavior (Jackson et al., 2006).
The authors found that despite efforts to control for confounding, influenza vaccination not
only appeared to reduce risk of influenza hospitalization after influenza season (risk ratio
0.82, 95% CI 0.73–0.92), but also appeared to reduce risk of injury/trauma hospitalization
(risk ratio 0.83, 95% CI 0.75–0.91). This was interpreted as evidence of bias due to inad-
equately controlled confounding. NCs have traditionally been used to rule out non-causal
explanations of empirical findings (Rosenbaum, 1989; Weiss, 2002; Lipsitch et al., 2010;
Glass, 2014). Recently, a sequence of NC methods have been developed to identify causal
effects and correct for unmeasured confounding bias (Miao et al., 2018a; Deaner, 2018; Shi
et al., 2020a; Singh, 2020; Cui et al., 2023; Ying et al., 2021; Kallus et al., 2021; Dukes
et al., 2023; Li et al., 2022).

A key challenge in the use of NC methods is that until now, NC variables have had
to be identified laboriously from background knowledge. It also had to be assumed that
the identified variables were genuine NCs, as no validation test existed unless one is willing
to make additional assumptions. Such situations are common in causal inference, e.g., the
assumption of no unmeasured confounding is also untestable. Nevertheless, we will show
that under certain conditions, it is possible to leverage certain subcovariance matrix rank
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constraints to validate a particular class of NC variables, referred to as disconnected NCs
which we formally define in Section 2.1, satisfying a specific causal structural model.

In this paper, we utilize some lesser known theory regarding relationships between sub-
covariance matrix rank constraints and the graphical structure of causal models to provide
both theory and algorithms for evaluating NC variables. First, we provide a statistical test
that can be used to determine whether a triplet of candidate NCs are real disconnected
NCs or not. Second, we provide a simple algorithm for searching among a set of candi-
date NCs, and identifying subsets of those variables that collectively meet the conditions
of being disconnected NCs. Third, we combine our proposed method for finding valid NC
variables with a recently developed double-NC method for causal inference (Miao et al.,
2018b; Shi et al., 2020a; Cui et al., 2023), creating an algorithm that accurately estimates
and makes inferences about causal effects from observational data. We refer to the proposed
method as the Data-driven Automated Negative Control Estimation (DANCE) algorithm.
We prove that our proposed methods are correct under fairly general assumptions, evaluate
their finite sample performance with a series of numerical experiments, and demonstrate
their usability on a real world data set.

Our novel contributions put forward in this paper include the following: (1) We define
a new type of negative control, the disconnected NC, that is a special case of both NC ex-
posure and NC outcome; (2) We provide the first statistical test for validating disconnected
NCs and prove correctness of this validation test; (3) We develop a search procedure that
uses this test to search from a large number of candidate NCs for sets of three disconnected
NCs that pass the validation test; (4) We develop a new method that aggregates a collection
of disconnected NCs to produce a point estimate and confidence interval, which improves
efficiency compared to the double-NC method that utilizes only a pair of NCs; (5) We de-
velop the DANCE algorithm using the disconnected NC search procedure and the aggregate
negative control estimation method, with performance demonstrated via simulations and
an applied study.

The rest of the paper is organized as follows. In Section 2 we review the three main topics
that the work in this paper builds upon: negative controls, structural models, and rank
constraints. We then present a statistical validation test for disconnected NCs in Section 3,
and prove its correctness in Section 3.3. Section 4 presents an algorithm that searches a set
of candidate NC variables to find sets of disconnected NCs which pass the validation test,
and Section 5 presents the DANCE algorithm that combines with the double-NC method to
construct an all-in-one method for producing a valid causal effect estimate from a data set
containing a collection of candidate NC variables, some of which are not necessarily valid
disconnected NCs. Section 6 presents numerical experiments to evaluate our proposed test
and algorithms, and compares them to two methods: a simple regression method ignoring
unmeasured confounding and a random selection of candidate NCs followed by the double-
NC method. An application of DANCE to a real clinical data set is described in Section
7. Section 8 summarizes the strengths and limitations of the methods presented in this
paper, and points towards promising directions for future work. R code for implementing
our method is available at https://github.com/imjaewon07/DANCE.
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2. Background

2.1 Unmeasured Confounding and Negative Control Methods

We adopt the potential outcome framework under the Stable Unit Treatment Value As-
sumption (SUTVA) (Rubin, 1974, 1980; Cox, 1992) and let (O(1), O(0)) denote the pair of
potential outcomes under treatment and control conditions, respectively. We are interested
in estimating the average treatment effect (ATE), defined as ∆ = E[O(1)−O(0)]. It suffices
to identify the counterfactual mean E[O(t)] for t ∈ {0, 1}. Let O denote the observed out-
come and T denote the binary treatment. We suppress measured covariates for simplicity;
adjustment for measured covariates is discussed in Section 5.1.

Instead of making the no unmeasured confounding assumption, we allow the presence
of an unmeasured confounder U with a latent ignorability assumption that O(t) ⊥⊥ T | U .
If U was measured, then E[O(t)] is identified under the ignorability assumption (Robins,
1986). However, when U is unobserved and unadjusted, ATE estimation will be biased. In
this case, additional information is needed to identify and make inference about the ATE.

An increasingly popular approach to mitigate bias due to unmeasured confounding is
to use its proxies. For example, as shown in Figure 1, if U can be measured with error via
proxy variables Z and W , then one can leverage Z and W to identify the confounding bias
due to U and remove such bias from the estimated causal effect. Such proxy variables have
been referred to as negative controls (Lipsitch et al., 2010; Shi et al., 2020b). Formally, a
negative control outcome, denoted as W , is a variable known not to be causally affected by
the treatment of interest. Likewise, a negative control exposure, denoted as Z, is a variable
known not to causally affect the outcome of interest. The negative control exposure and
outcome variables should share a confounding mechanism with the treatment and outcome
variables of primary interest. In summary, Z and W satisfies

(T,Z) ⊥⊥ (O(t),W ) | U. (1)

There are a number of causal graphs that satisfy the NC assumptions (Shi et al., 2020b). For
example, both a valid instrumental variable independent of the unmeasured confounder and
an invalid instrumental variable associated with the unmeasured confounder are valid neg-
ative control exposures. Alternative directed acyclic graphs encoding the NC assumptions
are available in Shi et al. (2020b).

Figure 1 presents a special case where Z and W are causally related to neither the
treatment nor the outcome of interest, hence Z and W can serve as either negative control
exposure or negative control outcome (Shi et al., 2020a; Tchetgen Tchetgen et al., 2020).
We refer to such a special class of NC variables as the disconnected NCs. Formally, the
disconnected NCs satisfy the following assumption

(Z,W ) ⊥⊥ (T,O) | U.

Compared to the fundamental NC assumption (1), the disconnected NCs satisfy additional
assumptions that Z ⊥⊥ T | U and W ⊥⊥ O | U .

Miao et al. (2018a) established nonparametric identification of the average treatment
effect (ATE) using a pair of negative control exposure and outcome variables, referred
to as the double-NC. Intuitively, having additional children of U that are conditionally
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independent with T and O allows for identification of the unmeasured confounding bias due
to the influence of U on T and O, and subsequently this quantity can be removed from the
association between T and O, leaving an unbiased estimate of T ’s effect on O. Recently, the
NC framework has been extended to proximal causal inference, which partitions measured
covariates into proxies satisfying NC conditions, acknowledging that covariate measurements
are at best proxies of the underlying confounding mechanisms (Tchetgen Tchetgen et al.,
2020; Cui et al., 2023; Ying et al., 2021; Dukes et al., 2023).

T O

U ZW

treatment outcome

unmeasured
confounders

negative
control

negative
control

Figure 1: Causal graph of two disconnected NCs, Z and W, suppressing the measured
covariates X which is implicitly conditioned on in all arguments.

2.2 Structural Models

The rest of this paper makes heavy use of the theory of structural graphical models, es-
pecially structural equation models. This section provides background terminology and
definitions from this field, which can be used as an introduction for readers who are unfa-
miliar with it, or as a reference for readers who are already familiar with it.

A directed graph is a pair of sets, 〈Φ,Ψ〉, where Φ contains some number of variables,
and Ψ contains some number of directed edges, or arrows, pointing from one variable in Φ
to another variable in Φ. It is often important to consider not just individual edges, but
paths in a directed graph, which are ordered lists of edges in a graph such that each edge
shares one of its endpoint variables with the edges before and after it. In other words, a
path is a connected sequence of edges. A special kind of path is a trek, where nowhere
along the length of the path are there two consecutive edges with arrows pointing to the
variable between them. In other words, in a trek there are no subsections that look like this:
→ X ←. A special type of trek is the directed path, where all the edges point in the same
direction along the path. Probably the most commonly studied subclass of directed graphs
is directed acyclic graphs (DAGs), which are directed graphs that contain no directed paths
passing through the same variable twice, i.e., directed graphs without any directed cycles.

