
Journal of Machine Learning Research 25 (2024) 1-40 Submitted 4/23; Revised 1/24; Published 6/24

Efficient Convex Algorithms for Universal Kernel Learning

Aleksandr Talitckii atalitck@asu.edu
Department of Mechanical and Aerospace Engineering
Arizona State University
Tempe, AZ 85281-1776, USA

Brendon Colbert bkcolbe1@asu.edu
Department of Mechanical and Aerospace Engineering
Arizona State University
Tempe, AZ 85281-1776, USA

Matthew M. Peet mpeet@asu.edu

Department of Mechanical and Aerospace Engineering

Arizona State University

Tempe, AZ 85281-1776, USA

Editor: Ambuj Tewari

Abstract

The accuracy and complexity of machine learning algorithms based on kernel optimiza-
tion are determined by the set of kernels over which they are able to optimize. An ideal
set of kernels should: admit a linear parameterization (for tractability); be dense in the
set of all kernels (for robustness); be universal (for accuracy). Recently, a framework was
proposed for using positive matrices to parameterize a class of positive semi-separable ker-
nels. Although this class can be shown to meet all three criteria, previous algorithms for
optimization of such kernels were limited to classification and furthermore relied on com-
putationally complex Semidefinite Programming (SDP) algorithms. In this paper, we pose
the problem of learning semiseparable kernels as a minimax optimization problem and pro-
pose a SVD-QCQP primal-dual algorithm which dramatically reduces the computational
complexity as compared with previous SDP-based approaches. Furthermore, we provide
an efficient implementation of this algorithm for both classification and regression – an
implementation which enables us to solve problems with 100 features and up to 30,000 da-
tums. Finally, when applied to benchmark data, the algorithm demonstrates the potential
for significant improvement in accuracy over typical (but non-convex) approaches such as
Neural Nets and Random Forest with similar or better computation time.

Keywords: kernel functions, multiple kernel learning, semi-definite programming, super-
vised learning, universal kernels

1. Introduction

Kernels allow for a convex formulation of the nonlinear classification and regression problems
– improving accuracy and robustness of data-based modeling. Specifically, every kernel
defines a feature map of the data to a Reproducing Kernel Hilbert Space (RKHS) wherein
a linear classification or regression problem may be solved. Furthermore, if the kernel is

c©2024 Aleksandr Talitckii, Brendon Colbert and Matthew M. Peet.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v25/23-0528.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v25/23-0528.html


Talitckii, Colbert and Peet

universal, the RKHS will be infinite dimensional – implying that, e.g. classification data
will always be linearly separable in the infinite-dimensional RKHS.

While any universal kernel (for example Gaussian or Laplacian kernel) will yield a
linear separation in its associated RKHS, the robustness of that separation will be strongly
influenced by the topology of the RKHS. For a poorly chosen kernel, the resulting fit will
be sensitive to noise and hence the classifier or regressor may perform poorly on untrained
data. However, for a well chosen kernel, the separation of data will be robust – yielding
improved performance on untrained data. For example, when considering kernel selection
in cancer diagnosis (See Wolberg et al., 1995) (a problem with significant variations in data
collection mechanisms), lack of robustness of the classifier may result in incorrectly labelling
a malignant tumour as benign. While rigorous numerical experimentation has been used
to find suitable kernels for well-studied problems such as cancer classification (See Hussain
et al., 2011), when the underlying data generating mechanism is new or speculative, kernel
selection is itself an optimization problem known as learning the kernel. Specifically, Kernel
Learning (KL) algorithms (such as those found in Xu et al., 2010; Sonnenburg et al., 2010;
Yang et al., 2011) have been proposed to find the kernel, k ∈ K which optimizes an achievable
metric such as the soft margin (for classification). However, the set of kernels, k ∈ K, over
which the algorithm can optimize strongly influences the performance and robustness of the
resulting classifier or predictor.

To understand how the choice of kernel influences performance and robustness, several
properties of positive kernels have been considered. For example, a characteristic kernel
was defined in Fukumizu et al. (2007) to be a kernel whose associated integral operator
is injective. Alternatively, a kernel, k, is strictly positive definite if the associated integral
operator has trivial null-space – See, e.g. Steinwart and Christmann (2008). As stated in,
e.g. Steinwart (2001), it has been observed that kernels with the characteristic and strictly
positive definite properties are able to perform arbitrarily well on large sets of training data.
Similar to characteristic and strictly positive definite kernels, perhaps the most well-known
kernel property is that of c0-universality, which implies that the associated RKHS is dense in
C. The relationship between these and other kernel properties (using, e.g. alternative norms)
has been studied extensively in, e.g. Sriperumbudur et al. (2011). In particular, the universal
property implies the kernel is both characteristic and strictly positive definite, while under
certain conditions the converse also holds and all three properties are equivalent (Simon-
Gabriel and Schölkopf, 2018). As a result of these studies, there is a consensus that in order
to be effective on large data sets, a kernel should have the universal property.

While the universal property is now well-established as being a desirable property in
any kernel, much less attention has been paid to the question of what are the desirable
properties of a set of kernels. This question arises when we use kernel learning algorithms
to find the optimal kernel in some parameterized set. The assumption, of course, is that
for any given data generating process, there is some ideal kernel whose associated feature
map maximizes separability of data generated by that underlying process. Clearly, then,
when constructing a set of kernels to be used in kernel learning, we would like to ensure
that this set contains the ideal kernel or at least a kernel whose associated feature map
closely approximates the feature map of this ideal kernel. With this in mind, (Colbert and
Peet, 2020) proposed three desirable properties of a set of kernels K - tractability, density,
and universality. Specifically, K is said to be tractable if K is convex (or, preferably, a

2



Algorithm for Universal Kernel Learning

linear variety) - implying the kernel learning problem is solvable in polynomial time (e.g.
Rakotomamonjy et al., 2008; Jain et al., 2012; Lanckriet et al., 2004; Qiu and Lane, 2005).
The set K has the density property if, for any ε > 0 and any positive kernel, k∗ there exists
a k ∈ K where ‖k − k∗‖ ≤ ε. The density property implies that kernels from this set can
approximate the feature map of the ideal kernel arbitrarily well (which then implies the
resulting learned kernel will perform well on untrained data). Finally, the set K is said to
have the universal property if any k ∈ K is universal.

Having defined desirably properties in a set of kernels, the question becomes how to
parameterize such a set. While there are many ways of parameterizing sets of kernels (See
Gönen and Alpaydın, 2011, for a survey), not all such parameterizations result in a convex
kernel learning algorithm. Furthermore, at present, there is no tractable parameterization
which is dense in the set of all possible kernels. To address this problem, in Colbert and
Peet (2020), a general framework was proposed for using positive matrices and bases to pa-
rameterize families of positive kernels (as opposed to positive kernel matrices as in Lanckriet
et al., 2004; Qiu and Lane, 2005; Ni et al., 2006). This framework allows one to define a
basis of kernels for a class of integral operators and then to use SDP to find kernels which
represent squares of such operators – implying that the resulting kernels define positive
operators. In particular, Colbert and Peet (2020) proposed a set of basis functions which
were then used to parameterize positive integral operators of the form (using one-dimension
for simplicity)

(Px)(s) := k1a(s)

∫ s

0
k1b(θ)x(θ)dθ + k2a(s)

∫ 1

s
k2b(θ)x(θ)dθ, (1)

which correspond to what are known (in one-dimension) as semiseparable kernels – See,
e.g. Gohberg et al. (2012). In n-dimensions, a kernel constructed using this particular pa-
rameterization was referred to as a Tessellated Kernel (TK) – indicative of their blockwise
partition of the domain (a feature resulting from the semi-separable structure and reminis-
cent of the activation functions used in neural nets). It was further shown that the interior
of this class of kernels was universal and the set of such kernels was dense in the set of all
positive kernels. Using this positive matrix parameterization of the family of Tessellated
Kernels, it was shown in Colbert and Peet (2020) that the associated SVM kernel learning
algorithm could be posed as an SDP and that the solution to this SDP achieves superior
Test Set Accuracy (TSA) when compared with a representative sample of existing classi-
fication algorithms (including non-convex kernel learning methods such as simple Neural
Nets).

Unfortunately, however, although the TSA data reported in Colbert and Peet (2020)
showed improvement over existing classification algorithms, this accuracy came at the cost
of significant increases in computational complexity – a factor attributable to the high
complexity of primal-dual interior point algorithms for solving SDP. Unlike Quadratic Pro-
gramming (QP), which is used to solve the underlying SVM or Support Vector Regression
(SVR) problem for a fixed kernel, the use of SDP, Quadratically Constrained Quadratic
Programming (QCQP) and Second Order Cone Programming (SOCP) for kernel learning
significantly limits the amount of training data which can be processed. Note that while
this complexity issue has been partially addressed in the context of MKL (which considered
an efficient reduction to QP complexity in Jain et al., 2012), such a reduction to QP has not

3



Talitckii, Colbert and Peet

previously been proposed for SDP-based algorithms such as kernel matrix learning. The
main goal of this paper, then, is to propose a new algorithm for optimizing over families of
kernels parameterized by positive matrices, but without the use of SDP and its associated
computational overhead.

Fundamentally, the algorithm proposed in this paper is based on a reformulation of the
SDP defined in Colbert and Peet (2020) as a saddle-point optimization (See Section 3 and
Section 4). This saddle-point formulation allows us to then decompose the optimization
problem into primal and dual sub-problems, OPT A and OPT P (Section 5). Based on
this decomposition, we propose a Franke-Wolfe type algorithm for solving the kernel learn-
ing problem - an approach based on the work in Rakotomamonjy et al. (2008) and Jain
et al. (2012). Critically, we then show that the SDP in the subproblem OPT P admits an
analytic solution using the Singular Value Decomposition - implying a worst-case compu-
tational complexity of O(n3P ) where n2P /2 + nP is the number of parameters in the family
of kernels, K. In addition, we show that OPT A is a convex QP and may be similarly
solved with a complexity of O(m3) (or even O(m2.3) for LibSVM implementation), where
m is the number of data points. As a result, the resulting computational complexity of
the proposed algorithm is dramatically reduced compared with the complexity of the SDP-
based algorithms proposed in Colbert and Peet (2020) (with complexity (Brian and Young,
2007) O(m4) with respect to m and O(n6P ) with respect to nP . Summarizing, the proposed
algorithm does not require the use of SDP, QCQP or SOCP and, when applied to several
standard test cases, has observed complexity which scales as O(m2.3) or less.

In addition to the proposed algorithm, this paper also extends the convex kernel learn-
ing framework proposed in Colbert and Peet (2020) to the problem of kernel learning for
regression. The kernel learning problem in regression has been studied for kernel matrix
learning as in Lanckriet et al. (2004) and for MKL in e.g. Rakotomamonjy et al. (2008);
Jain et al. (2012). However, the regression problem has not previously been considered us-
ing the generalized framework for kernel learning presented in Colbert and Peet (2020). In
this paper, we provide such extension and demonstrate significant increases in performance,
as measured by both computation time and Mean Square Error (MSE) when compared
to other optimization-based kernel learning algorithms as well as when compared to more
heuristic approaches such as Random Forest and deep learning.

2. Notation

We use N,R to denote the natural and real numbers, respectively. We use 1n ∈ Rn to
denoted the vector of ones. For x ∈ Rn we use ‖x‖p for the Lp-norm and use x ≥ 0 to
indicate the positive orthant – i.e. xi ≥ 0 for all i. For x, y ∈ Rn, x�y denotes elementwise
multiplication. The space of n × n-square real symmetric matrices is denoted Sn with
Sn+ ⊂ Sn being the cone of positive semi-definite matrices. We use Sn++ ⊂ Sn+ to denote the
space of positive definite matrices. For a matrix P ∈ Sn, we use P � 0 (P � 0) if P is a
positive semi-definite matrix (positive definite matrix). For A,B ∈ Rn×n, 〈A,B〉 denotes
the Frobenius matrix inner product. For a compact set X ⊂ Rn, we denote C(X) to be
the space of scalar continuous functions defined on X and equipped with the uniform norm
‖f‖C := supx∈X |f(x)|. For a differentiable function with a single argument, we use ∇f(x)
to denote the gradient of function f at point x. For functions with two explicit arguments

4



Algorithm for Universal Kernel Learning

where we do not need to specify a point of differentiation, the partial gradient of function
f(x, y) is denoted ∇xf(x, y). In cases where we need to specify both the argument and the
point of differentiation, we use ∇xf(x, y)

∣∣
x=x0

. Furthermore, if x ∈ Rn×n and f(x, y) ∈ R,

we use ∇xf(x, y) ∈ Rn×n to denote the matrix where (∇xf(x, y))ij = ∂f(x,y)
∂xij

. For a

given positive definite kernel k ∈ C(X×X), Hk denotes the associated Reproducing Kernel
Hilbert Space (RKHS), where the subscript k is dropped if clear from context.

