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Abstract

Ordinary differential equations (ODEs), via their induced flow maps, provide a
powerful framework to parameterize invertible transformations for representing com-
plex probability distributions. While such models have achieved enormous success in
machine learning, little is known about their statistical properties. This work establishes
the first general nonparametric statistical convergence analysis for distribution learning
via ODE models trained through likelihood maximization. We first prove a convergence
theorem applicable to arbitrary velocity field classes F satisfying certain simple bound-
ary constraints. This general result captures the trade-off between the approximation
error and complexity of the ODE model. We show that the latter can be quantified via
the C1-metric entropy of the class F . We then apply this general framework to the set-
ting of Ck-smooth target densities, and establish nearly minimax-optimal convergence
rates for two relevant velocity field classes F : Ck functions and neural networks. The
latter is the practically important case of neural ODEs. Our results also provide insight
on how the choice of velocity field class, and the dependence of this choice on sample
size (e.g., the scaling of neural network classes), impact statistical performance.
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1. Introduction

The interface of nonparametric statistics with complex models given by differential equa-
tions has been a major focus of contemporary statistics and applied mathematics. On the
one hand, physically motivated differential equation models of data-generating processes
are central to inverse problems and data assimilation. There has been considerable progress
in understanding such models through a statistical lens, leading to structure-exploiting al-
gorithms (Rudolf and Sprungk, 2018; Schillings and Schwab, 2016; Kim et al., 2023), new
consistency and uncertainty quantification guarantees (Monard et al., 2019; Nickl et al.,
2020; Nickl and Titi, 2023), and a growing understanding of computational complexity
(Nickl and Wang, 2022; Nickl, 2023). On the other hand, differential equations underpin
the construction of new expressive and flexible model classes for representing complex prob-
ability distributions, which have enjoyed enormous success in machine learning and data
science. Examples of such models include neural ordinary differential equations (Chen et al.,
2018), score-based diffusion models (Song et al., 2020b; Yang et al., 2022), and flow match-
ing methods (Lipman et al., 2022; Liu et al., 2022; Albergo et al., 2023). In such models,
a key aspect of the dynamics, e.g, the velocity field of an ordinary differential equation or
the drift of a stochastic differential equation, is learned from data by minimizing a suitable
objective. These approaches have achieved leading performance in diverse applications,
ranging from generative modeling of images and video (Grathwohl et al., 2018; Song et al.,
2020a; Ho et al., 2022) to density estimation in high-energy physics (Nachman and Shih,
2020) to conditional sampling and simulation-based Bayesian inference (Shi et al., 2022;
Batzolis et al., 2021; Cranmer et al., 2020).

This paper develops statistical finite-sample guarantees for distribution learning with
ordinary differential equation (ODE) models. These models are described via finite-time
flow maps of ODEs (Arnold and Silverman, 1978) of the form

#

d
dtXpx, tq “ fpXpx, tq, tq,

Xpx, 0q “ x,
for x P D, t P r0, 1s. (1.1)

Here D Ď Rd pd ě 1q is some domain and the velocity field f P F belongs to some
parametric function class F . For each f P F , the collection of all trajectories of (1.1) is
captured by the flow map px, tq ÞÑ Xf px, tq, a continuous-time invertible transformation
that can be used to push forward and pull back probability distributions. In the context of
statistical learning, this framework is applied to infer complicated unknown distributions:
a velocity field f̂ P F is computed by minimizing a statistical objective, and the unknown
distribution is then approximated as the pullback of a reference distribution (e.g., normal or

uniform) under the terminal time (i.e., t “ 1) flow map x ÞÑ X f̂ px, 1q. This approximation
immediately provides a density estimate, and crucially further enables sampling (hence
generative modeling) by evaluating the inverse of the flow map on reference samples. For
details, see Section 2.2.

One way of interpreting such ODE-based models is to view them as a specific param-
eterizations of time-independent transport maps (Marzouk et al., 2016). However, a key
practical advantage of the ODE formulation over models that directly represent transport
maps is that for any sufficiently regular velocity field f , the ODE construction guarantees
that the flow maps are invertible. Moreover, given an initial condition x at time t “ 0 with
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known probability density, the density of the state at any intermediate time t ą 0 can eas-
ily be evaluated via the so-called ‘instantaneous change-of-variables’ formula (Chen et al.,
2018). Since these features hold for very generic choices of f , they permit using virtually
any approximation class—such as polynomials, neural networks, or kernel representations
(Owhadi and Yoo, 2019)—to describe the parameter space F . By contrast, in models which
directly parameterize transport maps, significant care is needed to ensure invertibility and
tractable Jacobian determinants.

When the velocity field f is represented as a deep neural network, the system (1.1) is
called a neural ODE (Chen et al., 2018); such models achieve state-of-the-art performance in
density estimation (Grathwohl et al., 2018; Onken et al., 2021) and are competitive (by var-
ious sample quality metrics) for various generative modeling tasks. While this construction
is powerful, most questions regarding theoretical performance guarantees for ODE-based
methods remain unexplored; the notable exceptions (Ishikawa et al., 2022; Li et al., 2022;
Ruiz-Balet and Zuazua, 2023b,a) will be discussed further below. To the best of our knowl-
edge, current approximation results are limited to universal approximation (Teshima et al.,
2020; Ishikawa et al., 2022; Li et al., 2022; Ruiz-Balet and Zuazua, 2023b), while quanti-
tative approximation rates are yet unknown; our forthcoming companion paper (Marzouk
et al., 2023) provides the first such approximation rate results. The present paper consid-
ers the yet more challenging task of giving statistical finite-sample convergence guarantees,
which has thus far only been considered by Ruiz-Balet and Zuazua (2023a), whose proof
approach and results are vastly different from ours; see below for further discussion. The
observational setting we consider is that of nonparametric density estimation (e.g., Triebel
(2008); Giné and Nickl (2016)), which also underlies generative modeling: a finite collection
of independent and identically distributed (iid) samples is given,

Z1, . . . , Zn
iid
„ P0,

and our goal is to characterize the unknown target distribution P0. We consider general
estimators f̂ which arise as minimizers of a negative log-likelihood (or empirical Kullback–
Leibler) objective over some class F , a training strategy which is extremely common in
practice (Grathwohl et al., 2018; Chen et al., 2018; Finlay et al., 2020).