Directed graphs are often augmented with additional quantitative and statistical infor-
mation, forming a statistical model. Two commonly used examples are structural equation
models (SEMs) and Bayesian networks (BNs). The specific meanings of these terms often
vary from one paper or research group to another. In this paper, we consider SEMs to
refer to DAGs which have been augmented with an additive Gaussian noise term εK for
each variable K in the DAG, as well as a linear coefficient βJK corresponding to each edge
J → K. As such, each variable’s value is calculable from the value of its parents (the nodes
with edges pointing to it) and the value of its independent noise term. Let parents be a
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function that returns all of the parents of the variable in its argument, then the SEM can
be written as a collection of equations of the form:

K =
∑

J∈parents(K)

βJKJ + εK .

In this paper, we consider BNs to be similar to the SEM class of models, but using
categorical variables instead of continuous variables. Each variable in a BN has its prob-
ability distribution determined by a conditional probability table based on the values of
that variable’s parents. As such, like an SEM, it specifies a complete joint distribution that
can be decomposed into separate components for each of its variables. As we are defining
them here, a BN specifies a multinomial distribution, while an SEM specifies a multivariate
Gaussian distribution.

Variables can be either measured, or unmeasured. Unmeasured variables are also called
hidden variables or latent variables. Whether a variable is measured or unmeasured has
no effect on the SEM or BN itself, but rather refers to what variables are available in data
collected from that SEM or BN. Unmeasured variables are absent from the data entirely,
and so all their values are missing. Notoriously, since unmeasured variables are still part
of the data generating model, measured variables in the model can be correlated with each
other because an unmeasured variable is the parent of both of them. Such an unmeasured
variable is considered an unmeasured confounder in many contexts. In causal inference from
observational data, unmeasured confounders are a potential source of bias, as it is a source
of spurious association that can occur even when neither of the two measured variables
influences the other in any way.

2.3 Rank Constraints and the Vanishing Tetrad Test

It is well known that the graphical structure G of a causal structural model over variables
V entails constraints among the partial correlations of the observed (measured) variables
M ⊆ V . Partial correlation constraints have been leveraged to develop causal discovery
algorithms, including algorithms that still operate correctly in the presence of unmeasured
common causes, such as Fast Causal Inference (FCI) (Spirtes et al., 2000; Zhang, 2008; Hyt-
tinen et al., 2013). These methods all depend on theoretical work establishing theorems that
systematically relate graphical structures to their implied partial correlation constraints.

A lesser known type of constraint that is also implied by graphical structure is rank
constraints on the subcovariance matrix. A subcovariance matrix is a covariance matrix
between two sets of variables, S1 and S2, with S1, S2 ⊆ M . As first proved by Sullivant
et al. (2010), the rank of each subcovariance matrix will have bounds due to features of the
graph G. Let Cov(X,Y ) be the covariance between two random variables X and Y , then
the subcovariance matrix for S1 = {W,Z} and S2 = {T,O} can be written as:

ΣS1,S2 = Σ{W,Z},{T,O} =

(
Cov(W,O) Cov(W,T )
Cov(Z,O) Cov(Z, T )

)
.

Sullivant’s theorems state that, for the graph in Figure 1, since all paths from W and
Z to T and O pass through one variable, U , the rank of matrix Σ{W,Z},{T,O} is less
than its dimension. This also implies that the determinant of Σ{W,Z},{T,O} is zero, i.e.,
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Cov(W,O)Cov(Z, T )− Cov(W,T )Cov(Z,O) = 0. This is referred to as a vanishing tetrad.
The same is not true of the subcovariance matrix for Σ{W,T},{Z,O}, since there is an ad-
ditional path from T to O that does not include U . These theorems were then extended
by Spirtes (2013) to relax some of their linearity and acyclicity assumptions. A growing
number of papers have made use of these theorems to identify the presence of unmeasured
common causes, and to even make inferences about the causal relationships among un-
measured common causes (Kummerfeld et al., 2014; Kummerfeld and Ramsey, 2016; Yang
et al., 2017).

The theorems relating rank constraints to graphical structure make use of some lesser
known graph concepts, in particular the concepts of trek and trek-separation, typically
abbreviated as t-separation. We here provide those definitions, including some intermediary
definitions necessary for defining trek-separation. In a directed graphical model, a trek is a
path with no colliders on it, i.e., no variable within the trek is a direct child of the variables
both before and after it in the trek. A variable is said to block a trek if it lies anywhere
along that trek. Any trek has exactly one root node which has no parents in the trek, which
can be any node along the trek including the endpoints. Let t be an arbitrary trek from
node A to B in directed graph G, with root node C. The portion of the trek t from C to
A is naturally also a trek, as is the portion of t from C to B. Let D be a node along t. We
say that D blocks t on the A-side of t if D lies along the trek from C to A, and likewise
D blocks t on the B-side of t if it lies along the trek from C to B. An ordered pair of sets
of variables 〈SA, SB〉 is said to t-separate variables A and B in graph G if for every trek t
from A to B in G, t is either blocked on the A-side by a variable in SA or on the B-side
by a variable in SB. For example, in the graph presented in Figure 2b, for A = {Z4, Z5},
B = {Z6, Z7}, we have C = U , and they can be trek separated in multiple ways, including:
SA = {U} and SB = {}; SA = {} and SB = {U}; SA = {U, T} and SB = {U,Z1}; and
so on. By comparison, if A = {Z4, Z6} and B = {Z5, Z7}, then sets like SA = {U} and
SB = {} no longer t-separate A from B, since U does not block Z4 from Z5 or Z6 from Z7.
Additional variables would have to be included in SA or SB to block these additional treks.

In this paper we make use of the extended trek separation theorems of Spirtes (2013),
which relate statements about t-separation in the data generating model to rank constraints
in the covariance matrix among certain sets of nodes. The presence or absence of rank con-
straints can be determined from empirical data using statistical tests for vanishing determi-
nants. Wishart (1928) created a statistical test for the null hypothesis that the determinant
of a subcovariance matrix is zero, assuming that the relevant portions of the structural
model are Gaussian. Alternative tests (Bollen, 1990; Bollen and Ting, 1993) that relax
this distributional assumption tend to be more computationally intensive and appear to
have reduced power. Moreover, in practice, even when the distribution is non-Gaussian,
the Wishart test often performs well with a large sample (Spirtes, 2013; Silva and Shimizu,
2017). Therefore in our simulations and applications presented later in this paper, we use
the Wishart test (Wishart, 1928).

For sets of variables S1 and S2 such that |S1| = |S2|, let DS1,S2 be the determinant of
the subcovariance matrix ΣS1,S2 of all the variables in S1 by all the variables in S2. The
Wishart test calculates the distribution of the empirically observed value of D{a,b},{c,d},

denoted as D̂{a,b},{c,d}, under the null hypothesis that the true determinant is zero and the
corresponding tetrad vanishes, i.e., H0 : D{a,b},{c,d} = 0. Let N be the sample size of the
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observed data. The estimated variance of D̂{a,b},{c,d} is σ̂2 = {D̂{a,b},{a,b}D̂{c,d},{c,d}(N +

1)/(N − 1)− D̂{a,b,c,d},{a,b,c,d}}/(N − 2) (Wishart, 1928). The Wishart test then computes

W = D̂{a,b},{c,d}/σ̂,

and forms a p-value for a two-sided significance test based on the asymptotic normal dis-
tribution with mean zero under the null. This is referred to as the vanishing tetrad test.

While the algorithms we present in this manuscript do not rely on Gaussian distributed
data, the specific test of vanishing tetrad we use here—the Wishart test—does assume a
Gaussian distribution. The same asymptotic correctness results can be extended to other
distributions by using other tetrad tests, such as the distribution-free tetrad test developed
by Bollen and Ting (1993). We use the Wishart test because it is simple to compute and
appeared to have better power at plausible finite sample sizes during numerical experiments.

3. The Statistical Validation of Negative Controls

3.1 Definitions and Assumptions

Before stating the validation test for NCs and then proving its correctness, it will be useful
to present some definitions and assumptions. We first define the following simple NC model
that involves an unmeasured confounder U and children of U .

Definition 1 A simple NC model is a structural equation or Bayesian network model, with
measured variables M , unmeasured variables U , structural causal relationships S and causal
coefficients C, that meets the following criteria:

1. |U | = 1, i.e., there is only one unmeasured variable. Let this unique unmeasured
variable be denoted by U .