3. Kernel Sets and Kernel learning

Consider a generalized representation of the kernel learning problem, which encompasses
both classification and regression where (using the representor theorem as in Schölkopf
et al., 2001) the learned function is of the form fα,k(z) =

∑m
i=1 αik(xi, z).

min
k∈K

min
α∈Rm
b∈R

‖fα,k‖2 + C
∑m

i=1
l(fα,k, b)yi,xi . (2)

Here ‖fα,k‖ =
∑m

i=1

∑m
j=1 αiαjk(xi, xj) is the norm in the Reproducing Kernel Hilbert

Space (RKHS) and l(fα,k, b)yi,xi is the loss function defined for SVM binary classification
and SVM regression as lc(fα,k, b)yi,xi and lr(fα,k, b)yi,xi , respectively, where

lc(fα,k, b)yi,xi = max{0, 1− yi(fα,k(xi)− b)},
lr(fα,k, b)yi,xi = max{0, |yi − (fα,k(xi)− b)| − ε}.

The properties of the classifier/predictor, fα,k, resulting from Optimization Problem 2
will depend on the properties of the set K, which is presumed to be a subset of the convex
cone of all positive kernels. To understand how the choice of K influences the tractability
of the optimization problem and the resulting fit, we consider three properties of the set,
K. These properties can be precisely defined as follows.

3.1 Tractability

We say a set of kernel functions, K, is tractable if it can be represented using a countable
basis.

Definition 1 The set of kernels K is tractable if there exist a countable set {Gi(x, y)}∞i=1

such that, for any k ∈ K, there exists nk ∈ N where k(x, y) =
∑nk

i=1 viGi(x, y) for some
v ∈ Rnk .

Note the Gi(x, y) need not be positive kernel functions. The tractable property is required
for the associated kernel learning problem to be solvable in polynomial time.

3.2 Universality

Universal kernel functions always have positive definite (full rank) kernel matrices, implying
that for arbitrary data {yi, xi}mi=1, there exists a function f(z) =

∑m
i=1 αik(xi, z), such that

f(xj) = yj for all j = 1, ..,m. Conversely, if a kernel is not universal, then there exists
a data set {xi, yi}mi=1 such that for any α ∈ Rm, there exists some j ∈ {1, · · · ,m} such

5



Talitckii, Colbert and Peet

that f(yj) 6=
∑m

i=1 αik(xi, xj). The universality property ensures that the classifier of an
SVM designed using a universal kernel will become increasingly precise as the training data
increases, whereas classifiers from a non-universal kernel have limited ability to fit data
sets. (See Micchelli et al., 2006).

Definition 2 (Schölkopf et al. (2001)) A kernel k : X×X → R is said to be universal
on the compact metric space X if it is continuous and there exists an inner-product space
W and feature map, Φ : X → W such that k(x, y) = 〈Φ(x),Φ(y)〉W and where the unique
Reproducing Kernel Hilbert Space (RKHS), H := {f : f(x) = 〈v,Φ(x)〉, v ∈ W} with
associated norm ‖f‖H := infv{‖v‖W : f(x) = 〈v,Φ(x)〉} is dense in C(X) := {f : X →
R : f is continuous} where ‖f‖C := supx∈X |f(x)|.

Recall that the universality property implies the strictly positive definite and character-
istic properties on compact domains. The following definition extends the universal property
to a set of kernels.

Definition 3 A set of kernel functions K has the universal property if every kernel function
k ∈ K is universal.

3.3 Density

The third property of a kernel set, K, is density which ensures that a kernel can be chosen
from K with an associated feature map which optimizes fitting of the data in the associated
feature space. This optimality of fit in the feature space may be interpreted differently for
SVM and SVR. Specifically, considering SVM for classification, the kernel learning problem
determines the kernel k ∈ K for which we may obtain the maximum separation in the kernel-
associated feature space. According to Boehmke and Greenwell (2019), increasing this
separation distance makes the resulting classifier more robust (generalizable). The density
property, then, ensures that the resulting kernel learning algorithm will be maximally robust
(generalizable) in the sense of separation distance. In the case of SVR, meanwhile, the
kernel learning problem finds the kernel k ∈ K which permits the “flattest” (see Smola
and Schölkopf, 2004) function in feature space. In this case, the density property ensures
that the resulting kernel learning algorithm will be maximally robust (generalizable) in the
sense of flatness.

Note that the density properties is distinct from the universality property. For instance
consider a set containing a single Gaussian kernel function - which is clearly not ideal for
kernel learning. The set containing a single Gaussian is tractable (it has only one element)
and every member of the set is universal. However, it is not dense.

These arguments motivate the following definition of the pointwise density property.

Definition 4 The set of kernels K is said to be pointwise dense if for any positive kernel,
k∗, any set of data {xi}mi=1, and any ε > 0, there exists k ∈ K such that

‖k(xi, xj)− k∗(xi, xj)‖ ≤ ε.

6



Algorithm for Universal Kernel Learning

4. A General Framework for Representation of Tractable Kernel Sets

Having defined three desirable properties of a set of kernels, we now consider a frame-
work designed to facilitate the creation of sets of kernels which meet these criteria. This
framework ensures tractability by providing a linear map from positive matrices to positive
kernels. This map is defined by a set of bases, N . These bases themselves parameterize
kernels the image of whose associated integral operators define the feature space. As we
will show in Section 5, kernel learning over a set of kernels parameterized in this way can
be performed efficiently using a combination of QP and the Singular Value Decomposition.
Moreover, as we will show in Section 6, suitable choices of N will ensure that the set of
kernels has the density and universality properties.

Lemma 5 Let N be any bounded measurable function N : Y × X → RnP on compact X
and Y . If we define

K :=

{
k

∣∣∣∣ k(x, y) =

∫
Y
N(z, x)TPN(z, y)dz, P � 0

}
, (3)

then any k ∈ K is a positive kernel function and K is tractable.

Proof The proof is straightforward. Given a kernel, k, denote the associated integral
operator by Ik so that

(Ikφ)(s) =

∫
X
k(s, t)φ(t)dt.

If k ∈ K, it has the form of Eqn. (3) for some P � 0. Now define k 1
2
(x, y) := P

1
2N(x, y).

Then Ik = I∗k 1
2

Ik 1
2

� 0 where adjoint is defined with respect to the L2 inner product. This

establishes positivity of the kernel. Note that if Ik 1
2

∈ A for some *-algebra A, then Ik ∈ A.

For tractability, we note that for a given N , the map P 7→ k is linear. Specifically,

k(x, y) =
∑nP

i,j=1
Pi,jGi,j(x, y),

where

Gi,j(x, y) =

∫
Y
Ni(z, x)Nj(z, y)dz, (4)

and thus by Definition 1, K is tractable.

Note: Using the notation for integral operators in the proof of Lemma 5, we also note
that for any k ∈ K,

Ik =
∑nP

i,j=1
Pi,jIGi,j =

∑nP

i,j=1
Pi,jI

∗
NiINj . (5)

For convenience, we refer to a set of kernels defined as in Eqn. (3) as a Generalized
Kernel Set, a kernel from such set as a Generalized Kernel, and the associated kernel
learning problem in (2) as Generalized Kernel Learning (GKL) (3). This is to distinguish
such kernels, sets and problems from Tessellated Kernel Learning, which arises from a
particular choice of N in the parameterization of K. This distinction is significant, as the
algorithms in Sections 5 apply to the Generalized Kernel Learning problem, while the results
in Section 6 only apply to the particular case of Tessellated Kernel Learning.

7



Talitckii, Colbert and Peet

5. An Efficient Algorithm for Generalized Kernel Learning in
Classification and Regression Problems

In this section, we assume a family of kernel functions, K, has been parameterized as in (3),
and formulate the kernel learning optimization problem for both classification and regres-
sion — representing this as a minimax saddle point problem. This formulation enables
a decomposition into convex primal and dual sub-problems, OPT A(P ) and OPT P (α)
with no duality gap. We then consider the Frank-Wolfe algorithm and show using Dan-
skin’s Theorem that the gradient step can be efficiently computed using the primal and
dual sub-problems. Finally, we propose efficient algorithms for computing OPT A(P ) and
OPT P (α): in the former case using an efficient Sequential Minimal Optimization (SMO)
algorithm for convex QP and in the latter case, using an analytic solution based on the
Singular Value Decomposition.

5.1 Primal-Dual Decomposition

For convenience, we define the feasible sets for the sub-problems as

X : = {P ∈ SnP : trace(P ) = nP , P � 0},

Yc : = {α ∈ Rm :
∑m

i=1
αiyi = 0, 0 ≤ αi ≤ C},

Yr : = {α ∈ Rm :
∑m

i=1
αi = 0, αi ∈ [−C,C]},

where m and C are as defined in Optimization Problem 2. In this section, we typically
use the generic form Y? to refer to either Yc or Yr depending on whether the algorithm is
being applied to the classification or regression problem. To specify the objective function
we define λ(α, P ) as

λ(α, P ) := −1

2

m∑
i=1

m∑
j=1

αiαj

∫
Y
N(z, xi)

TPN(z, yj)dz, (6)

where the bases, N , and domain, Y , are those used to specify the kernel set, K, in Eqn. (3).
Additionally, we define κc(α) :=

∑m
i=1 αi and

κr(α) := −ε
∑m

i=1
|αi|+

∑m

i=1
yiαi

where, again, we use κ? = κc for classification and κ? = κr for regression.

Using the formulation in, e.g. Lanckriet et al. (2004), it can be shown that if the family K
is parameterized as in Eqn. (3), then the Generalized Kernel Learning optimization problem
in Eqn. (2) can be recast as the following minimax saddle point optimization problem.

OPTP := min
P∈X

max
α∈Y?

λ(e? � α, P ) + κ?(α), (7)

where � indicates elementwise multiplication. For classification, Y? = Yc, κ? = κc, and
e? = ec := y (vector of labels). For regression, Y? = Yc, κ? = κr, and e? = er := 1m (vector
of ones).

8



Algorithm for Universal Kernel Learning

Minimax Duality. To find the dual, OPTD of the kernel learning optimization problem
(OPTP ), we formulate two sub-problems:

OPT A(P ) := max
α∈Y?

λ(e? � α, P ) + κ?(α) (8)

and
OPT P (α) := min

P∈X
λ(e? � α, P ) + κ?(α) := min

P∈X
〈D(α), P 〉 , (9)

where
Di,j(α) =

∑m

k,l=1
(αkyk)Gi,j(xk, xl)(αlyl) (10)

and the Gi,j(x, y) are as defined in (4). Now, we have that

OPTP = min
P∈X

OPT A(P )

and its minmax dual is

OPTD = max
α∈Y?

OPT P (α) = max
α∈Y?

min
P∈X

λ(e? � α, P ) + κ?(α).

The following lemma states that there is no duality gap between OPTP and OPTD - a
property we will use in our termination criterion.

Lemma 6 OPTP = OPTD. Furthermore, {α∗, P ∗} solve OPTP if and only if OPT P (α∗) =
OPT A(P ∗).

Proof
For any minmax optimization problem with objective function φ, we have

d∗ = max
α∈Y

min
P∈X

φ(P, α) ≤ min
P∈X

max
α∈Y

φ(P, α) = p∗

and strong duality holds (p∗ − d∗ = 0) if X and Y are both convex and one is compact,
φ(·, α) is convex for every α ∈ Y and φ(P, ·) is concave for every P ∈ X , and the function
φ is continuous (See Fan, 1953). In our case, these conditions hold for both classification
(φ(P, α) = λ(α�y, P )+κc(α)) and regression (φ(P, α) = λ(α, P )+κr(α)). Hence OPTP =
OPTD. Furthermore, if {α∗, P ∗} solve OPTP then

OPT P (α∗) = max
α∈Y

OPT P (α) = min
P∈X

OPT A(P ) = OPT A(P ∗).

Conversely, suppose α ∈ Y, P ∈ X , then

OPT P (α) ≤ max
α∈Y

OPT P (α) = OPT P (α∗)

= OPT A(P ∗) = min
P∈X

OPT A(P ) ≤ OPT A(P ).

Hence if OPT A(P ) = OPT P (α), then OPT A(P ) = OPT A(P ∗) = OPT P (α∗) =
OPT P (α) and hence P and α solve OPT A and OPT P , respectively.

Finally, we show that OPT A(P ) is convex with respect to P - a property we will use in
Thm. 17.

9



Talitckii, Colbert and Peet

Initialize P0 as any point in X .;
Step 1:

Sk = arg minS∈X 〈∇f(Pk), S〉
Step 2:

γk = arg min
γ∈[0,1]

f(Pk + γ(Sk − Pk))

Step 3:

Pk+1 = Pk + γk (Sk − Pk) , k = k + 1,

Return to step 1 unless stopping criteria is

met.
Algorithm 1: The Frank-Wolfe Algo-
rithm for Matrices.

Initialize P0 = I, k = 0, α0 = OPT A(P0);
Step 1a: αk = argOPT A(Pk)
Step 1b: Sk = argOPT P (αk)
Step 2:

γk = arg min
γ∈[0,1]

OPT A(Pk + γ(Sk − Pk))

Step 3:

Pk+1 = Pk + γk(Sk − Pk), k = k + 1

Return to step 1 unless

OPT P (αk)−OPT A(Pk) < ε.

Algorithm 2: Proposed FW Algorithm
for GKL.