1.1 Results and Contributions

To our knowledge, our paper provides the first rigorous statistical analysis of likelihood-
based ODE density estimators, and specifically the first such statistical convergence results
for neural ODEs. Our approach integrates tools from nonparametric M-estimation (van de
Geer, 2000), recent advances in statistical and approximation theory for neural networks
(e.g., Schmidt-Hieber (2020)), and ODE analytical theory (e.g., Hartman (2002)). Our
results also create the first explicit framework for understanding the impact of choosing
different velocity field classes on statistical performance.

In Section 2, we develop a statistical convergence result applicable to general ODE-
parameterized maximum likelihood estimators (ODE-MLEs); see Theorem 2. Specifically,
given any variational class F of velocity fields (satisfying mild boundedness assumptions),
our result gives a bound on the rate of convergence as a sum of two terms reminiscent of the
classical bias-variance tradeoff. The first term corresponds to the ‘best approximation’ of
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the ground truth measure P0 by elements in the class F , and the second term follows from
the metric entropy of F in the C1 norm. Our result thus identifies the latter as a natural
statistical complexity measure that yields an upper bound on the stochastic fluctuations of
any ODE-MLE; see Section 2 for details.

To obtain this result, we first derive natural boundary conditions on the variational class
F to ensure that the statistical objective can be formulated over F in its standard form,
by ensuring that all pullback distributions under the associated ODE flow maps possess
the same support and are absolutely continuous. Then, to prove Theorem 2, we derive
novel analytical Lipschitz estimates for ODEs—bounding the distance between terminal-
time transport maps induced by ODE flows, and between their corresponding pullback
distributions, in terms of the velocity fields that underlie them. Such Lipschitz properties
hold true locally on sets of velocity fields which are uniformly bounded in a certain sense;
see (2.8). These estimates, detailed in Section 2.4, are then combined with existing con-
vergence theory for general sieved maximum likelihood estimators (van de Geer, 2000) in
Hellinger loss. They crucially allow us to relate so-called bracketing entropy rates, which are
commonly required in theory for M-estimation (van de Geer, 2000), to C1-metric entropy
rates of ODE-based estimators; see the proof of Theorem 2 for details.

Section 3 studies the case where P0 possesses a Ck density and F likewise consists of
Ck-smooth velocity fields. The main convergence theorem in this section is Theorem 10. A
key intermediate result establishes the existence of a Ck velocity field coupling P0 with the
reference distribution and vanishing appropriately normal to the boundary. The existence
of a Ck velocity field is established in our companion paper (Marzouk et al., 2023); it is
constructed using a triangular Knothe–Rosenblatt (KR) map and straight-line trajectories.
The required boundary behavior is proven here, using anisotropic regularity properties of
KR maps shown in Wang and Marzouk (2022); see Theorem 9. Due to the additional
dimension arising from the space-time structure of the ODEs, our rates of convergence are
slightly suboptimal in a statistical minimax sense. Achieving minimax-optimality in this
context will likely require a more refined choice of F , e.g., as an anisotropic regularity class
or via penalization; we leave this for future work. See also Remark 21.

Finally, Section 4 considers the case where F is given via neural network classes. Using
scalings of ReLU network classes (i.e., width, depth, sparsity, and norm constraints scaling
in the sample size n) derived in the seminal work of Schmidt-Hieber (2020), we prove the
relevant metric entropy and approximation bounds needed to apply our general result from
Theorem 2. In order to satisfy the regularity and boundary conditions required for our ODE
setting, we make some modifications to the standard constructions of neural network classes:
first, we need to work with the squared ReLU2 activation functions to ensure C1 regularity;
and second, we multiply standard neural network classes with certain component-wise cutoff
functions to create an ansatz space satisfying appropriate boundary conditions. See Section
4 for details. Our choice of a slightly more regular ReLU2 activation, interestingly, may
relate to the fact that smooth activation functions are often used in practical applications
of continuous normalizing flows.
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1.2 Related Work

The past decade has seen the emergence of increasingly expressive and powerful models for
complex probability distributions that employ transportation of measure: The central idea
is to express the “target” distribution of interest as the pullback or pushforward of a simple
reference distribution (e.g., uniform or standard Gaussian) by a learned (measurable) map.
Samples from the target distribution are then produced simply by evaluating this map on
samples from the reference; this enables generative modeling (Kingma and Dhariwal, 2018).
When the map is invertible and sufficiently smooth, the map and the reference density
yield a closed-form expression for the target density, enabling density estimation (Tabak
and Vanden-Eijnden, 2010; Anderes and Coram, 2011; Wang and Marzouk, 2022). Given
a family of transport maps and a reference measure, variational inference can be cast as
minimization of a suitable divergence over the resulting family of pushforward measures
(Moselhy and Marzouk, 2012; Rezende and Mohamed, 2015).

A central question in designing these methods is how to represent or parameterize the
map. Initial applications of transport in machine learning emphasized normalizing flows
(Rezende and Mohamed, 2015; Papamakarios et al., 2021; Kobyzev et al., 2020), which
are compositions of simple, parametric, invertible transformations whose Jacobian determi-
nants are, by design, easy to evaluate. A considerable variety of such transformations have
been proposed (Dinh et al., 2015; Kingma et al., 2016; Huang et al., 2018; Wehenkel and
Louppe, 2019), sometimes under the broader label of “invertible neural networks.” In other
settings, triangular maps (Bogachev et al., 2005; Marzouk et al., 2016; Zech and Marzouk,
2022a,b; Baptista et al., 2022; Irons et al., 2022) and parametric approximations of opti-
mal transport maps (Moselhy and Marzouk, 2012; Huang et al., 2020) have been popular.
More recently, there has been considerable interest in “continuous-time” (i.e., differential)
notions of normalizing flows. As explained earlier in this introduction, these models can be
formalized as ODE systems (1.1) and are the central topic of this paper.