2. U directly causes all elements of M .

3. M has two distinct privileged variables, denoted by T and O. T may cause O, but no
other variable in M directly causes or is caused by T or O.

See Figures 1 and 2 for examples of simple NC models. Let variables in M \{T,O} be called
candidate NCs which are not necessarily valid disconnected NCs.

We clarify that although the simple NC model may appear to be limited to one unmea-
sured confounder U , such an unmeasured confounder can be a spectrum of multiple latent
variables. For example, suppose U denotes healthcare seeking behavior, a common source
of unmeasured confounding bias of concern in vaccine effectiveness studies, then it is likely
that U =

∑
j αjLj , where Lj denotes latent variables such as perceptions of illness and

treatment, access to healthcare, and insurance coverage, and αj denotes the corresponding
importance of each latent factor.

In this paper, we will focus on identifying a particular class of NC variables, which we
refer to as the disconnected NCs. As presented in Figure 1 and defined in Section 2.1, a
disconnected NC is independent of both the treatment T and the outcome O conditional
on the unmeasured confounder U . That is, any trek between a disconnected NC and T (or
O) must pass through U . Hence a tetrad of three disconnected NCs plus T (or O) may be a
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vanishing tetrad as introduced in Section 2.3, while a tetrad of two disconnected NCs plus
both T and O will not vanish due to the potential direct path from T to O that does not
go through U . Motivated by this observation, our validation test leverages the vanishing
tetrad test as detailed in the next section and relies on at least three disconnected NCs.

Definition 2 A disconnected negative control triplet (DNCT) is a set of three candidate
NCs in a simple NC model such that all treks from one member of the DNCT to another
pass through U .

Our DNCT definition excludes pathways connecting any two disconnected NCs without
passing through U , because such a pathway will lead to a tetrad that does not vanish and
will also violate the NC assumption (1) when using such a pair of disconnected NCs as
double-NC. We make the following assumptions necessary for detecting DNCT in a graph
G. We previously defined G in Section 2.2.

Assumption 1 The data is generated by a simple NC model with |M | ≥ 5.

This implies that there are at least three candidate NCs.

Assumption 2 Tetrad Faithfulness. In the data distribution implied by the simple NC
model, tetrads vanish only if they are implied to vanish by the structure of the simple NC
model.

In other words, tetrads do not vanish as an “accident” of the model’s particular coeffi-
cients.

Assumption 3 The data is generated by a simple NC model which is linear and acyclic
among its measured variables.

While we believe that these results likely extend to a larger class of models, our current
results are constrained to the class of simple negative control models (SNCMs), defined
above. This is still a large class of models able to represent many real-world situations.

3.2 The DNCT Validation Test

We now introduce our proposed validation test for the DNCT. For a particular treatment
and outcome, the DNCT validation test determines whether a set of three candidate NCs
is a DNCT, i.e., a triplet of disconnected NC variables. It serves as a validation test for
determining whether a proposed set of candidate NCs meets the assumptions necessary for
causal inference with NCs. This test takes the following as input:

1. A table of data, Data;

2. A variable T in the data identified as the treatment;

3. A variable O 6= T in the data identified as the outcome;

4. Three candidate NCs in the data which cannot include T or O;

5. A vanishing tetrad test, V anTetrad(S1, S2, Data)→ {TRUE,FALSE}, for two sets
S1 and S2 each containing two variables;
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6. A hyperparameter value between 0 and 1, γ, used by the vanishing tetrad test.

The output of this test is a true/false Boolean value: true indicates that the set of
three candidate NCs forms a DNCT for T and O, and false indicates that the set of three
candidate NCs is not a DNCT for T and O. Our DNCT validation test requires that six
specific vanishing tetrad tests must not reject their corresponding null hypotheses that the
determinant of a subcovariance matrix is zero, i.e., the corresponding tetrads vanish. More
specifically, let X, Y , and Z, be the three candidate NCs being tested. Our test returns
TRUE if and only if the following vanishing tetrad tests all accept their null hypotheses
that the corresponding tetrads vanish:

1. V anTetrad({X,Y }, {Z, T}, Data);

2. V anTetrad({X,Z}, {Y, T}, Data);

3. V anTetrad({Z, Y }, {X,T}, Data);

4. V anTetrad({X,Y }, {Z,O}, Data);

5. V anTetrad({X,Z}, {Y,O}, Data);

6. V anTetrad({Z, Y }, {X,O}, Data).

These six tetrad tests cover all combinations where exactly one of T or O is included in
the tetrad. Intuitively, this tests whether there is more than one pathway connecting any
of the candidate NCs to each other or to T or O.

3.3 Correctness of the DNCT Validation Test

We provide the following theorem which states that the DNCT validation test correctly
distinguishes valid DNCTs from a set of candidate NCs.

Theorem 3 Let the data be generated by a simple NC model, G, and assume Assumptions 1,
2, and 3. The DNCT validation test will return TRUE for any DNCT in G, and FALSE
otherwise.

The proof of Theorem 3 follows directly from the proof of two Lemmas, 4 and 5, which
we also present here. The proofs for those lemmas are somewhat complicated to follow, and
can be found in Appendix A.

Lemma 4 Let the data be generated by a SNCM, G. Under Assumptions 1 and 3, the
DNCT validation test will return TRUE for any DNCT in G.

This lemma states that as long as the model is a SNCM that is linear and acyclic amongst
its measured variables, and has at least 3 candidate negative controls, then if the model
contains any valid DNCTs the test will return TRUE for those triplets. Note that this
lemma does not require Assumption 2, so the test recovers true DNCTs even if the data
distribution implied by the SNCM is not faithful for vanishing tetrads.

Lemma 5 Let the data be generated by a SNCM, G. Under Assumptions 1, 2, and 3, the
DNCT validation test will return FALSE for any set of three candidate negative controls
that is not a DNCT in G.
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This lemma states that as long as the model is a SNCM that is linear and acyclic amongst
its measured variables, has at least 3 candidate negative controls, and generates a data
distribution such that tetrads vanish only if they are implied to by the model’s structure,
then if the model contains any invalid DNCTs the test will return FALSE for those triplets.
In other words, this means that the test correctly rejects invalid DNCTs so long as tetrad
faithfulness holds.

Our proofs make critical use of prior work (Sullivant et al., 2010; Spirtes, 2013). In
particular, we rely on two theorems in Spirtes (2013) which we present below. In these
theorems, A, B, SA, and SB are sets of variables. Note that because these theorems are
about populations rather than samples, our own theorems inherit this limitation and do
not include additional statistical guarantees about convergence rate (Genin, 2021).

Theorem 6 Extended Trek Separation Theorem 1 (Spirtes 2013). Suppose G is a directed
graph containing SA, A, SB, and B, and (SA;SB) t-separates A and B in G. Then for
all covariance matrices entailed by a fixed parameter structural equation model S with path
diagram G that is linear acyclic below the sets SA and SB for A and B, rank(ΣA,B) ≤
|SA|+ |SB|.

Theorem 7 Extended Trek Separation Theorem 2 (Spirtes 2013). For all directed graphs
G, if there does not exist a pair of sets SA, SB, such that (SA;SB) t-separates A and B and
|SA|+ |SB| ≤ r, then for any SA, SB there is a fixed parameter structural equation model S
with path diagram G that is linear acyclic below the sets (SA;SB) for A and B that entails
rank(ΣA,B) > r.

We here provide a brief rationale for how our proofs make use of theorems 6 and 7. By
making Assumption 3, we can directly apply the above theorems and use them in our proof
of correctness. In particular, we statistically test whether certain subcovariance matrices
are rank deficient, that is, if their rank is less than their dimension. For our application to
the simple NC models, we will consider subcovariance matrices of the measured variables
with dimension two. The presence of U ensures that there is always one trek between any
two sets of variables A and B, and the rank of their subcovariance matrix will be at least
one. If any other trek connects A to B and does not pass through U , it will force SA or SB
to contain an additional variable, increasing their collective size to two. Since two is the
dimension of the subcovariance matrix, it would not be rank deficient, and the determinant
of the subcovariance matrix would not be 0. In this way, these tetrad tests check to see if
there is any trek other than the ones through U that would connect a member on one side
of the tetrad to a member on the other side of the tetrad.