Lemma 7 Let OPT A(P ) be as defined in (8). Then, the function OPT A(P ) is convex
with respect to P .

Proof

It is a well known property of convex functions (e.g. Bertsekas (2016)) that if Y∗ is
a compact set and φ(α, P ) is convex with respect to P ∈ X for every α ∈ Y∗, then if
g(P ) = maxα∈Y∗ φ(α, P ) exists for every P ∈ X , then g(P ) is convex with respect to
P ∈ X . These conditions are readily verified using the definition of OPT A(P ) for both
classification and regression, where φ(α, P ) = λ(e?�α, P ) +κ?(α) and g(P ) = OPT A(P ).

5.2 Primal-Dual Frank-Wolfe Algorithm

For an optimization problem of the form

min
S∈X

f(S),

where X is a convex subset of matrices and 〈·, ·〉 is the Frobenius matrix inner product,
the Frank-Wolfe (FW) algorithm (See, e.g. Frank and Wolfe, 1956) may be defined as in
Algorithm 1.

In our case, we have f(Q) = OPT A(Q) so that

OPTP = min
P∈X

OPT A(P ).

Implementation of the FW algorithm requires us to compute ∇OPT A(Pk) at each it-
eration. To address this issue, we propose a way to efficiently compute the sub-problems
OPT A andOPT P , as shown in Subsections 5.3 and 5.4. Furthermore, in Lemma 9, we will
show that these sub-problems can be used to efficiently compute the gradient ∇OPT A(Pk)
- allowing for an efficient implementation of the FW algorithm. Lemma 9 uses a variation
of Danskin’s theorem (generalized in Bertsekas, 2016).

10



Algorithm for Universal Kernel Learning

Proposition 8 (Danskin’s Theorem) Let Y ⊂ Rm be a compact set, and let φ : X×Y →
R be continuous such that φ(·, α) : X → R is convex for each α ∈ Y. Then for P ∈ X , if

Y0(P ) =

{
ᾱ ∈ Y

∣∣ φ(P, ᾱ) = max
α∈Y

φ(P, α)

}
consists of only one unique point, ᾱ, and φ(·, ᾱ) is differentiable at P then the function
f(Q) = maxα∈Y φ(Q,α) is differentiable at P and

∇f(P ) = ∇Qφ(Q, ᾱ)
∣∣
Q=P

.

Prop. 8 can now be used to prove the following.

Lemma 9 If OPT A and OPT P are as defined in Eqns. (8) and (9), then for any Pk � 0,
we have

arg min
S∈X
〈∇OPT A(Pk), S〉 = argOPT P (argOPT A(Pk)).

Proof For simplicity, we utilize the definition of D(α) which will be given in Eqn. (10) so
that λ(e?�α, P ) := 〈D(α), P 〉. Now, since λ(α, P ) is strictly concave in α, for any Pk � 0,
OPT A(Pk) has a unique solution and hence we have by Danskin’s Theorem that

arg min
S∈X

〈
∇OPT A(Pk), S

〉
= arg min

S∈X

〈
∇Q

[
max
α∈Y?

(〈D(α), Q〉+ κ?(α))

]
Q=Pk

, S
〉

= arg min
S∈X

〈
∇Q [〈D(ᾱ), Q〉+ κ?(ᾱ)]Q=Pk

, S
〉

where ᾱ = argOPT A(Pk). Hence,

arg min
S∈X

〈
∇Q [〈D(ᾱ), Q〉+ κ?(ᾱ)]Q=Pk

, S
〉

= arg min
S∈X

〈
∇Q [〈D(ᾱ), Q〉]Q=Pk

, S
〉

= arg min
S∈X

〈
D(ᾱ), S

〉
= argOPT P (ᾱ) = argOPT P (argOPT A(Pk)).

We now propose an efficient implementation of the FW GKL algorithm, as defined in
Algorithm 2, based on efficient algorithms for computing OPT A and OPT P as will be
defined in Subsections 5.3 and 5.4.

In the following theorem, we use convergence properties of the FW GKL algorithm to
show that Algorithm 2 has worst-case O

(
1
k

)
convergence. Note that when higher accuracy

is required, we may utilize recently proposed primal-dual algorithms for O
(

1
k2

)
convergence,

as will be discussed in Section 5.5.

Theorem 10 Algorithm 2 returns iterates Pk and αk such that, |λ(αk, Pk) + κ?(αk) −
OPTP | < O( 1k ).

Proof If we define f = OPT A, then Lemma 9 shows that f is differentiable and, if the
Pk satisfy Algorithm 2, that the Pk also satisfy Algorithm 1. In addition, Lemma 7 shows
that f(Q) = OPT A(Q) is convex in Q. It has been shown in, e.g. Jaggi (2013), that if

11



Talitckii, Colbert and Peet

X is convex and compact and f(Q) is convex and differentiable on Q ∈ X , then the FW
Algorithm produces iterates Pk, such that, f(Pk)− f(P ∗) < O( 1k ) where

f(P ∗) = min
P∈X

f(P ) = min
P∈X

OPT A(P ) = OPTP .

Finally, we note that

λ(αk, Pk) + κ?(αk) =λ(argOPT A(Pk), Pk) + κ?(argOPT A(Pk))

= max
α∈Y?

λ(α, Pk) + κ?(α) = OPT A(Pk) = f(Pk),

which completes the proof.

In the following subsections, we provide efficient algorithms for computing the sub-problems
OPT A and OPT P .

5.3 Step 1, Part A: Solving OPT A(P )

For a given P � 0, OPT A(P ) is a convex Quadratic Program (QP). General purpose QP
solvers have a worst-case complexity which scales as O(m3) (See Ye and Tse (1989)) where,
when applied toOPT A, m becomes the number of samples. This computational complexity
may be improved, however, by noting that OPT A is compatible with the representation
defined in Chang and Lin (2011) for QPs derived from support vector machine problems.
In this case, the algorithm in LibSVM reduces the computational burden somewhat. This
improved performance is illustrated in Figure 2 where we observe the achieved complexity
scales as O(m2.3). Note that for the 2-step algorithm proposed in this manuscript, solving
the QP in OPT A(P ) is significantly slower that solving the Singular Value Decomposition
required for OPT P (α), which is defined in the following subsection.

5.4 Step 1, Part B: Solving OPT P (α)

For a given α, OPT P (α) is an SDP. Fortunately, however, this SDP is structured so as
to admit an analytic solution using the Singular Value Decomposition (SVD). To solve
OPT P (α) we minimize λ(e?�α, P ) from Eq. (6) which is linear in P and can be formulated
as

OPT P (α) := min
P∈SnP

trace(P )=nP
P�0

λ(e? � α, P ) := min
P∈SnP

trace(P )=nP
P�0

〈D(α), P 〉 ,

where

Di,j(α) =
∑m

k,l=1
(αkyk)Gi,j(xk, xl)(αlyl)

and the Gi,j(x, y) are as defined in (4).

The following theorem gives an analytic solution for OPT P using the SVD.

Theorem 11 For a given α, denote Dα := D(α) ∈ SnP where D(α) is as defined in
Eqn. (10) and let Dα = V ΣV T be its SVD. Let v be the right singular vector corresponding
to the minimum singular value of Dα. Then P ∗ = nP vv

T solves OPT P (α).

12



Algorithm for Universal Kernel Learning

Proof Recall OPT P (α) has the form

min
P∈SnP

〈Dα, P 〉 s.t. P � 0, trace(P ) = nP .

Denote the minimum singular value of Dα as σmin(Dα). Then for any feasible P ∈ X ,
by Fang et al. (1994) we have

〈Dα, P 〉 ≥ σmin(Dα)trace(P ) = σmin(Dα)nP .

Now consider P = nP vv
T ∈ SnP . P is feasible since P � 0, and trace(P ) = nP . Further-

more,

〈Dα, P 〉 = nP trace(V ΣV T vvT ) = nP trace(vTV ΣV T v)

= nP σmin(Dα)

as desired.

Note that the size, nP , of Dα in OPT P (α) scales with the number of features, but not the
number of samples (m). As a result, we observe that the OPT P step of Algorithm 2 is
significantly faster than the OPT A step for large data sets.

5.5 An Accelerated Algorithm for O
(

1
k2

)
Convergence

The Frank-Wolfe (FW) GKL algorithm proposed in Section 5 has provable sublinear conver-
gence O

(
1
k

)
. While we observe in practice that achieved convergence rates of FW initially

exceed this provable bound, when the number of iterations is large (e.g. when duality
gap < 10−5 is desired), the FW algorithm tends to return to sublinear convergence (See
Fig. 1). While O

(
1
k

)
convergence is adequate for most problems, occasionally we may re-

quire highly accurate solutions. In such cases, we may look for saddle-point algorithms with
O
(

1
k2

)
convergence, so as to reduce the overall computation time. One such Accelerated

Primal Dual (APD) algorithm was recently proposed in Hamedani and Aybat (2021) and
the QP/SVD approach proposed in Subsections 5.3 and 5.4 can also be used to implement
this algorithm. Specifically, we find that when the QP/SVD approach is applied to APD
algorithm, the result is reduced convergence rates for the first few iterations, but improved
convergence rates at subsequent iterations. Furthermore, while the per-iteration computa-
tional complexity increases with the use of APD, the scaling with respect to feature and
sample size remains essentially the same – See Fig. 1. However, because most numerical
tests in this paper were performed to a primal-dual gap of 10−5, the APD implementation
was not used to produce the results in Section 8 and hence details are not included. Please
see Appendix B for additional details.

6. Tessellated Kernels: Tractable, Dense and Universal

In this section, we examine the family of kernels defined as in (12) for a particular choice of

N . Specifically, let Y = X = Rn and Zd : Rn×Rn → R(d+2n+1
d ) be the vector of monomials

of degree d or less and define the indicator function for the positive orthant, I : Rn → R as
follows.

I(z) =

{
1 z ≥ 0

0 otherwise,

13



Talitckii, Colbert and Peet

where recall z ≥ 0 if zi ≥ 0 for all i. We now specify the N which defines K in (3) as

Nd
T : Y ×X → R2(d+2n+1

d ) for d ∈ N as

Nd
T (z, x) =

[
Zd(z, x)I(z − x)

Zd(z, x) (1− I(z − x))

]
. (11)

This assignment N → Nd
T defines an associated families of kernel functions, denoted KdT

where

KdT :=

{
k : k(x, y) =

∫
Y
Nd
T (z, x)TPNd

T (z, y)dz, P � 0,

}
. (12)

The union of such families is denoted KT := {k : k ∈ KdT , d ∈ N}.
Note that since Zd(x, y) consists of monomials, it is separable and hence has the form

Zd(x, y) = Zd,a(x)Zd,b(y). This implies that I
P

1
2Nd

T

(as defined in Eqn. (5)) has the form

given in Eqn. (1). It can be shown that this class of operators forms a *-algebra and hence
any kernel in KT is semiseparable (extending this term to cover n-dimensions) — implying
that for any k ∈ KdT , Ik has the form in Eqn. (1).

In Colbert and Peet (2020), this class of kernels was termed “Tessellated” in the sense
that each datapoint defines a vertex which bisects each dimension of the domain of the
resulting classifier/predictor - resulting in a tessellated partition of the feature space.

6.1 KT is Tractable

The class of Tessellated kernels is prima facie in the form of Eqn. (3) in Lemma 5 and hence
is tractable. However, we will expand on this result by specifying the basis for the set of
Tessellated kernels, which will then be used in combination with the results of Section 5 to
construct an efficient algorithm for kernel learning using Tessellated kernels.

Corollary 12 Suppose that a < b ∈ Rn, and d ∈ N. We define the finite set Dd :=

{(δ, λ) ∈ Nn × Nn : ‖(δ, λ)‖1 ≤ d}. Let {[δi, γi]}
1
2
np

i=1 ⊆ Dd be some ordering of Dd where

np = 2
(
d+2n+1

d

)
. Define Zd(x, z)j = xδjzγj where xδjzγj :=

∏n
i=1 x

δj,i
i z

γj,i
i . Now let k be as

defined in Eqn. (3) for some P � 0 and where N is as defined in Eqn. (11). Then we have

k(x, y) =
∑nP

i,j=1
Pi,jGi,j(x, y),

where

Gi,j(x, y) :=


gi,j(x, y) if i ≤ nP

2 , j ≤
nP
2

ti,j(x, y) if i ≤ nP
2 , j >

nP
2

ti,j(y, x) if i > nP
2 , j ≤

nP
2

hi,j(x, y) if i > nP
2 , j >

nP
2

and where gi,j , ti,j , hi,j : R2n → R are defined as

gi,j(x, y) := xδiyδjT (p∗(x, y), b, γi + γj + 1),

ti,j(x, y) := xδiyδjT (x, b, γi + γj + 1)− gi,j(x, y), (13)

hi,j(x, y) := xδiyδjT (a, b, γi + γj + 1)− gi,j(x, y)− ti,j(x, y)− ti,j(y, x),

14



Algorithm for Universal Kernel Learning

where 1 ∈ Nn is the vector of ones, p∗ : R2n → Rn is defined elementwise as p∗(x, y)i =
max{xi, yi}, and T : Rn × Rn × Nn → R is defined as

T (x, y, ζ) =
∏n

j=1

(
y
ζj
j

ζj
−
x
ζj
j

ζj

)
.