Questions of function approximation with neural ODEs have been studied in Li et al.
(2022); Ishikawa et al. (2022). Ishikawa et al. (2022) show that neural ODEs are univeral
approximators of smooth diffeomorphisms on Rd in appropriate Sobolev norms. Li et al.
(2022) adapts ideas from dynamical systems to show that neural ODEs are universal approx-
imators of continuous functions from Rd to Rm (hence, not only diffeomorphisms) in a L2

sense, for d ě 2. Both papers compose the flow map of the ODE with a terminal mapping,
meant to represent a classification or regression layer. Yet these universal approximation
results do not characterize approximation rates, e.g., relating bounds on an approximation
error to the size of the network representing the velocity field. Function approximation is
also different than our present focus of statistical recovery guarantees.

The results on diffeomorphism approximation in Ishikawa et al. (2022) do translate to
universal approximation of certain classes of distributions, in a weak sense and in total varia-
tion. Ruiz-Balet and Zuazua (2023b) also proves universal approximation for certain target
distributions, in Wasserstein-1 distance, using a rather different approach that is discrete
and constructive. Our companion paper Marzouk et al. (2023), in contrast, establishes ap-
proximation rates for neural ODE representations of distributions with Ck-smooth densities,
and shows that there exist neural network representations of the velocity field f , with size
explicitly bounded in terms of the regularity of the densities, that achieve efficient approxi-
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mation. There has also been relevant work on approximation theory for transport maps that
are not constructed via ODEs. For example, Zech and Marzouk (2022a,b) investigate sparse
polynomial and neural network approximations of triangular (Knothe–Rosenblatt) maps,
formulating a priori descriptions of an ansatz space that achieves exponential convergence
in the case of analytic densities. A broader framework for understanding the distributional
errors of transport map approximations is proposed in Baptista et al. (2023).

From the statistical perspective, one must address the impact of using a finite number of
samples n to estimate the ODE velocity field and the resulting pushforward or pullback den-
sities. To our knowledge, there has been almost no statistical convergence analysis of neural
ODEs. Perhaps the sole exception is Ruiz-Balet and Zuazua (2023a) (building on Ruiz-Balet
and Zuazua (2023b)), which analyzes neural ODE-type models from a controllability per-
spective, explicitly constructing finite-difference approximations of the target density using
a neural network velocity field with ReLU activations. Sample complexity results follow
from assessing the convergence of the n-sample empirical measure to its finite-difference
approximation. This construction is rather different from the maximum likelihood training
typically used in neural ODEs, and similarly its analysis uses different tools than those we
exploit here. Moreover, Ruiz-Balet and Zuazua (2023a,b) do not assume any smoothness
in the reference and target densities.

For direct parameterization of transport maps, i.e., not using an ODE construction,
Wang and Marzouk (2022) develop a general statistical convergence theory for transport-
based estimation of Hölder-smooth densities, and we build on those results here. There is
also a growing body of work on the statistical estimation of optimal transport maps; see,
e.g., Manole et al. (2021); Divol et al. (2022). As a corollary of such results, for a fixed
reference distribution, one can obtain rates of convergence for optimal transport-based
density estimation in Wasserstein distances (Hütter and Rigollet, 2021, Remark 5). We
emphasize, however, that these constructions are distinct from the ODE models of interest
here.

Let us also comment briefly on sampling and generative modeling methods based stochas-
tic differential equations (SDEs). As mentioned in the opening, such methods generally seek
to learn the drift term of an SDE so that marginal distribution at a particular time (e.g.,
t “ 0 or t Ñ 8) is a good approximation of the target distribution. Score-based diffusion
models (Song et al., 2020b, 2021; Yang et al., 2022) are a widely used approach of this
type. Yet these models—and approaches for elucidating their approximation properties
and statistical behavior—are rather different in character from deterministic ODEs, due to
the presence of the diffusion term. Also, the estimation problem in score-based diffusions
involves an objective that is quadratic in the desired score; this is much simpler than the
log-likelihood we analyze here, which is highly nonlinear in the velocity f (see (2.5)). Very
recent literature has established near-optimal minimax rates for the estimation of smooth
densities (in, e.g., total variation distance) with score-based diffusion models (Oko et al.,
2023); parallel efforts have analyzed the convergence of such models for target distributions
supported on low-dimensional manifolds (Chen et al., 2023a). Yet it is worth noting that
deterministic ODEs have a role in diffusion models as well. For instance, the deterministic
“probability flow ODE” (Song et al., 2020b) (see also Song et al. (2020a)) is sometimes used
instead of a time-reversed SDE for sampling in this context, as numerical integration of the
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ODE can be more accurate and efficient than the comparable discretized SDE (Chen et al.,
2023b).

2. General ODE-based Density Estimators

In this section we derive a key convergence result, Theorem 2, which characterizes a conver-
gence rate for general ODE-based density estimators: specifically, we consider estimators
obtained through a velocity field learned from the data, which in turn generates a pullback
density estimate. In subsequent sections, we apply this result to two relevant classes of
velocity fields: the class of k-times continuously differentiable velocity fields (Section 3) and
neural network parameterizations of velocity fields (Section 4).

2.1 Notation

We introduce a number of notations and definitions which are needed throughout the paper.

Norms for vectors and matrices

For a vector, we denote by } ¨ }2 its l2-norm (the Euclidean norm), } ¨ }8 its l8-norm, and
} ¨ }0 its l0-norm (number of nonzero entries). For a matrix, we denote by } ¨ }2 its operator
norm induced by the l2-norm on vectors, } ¨ }8 its operator norm induced by the l8-norm
on vectors, } ¨ }0 its l0-norm (number of nonzero entries), } ¨ }8,8 its l8 norm (the maximum
absolute value of its entries), and } ¨ }F its Frobenius norm.