4. The Find Negative Controls Algorithm

The Find Negative Controls (FindNC) algorithm, summarized in Algorithm 1, searches
through a provided set of candidate NCs to identify triplets of candidate NCs that form a
simple NC model along with the provided treatment T and outcome O. It uses the DNCT
validation test introduced in Section 3.2, and performs a brute force search through the
space of all candidate NC triplets. It outputs a collection of all the candidate NC triplets
that passed the DNCT test, for a given T , O, and data set.
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The FindNC algorithm takes the same input as the DNCT validation test, except that
instead of investigating a set of three candidate NCs, the FindNC algorithm takes the
set of all candidate NCs as input to identify DNCTs. The FindNC algorithm has one
hyperparameter, γ, which is the threshold used for rejecting the null hypothesis in the
six vanishing tetrad tests each time it is applied. In our implementation of the FindNC
algorithm, the value for this hyperparameter is optional, and it will default to a value of n−1,
where n is the provided data set’s sample size. Numerical experiments have indicated that
this is a reasonable heuristic for choosing γ, with consistently well-balanced performance at
a large range of sample sizes.

The FindNC algorithm is a brute force search of the space of candidate NC triplets,
using the DNCT validation test. Its correctness thus depends on the completeness of its
search, and the correctness of the DNCT validation test. It is clear from its construction
that FindNC checks all possible candidate NC triplets, so its search is complete. The
correctness of the DNCT validation test was already proven (see Theorem 3). As such,
FindNC is correct under the same conditions as the DNCT validation test.

This brute force search scales approximately |V |3 for data with a set of variables V ,
since it scans through all possible triplets of variables. |V |3 is computationally feasible for
many real world domains where NCs might be used, unlike causal discovery which searches
a space that scales super exponentially with |V |. This obviates the immediate need for more
complex and efficient search procedures, and we leave the development of such procedures
for future work.

Algorithm 1: Find Negative Controls (FindNC)

Data: Data on a set of Candidate NCs (denoted as CandidateNCs), treatment T ,
and outcome O, the V anTetrad function, the DNCT validation test
introduced in Section 3.2 (denoted as DNCTvalidation), and the threshold
parameter γ

Result: A collection of validated DNCTs
1 Output← ∅
2 for X,Y, Z ∈ CandidateNCs, and X 6= Y 6= Z do
3 if DNCTvalidation(Data,X,Y,Z,T,O,γ,VanTetrad) returns TRUE then
4 Output← Output ∪ {X,Y, Z}

5 return Output

5. Data-driven Automated Negative Control Estimation (DANCE)

In this section we combine the FindNC algorithm with NC estimation of the causal effect of
treatment on outcome. We first briefly review the literature on identification and estimation
of the ATE with a double-NC pair of Z and W . Then we present methods to aggregate
information from multiple NC pairs.
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5.1 A Brief Review of Double-Negative Control Methods

Miao et al. (2018a) proved that, under a completeness assumption to ensure that Z is
sufficiently informative about U , the ATE is identified by

∆ =

∫ ∞
−∞
{h(w, t = 1)− h(w, t = 0)} f(w)dw

where h(w, t) is any solution to

E[O | T = t, Z = z] =

∫ ∞
−∞

h(w, t)f(w | z, t)dw.

The function h(w, t) has been referred to as the outcome confounding bridge function (Miao
et al., 2018b). The NC framework has been extended to proximal causal inference with an
alternative identification via the treatment confounding bridge (Tchetgen Tchetgen et al.,
2020; Cui et al., 2023). The outcome and treatment confounding bridge functions are anal-
ogous to the outcome regression and propensity score models, respectively, in the classical
setting when all confounders are measured. In the following, we focus on the outcome con-
founding bridge function, as similar estimation strategies can be applied to the treatment
confounding bridge function.

In practice, one could specify a parametric model h(W,T ;α) and jointly estimate θ =
(α,∆) by generalized method of moments (GMM) (Miao et al., 2018b; Tchetgen Tchetgen
et al., 2020) with the following moment restrictions

g(O, T, Z,W ; θ) =

[
q(1, Z, T ){O − h(W,T ;α)}

∆− {h(W,T = 1)− h(W,T = 0)}

]
, (2)

where q is a vector function of the same dimension as α. Specifying an identity weighting
matrix, the GMM estimator for θ is

θ̂ = arg min
θ
g>g, (3)

where g = n−1
∑n

i=1 g(Oi, Ti, Zi,Wi; θ) is the average over a sample of n observations.
Asymptotic variance can also be estimated (White, 1980; Hansen, 1982; Newey and West,
1987). The above results and methods are still valid with measured confounders. Specif-
ically, to adjust for measured confounders, denoted as X, we solve for moment condition
E[g(O, T, Z,W,X; θ)] = 0 where

g(O, T, Z,W,X; θ) =

[
q(1, Z, T,X){O − h(W,T,X;α)}

∆− {h(W,T = 1, X)− h(W,T = 0, X)}

]
. (4)

In the special case where each child-parent family in the graph G represents a linear
SEM, we have

h(W,T ; θ) = α0 + α1W + ∆T,

where θ = (α0, α1,∆)>, and correspondingly,

g(O, T, Z,W ; θ) = (1, Z, T )>{O − h(W,T ; θ)}.
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Therefore the moment condition E[g(O, T, Z,W ; θ)] = 0 can be solved by two-stage least
squares (Angrist and Imbens, 1995; Wooldridge, 2010; Tchetgen Tchetgen et al., 2020). In
fact, under linear SEM, Kuroki and Pearl (2014) showed that the causal effect identified
from a pair of disconnected NCs has a closed form solution which is given by

∆ =
Cov(T,O)Cov(Z,W )− Cov(Z,O)Cov(T,W )

Cov(T, T )Cov(Z,W )− Cov(T,Z)Cov(T,W )

=
Cov(T,O)Cov(Z,W )− Cov(W,O)Cov(T,Z)

Cov(T, T )Cov(Z,W )− Cov(T,Z)Cov(T,W )
,

where the second equality is due to the vanishing tetrad Cov(Z,O)Cov(T,W )−Cov(W,O)
Cov(T,Z) = 0.

5.2 Aggregate Multiple Double-Negative Controls to Estimate the ATE

The FindNC algorithm outputs one or more validated DNCTs, if it detects any valid
DNCTs. For each triplet, one can define six possible double-NC pairs each generating
a distinct ATE estimate. Therefore, it is necessary to aggregate all six pairs of double-NCs
to estimate the ATE. Aggregation can also improve estimation efficiency compared to using
one single pair of NCs. In the presence of multiple triplets, there could be overlapping NC
pairs, making aggregation more challenging. In this section, we propose methods to aggre-
gate all possible pairs of double-NCs to estimate the ATE assuming an outcome confounding
bridge function h(W,T,X;α) defined in (4).

It is important to note that α in the outcome confounding bridge function h(W,T,X;α)
is the same regardless of what Z is, and ∆ is the same regardless of what the outcome
confounding bridge function is. Therefore, for different NC pairs, α may be shared and ∆
must be shared. Jointly estimating all parameters while acknowledging that certain param-
eters are shared by different NC pairs can improve efficiency. To do so, one could stack all
moment restrictions g(O, T, Z,W ; θ) each corresponding to a double-NC pair, then estimate
the unique parameters via GMM. We provide details about this approach in Appendix B.

In practice, such a joint estimation method can be computationally challenging due
to jointly estimating an excessive number of parameters. We thus propose two practical
approaches to aggregate information from multiple DNCTs selected by the FindNC algo-
rithm. The first is a majority vote method: we take the most frequently selected pair of NC
variables among all triplets, then follow Section 5.1 to estimate a single ATE. This majority
vote method is convenient but does not fully utilize all available information.

The second method is to estimate the ATE based on each double-NC pair, and then
take a weighted average, where the weights are proportional to the frequency that each
NC pair is selected. Asymptotic variance of the weighted average can be estimated by
nonparametric bootstrapping. Alternatively, one could aggregate the moment restrictions
(2) from all double-NCs and then compute a sandwich variance estimator that takes into
account the correlation between different ATE estimates obtained from different NC pairs.
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We summarize this method in Algorithm 2, referred to as the Aggregated Negative Control
Estimation.

Algorithm 2: Aggregated Negative Control Estimation

Data: Data, DNCTs, treatment T , and outcome O
Result: A point estimate ∆̂ and confidence interval (CI) for the effect of T on O

aggregated from all NC pairs in the DNCTs
1 Estimates← ∅
2 for (NC1, NC2, NC3) ∈ DNCTs do
3 for each pair (NC,NC ′) ∈ (NC1, NC2, NC3) do

4 Let Z = NC, W = NC ′, solve for ∆̂ from (3)

5 Estimates← Estimates ∪ {∆̂}
6 Let Z = NC ′, W = NC, solve for ∆̂ from (3)

7 Estimates← Estimates ∪ {∆̂}

8 Aggregate point estimates ∆̂← weighted average of Estimates
9 Compute confidence interval via either nonparametric bootstrapping or GMM with

aggregated moment restrictions detailed in Appendix B.2

10 return 〈∆̂, CI〉

5.3 Data-driven Automated Negative Control Estimation

Finally, we combine the FindNC algorithm (Algorithm 1) and the Aggregated Negative
Control Estimation algorithm (Algorithm 2) into the DANCE algorithm, summarized in
Algorithm 3. DANCE first identifies subsets of a set of candidate NC variables that satisfy
the assumptions of disconnected NCs, then applies the double-NC method to each pair
of these validated NC variables, and finally aggregates information from the outputs to
produce an unbiased point estimate and confidence interval for the causal effect of interest
in the presence of an unmeasured confounder.