The proof of Corollary 12 can be found in Colbert and Peet (2020).

6.2 KT is Dense

As per the following Lemma from Colbert and Peet (2020), the set of Tessellated kernels
satisfies the pointwise density property.

Theorem 13 For any positive semidefinite kernel matrix K∗ and any finite set {xi}mi=1,
there exists a d ∈ N and k ∈ KdT such that K∗i,j = k(xi, xj) for all i, j.

6.3 KT is Universal

To show that KT is universal, we first show that the auxiliary kernel k(x, y) =
∫
Y I(z −

x)I(z − y)dz is universal.

Lemma 14 For any a, b, δ ∈ Rn with a < b and δ > 0, let Y = [a− δ, b+ δ] and X = [a, b].
Then the kernel

k(x, y) =

∫
Y

I(z − x)I(z − y)dz =

∫
x≤z
y≤z
z≤b+δ

1dz =
n∏
i=1

(bi + δi −max {xi, yi}) =
n∏
i=1

ki(xi, yi)

is universal where ki(x, y) := bi + δi −max {xi, yi}.
For brevity, consider the following proof summary. A complete proof is provided in Ap-
pendix A.

Sketch of proof: To show the universality of a kernel, k, one must prove that k
is continuous and the corresponding RKHS is dense. Now let us consider each ki in the
product k(x, y) =

∏n
i=1 ki(xi, yi). As shown in Colbert and Peet (2020), each kernel, ki,

is continuous, and every triangle function is in the corresponding RKHS, Hki . Also, since
k(x, bi) = δi, the constant function is also in Hki . Consequently, we conclude that the
RKHS associated with ki contains a Schauder basis for C([ai, bi]) – implying that the kernel
ki is universal. Since k is the product of n universal kernels, we may now show that k is
also universal.

The following theorem extends Lemma 14 and shows that if k ∈ KT is defined by a
positive definite parameter, P � 0, then k is universal.

Theorem 15 Suppose k : X × X → R is as defined in Eqn. (3) for some P � 0, d ∈ N
and N as defined in Eqn. (11), then k is a universal kernel for Y = [a− δ, b+ δ], X = [a, b]
and δ > 0

Proof Since P � 0, then there exists ε > 0 such that

P̂ = P − ε


1 0 ... 0
0 0 ... 0
...

...
. . .

...
0 0 ... 0

 ≥ 0.

15



Talitckii, Colbert and Peet

(a) The duality gap for 1000 iterations of FW
Algorithm 2, applied to two different classifica-
tion data sets.

(b) The duality gap for 1000 iterations of APD
Algorithm, applied to two different classification
data sets.

Figure 1: Convergence rates of the Franke-Wolfe algorithm 2 and the alternative APD algorithm

described in Subsection 5.5. In (a) we plot the gap between OPT A(Pk) and OPT P (αk) of the

Franke-Wolfe Algorithm 2 vs. iteration number; in (b) we again plot the gap between OPT A(Pk)

and OPT P (αk) vs. iteration number for the APD Algorithm and in (c) we plot the boosted

algorithm. Both demonstrate sublinear convergence, but with enhanced performance for the hybrid

algorithm.

Next

k(x, y) =

∫
Y
Nd
T (z, x)TPNd

T (z, y)dz =

∫
Y
Nd
T (z, x)T P̂Nd

T (z, y)dz + ε

∫
Y

I(z − x)I(z − y)dz

= k̂(x, y) + k1(x, y)

where k1(x, y) = δ
∫
Y I(z − x)I(z − y)dz.

It was shown in Lemma 14, that k1(x, y) is universal. Since k is a sum of two positive
kernels and one of them is universal, then according to Wang et al. (2013) and Borgwardt
et al. (2006) we have that k : X ×X → R is universal for Y = [a− δ, b+ δ] and X = [a, b]

This theorem implies that even K0
T has the universal property.

7. Numerical Convergence and Scalability

The computational complexity of the algorithms proposed in this paper will depend both on
the computational complexity required to perform each iteration as well as the number of
iterations required to achieve a desired level of accuracy. In this section, we use numerical
tests to determine the observed convergence rate of Algorithm 2 and the observed com-

16



Algorithm for Universal Kernel Learning

putational complexity of each iteration when applied to several commonly used machine
learning data sets.

7.1 Convergence Properties

In this subsection, we briefly consider the estimated number of iterations of the FW algo-
rithm 2 required to achieve a given level of accuracy as measured by the gap between the
primal and dual solutions. Primal-Dual algorithms such as the proposed FW method typi-
cally achieve high rates of convergence. While the number of iterations required to achieve
a given level of accuracy does not typically change with the size or type of the problem, if
the number of iterations required to achieve convergence is excessive, this will have a sig-
nificant impact on the performance of the algorithm. In Section 5, we established that the
proposed algorithm has worst-case O

(
1
k

)
convergence and proposed an alternative ADP

approach with provable O
(

1
k2

)
performance. However, provable bounds on convergence

rates are often conservative and in this subsection we examine the observed convergence
rates as applied to several test cases in both the classification and regression frameworks.

First, to study the convergence properties of the FW Algorithm 2, in Figure 1(a), we
plot the gap between OPT A(Pk) and OPT P (αk) as a function of iteration number for
the CANCER and PIMA data sets. The use of the OPT A(Pk)-OPT P (αk) gap for an
error metric is a slight improvement over typical implementations of the FW error metric –
which uses a predicted bound on the primal-dual gap. However, in practice, we find that the
observed convergence rate does not change significantly depending on which metric is used.
For reference, Fig. 1 also includes a plot of theoretical worst-case O

(
1
k

)
and O

(
1
k2

)
conver-

gence. As is common in primal-dual algorithms, we observe that the achieved convergence
rates significantly exceed the provable sublinear bound, with this difference being especially
noticeable for the first few iterations. These results indicate that for a moderate level of
accuracy, the performance of the FW algorithm is adequate – especially combined with the
low per-iteration complexity described in the following subsection. However, benefits of the
FW algorithm are more limited at high levels of accuracy. Thus, in Fig. 1 (b), we find
convergence rates for the suggested APD algorithm mentioned in Subsection 5.5. Unlike
the FW algorithm, convergence rates for the first few iterations of APD are not uniformly
high. This observation, combined with a slightly higher per-iteration complexity of APD is
the reason for our focus on the FW implementation. However, as noted in Appendix B.4,
these algorithms can be combined by switching to the APD algorithm after a fixed number
of iterations – an approach which offers superior convergence when desired accuracy is high.

7.2 Computational Complexity

In this subsection, we consider the computational complexity of a single iteration of the
proposed FW algorithm 2. Specifically, we examine how the expected complexity of an
iteration of each subproblem scales with number of samples and hyperparameters. We then
examine how this performance compares with observed complexity in several test cases
for both the classification and regression frameworks. Finally, these numerical results are
compared with the alternative APD algorithm mentioned in Subsection 5.5.

The computational complexity of the proposed FW algorithm depends on the size of
the data set m (number of samples) and the hyper-parameter nP = 2

(
d+2n+1

d

)
, where d is

17



Talitckii, Colbert and Peet

(a) Iteration complexity for the FW algo-
rithm applied to classification

(b) Iteration complexity for the APD algo-
rithm applied to classification

(c) Iteration complexity for the FW algo-
rithm applied to regression

(d) Iteration complexity for the APD algo-
rithm applied to regression

Figure 2: Per-iteration complexity of the proposed FW algorithm 2 and the alternative APD

algorithm described in Subsection 5.5. In (a) and (c) we find log-log plots of iteration complexity

of the Franke Wolfe (FW) TKL classification and regression algorithms, respectively, as a function

of m for several values of nP . Here m is number of samples and n2P is the number of parameters in

K, so that P ∈ SnP . In (b) and (d) we find log-log plots of iteration complexity of the Accelerated

Primal Dual (APD) for classification and regression, respectively as a function of m for several values

of nP . In both cases, best linear fit is included for reference.

a degree of monomials and n is the number of features. As discussed in Section 5, each
iteration of proposed FW algorithm consists of three steps. The first step (Step 1a) of the
FW algorithm is the optimization problem OPT A(P ) – an SVC or SVR learning problem.
For this step, we use a LibSVM implementation for which expected complexity scales as
O(m2.3). In this step, then kernel defined by matrix P is fixed and hence this step does not
depend on nP . We note, however, that observed complexity for this step is a function of
the rank of P – as shown in Appendix C. Specifically, we find that observed complexity of
LibSVM is significantly reduced when the matrix P is near optimal in both classification
and regression problems.

18



Algorithm for Universal Kernel Learning

Method Liver Cancer Heart Pima

SDP 95.75 ± 2.68 636.17 ± 25.43 221.67 ± 29.63 1211.66 ± 27.01
Algorithm 2 0.12 ± 0.03 0.41 ± 0.23 4.71 ± 1.15 0.80 ± 0.36

Table 1: The mean computation time (in seconds), along with standard deviation, for 30
trials comparing the SDP algorithm in Colbert and Peet (2020) and Algorithm 2. All tests
are run on an Intel i7-5960X CPU at 3.00 GHz with 128 Gb of RAM.

The second step (Step 1b) entails computing the minimum singular vectors of the D
matrix (Eq,. (10)) of dimension nP × nP – for which we use the standard Singular Value
Decomposition (SVD). Before performing an SVD, we must calculate D – which requires
O(m2) operations for each of the n2P elements of the matrix D. We note, however, that the
cost of these calculations is relatively minor compared with the overall complexity of the
SVD and SVC/SVR from Step 1a. For solving the SVD, we use a LAPACK implementation
which has worst-case complexity which scales as O(n3P ) – and which does not depend on m
(the number of samples). The last step, Step 2 is a primitive line search algorithm, where
for each iteration, we evaluate a fixed number of nγ candidate step sizes (γ). Each candidate
step size requires solving a QP problem (O(m2.3)), leading to worst-case complexity scaling
as O(m2.3). We conclude that the expected complexity of the proposed algorithm scales as
O(m2.3 +m2n2P + n3P ).

To compare expected iteration complexity with observed complexity, we next test the
proposed FW algorithm on several test cases and compare these results with observed
complexity of the alternative APD algorithm mentioned in Subsection 5.5. In Figures 2(a-
d), we find the computation time of a single iteration of the FW TKL and APD algorithms
for both classification and regression on an Intel i7-5960X CPU with 128 Gb of RAM as a
function of m for several values of nP , where m is the number of samples used to learn the
TK kernel function and the size of P is nP × nP (so that nP is a function of the number
of features and the degree of the monomial basis Zd). The data set used for these plots is
California Housing (CA) in Pace and Barry (1997b), containing 9 features and m = 20, 640
samples. In the case of classification, labels with value greater than or equal to the median
of the output were relabeled as 1, and those less than the median were relabeled as −1.
Figures 2(a-d) demonstrate that the complexity of Algorithm 2 (Algorithm 4) scales as
approximately O(m2.6n1.8P ) (O(m2.7n1.6P ) ) for classification and O(m2.4n1.9P ) (O(m2.4n1.2P ))
for regression. While this complexity scaling is consistent with theoretical bounds, and while
the difference in iteration complexity between the FW and APD algorithms for these data
sets is minimal, we find significant differences in scaling between data sets. Furthermore,
we find that for similar scaling factors, the FW iteration is approximately 3 times faster
than the APD iteration. This multiplicative factor increases to 100 when compared to the
SDP algorithm in Colbert and Peet (2020). This factor is illustrated for classification using
four data sets in Table 1.

8. Accuracy of the New TK Kernel Learning Algorithm

In this section, we compare the accuracy of the classification and regression solutions ob-
tained from the FW TKL algorithm with N as defined in Eq. (11) to the accuracy of

19



Talitckii, Colbert and Peet

Name Type Source References

Liver Classification UCI McDermott and Forsyth (2016)

Cancer Classification UCI Wolberg et al. (1990)

Heart Classification UCI No Associated Publication

Pima Classification UCI No Associated Publication

Hill Valley Classification UCI No Associated Publication

Shill Bid Classification UCI Alzahrani and Sadaoui (2018, 2020)

Abalone Classification UCI Waugh (1995)

Transfusion Classification UCI Yeh et al. (2009)

German Classification LIBSVM No Associated Publication

Four Class Classification LIBSVM Ho and Kleinberg (1996)

Gas Turbine Regression UCI Kaya et al. (2019)

Airfoil Regression UCI Brooks et al. (1989)

CCPP Regression UCI Tüfekci (2014); Kaya et al. (2012)

CA Regression LIBSVM Pace and Barry (1997b)

Space Regression LIBSVM Pace and Barry (1997a)

Boston Housing Regression LIBSVM Harrison and Rubinfeld (1978)

Table 2: References for the data sets used in Section 8. All data sets are available on the
UCI Machine Learning Repository or from the LIBSVM database.

SimpleMKL, Neural Networks, Random Forest, and XGBoost algorithms. In the case of
classification we also include three algorithms from the MKLpy python toolbox (AMKL,
PWMK, and CKA).