Derivatives and function spaces

Let d ě 1 and let D Ď Rd be an open domain. For k P N :“ t1, 2, . . . u, we denote by
CkpDq the space of k-times continuously differentiable real-valued functions f : D Ñ R
with uniformly continuous derivatives. Similarly, for m ě 1 we shall write CkpD,Rmq for
the space of k-times differentiable vector-valued functions taking values in Rm. When D is
convex with Lipschitz boundary, then any function f P CkpDq (and its derivatives) possesses
a unique continuation onto the boundary (by uniform continuity). In this case, we shall
also use the notation f P CkpDq with closed, convex, sets D.

To denote partial derivatives of functions, we use standard multi-index notation. Given

a multi-index v “ pv1, v2, . . . , vdq P Nd, we will write Bvfpxq “ B|v|

Bx
v1
1 ...Bx

vd
d

fpxq for the |v|-th

order partial derivative of f , whenever it exists.

For f P C1pDq, we denote its gradient by ∇f : D Ñ Rd. Similarly, if f P C1pD,Rmq for
m ě 1, ∇f : Rd Ñ Rmˆd denotes the Jacobian (or gradient matrix) of f . If f depends on
multiple variables—say a ‘space variable’ x P Rd and a ‘time variable’ t P R—we will use
the standard notation ∇xfpx, tq for the x-gradient of f . Similarly, for a multi-index v P Nd,
Bvxfpx, tq denotes the corresponding partial derivative with respect to x. For continuous
f : D Ñ R, we let }f}CpDq :“ supxPD |fpxq| and for a Ck function f P CkpDq with

k ą 1, we let }f}CkpDq “ sup|v|ďk }B
vf}CpDq. For a vector field f P CkpD,Rmq, we define

}f}CkpD,Rmq “ supjPt1,2,...,mu }fj}CkpDq, and we may sometimes omit the Rm by abuse of
notation. If f : D Ñ Rm is Lipschitz continuous, we write |f |LippDq to denote its Lipschitz
constant.
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For D Ď Rd Borel measurable, a Borel measure µ on D, and p P r1,8s, we write
LppD,µq to denote the usual space of p-integrable functions w.r.t. µ on D. If µ is the
Lebesgue measure, we write LppDq instead. In case there is no confusion about D, we also
use the notation Lppµq.

Transportation of measure

Let d ě 1 and let D1, D2 Ď Rd be Borel measurable sets equipped with the Borel σ-algebra.
Then, for any measurable function T : D1 Ñ D2 and probability distribution π on D1, we
denote the pushforward distribution of π under T by T7π, given by T7πpAq “ π

`

T´1pAq
˘

for any measurable subset A Ď D2. Given another probability distribution ρ on D2, we say
that T pushes forward π to ρ if T7π “ ρ. Since we will deal only with measures that possess
densities with respect to Lebesgue measure, we will occasionally use the same symbol to
represent a probability measure and its Lebesgue density, in a slight abuse of notation. If
additionally T is bijective, differentiable, and invertible with a continuously differentiable
inverse T´1 : D2 Ñ D1 (i.e., T is a diffeomorphism), then the pushforward density T7π is
given by ρpxq “ πpT´1pxqq|det∇T´1pxq| (the change-of-variables formula). In this case,
we also denote the pullback density of ρ under T by T 7ρ, and it holds that

πpxq “ rpT´1q7ρspxq “ rT
7ρspxq “ ρpT pxqq|det∇T pxq|.

2.2 Nonparametric Density Estimation via ODEs

For d ě 1, we denote the d-dimensional unit cube by

D “ r0, 1sd Ă Rd

throughout.1 We will be concerned with the problem of nonparametric density estimation
on D, where the observations are given by independent and identically distributed (iid)
samples

pZi : i “ 1, . . . , nq, Zi
iid
„ P0, (2.1)

for P0 some unknown probability measure supported on D. Our goal is to infer P0 from
pZi : i “ 1, . . . , nq. We assume throughout that P0 possesses a Lebesgue density which we
denote by p0. We denote the n-fold product measure of P0 by Pn0 , and expectations with
respect to Pn0 by En

P0
.

Given any sufficiently regular ‘velocity vector field’ f : D ˆ r0, 1s Ñ Rd and any initial
condition x P D, consider the following ordinary differential equation

#

d
dtX

f px, tq “ fpXf px, tq, tq, t P r0, 1s,

Xf px, 0q “ x.
(2.2)

If f is Lipschitz continuous and if the ‘flow lines’ of f do not leave the domain D (a key
technical condition to be discussed in more detail below), then, by the Picard–Lindelöf

1. Much of what follows could also be extended to more general (bounded and sufficiently regular) domains
D Ď Rd at the expense of additional technicalities.
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theorem, (2.2) is solvable and induces trajectories t ÞÑ Xf px, tq : r0, 1s Ñ D for each x P D.
They satisfy

Xf px, tq “ x`

ż t

0
fpXf px, sq, sqds, t P r0, 1s, x P D. (2.3)

We will refer to the mapping x ÞÑ Xf px, tq as the time-t flow map of the ODE. The
transport map obtained by evaluating this flow map at the terminal time t “ 1 is denoted
by T f :“ Xf p¨, 1q. Since the trajectories of the ODE (2.2) are unique and do not intersect,
the inverse pT f q´1 is also well-defined as a map from T f pDq onto D; both maps T f and
pT f q´1 can then be used to transform probability measures.

Admissible velocity fields

Throughout, with D “ r0, 1sd, we denote the cylindrical d`1-dimensional ‘space-time’ unit
cube by

Ω “ D ˆ r0, 1s Ă Rd`1.

In the setting considered here, where the support of the unknown density is known, it is
natural to consider only ODE flows which (i) do not leave the domain D, and (ii) for
which flow maps tXf p¨, tq : t P r0, 1su are diffeomorphisms D Ñ D. In order to ensure
those properties, along with the existence and uniqueness of the solution to (2.2), we need
to introduce boundary conditions on the class of velocity fields considered. Specifically,
denoting by νx the outward pointing normal vector at any point x P BD where νx is well-
defined, we let

V “
!

f P C1pΩ,Rdq : fpx, tq ¨ νx ” 0 for all px, tq P BD ˆ r0, 1s
)

. (2.4)

This condition ensures that there is no flow outside of D. In fact, it even implies the maps
x ÞÑ Xf px, tq : D Ñ D to be C1-diffeomorphisms for every t P r0, 1s:

Lemma 1 Suppose that f P V, for V given by (2.4). Then, for any t P r0, 1s, the ODE
flow map Xf p¨, tq : D Ñ D at time t is a diffeomorphism. In particular, the time-one map
T f “ Xf p¨, 1q : D Ñ D is a diffeomorphism, and the pullback density pT f q7ρ of any density
ρ supported on D is given by

pT f q7ρpxq “ ρpT f pxqqdet∇T f pxq, x P D.