Algorithm 3: Data-driven Automated Negative Control Estimation (DANCE)

Data: Data on a set of Candidate NCs (denoted as CandidateNCs), treatment T ,
and outcome O, the V anTetrad function, the FindNC algorithm, the
Aggregated Negative Control Estimation (AggregatedNCE) algorithm and
the threshold parameter γ

Result: A point estimate ∆̂ and confidence interval (CI) for the effect of T on O
1 DNCTs ← FindNC(Data,CandidateNCs, T,O, V anTetrad, γ)

2 〈∆̂, CI〉 ← AggregatedNCE(Data,DNCTs, T,O, θ)

3 return 〈∆̂, CI〉

6. Simulation Study

We perform simulation studies to evaluate the performance of the DANCE algorithm in
detecting NCs and estimating the ATE. In these studies, data are generated based on linear
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SEMs under two graphical structures: a simple graph and a complex graph, as presented in
Figure 2, in which red arrows may lead to violation of the DNCT assumptions for certain
NC candidate variables. We first simulate an unmeasured confounder, then all the other
variables are generated based on linear SEMs, with edge strengths randomly sampled from
uniform distributions. Details about the model parameters and data generating mecha-
nisms are detailed in Appendix C. We consider various sample sizes ranging from 10 to
1,000 for evaluation of NC validation and sample sizes from 300 to 10,000 for evaluation
of ATE estimation. We used larger sample sizes for evaluation of ATE estimation to avoid
potential computational non-convergence issues. Simulation results are summarized over
200 replications.

T O

U
Z1

Z2

Z3

Z4

(a) Simple Graph

T O

U
Z1

Z2
Z3

Z4

Z5

Z6

Z7

(b) Complex Graph

Figure 2: The two different configurations used in the simulation study with a treatment
T , an outcome O, an unmeasured confounder U , and multiple candidate NCs Z1, . . . , Z7.
Due to the existence of red arrows, some candidate NC triplets are not DNCTs.

With data generated from either simple or complex graphical structure, we conduct
the following two evaluations. To assess the algorithm’s ability to validate candidate NC
variables, we plot ROC curves under varying thresholds used for rejecting the null hypothesis
in the vanishing tetrad test. To assess the algorithm’s accuracy in estimating the causal
effect, we compute proportion bias, variance, and coverage probability comparing DANCE
algorithm with the following methods:

1. Naive: naive regression that ignores unmeasured confounding;

2. No validation (pair): randomly select a pair of NCs without validation to adjust for
unmeasured confounding via the double-NC method.

3. No validation (all): use all possible NCs pairs to adjust for unmeasured confounding
via Algorithm 2.

4. DANCE (all): use Algorithm 3.

5. DANCE (best): among all DNCTs selected from Algorithm 1, use the one that is most
likely to be valid, then apply Algorithm 2

For DANCE (best), we find the DNCT most likely to be valid based on p-values from the
vanishing tetrad tests. Recall from Section 3.2 that for each triplet, our DNCT valida-
tion test requires that six vanishing tetrad tests must not reject their corresponding null
hypotheses that the determinant of a subcovariance matrix is zero, i.e., the corresponding
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tetrads vanish. Therefore, we first find the minimum p-value among the six vanishing tetrad
tests for each DNCT, then select the DNCT with the hightest minimum p-value.

(a) ROC curve (simple graph) (b) ROC curve (complex graph)
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Figure 3: Simulation results with data generated under simple and complex graphical struc-
tures. The first row presents ROC curves for NC validation, and the second row presents
proportion bias for each method in estimating the ATE. The solid circle and empty circle
on each ROC curve correspond to γ = 1/n and 2/n, respectively.

Graph Method
Bias Proportion Monte Carlo Estimated 95% CI

(10−3) Bias (%) SE (10−3) SE (10−3) Coverage

Sample size 1000 3000 1000 3000 1000 3000 1000 3000 1000 3000

Simple
No validation (pair) 67.50 81.90 10.78 13.08 171.10 160.48 68.91 39.27 0.77 0.76
No validation (all) 62.63 67.96 10.00 10.85 48.95 30.50 50.83 29.10 0.79 0.37

DANCE (all) -6.68 0.08 -1.07 0.01 57.38 34.29 57.86 32.95 0.94 0.94
DANCE (best) -6.96 0.68 -1.11 1.09 58.77 34.82 58.79 33.46 0.94 0.94

Complex
No validation (pair) 96.31 57.04 15.38 9.10 172.42 140.41 56.24 34.02 0.70 0.79
No validation (all) 86.55 91.52 13.82 14.61 40.59 25.04 41.95 24.06 0.44 0.05

DANCE (all) -5.45 1.11 -0.87 0.18 47.46 28.06 47.99 27.41 0.96 0.93
DANCE (best) -6.90 1.03 -1.10 0.17 48.35 29.09 50.51 29.02 0.97 0.95

Table 1: Operation characteristics of different estimators with various approaches for se-
lecting NCs under simple and complex graphs.
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Figure 3 presents the ROC curves for validation of NCs and the proportion bias for
estimation of the ATE. Each point on each ROC curve is computed by averaging the true
and false positive rate over 200 simulated data sets. We further mark two candidate values
of the threshold for rejecting the null hypothesis in a vanishing tetrad test, γ = 1/n and
2/n, on the ROC curve with solid circle and empty circle, respectively, to evaluate the
impact of choice of γ. The proportion bias is computed by first dividing bias by the true
ATE value, then averaging over 200 replications.

Under both simple (Figure 3a) and complex (Figure 3b) graphical structures, we observe
improved ROC curve with near perfect separation between valid and invalid NCs when the
sample size is greater than or equal to 300. In addition, we found that the default value of
γ, 1/n, tends to lead to high sensitivity but also low specificity, while a larger value such
as 2/n may improve specificity at the price of a lower sensitivity. The difference between
such choices of γ becomes small with a modest sample size of 100. Therefore, in practice,
we recommend collecting as much data as possible, and consider the trade-off between
sensitivity and specificity when choosing a threshold.

In terms of estimation bias (Figures 3c and 3d and Table 1), DANCE provides an un-
biased estimate with improved precision as sample size increases. In particular, DANCE
(all) tends to be more efficient than DANCE (best) with smaller Monte Carlo standard
error, because it integrates information from all validated NC triplets. In contrast, estima-
tors without validating NCs (the no validation (pair) and no validation (all) methods) are
substantially biased. Moreover, DANCE provides valid inference with coverage probability
close to the nominal level of 95%. We also observe that, without NC validation, estima-
tion bias tends to be larger under complex graphical structure than simple structure. This
is because when data are generated under the simple graphical structure as presented in
Figure 2a, there are two DNCTs out of four candidate NC triplets: (Z1, Z3, Z4) and (Z2,
Z3, Z4), while under the complex graphical structure as presented in Figure 2b, there are
12 DNCTs out of 35 candidate NC triplets. Therefore, the no validation methods have
50% and 34% chance of correctly selecting valid NCs under the simple and complex graph,
respectively.

We further investigate the performance of our proposed method under stronger edge
strength in the linear SEMs generating the data. In addition, to assess the sensitivity of
the vanishing tetrad test to violations of Gaussian assumptions, we perform simulations in
which all variables follow Bernoulli distributions rather than Gaussian distributions. The
simulation results are presented in Appendix D. We observe similar results under these more
challenging settings.

7. Demonstration on Real World Data

We illustrate our proposed methods with an application to the Study to Understand Prog-
noses and Preferences for Outcomes and Risks of Treatments (SUPPORT) to evaluate the
effectiveness of right heart catheterization (RHC) procedure among seriously ill hospitalized
adults admitted to the intensive care unit (ICU) (Connors et al., 1996). Many physicians
believed that measurements from the RHC procedure can guide therapy and lead to bet-
ter outcomes for critically ill patients. Due to its popularity and physicians’ strong belief,
conducting a clinical trial was unethical. In the absence of an RCT, the SUPPORT team
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conducted an observational study to evaluate the effectiveness of the RHC procedure. Out
of 5,735 critically-ill patients who were considered for the RHC procedure on their admission
to an ICU. RHC was performed in 2,184 patients, and the remaining 3,551 patients were
managed without RHC. As an observational study, this study does not claim to produce
a causal effect estimate. They found that, contrary to expectation, RHC was associated
with increased mortality. There was thus concern that such a detected association, with
a direction opposite to physicians’ belief, is subject to residual confounding. Due to this
controversial result, this data set has been further analyzed by many researchers (Lin et al.,
1998; Tan, 2006; Li et al., 2018; Mao and Li, 2020; Tchetgen Tchetgen et al., 2020).