References to the original sources for the data sets used in Section 8 of the paper are
included in Table 2. Six classification and six regression data sets were chosen arbitrarily
from Dua and Graff (2017) and Chang and Lin (2011) to contain a variety of number of
features and number of samples. In both classification and regression, the accuracy metric
uses 5 random divisions of the data into test sets (mt samples ∼= 20% of data) and training
sets (m samples ∼= 80% of data). For regression, the training data is used to learn the kernel
and predictor. The predictor is then used to predict the test set outputs.

Regression analysis Using six different regression data sets, the MSE accuracy of the
proposed algorithm (TKL) with N as defined in Eq. (11) was below average on five of the
data sets, an improvement over all other algorithms but XGBoost which also scored above
average on five of the data sets. To evaluate expected improvement in accuracy, we next
compute the average MSE improvement for TKL averaged over all algorithms and data sets
to be 23.6% – i.e.

1

6

6∑
j=1

MSETKL,Dataset(j)
1
5

∑5
i=1MSEAlgorithm(i),Dataset(j)

· 100 = 100%− 23.6%

This improvement in average performance was better than all other tested algorithms in-
cluding XGBoost.

20



Algorithm for Universal Kernel Learning

Data set Method Error Time (s) Data set Method Error Time (s)
Gas TKL 0.23 ± 0.01 13580 ± 2060 CCPP TKL 10.57 ± 0.82 626.7 ± 456.0

Turbine SMKL N/A N/A n = 4 SMKL 13.93 ± 0.78 13732 ± 1490
n = 11 NNet 0.27 ± 0.03 1172 ± 100 m = 8000 NNet 15.20 ± 1.00 305.71 ± 9.25

m = 30000 RF 0.38 ± 0.02 16.44 ± 0.57 mt = 1568 RF 10.75 ± 0.70 1.65 ± 0.19
mt = 6733 XGBoost 0.33 ± 0.005 49.46 ± 1.93 XGBoost 8.98 ± 0.81 5.47 ± 2.73

Airfoil TKL 1.41 ± 0.44 49.87 ± 4.29 CA TKL .012 ± .0003 1502 ± 2154
n = 5 SMKL 4.33 ± 0.79 617.8 ±161.6 n = 8 SMKL N/A N/A

m = 1300 NNet 6.06 ± 3.84 211.9 ± 41.0 m = 16500 NNet .0113 ± .0004 914.3 ± 95.9
mt = 203 RF 2.36 ± 0.42 0.91 ± 0.20 mt = 4140 RF .0096 ± .0003 5.28 ± 3.13

XGBoost 1.51 ± 0.40 2.59 ± 0.06 XGBoost .0092 ± .0002 5.28 ± 3.13
Space TKL .013 ± .001 121.8 ± 49.2 Boston TKL 10.36 ± 5.80 63.05 ± 2.90
n = 12 SMKL .019 ± .005 3384 ± 589 Housing SMKL 15.46 ± 11.49 10.39 ± 0.89
m = 6550 NNet .014 ± .004 209.7 ± 37.4 n = 13 NNet 50.90 ± 44.19 79.2 ± 42.8
mt = 1642 RF .017 ± .003 1.06 ± 0.27 m = 404 RF 10.27 ± 5.70 0.68 ± 0.40

XGBoost .015 ± .002 0.32 ± 0.02 mt = 102 XGBoost 9.40 ± 4.17 0.14 ± 0.06

Table 3: Regression performance of Tessellated Kernel learning for 6 regression data sets with

comparison of 5 different ML algorithms. Each measurement was repeated 5 times. The resulting

test Mean Squared Error (MSE) and training time are included in the table. All tests are run on a

desktop with Intel i7-5960X CPU at 3.00 GHz and with 128 Gb of RAM. N/A indicates that the

algorithm was stopped after 24 hours without a solution. For each data set. the number of samples,

m, the size of the test part mt and the number of features, n, are presented.

Predictably, the computational time of TKL is significantly higher than non-convex
non-kernel-based approaches such as RF or XGBoost. However, the computation time of
TKL is lower than other kernel-learning methods such as SMKL — note that for large data
sets (m > 5000) TKL is at least 20 times faster than SMKL. Surprisingly, the computation
time of TKL is comparable to over-parameterized non-convex stochastic descent methods
such as NNet.

Classification analysis Using six classification data sets and comparing 7 algorithms,
the TSA of the proposed TKL algorithm was above average on all of the data sets, an
improvement over all other algorithms. Next, we compute the average improvement in
accuracy of TKL over average TSA for all algorithms to be 6.77% – i.e.

1

6

6∑
j=1

TSATKL,Dataset(j)
1
8

∑8
i=1 TSAAlgorithm(i),Dataset(j)

· 100 = 100% + 6.77%

This was close to the top score of 6.84% achieved by the AMKL algorithm (The PWMK
algorithm failed to converge on one data set, and the TSA from this test was not included
in the calculation).

Again, the computational time of TKL is significantly higher than RF or XGBoost, but
comparable to other kernel learning methods and NNet. Unlike TKL, the computational
time of other MKL methods is highly variable and often does not seem to scale predictably
with the number of samples and features – e.g. PWMK for FourClass and Shill Bid data
sets and AMKL for Transfusion and German, where the computational time is much higher
for smaller data sets.

Details of the implementation of the algorithms used in this study are as follows.

21



Talitckii, Colbert and Peet

Data set Method Accuracy (%) Time (s) Data set Method Accuracy (%) Time (s)
Abalone TKL 84.61 ± 1.60 17.63 ± 3.77 Hill Valley TKL 86.70 ± 5.49 86.7 ± 48.2
n = 8 SMKL 83.13 ± 1.06 350.4 ± 175.1 n = 100 SMKL 51.23 ± 3.55 2.81 ± 2.83

m = 4000 NNet 84.70 ± 1.82 4.68 ± 0.64 m = 1000 NNet 70.00 ± 4.79 3.79 ± 1.75
mt = 677 RF 84.11 ± 1.33 0.98 ± 0.21 mt = 212 RF 56.04 ± 3.27 0.75 ± 0.33

XGBoost 82.69 ± 1.06 0.20 ± 0.06 XGBoost 55.66 ± 2.37 0.58 ± 0.34
AMKL 84.64 ± 1.01 0.95 ± 0.07 AMKL 94.71 ± 1.72 5.50 ± 3.84
PWMK 84.64 ± 1.01 3.13 ± 0.12 PWMK 94.34 ± 1.69 13.10 ± 5.19
CKA 65.05 ± 0.76 21.43 ± 0.32 CKA 47.92 ± 0.57 0.50 ± 0.08

Transfusion TKL 77.84 ± 3.89 0.25 ± 0.08 Shill Bid TKL 99.76 ± 0.08 23.66 ± 2.63
n = 4 SMKL 76.62 ± 4.79 2.44 ± 3.08 n = 9 SMKL 97.71 ± 0.32 81.0 ± 13.1
m = 600 NNet 78.78 ± 3.26 1.01 ± 0.47 m = 5000 NNet 98.64 ± 0.86 3.56 ± .60
mt = 148 RF 75.00 ± 3.58 0.54 ± 0.24 mt = 1321 RF 99.35 ± 0.14 0.78 ± 0.36

XGBoost 73.92 ± 3.95 0.13 ± 0.11 XGBoost 99.61 ± 0.06 0.13 ± 0.04
AMKL 74.46 ± 1.50 766.9 ± 315.4 AMKL 99.72 ± 0.10 1.24 ± 0.04
PWMK N/A N/A PWMK 99.72 ± 0.10 3.03 ± 0.04
CKA 76.35 ± 4.27 0.18 ± 0.03 CKA 99.65 ± 0.21 55.8 ± 0.9

German TKL 75.80 ± 1.89 58.7 ± 36.1 FourClass TKL 99.77 ± 0.32 0.13 ± 0.01
n = 24 SMKL 74.30 ± 3.55 17.78 ± 4.79 n = 2 SMKL 94.53 ± 12.2 0.85 ± 0.48
m = 800 NNet 72.70 ± 3.98 0.61 ± 0.05 m = 690 NNet 99.99 ± 0.01 0.53 ± 0.03
mt = 200 RF 74.90 ± 1.35 0.64 ± 0.28 mt = 172 RF 99.30 ± 0.44 0.68 ± 0.53

XGBoost 72.40 ± 2.89 0.10 ± 0.03 XGBoost 98.95 ± 0.44 0.04 ± 0.00
AMKL 70.80 ± 1.47 2.88 ± 0.38 AMKL 99.99 ± 0.01 1.39 ± 0.03
PWMK 70.70 ± 1.50 907.0 ± 77.6 PWMK 99.99 ± 0.01 990 ± 60.2
CKA 68.50 ± 1.58 0.25 ± 0.03 CKA 66.16 ± 3.44 0.16 ± 0.03

Table 4: Classification performance of Tessellated Kernel learning for 6 different classification data

sets with comparison of 7 ML methods. Each measurement was repeated 5 times. The resulting

Test Set Accuracy and training time are presented in the table. All tests are run on a desktop with

Intel i7-5960X CPU at 3.00 GHz and with 128 Gb of RAM. N/A indicates that the algorithm was

stopped after 24 hours without a solution. For each data set. the number of samples, m, the size of

the test part mt and the number of features, n, are presented.

[TKL] Algorithm 2 with N as defined in Eqn. (11), where Zd is a vector of monomials of
degree d = 1 or less. The regression problem is posed using ε = .1. The data is scaled so
that xi ∈ [0, 1]n and [a, b] = [0−δ, 1+δ]n, where δ ≥ 0 and C in the kernel learning problem
are chosen by 2-fold cross-validation. Implementation and documentation of this method is
described in Appendix D.1 and is publicly available via Github (Colbert et al., 2021);

[SMKL] SimpleMKL proposed in Rakotomamonjy et al. (2008) with a standard selection
of Gaussian and polynomial kernels with bandwidths arbitrarily chosen between .5 and 10
and polynomial degrees one through three - yielding approximately 13(n+ 1) kernels. The
regression and classification problems are posed using ε = .1 and C is chosen by 2-fold
cross-validation;

[NNet] A neural network with 3 hidden layers of size 50 using MATLAB’s patternnet for
classification and feedforwardnet for regression where learning is halted after the error in
a validation set decreased sequentially 50 times;

[RF] The Random Forest algorithm as in Breiman (2004) as implemented on the scikit-
learn python toolbox (see Pedregosa et al., 2011)) for classification and regression. Between
50 and 650 trees (in 50 tree intervals) are selected using 2-fold cross-validation;

[XGBoost] The XGBoost algorithm as implemented in Chen and Guestrin (2016) for
classification and regresion. Between 50 and 650 trees (in 50 tree intervals) are selected
using 2-fold cross-validation;

22



Algorithm for Universal Kernel Learning

(a) An image from
Google Maps of a
section of the Grand
Canyon corresponding
to (36.04, -112.05)
latitude and (36.25,
-112.3) longitude.

(b) Elevation data
(m = 750) from
Becker et al. (2009)
for a section of the
Grand Canyon be-
tween (36.04, -112.05)
latitude and (36.25,
-112.3) longitude.

(c) Predictor using a
hand-tuned Gaussian
kernel trained on the
elevation data in (b).
The Gaussian predic-
tor poorly represents
the sharp edge at the
north and south rim.

(d) Predictor from Al-
gorithm 2 trained on
the elevation data in
(b). The TK predictor
accurately represents
the north and south
rims of the canyon.

Figure 3: Subfigure (a) shows an 3D representation of the section of the Grand Canyon to be fitted.

In (b) we plot elevation data of this section of the Grand Canyon. In (c) we plot the predictor for a

hand-tuned Gaussian kernel. In (d) we plot the predictor from Algorithm 2 for d = 2.

[AMKL] The AverageMKL implementation from the MKLpy python package proposed
in Lauriola and Aiolli (2020) – averages a standard selection of Gaussian and polynomial
kernels;

[PWMK] The PWMK implementation from the MKLpy python package proposed in Lau-
riola and Aiolli (2020), which uses a heuristic based on individual kernel performance as
in Tanabe et al. (2008) to learn the weights of a standard selection of Gaussian and poly-
nomial kernels;

[CKA] The CKA implementation from the MKLpy python package (Lauriola and Aiolli,
2020), uses the centered kernel alignment optimization in closed form as in Cortes et al.
(2010) to learn the weights of a standard selection of Gaussian and polynomial kernels.

To further illustrate the importance of density property and the TKL framework for
practical regression problems, Algorithm 2 with N = NT

2 was applied to elevation data
from Becker et al. (2009) to learn a SVM predictor representing the surface of the Grand
Canyon in Arizona. This data set is particularly challenging due to the variety of geograph-
ical features. The results can be seen in Figure 3(d) where we see that the regression surface
visually resembles a photograph of this terrain, avoiding the artifacts present in the SVM
from an optimized Gaussian kernel seen in Figure 3(c).