The proof of Lemma 1, which is based on tools from ODE theory (Hartman, 2002)
as well as Grönwall’s inequality, can be found in Appendix A. While the assumption that
f P C1 ensures existence of a unique solution to the ODE (2.2), the additional requirement
of the normal component f ¨ νx vanishing at the boundary BD guarantees that the trajec-
tories remain inside the unit cube D at all times. In particular, if supppρq “ D, then the
‘interpolating’ distributions pXf p¨, tqq7ρ for t P r0, 1s, all possess common support D.
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Maximum likelihood objective

Let F Ď V be any class of admissible velocity fields, and let us fix some reference density
ρ on D “ r0, 1sd. Assume that ρ is strictly positive and upper bounded. By Lemma
1, each time-one flow map T f is a diffeomorphism, so that we may form the collection
of pullback densities pT f q7pxqρ “ ρpT f pxqqdet∇T f pxq as an approximating class for the
unknown ground truth distribution p0. In this paper, we study estimators maximizing the
likelihood: that is, with Zi „ P0 i.i.d., we let

f̂ P arg max
fPF

J pfq, J pfq :“

˜

n
ÿ

i“1

log ρpT f pZiqq ` log det∇T f pZiq

¸

. (2.5)

Any such f̂ naturally gives rise to a plug-in estimator pT f̂ q7ρ for the data-generating density
p0 via its pullback density

pT f̂ q7ρ “ ρpT f̂ pxqqdet∇T f̂ pxq, x P D. (2.6)

The rate of convergence towards p0 in terms of n and F will be the subject of our main
results. Note that since all the pT f q7ρ have common support D, the likelihood objective is
well-defined and finite for all f P F Ď V. We will refer to estimators (2.6) as ODE-MLE
estimators (over the class F).

2.3 Main Convergence Result

We are now ready to formulate the first main result of this paper, Theorem 2, which provides
a general convergence rate for ODE-MLE estimators. The result is stated in terms of two key
characteristics of the class of velocity fields F ; the first of which is the ‘best approximation
error’ h

`

pT f
˚

q#ρ, p0

˘

of p0 by any pullback distribution pT f q7ρ over the class f P F . The
second key quantity is the metric entropy of F in C1, which is identified as a key complexity
measure that gives an upper bound for the ‘stochastic fluctuations’ of ODE-MLE estimators
over any class F Ď V via the inequality (2.9); see Remark 3 for discussion.

We recall some standard definitions. Again let D “ r0, 1sd and Ω “ D ˆ r0, 1s. The
Hellinger distance hpp1, p2q between any two probability densities p1, p2 P L

1pDq is

hpp1, p2q “

´

ż

D

”

a

p1pxq ´
a

p2pxq
ı2
dx

¯1{2
.

For any normed space pX, } ¨ }q and subset A Ď X, we denote the metric entropy of A by
HpA,X, τq “ logNpA,X, τq pτ ą 0q, where NpA,X, τq is the covering number of A,

NpA,X, τq :“ min
!

N P N
ˇ

ˇ

ˇ
Dx1, . . . , xN P X such that A Ď

N
ď

j“1

Bτ pxjq
)

.

Here, we used the notation Bεpxq :“ tx̃ P X | }x´ x̃} ď εu for all ε ą 0, x P X.

Assumption 2.1 (Ground truth and reference density) Let p0, ρ be two probability
densities such that ρ is Lipschitz continuous and for some 0 ă κ ď K ă 8

p0pxq ď K and κ ď ρpxq ď K @x P D. (2.7)

10
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Now we define a useful subset of the admissible velocity fields V from (2.4).

Assumption 2.2 (Boundedness of F) Let F Ď V be a class of admissible velocity fields
such that for some r ą 0,

sup
fPF

´

}f}C1pΩq ` sup
tPr0,1s

|∇xfp¨, tq|LippDq

¯

“: r ă 8. (2.8)

Given a class F Ď V, we now define the crucial square root metric entropy integral of
F , which plays a key role in determining the convergence rate of the ODE-MLEs taken over
F . For any R ą 0, we shall denote

IpF , Rq :“ R`

ż R

0
H1{2pF , C1pΩq, τqdτ for all R ą 0.

For technical reasons, instead of working directly with IpF , Rq, we shall work with an upper
bound for IpF , Rq. We fix any such upper bound Ψ, satisfying ΨpRq ě IpF , Rq on p0,8q.
The following assumption on the growth of Ψ is a standard technical requirement in the
literature on nonparametric M-estimators; see, e.g., van de Geer (2000); Nickl et al. (2020)
or Theorem 5 below. It is required in standard ‘slicing’ concentration arguments based on
empirical processes (cf. the proofs of Theorems 7.4 and 10.13 in van de Geer (2000)), and
is satisfied for all sufficiently smooth classes of functions; see for instance our examples in
Sections 3 and 4 below.

Assumption 2.3 Suppose that the upper bound Ψ : p0,8q Ñ R is such that R ÞÑ ΨpRq{R2

is non-increasing on p0,8q.