A particular concern has been the potential of hidden bias due to confounding. In this
application, we aim to find and apply NC variables to estimate the causal effect of RHC on
30-day survival defined as the number of days between admission and death or censoring
at 30 days, while accounting for potential unmeasured confounding. The SUPPORT study
measured an extensive set of 72 covariates including demographics, comorbidity, vital signs,
physiological status, and functional status. We applied our DANCE algorithm to all mea-
sured covariates to find valid NCs. Our algorithm identified 43 DNCTs which resulted in
164 unique double-NC pairs out of a total of 258 pairs. The most frequently selected pair of
NC variables were two comorbidity variables: one is dementhx which stands for dementia,
stroke or cerebral infarct, Parkinson’s disease, and the other is gibledhx which stands for
upper gastrointestinal (GI) bleeding. Figure 4 presents the corresponding causal diagram
with the two most frequently selected variables. We applied the double-NC method in-
troduced in Section 5.1 using this pair while adjusting for the 42 measured covariates not
selected into the DNCTs. Direct adjustment of the measured covariates would lead to a
large number of parameters to be estimated for each outcome confounding bridge. With
164 unique double-NC pairs, the total number of parameters to be estimated is extremely
large. Therefore, instead of directly adjusting for measured covariates, we adjusted for cubic
spline basis of the propensity score obtained by regressing the treatment on the 42 measured
covariates via logistic regression. We also applied the method introduced in Section 5.2 to
aggregate the estimated RHC effects based on all selected pairs. We further implemented
a simple linear regression that regresses the outcome on all measured covariates without
any attempt to control for unmeasured confounding. Table 2 presents the estimated effect

U

T O WZ

unmeasured
confounder

RHC SurvivalDementia, stroke
or cerebral infarct,
Parkinson’s disease

Upper
gastrointestinal

bleeding

Figure 4: Causal graph for the real-world example with the two most frequently selected
disconnected NCs (Z and W), suppressing the measured covariates X which is implicitly
conditioned on in all arguments.

of RHC on days alive since admission to ICU up to 30 days. Similar to the simple linear
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regression, our methods estimated that RHC has a negative effect on 30-day survival among
adults admitted to the ICU. However, different from the regression adjustment approach,
our methods provided a 95% confidence interval that covers zero, which is evidence of the
uncertainty due to potential unmeasured confounding. An interesting observation is that
we obtained very similar results when flipping variables (dementhx and gibledhx) allocated
to W and Z. As discussed in Tchetgen Tchetgen et al. (2020), under the causal graph in
Figure 1, the role of W and Z are equivalent, hence causal inference would remain invariant
to the choice of W and Z in the double-NC method. Therefore the similarity in our results
is strong evidence that the identified pair of NCs satisfy the causal graph in Figure 1. In
addition, despite the relatively wide confidence intervals from the majority vote method, we
were able to provide more precise inference with a narrow confidence interval by aggregating
information from all selected NCs.

Method RHC effect on days alive (95% CI)

Regression ignoring unmeasured confounding -1.29 (-1.83, -0.75)

Most frequent W=dementhx†, Z=gibledhx‡ -2.98 (-14.96, 8.99)
NC pair W=gibledhx, Z=dementhx -2.80 (-13.42, 7.83)

Aggregate over all NC pairs -0.19 (-1.50, 1.12)
† Dementia, stroke or cerebral infarct, Parkinson’s disease. ‡ Upper GI bleeding.

Table 2: Results from application to the right heart catherization study.

8. Discussion

In this paper we introduced a new test for validating candidate NC variables (i.e., the DNCT
validation test), proved its correctness, implemented a correct search procedure using it (i.e.,
the FindNC algorithm), evaluated the search procedure’s performance in simulations, and
combined this search procedure with a negative control estimation procedure to produce
the DANCE method for causal inference, which we evaluated with simulations and demon-
strated on a real world data set. DANCE allows for causal inference in the presence of
an unmeasured confounder, but does not assume that the user can identify precisely which
variables in the data set meet the strict requirements of NCs. It instead asks only for a
collection of candidate NC variables. If no subset of variables passes the DNCT validation
test, then DANCE does not produce an estimate, but reports that no variables meet the
condition. As such, DANCE does not assume that the provided set of variables includes
valid NCs, either.

The methods we provide here still have some limitations. The validation method we
provide will throw out some NCs that satisfy a DAG different than Figure 1. Our correctness
proof for the NC validation test assumes continuous variables with linear relationships, while
many real world scenarios involve binary or categorical variables. DANCE may still work
for binary variables, as shown in our simulation study in Appendix D, but this is currently
lacking a formal proof. Our correctness proof currently also assumes that the data are
generated by a large but still limited set of structures. It is possible to test more general
assumptions and more complex structures, and to rule out candidate NCs that do not meet
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these structural requirements using methods from the causal discovery literature, but at
present there is no proof for the correctness of a more complex method.

In addition, although the proposed Aggregated Negative Control Estimation uses the fre-
quency that each NC pair is selected as weights, one can also consider data-driven methods
to select optimal weights that maximize estimation efficiency. Statistical inference should
then take into account the selection of weights. Methods for selection of optimal weights
warrants future research.

DANCE can be compared to instrumental variable methods (Bowden and Turkington,
1990; Angrist et al., 1996; Greenland, 2000; Martens et al., 2006; Pearl, 2013) and other ex-
isting negative control methods for estimating causal effects in the presence of unmeasured
confounding. The primary merit of DANCE with respect to instrumental variable methods
is that DANCE is bundled with a method for validating many of its own structural assump-
tions from data. Instrumental variable methods typically require expert opinion to validate
assumptions and find instruments. There are some exceptions, such as recent progress on
validating instrumental variables and invalid instruments, although these methods (Kang
et al., 2016; Silva and Shimizu, 2017; Xie et al., 2022; Burauel, 2023) will not be applicable
under circumstances where candidate negative control variables are available but candidate
instrumental variables are not. In addition, a valid instrumental variable is a special case
of a valid negative control exposure, and an invalid instrumental variable that is associated
with the unmeasured confounder is also a valid negative control exposure (Shi et al., 2020b).
Thus both valid and invalid instruments may be used in the estimation step of DANCE.
Relative to other negative control methods, DANCE can (1) validate candidate negative
controls prior to calculating its causal parameter estimate and (2) combine multiple pairs of
negative control variables to provide an aggregated estimate, thereby increasing estimation
efficiency. To our knowledge DANCE is the first data-driven method to validate negative
controls. This does come with some limitations however, as DANCE is more restrictive with
regards to the type of negative controls that it can validate. In addition, once validated,
there will be at least three negative controls that enter the estimation step, whereas other
existing negative control methods (for estimation only) require only one or two negative
control variables (Shi et al., 2020b).

Future work can improve the computational efficiency of the validation methods pre-
sented here, relax some of the assumptions or limitations, or apply similar techniques to
different problems. More complex structural scenarios should also be considered, such as
when there is more than one unmeasured confounder.
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Appendix A. Technical Lemmas and Proof of Theorem 3

Here we present the proofs for the two technical lemmas that are essential to proving
Theorem 3.
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Recall that Lemma 4 states: “Let the data be generated by a SNCM, G. Under
Assumptions 1 and 3, the DNCT validation test will return TRUE for any DNCT in G.”

Proof Let {A,B,C} be an arbitrary DNCT in G. By construction, our DNCT validation
test will return TRUE only for candidate negative control triplets in the simple NC model
G for which all 3 vanishing tetrad tests consisting of the members of the triplet and T ,
and all 3 vanishing tetrad tests consisting of the members of the triplet and O, do not
reject the corresponding null hypothesis that the determinant of subcovariance matrix is 0.
We proceed by showing that the null hypotheses investigated by these 6 tests will not be
rejected.