9. Conclusion

We have proposed a generalized kernel learning framework – using positive matrices to
parameterize positive kernels. While such problems can be solved using semidefinite pro-
gramming, the use of SDP results in large computational overhead. To reduce this compu-
tational complexity, we have proposed a saddle-point formulation of the generalized kernel
learning problem. This formulation leads to a primal-dual decomposition, which can then
be solved efficiently using algorithms of the Frank-Wolfe or accelerated primal dual type –
with corresponding theoretical guarantees of convergence. In both cases, we have shown that

23



Talitckii, Colbert and Peet

the primal and dual sub-problems can be solved using a singular value decomposition and
quadratic programming, respectively. Numerical experiments confirm that the FW-based
algorithm is approximately 100 times faster than the previous SDP algorithm from Col-
bert and Peet (2020). Finally, 12 large and randomly selected data sets were used to test
accuracy of the proposed algorithms compared to 8 existing state-of-the-art alternatives –
yielding uniform increases in accuracy with similar or reduced computational complexity.

Acknowledgments

We would like to acknowledge support for this project from the National Science Foundation
grant CCF 2323532 and National Institutes of Health grant NIH R01 GM144966.

24



Algorithm for Universal Kernel Learning

Appendix A. Proof of Universality of Tessellated Kernels

In this appendix, we find a detailed proof of Lemma 14.

Lemma 14 For any a, b, δ ∈ Rn with a < b and δ > 0, let Y = [a− δ, b+ δ] and X = [a, b].
Then the kernel

k(x, y) =

∫
Y

I(z − x)I(z − y)dz =

∫
x≤z
y≤z
z≤b+δ

1dz =
n∏
i=1

(bi + δi −max {xi, yi}) =
n∏
i=1

ki(xi, yi)

is universal where ki(x, y) := bi + δi −max {xi, yi}.

Proof As per Micchelli et al. (2006), k : X ×X → R is universal if it is continuous and, if
for any g ∈ C(X) and any ε > 0 there exist f ∈ H such that ‖f − g‖C ≤ ε where

H := {f : f(x) =

m∑
i=1

αik(x, yi) : yi ∈ X, αi ∈ R, m ∈ N}.

First, we show that each kernel, ki(x, y), with corresponding RKHS Hi, is universal for
i = 1, · · · , n. As shown in Colbert and Peet (2020), any triangle function, Λ, of height 1, of
width 2β, and centered at y2 ∈ [ai + β, bi − β], is in Hi, since

Λ(x) =
3∑
j=1

αjki(x, yj) =


0, if x < y1
1
β (x− y1), if y1 ≤ x < y2

1− 1
β (x− y2), if y2 ≤ x < y3

0, if y3 ≤ x

where y1 = y2 − β, y3 = y2 + β and α1 = α3 = − 1
β , α2 = 2 1

β . Furthermore, using α1 = 1
δ

and y1 = bi, we have α1ki(x, y1) = 1
δki(x, bi) = 1 and so the constant function Λ = 1 is also

in Hi. Thus we conclude that Hi contains the Schauder basis for C([ai, bi]) (See Hunter and
Nachtergaele, 2001) and hence the kernel is universal for n = 1.

Next, since k =
∏n
i=1 ki, we have that

H =

{
n∏
i=1

fi : fi ∈ Hi

}
.

Thus, since the ki are universal, for any for any γ ∈ Nn and xγii , there exist gi ∈ Hi such
that |xγii − gi(xi)| ≤ ε.

Note that gi(xi) are bounded, indeed define Ci := (max{|ai|, |bi|})γi + 1 and C :=∏n
i=1Ci, then

sup
xi∈[ai,bi]

|gi(xi)| ≤ sup
xi∈[ai,bi]

|xγii |+ ε ≤ ((max{|ai|, |bi|})γi + ε ≤ (max{|ai|, |bi|})γi + 1 = Ci.

According to Hardy et al. (1952), for all ai, bi ∈ R such that |ai| ≤ 1 and |bi| ≤ 1,
we have that |

∏n
i=1 ai −

∏n
i=1 bi| ≤

∑n
i=1 |ai − bi|. Let g(x) =

∏n
i=1 gi(xi). Then, since

25



Talitckii, Colbert and Peet

∣∣∣gi(xi)Ci

∣∣∣ ≤ 1,
∣∣∣xγiiCi ∣∣∣ ≤ 1 and Ci > 1, we have that

sup
x∈X
|xγ − g(x)| = sup

x∈X

∣∣∣∣∣
n∏
i=1

xγii −
n∏
i=1

gi(xi)

∣∣∣∣∣
= C sup

x∈X

∣∣∣∣∣
n∏
i=1

xγii
Ci
−

n∏
i=1

gi(xi)

Ci

∣∣∣∣∣
≤ C

n∑
i=1

∣∣∣∣xγiiCi − gi(xi)

Ci

∣∣∣∣
≤ nC max

i∈{1,··· ,n}
|xγii − gi(xi)| ≤ nCε.

We conclude that for any γ ∈ Nn, λγ ∈ R and ε > 0, there exists {αγ,j}
mγ
j=1 and {yγ,j}

mγ
j=1

such that

sup
x∈X

∥∥∥∥∥
mγ∑
j=1

αγ,jk(x, yγ,j)− λγxγ
∥∥∥∥∥ ≤ ε.

Now, the Weierstrass approximation theorem (Willard, 2012) states that polynomials
as a linear combination of monomials are dense in C(X). Thus for any f ∈ C(X) and ε > 0
there exists a maximal degree d ∈ N and a polynomial function p(x) =

∑
‖γ‖1≤d λγx

γ such
that

sup
x∈X

∥∥∥f(x)− p(x)
∥∥∥ ≤ ε.

Let {αγ,j}
mγ
j=1 and {yγ,j}

mγ
j=1 be as defined above. Then, using the triangle inequality, we

have

sup
x∈X

∥∥∥∥∥f(x)−
∑
‖γ‖1≤d

mγ∑
j=1

αγ,jk(x, yγ,j)

∥∥∥∥∥ = sup
x∈X

∥∥∥∥∥f(x)− p(x) + p(x)−
∑
‖γ‖1≤d

mγ∑
j=1

αγ,jk(x, yγ,j)

∥∥∥∥∥
≤ sup

x∈X

∥∥∥f(x)− p(x)
∥∥∥+ sup

x∈X

∥∥∥∥∥p(x)−
∑
‖γ‖1≤d

mγ∑
j=1

αγ,jk(x, yγ,j)

∥∥∥∥∥
≤ sup

x∈X

∥∥∥f(x)− p(x)
∥∥∥+

∑
‖γ‖1≤d

sup
x∈X

∥∥∥∥∥λγxγ −
mγ∑
j=1

αγ,jk(x, yγ,j)

∥∥∥∥∥
≤
((

n+ d
d

)
+ 1

)
ε.

Thus, since for any f ∈ C(X) and any ε > 0, there exists g =
∑
‖γ‖1≤d

∑mγ
j=1 αγ,jk(x, yγ,j)

such that ‖f − g‖C ≤ ε. Therefore, since any k ∈ KT is continuous (See Colbert and Peet,
2020), we have that k is universal.

26



Algorithm for Universal Kernel Learning

Appendix B. An Accelerated Algorithm for Quadratic Convergence

In this appendix, we consider the Accelerated Primal-Dual (APD) algorithm discussed in the
main text which can be used to achieve quadratic convergence for Generalized Kernel Learn-
ing. First, we define the APD algorithm and prove quadratic convergence. Furthermore, we
show that the APD algorithm can be decomposed into primal and dual sub-problems which
may be solved using QP and the SVD in a manner similar to the FW algorithm. Finally,
we note that the APD algorithm underperforms the proposed FW algorithm for the first
several iterations and hence we propose a hybrid algorithm which uses FW until an error
tolerance is satisfied and then switched to APD for subsequent iterations.

B.1 An Algorithm with O
(

1
k2

)
Convergence

As discussed in Section 3, the Generalized Kernel Learning problem can be represented as
a minmax or saddle point optimization problem (2) which is linear in P and convex in α

min
α∈Y

max
P∈X

f(α) + Φ(α)− h(P ), (14)

where for Generalized Kernel learning we have that f(α) = κ?(α), Φ(α) = λ(e? � α), and
h(P ) = 0 as defined in section 5.

Numerically, we observe that for several first iterations, the Frank-Wolfe GKL algorithm
achieves super-sublinear convergence - which is often sufficient to achieve an error tolerance
of 10−5. However, if lower error tolerances are desired, the sublinear convergence rate
of the FW algorithm at higher iterations can be accelerated by a algorithm with O

(
1
k2

)
convergence.

Fortunately, Hamedani and Aybat (2021) has shown that provable O
(

1
k2

)
convergence

can be achieved using a variation of an algorithm originally proposed in Chambolle and Pock
(2016). This algorithm, the accelerated primal-dual (APD) algorithm, requires computation
of the same sub-problems, OPT A and OPT P , but it achieves the worst case O

(
1
k2

)
convergence.

Specifically, this algorithm can be used to solve problems of the form

min
α∈Y?

max
P∈X
−κ?(α)−O(α� e?, P ) = f(α) + Φ(P, α)− h(P ), (15)

where f(α) + Φ(α) is strongly convex and h(P ) is concave. Since the Generalized Kernel
Learning Problem (GKL (7)) has the same form as problem (15), application of this ap-
proach is relatively straightforward. Specifically, consider Algorithm 3 from Hamedani and
Aybat (2021) which requires the following definition.

Definition 15 (Bregman distance (Hamedani and Aybat, 2021)) Given f and h,
let φY : Y → R and φX : X → R be differentiable functions on open sets Y ⊂ dom f
and X ⊂ domh. Suppose φX and φY have closed domains and are 1-strongly convex with
respect to ‖ · ‖X and ‖ · ‖Y , respectively. We define the Bregman distances DX : X ×X → R
and DY : Y × Y → R corresponding to φX and φY , respectively, as DX (x, x̂) = φX (x) −
φX (x̂)− 〈∇φX (x̂), x− x̂〉 and DY(y, ŷ) = φY(y)− φY(ŷ)− 〈∇φY(ŷ), y − ŷ〉.

27



Talitckii, Colbert and Peet

Initialize µ, τ0, σ0, kmax and α0, P0 ∈ Y × X
k = 0, (τ−1, σ−1) = (τ0, σ0), (P−1, α−1) = (P0, α0) and γ0 = σ0

τ0
;

while k < kmax do
1: σk = γkτk, θk = σk−1/σk
2: xk = ∇PΦ(αk, Pk)
3: S = (1 + θk)xk − θkxk−1
4: Pk+1 = arg min

P∈X

1

σk
DX(P, Pk)− 〈S, P 〉

5: αk+1 = arg min
α∈Y

f(α) + Φ(Pk+1, α) +
DY (α, αk)

τk
6: γk+1 = γk(1 + µτk), τk+1 = τk

√
γk
γk+1

, k = k + 1

end while
Algorithm 3: APD algorithm

Theorem 16 proves O
(

1
k2

)
convergence of Algorithm 3 when f(α) + Φ(P, α) is strongly

convex in α and h(P ) is concave.

Theorem 16 (Hamedani and Aybat (2021)) Let DX and DY be Bregman distance
functions. Suppose that for any P ∈ X , f(α) and Φ(P, α) are convex in α and for any
α ∈ Y, Φ(P, α) and −h(P ) are concave in P . In addition, suppose f is strongly convex with
modulus µ > 0. Furthermore, suppose that Lαα, LPα satisfy

‖∇PΦ(P, α)−∇PΦ(P̂ , α̂)‖X ∗ ≤ LPα‖α− α̂‖Y
‖∇αΦ(P, α)−∇αΦ(P, α̂)‖Y∗ ≤ Lαα‖α− α̂‖Y

for all α, α̂ ∈ Y and P, P̂ ∈ X and that the starting parameters τ0 and σ0 satisfy:(
1− δ
τ0
− Lαα

)
1

σ0
≥
L2
Pα

ca

for some δ, ca ∈ R+, such that ca + δ ≤ 1. If

{α∗, P ∗} = arg min
α∈Y?

max
P∈X

f(α) + Φ(P, α)− h(P ),

exists, then for any sequence produced by Algorithm 3, {αk, Pk}, we have that
1. limk→∞{Pk, αk} → {P ∗, α∗}
2. If δ > 0, and we define L(α, P ) := f(α) + Φ(P, α)− h(P ) then

0 ≤ L(P ∗, αk)− L(Pk, α
∗) ≤ O

(
1

k2

)
.

Proof See Hamedani and Aybat (2021)

Remark: As stated in Hamedani and Aybat (2021), the conditions of Theorem 16 are
satisfied using τ0 = 1

3Lαα
and σ0 = Lαα

2L2
Pα

.

28



Algorithm for Universal Kernel Learning

B.2 Proposed Booster Algorithm

In this subsection, we propose the following algorithm applicable to our optimization prob-
lem. This algorithm is a specification of APD for the Generalized Kernel learning.