Theorem 2 (Convergence of general ODE-MLEs) Suppose that p0, ρ, and F Ď V
and Ψ are such that Assumptions 2.1, 2.2, and 2.3 are fulfilled with some constants 0 ă κ ă
K and r ą 0, and consider the i.i.d. sampling model (2.1) with p0. Let f̂ P arg maxfPF J pfq
denote an ODE-MLE estimator as in (2.5). Then, there are constants C,C 1 ą 0 only
depending on d, κ, K, r, and |ρ|LippDq such that for all n ě 1 and δn ą 0 with

?
nδ2

n ě CΨpδnq, (2.9)

all f˚ P F and all δ ě δn, we have the concentration inequality

Pn0

´

h
`

pT f̂ q7ρ, p0

˘

ě C
“

h
`

pT f
˚

q7ρ, p0

˘

` δ
‰

¯

ď C exp
´

´
nδ2

C

¯

, (2.10)

and such that the mean squared error is bounded as follows:

En
P0
rh2ppT f̂ q7ρ, p0qs ď C 1

´

h2ppT f
˚

q7ρ, p0q ` δ
2
n `

1

n

¯

. (2.11)

The above theorem is non-asymptotic in that the constants involved are independent
of n and of the variational class F of velocity fields. Thus, when applying the theorem,
one may choose an ‘approximating sequence’ of classes F “ Fn as the number of statistical
observations grows. We have omitted use of Fn merely for notational convenience. While
some literature considers other loss functions (e.g., Lp-norms (Goldenshluger and Lepski,
2014)), the use of Hellinger loss is standard in our context, due to its natural relationship
both to maximum likelihood theory and to density estimation; see van de Geer (2000) or
Birgé (1986) for further discussion.

11
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Remark 3 (C1 metric entropy) The C1 metric entropy of F is a natural complexity
measure in the context of ODE-MLEs, in light of the intuition that the pointwise distance
between two pullback densities can be bounded by the C1-norm of the corresponding inducing
velocity fields. The latter is rigorously proven in Section 2.4 below, using analytical tools
from ODE theory. The L8-norm complexity of the pullback densities induced by a class F in
turn yields a bound for the bracketing metric entropy, which is well known to play a key role
in quantifying convergence rates of maximum likelihood-type estimators; see, e.g., van de
Geer (2000). Whether the C1 norm is both necessary and sufficient for characterizing
convergence rates, or whether a weaker norm than } ¨ }C1 would suffice (yielding smaller
entropy integrals), is an interesting question for future research.

2.4 Proof of Theorem 2

The proof of Theorem 2 relies on combining general convergence results for nonparametric
M-estimation developed in (van de Geer, 2000, 2001) with key analytical Lipschitz estimates,
which will allow us to derive metric entropy complexity bounds for the class of densities
induced by any variational class F of velocity fields. A similar approach for obtaining con-
vergence rates has been used before in the context of inverse problems, where Lipschitz
properties for the ‘forward map’ permit to bound the metric entropy of the observed re-
gression functions; see, e.g., Nickl et al. (2020); Giordano and Nickl (2020); Agapiou and
Wang (2021).

A key statistical convergence rate result

To begin, we will derive a statistical convergence result in Theorem 5 which regards so-
called sieved maximum likelihood estimators—that is, MLEs which are taken over growing
approximating classes as the number of samples n increases. This convergence result follows
(up to minor adaptations) from classical results in Chapter 10 of van de Geer (2000);
we nevertheless include it here since it plays a key role in our derivations. Let again
Z1, . . . , Zn P D be i.i.d. samples from some P0 with Lebesgue density p0. Suppose that
pPnqně1 is a sequence of approximating classes of densities on D. Then the sieved MLE is
defined by

p̂n “ arg max
pPPn

n
ÿ

i“1

log ppZiq.

In the following we will require the bracketing metric entropy for functions on D “

r0, 1sd. This notion of entropy is different from the standard metric entropy due to its
‘joint’ L2 and pointwise structure, but it can straightforwardly be compared to the L8

metric entropy; see Lemma 22 in the appendix. Let µ be a Borel measure on D “ r0, 1sd

and recall the shorthand L2pµq :“ L2pD,µq.

Definition 4 (Bracketing metric entropy) Let G be a class of real-valued functions on
D. Then let NBpG, L2pµq, τq be the smallest value of N such that there exist pairs of
functions tgLj , g

U
j u

N
j“1 with }gLj ´ g

U
j }L2pµq ď τ such that for every g P G, there exists j with

gLj ď g ď gUj on D.

The L2pµq-bracketing metric entropy of G is HBpG, L2pµq, τq “ logNBpG, L2pµq, τq.

12
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Given the approximating classes Pn, it turns out that the key measure of statistical
complexity featuring in our convergence rate result is the bracketing metric entropy of the
square root densities induced by Pn. Specifically, let us fix some element p˚n P Pn and denote

Q˚n :“
!

c

p` p˚n
2

: p P Pn
)

.

While p˚n can be chosen arbitrarily, typically one aims to choose it to be some ‘best approx-
imation’ of p0 within the class Pn. We then define the bracketing metric entropy integral

IBpPn, R, p˚nq :“ R`

ż R

0
H

1{2
B pQ˚n, L2pp˚nq, τqdτ for all R ą 0. (2.12)

As before, we will use the notation Ψ : p0,8q Ñ R for an upper bound satisfying ΨpRq ě
IBpPn, R, p˚nq for all R ą 0.

Assumption 2.4 Suppose that for some constants 0 ă c ă K, we have that p0 ď K and
p˚n ě c for all n ě 1. Moreover, suppose that Ψ is such that R ÞÑ ΨpRq{R2 is non-decreasing
(for all n ě 1).

Theorem 5 (cf. Theorem 10.13 in van de Geer (2000)) Suppose that p0, p˚n, and Pn
satisfy Assumption 2.4 for some 0 ă c ă K. There is a constant C ą 0 depending only on
c and K such that for any n ě 1 and δn ą 0 satisfying

?
nδ2

n ě CΨpδnq (2.13)

and any δ ě δn, we have the concentration inequality

Pn0

´

hpp̂n, p0q ě C
“

hpp˚n, p0q ` δ
‰

¯

ď C exp
´

´
nδ2

C

¯

.

Theorem 5 is a variant of (van de Geer, 2000, Theorem 10.13). We provide the argument in
Appendix A, indicating in particular the required modifications compared to (van de Geer,
2000, Theorem 10.13).