Since {A,B,C} is an arbitrary DNCT in G, by definition of DNCT U must be on all
treks from each of {A,B,C} to every variable in {A,B,C}. By the construction of G as
an simple NC model, U is also on all treks from each member of {A,B,C} to T and to
O. From this point, we can set ourselves up to apply Theorem 6. By the construction of
the simple NC model, U is not only on all of the aforementioned treks, but it is also the
source of those treks. As such, without loss of generality let U ∈ SA and let SB = ∅ (as
compared to the converse). Then for all partitions of {A,B,C, T} and {A,B,C,O} into
sets S1 and S2 with |S1| = |S2|, (SA;SB) t-separates S1 and S2 in G, since U is the source
of all treks among every pair of variables in {A,B,C, T}, and the same for {A,B,C,O}.
Finally, with this setup and Assumptions 1 and 3, we can apply Theorem 6, implying that
rank(ΣS1,S2) ≤ |SA|+ |SB|. Because |SA|+ |SB| = 1, we have that ΣS1,S2 , a 2 by 2 matrix,
is rank deficient, and has a determinant of 0. As such, V anTetrad(S1, S2) will not reject
the null hypothesis for all such sets S1 and S2.

Recall that Lemma 5 states “Let the data be generated by a SNCM, G. Under As-
sumptions 1—3, the DNCT validation test will return FALSE for any set of three candidate
negative controls that is not a DNCT in G.”

Proof Let {A,B,C} be an arbitrary triplet of distinct candidate negative controls that
is not a DNCT in G. It will suffice to show that for some partition of {A,B,C, T} (or
{A,B,C,O}) into sets S1 and S2 with |S1| = |S2|, V anTetrad(S1, S2) will reject the null
hypothesis that det(ΣS1,S2) = 0.

Assumptions 2 and 3 together imply that if there is no SA and SB that t-separate S1
from S2 such that |SA| + |SB| ≤ 1, then rank(ΣS1,S2) > 1, and thus det(ΣS1,S2) 6= 0.
In the large sample limit, V anTetrad(S1, S2) would thus reject the null hypothesis that
det(ΣS1,S2) = 0. Therefore, it suffices to show that there is no SA and SB that t-separate
S1 from S2 such that |SA|+ |SB| ≤ 1.

Since {A,B,C} is not a DNCT, this implies that there is at least one trek from one
member of {A,B,C} to another that does not pass through U . Without loss of generality,
assume this trek goes from A to B. Let S1 = {A,C} and S2 = {B, T}. By construction
of the simple NC model, U is the source of at least one trek from A to B, with no other
variables along that trek.

Let sets SA and SB t-separate S1 from S2 with SA on the S1 side of the t-separating set
and SB on the S2 side of the t-separating set. By excluded middle, either (I) SA includes A
or SB includes B, or (II) SA does not include A and SB does not include B. We proceed by
disjunctive elimination, showing that assuming either (I) or (II) entails that |SA|+ |SB| ≥ 2.
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First, assume (I). Further, without loss of generality assume that A ∈ SA (as compared
to B ∈ SB). This blocks both treks from A to B. By the construction of G as an simple
NC model, there is also a trek from C to T that passes only through U , so either C, T , or
U need to be included in either SA or SB. Since A is assumed to be in SA, this entails that
|SA|+ |SB| ≥ 2.

Second, assume (II). Since SA and SB are assumed to t-separate S1 from S2, but SA
does not include A, SB does not include B, and the extra trek between A and B does
not include U , there must be another variable, Y 6∈ {A,B,U}, that blocks the extra trek
between A and B when placed into either SA or SB. However Y does not block the trek
from A to B that passes only through U , so an additional variable (U) must be added to
SA or SB in order to block that trek as well, thus |SA|+ |SB| ≥ 2.

Therefore, by disjunctive elimination, |SA|+ |SB| ≥ 2. This implies that there is no SA
and SB that t-separate S1 from S2 such that |SA|+ |SB| ≤ 1, and so the DNCT validation
test will return FALSE for {A,B,C}.

Appendix B. Joint Estimation and Inference via Aggregated Moment
Restrictions

B.1 Aggregated Estimation With One or More DNCTs

We illustrate our method to aggregate multiple double-negative control pairs across one or
more validated DNCTs taking one triplet as an example. For one triplet, {A,B,C}, one
can define six possible double-negative control pairs each generating a distinct ATE, which
are {W = A,Z = B}, {W = B,Z = A}, {W = A,Z = C}, {W = C,Z = A}, {W = B,Z =
C}, {W = C,Z = B} as listed in Table 3.

W Z Freq

A B 1

B A 1

A C 1

C A 1

B C 1

C B 1

Table 3: All possible double-NC pairs from one single triplet, {A,B,C}, and their frequencies.
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Correspondingly, we have six moment restrictions and we stack them into the following
joint moment restrictions:

g(O, T,A,B,C,X;αA, αB, αC ,∆)

=



q(1, Z = B, T,X){O − h(W = A, T,X;αA)
q(1, Z = C, T,X){O − h(W = A, T,X;αA)
q(1, Z = A, T,X){O − h(W = B, T,X;αB)
q(1, Z = C, T,X){O − h(W = B, T,X;αB)
q(1, Z = A, T,X){O − h(W = C, T,X;αC)
q(1, Z = B, T,X){O − h(W = C, T,X;αC)

 ,

where αi, i ∈ {A,B,C} is the same regardless of what Z is, and ∆ is the same regardless
of what the outcome confounding bridge function is. For example, A is an NCO in two
negative control pairs: {W = A,Z = B} and {W = A,Z = C}. Consequently, there
are two moment functions that share the same parameter αA in the outcome confounding
bridge function. With three disconnected negative controls, there are three unique outcome
confounding bridge functions h(W = i, T = 1, X;αi), i ∈ {A,B,C} . In addition, all three
confounding bridge functions lead to the same ATE ∆, that is, ∆ = E[h(W = i, T =
1, X;αi) − h(W = i, T = 0, X;αi)], for all i ∈ {A,B,C}. Therefore, we compute ∆ as an
average of the three

∆ =
∑

i∈{A,B,C}

ωi

{
E[h(W = i, T = 1, X;αi)− h(W = i, T = 0, X;αi)]

}
,

where ωi ∝ {number of all possible moment restrictions for αi} and
∑

i∈{A,B,C} ωi = 1. In
fact, the number of all possible moment restrictions for αi is equal to

∑
W=i,Z∈{A,B,C}\{i}

FreqW,Z ,

where FreqW,Z is the frequency of the NC pair {W,Z} as listed in Table 3. That is, ωi =
2/6 = 1/3. With the aggregated moment restrictions, we can estimate and make statistical
inference on (αA, αB, αC ,∆) simultaneously using GMM.

Now consider two triplets, {A,B,C} and {A,B,D}. One can define the following ten
double-NC pairs in Table 4, where {W = A,Z = B} and {W = B,Z = A} would appear
twice because they are selected in both triplets. In this case, the moment restrictions

24



Data-driven Automated Negative Control Estimation

W Z Freq

A B 2

B A 2

A C 1

C A 1

B C 1

C B 1

A D 1

D A 1

B D 1

D B 1

Table 4: All possible double-NC pairs from two triplets, {A,B,C} and {A,B,D}, and their
frequencies.

become

g(O, T,A,B,C,X;αA, αB, αC ,∆)

=



q(1, Z = B, T,X){O − h(W = A, T,X;αA)
q(1, Z = C, T,X){O − h(W = A, T,X;αA)
q(1, Z = D,T,X){O − h(W = A, T,X;αA)
q(1, Z = A, T,X){O − h(W = B, T,X;αB)
q(1, Z = C, T,X){O − h(W = B, T,X;αB)
q(1, Z = D,T,X){O − h(W = B, T,X;αB)
q(1, Z = A, T,X){O − h(W = C, T,X;αC)
q(1, Z = B, T,X){O − h(W = C, T,X;αC)
q(1, Z = A, T,X){O − h(W = D,T,X;αD)
q(1, Z = B, T,X){O − h(W = D,T,X;αD)


,

Similar to the scenario of one single triplet, all four confounding bridge functions lead to
the same ATE ∆. However, because {W = A,Z = B} and {W = B,Z = A} have a
frequency of two, in principle the 1st and the 4th restrictions should in fact both appear
twice. This also reflect the fact that more frequently selected double-NC pairs are more
likely to be valid NCs, and hence are accounted more during estimation. As such, we have
the following weighted average

∆ =
∑

i∈{A,B,C,D}

ωi

{
E[h(W = i, T = 1, X;αi)− h(W = i, T = 0, X;αi)]

}
,

where ωi ∝ {number of all possible moment restrictions for αi} and
∑

i∈{A,B,C,D} ωi = 1.
Similarly, the number of all possible moment restrictions for αi is equal to∑

W=i,Z∈{A,B,C,D}\{i}

FreqW,Z ,

where FreqW,Z is the frequency of the NC pair {W,Z} as listed in Table 4. That is, ωA =
ωB = 4/12, while ωC = ωD = 2/12.
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With multiple DNCTs, there would be more NCOs each corresponding to an outcome
confounding bridge function. As such, the number of α parameters as well as the dimen-
sion of parameters will grow rapidly, making it computationally challenging to estimate
all parameters jointly. The disadvantage of the joint estimation method in terms of lack of
computational efficiency may offset the advantage in terms of improved statistical efficiency.