Initialize (α0, P0) ∈ Y? ×X , µ
σ−1 = σ0 = Lαα

2L2
αP

, τ−1 = τ0 = 1
3Lαα

k = 0, (P−1, α−1) = (P0, α0) and γ0 = σ0
τ0

;
while L(Pk+1, αk)− L(Pk, αk+1) > ε do

1: σk = γkτk, θk = σk−1/σk
2: xk = 1

2D(e? � αk)
3: S = (1 + θk)xk − θkxk−1
4: Pk+1 = argAPD P (Pk, S, σk)
5: αk+1 = argAPD A(αk, Pk+1, τk)

6: γk+1 = γk(1 + µτk), τk+1 = τk
√

γk
γk+1

, k = k + 1

end while
Algorithm 4: APD algorithm

where L(P, α) := −λ(e? � α, P )− κ?(α) and

Di,j(α) :=
m∑

k,l=1

αke∗kGi,j(xk, xl)αle∗l

is defined in Eqn. (12) and the two subroutines APD P and APD A are defined as

APD A(P, αk, τ) := max
α∈Y?

λ(e? � α, P ) + κ?(α)− 1

τ
DY(α, αk),

APD P (Pk, S, σ) := min
P∈X

1

σ
DX (P, Pk)− 〈S, P 〉

where DY? := 1
2‖ · ‖

2
2, and DX := 1

2‖ · ‖
2
F .

Furthermore,

τ0 =
1

3Lαα
, and σ0 =

Lαα
2L2

αP

(16)

where

Lαα :=
nP
2

∑
ij

|Dij(e?)|2, LαP :=
C

nP
Lαα (17)

where recall that nP is determined by the size of P (P ∈ SnP ) and C > 0 can be chosen
arbitrarily. Finally, we choose µ > 0 sufficiently small such that −λ(α � e?, P ) − µαTα is
convex for all P ∈ X .

B.3 O
(

1
k2

)
Convergence Proof for Algorithm 4

Formally, we state the theorem.

Theorem 17 Algorithm 4 returns iterates Pk and αk such that, L(αk, Pk+1)−L(αk+1, Pk) <
O( 1

k2
).

29



Talitckii, Colbert and Peet

Proof In this proof, we first show that Algorithm 4 returns iterates Pk and αk which satisfy
Algorithm 3. Next, we show that if τ0, σ0 are chosen as per Eqn. (16), then the conditions
of Theorem 16 are satisfied. First, let us define

f(α) := −κ?(α) + µαTα

Φ(P, α) := −λ(α� e?, P )− µαTα (18)

h(P ) := 0

for some sufficiently small µ > 0. Now, suppose that {Pk, αk, γk, Sk, xk, σk, τk} satisfy Algo-
rithm 4. Clearly, these iterations also satisfy Steps 1, 3 and 6 of Algorithm 3. Furthermore,
these iterations satisfy the equation defined in Step 2 since

∇PΦ(α, P )ij =
∂

∂Pij

[
−λ(α� e?, P )− µαTα

]
=

∂

∂Pij

1

2

nP∑
i,j=1

Pij

m∑
k,l=1

(αke∗k)Gi,j(xk, xl)(αle∗l)


=

1

2

m∑
k,l=1

(αke∗k)Gi,j(xk, xl)(αle∗l) =
1

2
Dij(e? � αk).

Next, the proposed iterations satisfy the equation defined in Step 4 of Algorithm 3 since
by the definition of APD P

Pk+1 = argAPD P (Pk, S, σk) = arg min
P∈X

1

σk
DX (P, Pk)− 〈S, P 〉 .

Finally, the equality in Step 5 of Algorithm 3 is satisfied since

αk+1 = argAPD A(Pk+1, αk, τk)

= arg max
α∈Y?

λ(e? � α, Pk+1) + κ?(α)− 1

τk
DY(α, αk)

= arg min
α∈Y?

−λ(e? � α, Pk+1)− κ?(α) +
1

τk
DY(α, αk)

= arg min
α∈Y?

f(α) + Φ(Pk+1, α) +
1

τk
DY (α, αk).

Therefore, we have that {Pk, αk, γk, Sk, xk, σk, τk} satisfy Algorithm 3.
We next must show that Φ is concave in P , convex in α and f is strongly convex. Φ is

linear in P and thus concave in P . As defined, Φ is convex in α and clearly, f is strongly
convex for any µ > 0. Since Lαα, LαP are as defined in Equation (17), then

‖∇PΦ(P, α)−∇PΦ(P̂ , α̂)‖X ∗ ≤ LPα‖α− α̂‖Y
‖∇αΦ(P, α)−∇αΦ(P, α̂)‖Y∗ ≤ Lαα‖α− α̂‖Y

as desired. Finally, we have that if τ0 and σ0 are as defined in Equation (16), δ = 1
4 , and

ca = 1
2 , then ca + δ ≤ 1 and (

1− δ
τ0
− Lαα

)
1

σ0
≥
L2
Pα

ca

30



Algorithm for Universal Kernel Learning

as desired.
Therefore, we have by Theorem 16 that

0 ≤ L(P ∗, αk)− L(Pk, α
∗) ≤ O

(
1

k2

)
,

and hence

L(αk, Pk+1)− L(αk+1, Pk) < L(P ∗, αk)− L(Pk, α
∗) ≤ O

(
1

k2

)
.

We next define efficient algorithms to solve the subroutines APD P and APD D.

B.4 Solving APD P

The fourth step of the APD algorithm requires solving APD P . For arbitrary matrix
S ∈ SnP this optimization problem is formulated as follows.

Pk+1 = arg min
P∈Y

1

σk
DX(P, Pk)− 〈S, P 〉 (19)

The following algorithm solves the optimization task 19

Input Pk, S ∈ SnP , σk, ε > 0 ;
Set r = +∞ and A = Pk + σkS,
Singular Value Decomposition: A =

∑
i λipip

T
i

Initialize yl = mini λi and yu = maxi λi;
while r > ε do

1: y = 1
2(yl + yu)

2: r =
∑

i |λi − y|+ − nP
3: update yu = y if r ≥ 0, or yl = y otherwise

end while
Return P =

∑
i |λi − y|+pipTi = argAPD P (Pk, S, σ).

Algorithm 5: APD P Subroutine

Lemma 18 Let the optimization problem be as defined in (19), then the algorithm 5 returns
the solution of APD P.

Proof Firstly, we should reformulate Optimization Problem (19) as,

arg min
P∈SnP

trace(P )=nP
P�0

1

σ
DX(P, Pk)− 〈S, P 〉 = arg min

P∈SnP
trace(P )=nP

P�0

1

2σ
‖P − Pk‖2F − 〈S, P 〉

= arg min
P∈SnP

trace(P )=nP
P�0

1

2σ
〈P − Pk, P − Pk〉 − 2σ〈S, P 〉 = arg min

P∈SnP
trace(P )=nP

P�0

1

2σ
‖P − (Pk + σS)‖2F ,

= arg min
P∈SnP

trace(P )=nP
P�0

‖P −A‖2F , (20)

31



Talitckii, Colbert and Peet

where A = Pk + σS.

Having reduced APD P to a convex distance minimization problems of the form of
Eqn. (20). According to Harada (2018), we use a subroutine defined by Algorithm 5 to
solve problem (20) and therefore to find Pk+1 in Step 4 of Algorithm 4.

B.5 Solving APD A

APD A is a QP of the form

min
α∈Y?

1

2
αTQ∗α+ cT∗ α,

where, cT∗ α = −τκ?(α)− αTp α, and αTQ∗α = −τλ(e? � α, P ) + αTα.

QP’s of this form can be solved using a slight variation of the algorithm proposed in
Subsection 5.3.

B.6 Combined Solution for General Kernel Learning

We can see that the Frank-Wolfe GKL Algorithm converges quite quickly up to a certain
value, but after that the convergence slows down and becomes linear. Moreover, APD
algorithm return a smaller objective function after 3000-4000 iterations. But, the pure
APD has non-monotonic convergence at the early stage. All this together prompted us to
create a combined Frank-Wolfe GKL and APD algorithm. The tolerance for the Frank-
Wolfe GKL was chosen according to the numerical results.

INPUT ε - tolerance;
1: (α1, P1) = Frank Wolfe GKL with tolerance ε
2: (α2, P2) = APD with initial guess α1, P1 and desired tolerance
3: α = OPT A(P2), P = P2

OUTPUT: α, P
Algorithm 6: Final version of GKL

We assume, that the proposed algorithm 6 will show both fast initial convergence and
O
(

1
k2

)
convergence in the worst case, which is necessary for application to arbitrary data

sets.

Appendix C. Computational Complexity of SVM Problem with Optimal
Kernel

In this section, we consider the computational complexity of SVM subproblem as a function
of matrix P . Although, as discussed in Subsection 7.2, the computation complexity of SVM
subproblem does not depend on the size of matrix P , it implicitly depends on the kernel
function. Note, that the proposed solution demonstrates that the optimal matrix P is always
a rank 1 matrix – See Section 5. However, the proposed set of kernels includes many different
kernels – e.g. for matrix P with different ranks. The computational complexity of SVM
subproblem is uniquely determined by kernel function and therefore, in our case, depends
on matrix P . To investigate this issue, we generate random positive semidefinite matrices

32



Algorithm for Universal Kernel Learning

(a) The number of iteration for random ma-
trix P for Support Vector Regression.

(b) The number of iteration for random ma-
trix P for Support Vector Classification.

Figure 4: The number of iterations of SVM subproblem required to achieve the desired tolerance
ε = 0.1 as a function of the rank P . The SVM subproblem has been solved using LibSVM implemen-
tation. The red dots and error bars represent average number of iterations of the SVM algorithm and
95% confidence interval using 20 trials for a) regression problem for California Housing (CA) data
set in Pace and Barry (1997b) and b) for classification problem for Shill Bid data set in Alzahrani
and Sadaoui (2018, 2020). We also included the blue line, that indicates the best linear fit of the
average number of iterations.

with different ranks and consider the number of iterations of SVM learning problem. We
compute matrix P randomly

P =
nP
r

r∑
i=1

1

‖vi‖2
viv

T
i

where v is a normal distributed vector and r is a desired rank of matrix P .

In Figure 4 we plot the number of iterations required to achieve the fixed tolerance
ε = 0.1 for different ranks of matrix P . The data set used for these plots is California
Housing (CA) in Pace and Barry (1997b). The results shows that the rank 1 optimal
solution of the proposed algorithm is significantly faster in comparison with other random
positive semidefinite matrices P with different ranks.

Appendix D. Implementation and Documentation of Algorithms

In this appendix material, we have provided a MATLAB implementation of the proposed
algorithms which can be used to reproduce the numerical results given in Section 7. The pri-
mary executable is PMKL.m. The demo files exampleClassification.m and exampleRegression.m

illustrate typical usage of this executable for classification and regression problems respec-
tively. This software is available from Github (Colbert et al., 2021).

33



Talitckii, Colbert and Peet

D.1 Documentation for Included Software

Also included in the main material are the 5 train and test partitions used for each of the
12 data sets used in the numerical results section of the paper. The code numericalTest.m

allows the user to select the data set and run the FW PMKL algorithm on the five partitions
to calculate the average and standard deviation of the MSE (for regression) or TSA (for
classification).

The PMKL subroutine
PMKL1 - Positive Matrix Kernel Learning,

>> f = PMKL(x,y,Type,C,params);

yields an optimal solution to the minimax program

min
P∈X

max
α∈Y?

λ(e? � α, P ) + κ?(α),

where X := {P ∈ SnP : trace(P ) = nP , P � 0},

Yc := {α ∈ Rm : αT y = 0, αi ∈ [0, C]}, Yr := {α ∈ Rm : αT e = 0, αi ∈ [−C,C]},

and where,

• x ∈ Rn×m is a matrix of n rows corresponding to the number of features and m
columns corresponding to the number of samples where x(:, i) is the i’th sample,

• y ∈ Rm (y ∈ [−1, 1]m) is a row of outputs (labels) for each of the samples in x where
y(:,i) is the i’th output corresponding to the i’th sample x(:,i),

• Type is the string ’Classification’ for classification or ’Regression’ for regression,

• C is the penalty for miss-classifying a point for classification, or for predicting an
output with less than ε accuracy for regression,

• params is a structure containing additional optional parameters such as the kernel
function (default is the TK function), kernel parameters (degree of monomial basis
for TK or GPK kernels), the domain of integration, the ε-loss term for regression, the
maximum number of iterations and the tolerance,

• The output f is an internal data structure containing the solutions P ∗ and α∗, as
well as the other user selected parameters. This data structure defines the resulting
regressor/classifier. This regressor/classifier can be evaluated using the EvaluatePMKL
command as described below.

Default parameters of the params structure are

1. PMKL Boosted is the combined Frank-Wolfe and Accelerated Primal Dual method that is used when high
accuracy is required. The algorithm usage is identical to the PMKL algorithm and can be used with
these same instructions.

34



Algorithm for Universal Kernel Learning

>> params.kernel = ’TK’

>> params.delta = .5

>> params.epsilon = .1

>> params.maxit = 100

>> params.tol = .01

where kernel specifies the kernel function to use, delta determines the bounds of inte-
gration [a, b] = [0 − δ, 1 + δ]n, epsilon is the epsilon-loss of the support vector regression
problem, maxit is the maximum number of iterations, and tol is the stopping tolerance.
The PMKL.m function can be run with only some of the inputs manually specified, as dis-
cussed next.