Analytical estimates for ODE-based measure transport

In order to utilize the convergence result from Theorem 5, we need a number of ‘stability’
properties which relate the distance between two ODE velocity fields to their corresponding
transport maps and pullback distributions. Recall the notation T f “ pXf p¨, 1qq for the
time-one flow map. The following lemma shows that the map f ÞÑ T f is locally Lipschitz
continuous as a mapping from C1pΩq to C1pDq, on sets of velocity fields which are uniformly
bounded in an appropriate sense.

Lemma 6 Fix r ą 0. Then for all velocity fields f , g P V (see (2.4)) satisfying

max
!

}f}C1pΩq, sup
tPr0,1s

|∇xfp¨, tq|LippDq

)

ď r, }g}C1pΩq ď r, (2.14)

it holds with C :“ maxtedr, re
3dr`2de2dr

2
?
dr

u that

}T f ´ T g}C1pDq ď C}f ´ g}C1pΩq.

13
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The proof relies on Grönwall-type estimates for ODEs, and can be found in Appendix
A. The next lemma shows that the L8-norm between two pullback densities is bounded
by the C1-norm between their corresponding transport maps. Again, we defer the proof to
Appendix A.

Theorem 7 Let ρ : D Ñ r0,8q be a Lipschitz probability density and T,G : D Ñ D two
diffeomorphisms. Let λ1pxq ě ¨ ¨ ¨ ě λdpxq ą 0 and η1pxq ě ¨ ¨ ¨ ě ηdpxq ą 0 be the singular
values of ∇T pxq and ∇Gpxq respectively. Then, it holds that

}T 7ρ´G7ρ}CpDq ď }T ´G}C1pDq

´

|ρ|LippDq}T }
d
C1pDq ` C̃d

2}ρ}CpDq

¯

,

where

C̃ :“ sup
xPD

exp
´

řd
i“1

|λipxq´ηipxq|
λdpxq

¯

śd
i“1 λipxq

mintλdpxq, ηdpxqu
. (2.15)

See Appendix A for the proof. Lemma 6 and Theorem 7 together yield that the map
f ÞÑ pT f q7ρ is locally Lipschitz continuous on classes of velocity fields for which the constants
r and C̃ from (2.14) and (2.15) can be controlled uniformly. From (2.15), we can see that
this requires uniform control over the largest and smallest singular values of the Jacobian
matrix of ∇T f . The next result states that for classes F which are bounded in C1pΩq-norm,
such uniform bounds hold true.

Theorem 8 Let F Ď C1pΩ,Rdq such that supfPF }f}C1pΩq “: M ă 8. Then for all f P F

sup
xPD

}∇pT f qpxq}2 ď 1` dMedM ,

where } ¨ }2 denotes the Rd Ñ Rd operator norm. Consequently, the largest and smallest
singular values λ1pxq and λdpxq of ∇pT f qpxq, are respectively upper and lower bounded as

sup
fPF

sup
xPD

λf1pxq ď 1` dMedM and inf
fPF

inf
xPD

λfdpxq ě
`

1` dMedM
˘´1

.

Proof of Theorem 2

Given a class Fn Ď V of velocity fields, define the set of corresponding pullback distributions
as

Pn :“ tpT f q7ρ : f P Fnu.

Then, by definition, an ODE-MLE f̂ as in (2.5) satisfies

pT f̂ q7ρ P arg max
pPPn

n
ÿ

i“1

log ppZiq,

i.e., the pullback distribution pT f̂ q7ρ constitutes an MLE over Pn. Thus our strategy will
be to verify that Theorem 5 can be suitably applied with approximating sieve classes Pn.

Step 1: Uniform bounds on pullback densities. We prove that all densities in Pn
are uniformly upper and lower bounded. First note that (2.7) and Theorem 8 imply the

14
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existence of constants 0 ă C1 ă C2 ă 8 solely depending on r in (2.8) such that for all
f P Fn and x P D, the spectrum σp∇T f pxqq of the Jacobian matrix ∇T f pxq P Rdˆd satisfies

σp∇T f pxqq P rC1, C2s.

Using the change-of-variables formula

pT f q7ρpxq “ ρpT f pxqqdet∇pT f pxqq,

and since κ ă ρpxq ă K, we thus find that there exists L “ Lpr, κq ą 0 such that

inf
fPFn

inf
xPD
pT f q7ρpxq ě L. (2.16)

Similarly there exists U “ Upr,Kq such that

sup
fPFn

sup
xPD
pT f q7ρpxq ď U. (2.17)

In particular, for any f˚ P Fn, denoting p˚ “ pT f
˚

q7ρ, it holds that p˚ ě L uniformly
in D. Hence the assumption on p˚ in Theorem 5 is fulfilled with c “ L.

Step 2: Bounding the covering number via Lipschitz properties. Fix f˚ P Fn
and denote again p˚ “ pT f

˚

q7ρ. Define

Q˚n :“
!

c

p` p˚

2
: p P Pn

)

“

!

c

pT f q7ρ` p˚

2
: f P Fn

)

.

Our goal is to bound the bracketing covering number NBpQ˚n, L2pp˚q, τq; see Definition 4.
To this end, we interpret Q˚n as the image of Fn under two maps Φ1, Φ2 via

f
Φ1
ÞÑ pT f q7ρ

Φ2
ÞÑ

c

pT f q7ρ` p˚

2
,

and we now show that both maps are Lipschitz continuous.
We start with Φ1. Recall that Fn is bounded in the sense (2.8), and ρ : D Ñ R is

Lipschitz continuous. Thus Lemma 6, Theorem 7, as well as the bounds on the singular
values of ∇Tf from Theorem 8 imply that there are constants C3 “ C3pr, d, |ρ|LippDq,Kq ą 0
and C4 “ C4pr, d,Kq ą 0 (cf. (2.7), (2.8), and (2.17)) such that for all f, g P Fn

}pT f q7ρ´ pT gq7ρ}CpDq ď C3}T
f ´ T g}C1pDq ď C3C4}f ´ g}C1pΩq.