B.2 Variance Estimation

For one triplet, one can define six possible negative control pairs each generating a distinct
ATE estimate, while for multiple triplets, there could be overlapping negative control pairs.

For two DCNTs, if there are overlapping negative control pairs selected, then we will have
different frequency for different negative control pairs. For example, suppose we identified
two DCNTs, {NC1,NC2,NC3} and {NC1,NC2,NC4}, in which NC1 and NC2 appears in
both triplets. Then there are ten rather than twelve unique negative control pairs, and the
frequency of negative control pairs {W = NC1, Z = NC2} and {W = NC2, Z = NC1} is
two while the frequency of the rest of the negative control pairs is one. We take an weighted
average of the corresponding ten ATE estimates where the weights are proportional to the
frequency. Because the aggregated ATE is a linear combination of the unique ATE estimates
from individual negative control pairs, it becomes clear that if we can compute the variance-
covariance matrix of the ATEs estimated from the unique negative control pairs, then the
variance of the aggregated ATE can be computed. We detail our inference method for the
aggregated ATE below.

We first introduce notation. Suppose there are K unique negative control pairs denoted
by {Zk,W k : k = 1, . . . ,K}. We observe a sample of n observations and for the k-
th negative control pair we use {Ti, Oi, Zki ,W k

i : i = 1, . . . , n} to obtain the k-th ATE

estimate. Specifically, let θ̂k = (α̂k, ∆̂k) = arg minθ gk
>
gk where

gk = gk(Oi, Ti,W
k
i , Z

k
i ; θ) =

1

n

n∑
i=1

g(Oi, Ti,W
k
i , Z

k
i ; θ)

and g() is given in eq. (2). Then we define the final aggregated ATE as a weighted average
of the ATE estimates from the negative control pairs

∆̂ =
K∑
k=1

wk∆̂
k,

where the weight wk is proportional to the frequency of the k-th negative control pair. Let

θ̂ =
{

(θ̂1)>, . . . , (θ̂K)>
}>

and

Gn(θ̂) =
{
g1(Oi, Ti,W

1
i , Z

1
i ; θ̂1)>, . . . , gK(Oi, Ti,W

K
i , Z

K
i ; θ̂K)>

}>
An(θ̂) =

∂

∂θ
Gn(θ̂)

Bn(θ̂) = nGn(θ̂)Gn(θ̂)>,
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then we have the following empirical sandwich estimator of the variance-covariance matrix
of θ̂

V (θ̂) = An(θ̂)−1Bn(θ̂)An(θ̂)−1.

Note that the aggregated ATE is a linear combination of θ̂ given by

∆̂ = ω>θ,

where ω = (
−→
0 1, w1, . . . ,

−→
0 K , wK)> and

−→
0 k is a zero vector of the same dimension as αk,

k = 1, . . . ,K. Therefore, the variance of ∆̂ is

V (∆̂) = ω>V (θ̂)ω.

Appendix C. Data Generating Mechanisms in Simulation Studies

The data generation procedure of the simulation studies is presented below.

In each scenario, data are generated based on linear SEMs under a given graphical
structure (Figure 2). Specifically, in the Gaussian graphical model scenario, we first sim-
ulate an unmeasured confounder U following a Normal(0, 2) distribution. Then all the
other variables are generated based on linear SEMs with exogenous error terms following
a Normal(0, 1) distribution. The coefficients in the SEMs were randomly simulated from
uniform distributions with certain parameters as detailed in Table 5, and then fixed over
all iterations. We generate edges that potentially lead to violation of the disconnected neg-
ative control assumptions, i.e., edges between negative controls highlighted in red color in
Figure 2, such as the Z1 → Z2 in Figures 2a and 2b. We make the strength of such edges
stronger by generating the coefficient of negative controls from the uniform distribution
with larger parameters than the other coefficients (coefficients of U and T ) as detailed in
Table 5. For example, under the weak edge strength scenario, coefficients of U and T follow
a Uniform distribution between 0.3 and 0.7, and the coefficients of negative controls follow
a Uniform distribution between 1.0 and 2.0.

In the binary graphical models scenario, all variables are generated from Bernoulli dis-
tributions. We first simulate an unmeasured confounder from a Bernoulli distribution with
success probability 0.5. Then we generate all other nodes following Figure 2 from Bernoulli
distributions with success probability being the sigmoid function of a linear structural equa-
tion. Coefficients of all variables (which are on the log odds ratio scale) are generated from
a Uniform distribution between 1.0 and 2.0, and the intercept is fixed at -1.0.

Distribution
Edge Coefficient Coefficient Unmeasured

Strength of U and T of NCs Confounder

Gaussian
weak Unif(0.3, 0.7) Unif(1.0, 2.0) Normal(0, 2)

strong Unif(0.6, 1.0) Unif(2.0, 4.0) Normal(0, 2)

Binary Unif(1.0, 2.0) Unif(1.0, 2.0) Bernoulli(0.5)

Table 5: Parameters in data generating SEMs under Gaussian and binary graphical models.
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Appendix D. Additional Simulation Results

To test robustness of the DANCE algorithm, we performed simulation studies under two
additional scenarios:

• Stronger edges in the Gaussian graphical models;

• All variables are binary following Bernoulli distributions.

Figure 5 shows the ROC curves for validation of negative controls and the proportion bias
for estimation of the ATE when the data were generated under stronger edge strength than
Figure 3, and Table 6 presents additional information on the performance of ATE estima-
tion. We observe even more improved ROC curve with near perfect separation between
valid and invalid negative controls when the sample size is greater than or equal to 100.
In addition, similar to the results under weak edge strength, DANCE provides an unbiased
estimate of ATE whereas estimation without NC validation showed statistically significant
bias even with large sample size for both simple and complex graphs. DANCE also has near
95% coverage probability.

Figure 6 shows the ROC curves for validation of negative controls and the proportion
bias for estimation of the ATE when all random variables generated are binary. As the ROC
curve shows, the DANCE algorithm performs well under binary cases under both simple
and complex graphical structures. DANCE’s estimation of ATE is uniformly better than
the Naive and No validation methods.

Notably, in both Figures 5 and 6, we marked on the ROC curve two candidate values of
the threshold for rejecting the null hypothesis in a vanishing tetrad test, γ. For continuous
data, similar to before, the difference between such choices of γ becomes negligible with a
modest sample size of 100; for binary data, due to less information compared to continuous
variables, a higher γ level may be preferred to achieve modest level of both sensitivity and
specificity when sample size is less than 100.

Graph Method
Bias Proportion Monte Carlo Estimated 95% CI

(10−3) Bias (%) SE (10−3) SE (10−3) Coverage

Sample size 1000 3000 1000 3000 1000 3000 1000 3000 1000 3000

Simple
No validation (pair) 75.76 89.66 8.61 10.19 181.88 178.83 53.91 29.94 0.78 0.74
No validation (all) 72.02 76.85 8.18 8.73 40.73 26.34 42.52 24.48 0.58 0.13

DANCE (all) -3.99 1.21 -0.45 0.14 45.29 28.53 46.67 26.84 0.95 0.94
DANCE (best) -4.25 1.34 -0.48 0.15 45.14 28.43 46.84 26.91 0.95 0.95

Complex
No validation (pair) 101.59 60.47 11.54 6.87 182.58 148.75 51.01 31.20 0.69 0.75
No validation (all) 92.50 97.10 10.51 11.03 38.20 24.15 39.46 22.61 0.33 0.02

DANCE (all) -4.98 1.12 -0.57 0.13 45.72 28.10 46.74 26.70 0.97 0.94
DANCE (best) -4.99 1.24 -0.57 0.14 45.83 28.60 47.69 27.46 0.97 0.94

Table 6: Operation characteristics of different estimators with various approaches for se-
lecting NCs under simple and complex graphs with stronger edge strengths.
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(a) ROC curve (simple graph) (b) ROC curve (complex graph)
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Figure 5: Simulation results with data generated under simple and complex graphical struc-
tures with stronger edge strength. The solid circle and empty circle on each ROC curve
correspond to γ = 1/n and 2/n, respectively.
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(a) ROC curve (simple graph) (b) ROC curve (complex graph)
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Figure 6: Simulation results with data generated under simple and complex graphical struc-
ture from binary random variables. The solid circle and empty circle on each ROC curve
correspond to γ = 1/n and 16/n, respectively.
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