Default Implementation
To run the PMKL algorithm with all default values for the samples x and outputs y and
to automatically select the type of problem (classification or regression) the MATLAB
command is,

>> f = PMKL(x,y)

where if y only contains two unique values, the algorithm defaults to classification. Other-
wise, the algorithm defaults to regression.

Manual Selection of Classification or Regression
To run the PMKL algorithm with all default values, for the samples x and outputs y but
manually select the type of problem, the MATLAB command is,

>> f = PMKL(x,y,Type)

where Type = ’Classification’ for classification or ’Regression’ for regression.
Manually Specifying the Penalty C

To run the PMKL algorithm with all default values except for Type and the penalty term
C, for the samples x and outputs y the MATLAB command is,

>> f = PMKL(x,y,Type,C)

where the user must select a C > 0. It is recommended that the value of C be selected via
k-fold cross-validation with data split into training and validation sets.

Manually Specifying Additional Parameters
For help generating the params structure we have included the paramsTK.m function which
allows the user to generate a params structure for TK kernels as follows.

>> params = paramsTK(degree,delta,epsilon,maxit,tol)

An empty matrix can be used for any input where the default value is desired, and using
the paramsTK framework is recommended when modifying the default values.

The Evaluate Subroutine Once the optimal kernel function has been learned, you
can evaluate the predicted output of a set of samples using the following function.

>> yPred = evaluatePMKL(f,xTest)

The output of evaluatePMKL are the predicted outputs of the optimal support vector ma-
chine, trained on the data x and y with the designated kernel function optimized by the
PMKL subroutine.

35



Talitckii, Colbert and Peet

• The input f is an internal data structure output from the PMKL function.

• xTest ∈ Rn×m is a matrix of n rows corresponding to the number of features and
m columns corresponding to the number of samples where xTest(:,i) is the i’th
sample,

• The output yPred ∈ R1×m is a vector with m columns corresponding to the number
of samples in xTest.

References

A Alzahrani and S Sadaoui. Scraping and preprocessing commercial auction data for fraud
classification. arXiv preprint arXiv:1806.00656, 2018.

A. Alzahrani and S. Sadaoui. Clustering and labeling auction fraud data. In Data
Management, Analytics and Innovation, pages 269–283. Springer, 2020.

J. Becker, D. Sandwell, W. Smith, J. Braud, B. Binder, J. Depner, D. Fabre, J. Factor, S. In-
galls, S. Kim, et al. Global bathymetry and elevation data at 30 arc seconds resolution:
SRTM30 PLUS. Marine Geodesy, 32(4):355–371, 2009.

D. Bertsekas. Nonlinear Programming. Athena Scientific Optimization and Computation
Series. Athena Scientific, 2016.

B. Boehmke and B.M. Greenwell. Hands-On Machine Learning with R. Chapman &
Hall/CRC The R Series. CRC Press, 2019.

K. Borgwardt, A. Gretton, M. Rasch, H. Kriegel, B. Schölkopf, and A. Smola. Integrating
structured biological data by kernel maximum mean discrepancy. Bioinformatics, 2006.

L. Breiman. Random forests. Machine Learning, 45:5–32, 2004.

B. Brian and J. G. Young. Implementation of a primal–dual method for SDP on a shared
memory parallel architecture. Computational Optimization and Applications, 37(3):355–
369, 2007.

T. Brooks, D. Pope, and M. Marcolini. Airfoil Self-noise and Prediction. NASA reference
publication. National Aeronautics and Space Administration, Office of Management, Sci-
entific and Technical Information Division, 1989.

A. Chambolle and T. Pock. On the ergodic convergence rates of a first-order primal–dual
algorithm. Mathematical Programming, 159(1):253–287, 2016.

C-C. Chang and C-J. Lin. LIBSVM: a library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011.

T. Chen and C. Guestrin. XGBoost: a scalable tree boosting system. In ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2016.

B. Colbert and M. Peet. A convex parametrization of a new class of universal kernel
functions. Journal of Machine Learning Research, 21(45):1–29, 2020.

36



Algorithm for Universal Kernel Learning

B. Colbert, A. Talitckii, and M. Peet. Tessellated kernel learning. https://github.com/

CyberneticSCL/TKL-version-0.9, 2021.

C. Cortes, M. Mohri, and A. Rostamizadeh. Two-stage learning kernel algorithms. In
International Conference on Machine Learning, 2010.

D. Dua and C. Graff. UCI machine learning repository, 2017. URL http://archive.ics.

uci.edu/ml.

K. Fan. Minimax theorems. Proceedings of the National Academy of Sciences of the United
States of America, 39(1):42, 1953.

Y. Fang, K. Loparo, and X. Feng. Inequalities for the trace of matrix product. IEEE
Transactions on Automatic Control, 39(12):2489–2490, 1994.

M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research Logistics
Quarterly, 3(1-2):95–110, 1956.

K. Fukumizu, A. Gretton, X. Sun, and B. Schölkopf. Kernel measures of conditional de-
pendence. Advances in Neural Information Processing Systems, 20, 2007.

I. Gohberg, S. Goldberg, and M. Kaashoek. Basic Classes of Linear Operators. Birkhäuser
Basel, 2012.

M. Gönen and E. Alpaydın. Multiple kernel learning algorithms. Journal of Machine
Learning Research, 2011.

E. Hamedani and N. Aybat. A primal-dual algorithm with line search for general convex-
concave saddle point problems. SIAM Journal on Optimization, 31(2):1299–1329, 2021.

K. Harada. Positive semidefinite matrix approximation with a trace constraint. 2018. URL
http://www.optimization-online.org/DB_FILE/2018/08/6765.pdf.

G. Hardy, J. Littlewood, and G. Pólya. Inequalities. Cambridge Mathematical Library.
Cambridge University Press, 1952.

D. Harrison and D. Rubinfeld. Hedonic housing prices and the demand for clean air. Journal
of Environmental Economics and Management, 1978.

T. Ho and E. Kleinberg. Building projectable classifiers of arbitrary complexity. In
International Conference on Pattern Recognition, volume 2, 1996.

J. Hunter and B. Nachtergaele. Applied Analysis. World Scientific, 2001.

M. Hussain, S. Wajid, A. Elzaart, and M. Berbar. A comparison of SVM kernel functions
for breast cancer detection. In International Conference Computer Graphics, Imaging
and Visualization, pages 145–150. IEEE, 2011.

M. Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In
International Conference on Machine Learning, 2013.

37

https://github.com/CyberneticSCL/TKL-version-0.9
https://github.com/CyberneticSCL/TKL-version-0.9
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://www.optimization-online.org/DB_FILE/2018/08/6765.pdf


Talitckii, Colbert and Peet

A. Jain, S. Vishwanathan, and M. Varma. SPF-GMKL: generalized multiple kernel learning
with a million kernels. In ACM International Conference on Knowledge Discovery and
Data Mining, 2012.

H. Kaya, P. Tüfekci, and F. Gürgen. Local and global learning methods for predicting power
of a combined gas & steam turbine. In International Conference on Emerging Trends in
Computer and Electronics Engineering, pages 13–18, 2012.

H. Kaya, P. Tüfekci, and E. Uzun. Predicting CO and NOx emissions from gas tur-
bines: novel data and a benchmark PEMS. Turkish Journal of Electrical Engineering
& Computer Sciences, 27(6):4783–4796, 2019.

G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M. Jordan. Learning the kernel
matrix with semidefinite programming. Journal of Machine Learning Research, 2004.

I. Lauriola and F. Aiolli. MKLpy: a python-based framework for multiple kernel learning.
arXiv preprint arXiv:2007.09982, 2020.

J. McDermott and R. Forsyth. Diagnosing a disorder in a classification benchmark. Pattern
Recognition Letters, 73:41–43, 2016.

C. Micchelli, Y. Xu, and H. Zhang. Universal kernels. Journal of Machine Learning Research,
2006.

K. Ni, S. Kumar, and T. Nguyen. Learning the kernel matrix for superresolution. In
Proceedings of the IEEE Workshop on Multimedia Signal Processing, pages 441–446,
2006.

K. Pace and R. Barry. Quick computation of spatial autoregressive estimators. Geographical
Analysis, 1997a.

K. Pace and R. Barry. Sparse spatial autoregressions. Statistics & Probability Letters,
1997b.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

S. Qiu and T. Lane. Multiple kernel learning for support vector regression. Computer
Science Department, The University of New Mexico, Albuquerque, NM, USA, Tech. Rep,
2005.

A. Rakotomamonjy, F. R. Bach, S. Canu, and Y. Grandvalet. SimpleMKL. Journal of
Machine Learning Research, 2008.

B. Schölkopf, R. Herbrich, and A. Smola. A generalized representer theorem. In
International Conference on Computational Learning Theory, pages 416–426, 2001.

38



Algorithm for Universal Kernel Learning

C-J Simon-Gabriel and B. Schölkopf. Kernel distribution embeddings: universal kernels,
characteristic kernels and kernel metrics on distributions. Journal of Machine Learning
Research, 19(1):1708–1736, 2018.

A. Smola and B. Schölkopf. A tutorial on support vector regression. Statistics and
Computing, 14(3):199–222, 2004.

S. Sonnenburg, G. Rätsch, S. Henschel, C. Widmer, J. Behr, A. Zien, F. De Bona, A. Binder,
C. Gehl, and V. Franc. The SHOGUN machine learning toolbox. Journal of Machine
Learning Research, 11(60):1799–1802, 2010.

B. Sriperumbudur, K. Fukumizu, and G. Lanckriet. Universality, characteristic kernels and
RKHS embedding of measures. Journal of Machine Learning Research, 12(7), 2011.

I. Steinwart. On the influence of the kernel on the consistency of support vector machines.
Journal of Machine Learning Research, 2(Nov):67–93, 2001.

I. Steinwart and A. Christmann. Support Vector Machines. Information Science and Statis-
tics. Springer New York, 2008.

H. Tanabe, B.T. Ho, C.H. Nguyen, and S. Kawasaki. Simple but effective methods for
combining kernels in computational biology. In International Conference on Research,
Innovation and Vision for the Future in Computing and Communication Technologies,
2008.

P. Tüfekci. Prediction of full load electrical power output of a base load operated combined
cycle power plant using machine learning methods. International Journal of Electrical
Power & Energy Systems, 60:126–140, 2014.

H. Wang, Q. Xiao, and D. Zhou. An approximation theory approach to learning with `1
regularization. Journal of Approximation Theory, 2013.

S. Waugh. Extending and benchmarking Cascade-Correlation: extensions to the
Cascade-Correlation architecture and benchmarking of feed-forward supervised artificial
neural networks. PhD thesis, University of Tasmania, 1995.

S. Willard. General Topology. Dover Books on Mathematics. Dover Publications, 2012.

W. Wolberg, O. Mangasarian, T. Coleman, and Y. Li. Pattern recogni-
tion via linear programming: Theory and application to medical diagnosis.
Large-Scale Numerical Optimization, SIAM Publications, Citeseer, pages 22–30, 1990.

W. Wolberg, O. Mangasarian, N. Street, and W. Street. Breast Cancer Wisconsin (Diag-
nostic). UCI Machine Learning Repository, 1995.

Z. Xu, R. Jin, H. Yang, I. King, and M.R. Lyu. Simple and efficient multiple kernel learning
by group Lasso. In International Conference on Machine Learning, pages 1175–1182, 2010.

H. Yang, Z. Xu, J. Ye, I. King, and M.R. Lyu. Efficient sparse generalized multiple kernel
learning. IEEE Transactions on Neural Networks, 22(3):433–446, 2011.

39



Talitckii, Colbert and Peet

Y. Ye and E. Tse. An extension of Karmarkar’s projective algorithm for convex quadratic
programming. Mathematical Programming, 44(1-3):157–179, 1989.

I. Yeh, K. Yang, and T. Ting. Knowledge discovery on RFM model using Bernoulli sequence.
Expert Systems with Applications, 36, 2009.

40


	Introduction
	Notation
	Kernel Sets and Kernel learning
	Tractability
	Universality
	Density

	A General Framework for Representation of Tractable Kernel Sets
	An Efficient Algorithm for Generalized Kernel Learning in Classification and Regression Problems
	Primal-Dual Decomposition
	Primal-Dual Frank-Wolfe Algorithm
	Step 1, Part A: Solving OPT_A(P) 
	Step 1, Part B: Solving OPT_P()
	An Accelerated Algorithm for O(1k2) Convergence

	Tessellated Kernels: Tractable, Dense and Universal
	KT is Tractable
	KT is Dense
	KT is Universal

	Numerical Convergence and Scalability
	Convergence Properties
	Computational Complexity

	Accuracy of the New TK Kernel Learning Algorithm
	Conclusion
	Proof of Universality of Tessellated Kernels
	An Accelerated Algorithm for Quadratic Convergence
	An Algorithm with O(1k2) Convergence
	Proposed Booster Algorithm
	O(1k2) Convergence Proof for Algorithm 4
	Solving APD_P
	Solving APD_A
	Combined Solution for General Kernel Learning

	Computational Complexity of SVM Problem with Optimal Kernel
	Implementation and Documentation of Algorithms
	Documentation for Included Software