That is,

Φ1 :“

#

Fn Ď C1pΩq Ñ CpDq

f ÞÑ pT f q7ρ
has Lipschitz constant C3C4. (2.18)

To treat Φ2, note that the uniform lower bound (2.16) also yields a lower bound for the
corresponding square root densities:

inf
qPQ˚n

inf
xPD

qpxq “ inf
fPFn

inf
xPD

c

pT f q7ρ` pT f˚q7ρ

2
pxq ě

?
L.
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Since
?
¨ is Lipschitz continuous on the interval r

?
L,8q, it follows that for all f, g P Fn

and some C5 “ C5pLq “ C5pr, κq

›

›

›

›

›

c

pT f q7ρ` pT f˚q7ρ

2
´

c

pT gq7ρ` pT f˚q7ρ

2

›

›

›

›

›

CpDq

ď C5}pT
f q7ρ´ pT gq7ρ}CpDq.

That is,

Φ2 :“

$

&

%

Pn Ď CpDq Ñ CpDq

p ÞÑ
b

p`p˚

2

has Lipschitz constant C5. (2.19)

Applying first Lemma 22 (noting that p˚pDq “ 1) and then Lemma 23 with (2.19) and
(2.18), we obtain for all τ ą 0

NBpQ˚n, L2pp˚q, τq ď N
´

Q˚n, CpDq,
τ

2

¯

ď N
´

Pn, CpDq,
τ

4C5

¯

ď N
´

Fn, C1pΩq,
τ

8C3C4C5

¯

.

Step 3: Metric entropy integral bounds. In order to be able to apply Theorem 5,
we need to verify that the metric entropy bound assumption (2.9) of Theorem 2 implies the
corresponding condition (2.13) in Theorem 5.

Without loss of generality, we may assume that C3C4C5 ě 1 (by choosing these constants
larger than 1). Then we obtain the following estimate for the bracketing entropy integral:

R`

ż R

0
H

1{2
B

`

Q˚n, L2pp˚q, τ
˘

dτ ď R`

ż R

0
H
`

Fn, C1pΩq,
τ

2C3C4C5

˘

dτ (2.20)

ď R` 2C3C4C5

ż R{C3C4C5

0
H
`

Fn, C1pΩq, τqdτ (2.21)

ď 2C3C4C5ΨpRq. (2.22)

Now let C6 be a constant with the same value as the constant C from Theorem 5, and let
us define Ψ̃pRq :“ 2C3C4C5ΨpRq. Clearly, R ÞÑ Ψ̃pRq{R2 is still a non-decreasing function.
Moreover, any n ě 1, δn ą 0 satisfying

?
nδ2

n ě 2C3C4C5C6Ψpδnq

will also fulfill
?
nδ2

n ě C6Ψ̃pδnq.

Finally, we may therefore apply Theorem 5 to those values of n, δn with Ψ̃ as an upper
bound, and we obtain that for any δ ě δn,

Pn0

´

h
`

pT f̂ q7ρ, p0

˘

ě C6

“

h
`

pT f
˚

q7ρ, p0

˘

` δ
‰

¯

ď C6 exp
´

´
nδ2

C6

¯

.

This completes the proof of (2.10).
Finally, the bound (2.11) for the mean squared error follows from a standard integration

argument (cf. the proof of Lemma 2.2 in van de Geer (2001)). Let us use the shorthand
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ĥ “ hppT f̂ q7ρ, p0q and h “ hppT f
˚

q7ρ, p0q. Then (2.10) implies that Pn0 pĥ
2 ě 2Cph2`δ2qq ď

Pn0 pĥ ě Cph ` δqq ď C expp´nδ2

C q for all δ ě δn. Moreover, by assumption
?
nδ2

n ě

CΨpδnq ě Cδn, such that δn ě C{
?
n. Thus, we obtain that

EnP0
rĥ2s “

ż 8

0
Pn0 pĥ

2 ě tqdt ď 2C2ph2 ` δ2
nq `

ż

tą2C2ph2`δ2
nq

Pn0 pĥ
2 ě tqdt.

The second term is further bounded by

1

2C2

ż

δ2ąδ2
n

Pn0 pĥ
2 ě 2C2ph2 ` δ2qqdδ2 ď

1

2C2

ż

δ2ąδ2
n

C exp
`

´
nδ2

C

˘

dδ2

ď
1

2n
exp

`

´
nδ2

n

C

˘

ď
1

2ne
.

�

3. Results for Ck Velocity Fields

We now apply the general theory from the preceding section to a canonical nonparametric
density estimation setting, where the data-generating density p0 is assumed to belong to a
class of k-times differentiable functions. Again, let D “ r0, 1sd denote the unit cube. Then,
given some integer k ě 1 and constants 0 ă L2 ď L1 ă 8, let us introduce the following
class of upper and lower bounded Ck probability densities on D:

Mpk, L1, L2q “

!

p P CkpDq : inf
xPD

ppxq ě L2, }p}CkpDq ď L1,

ż

D
ppxqdx “ 1

)

. (3.1)

For Theorem 2 to yield ‘fast’ rates of convergence, it is essential to choose the variational
class F of velocity fields appropriately. A canonical possibility is to choose the class ‘as
small as possible’ such that there exists an element f˚ P F with pT f

˚

q7ρ “ p0. This leads to
the following natural question: Given some density p0 PMpk, L1, L2q, what is the regularity
one can expect a velocity field coupling ρ with p0 to have? Our first result of this section,
Theorem 9, proves that there exists a velocity field which lies in CkXV and exactly couples
ρ with p0. In other words, there exists a velocity field which is at least as regular as the
densities which it couples.

Our result follows from proving the Ck-regularity of one specific velocity field, which
is constructed using the Knothe–Rosenblatt (KR) transport (Santambrogio, 2015; Villani,
2009). Roughly speaking, the KR transport map is the triangular and monotone map
T : D Ñ D which couples ρ and p0. By triangular, we mean that the l-th component
function only depends on the first l variables px1, . . . , xlq,

T pxq “

»

—

—

—

—

–

T1px1q

T2px1, x2q
...
Tdpx1, . . . , xdq

fi

ffi

ffi

ffi

ffi

fl

, x P D,

and by monotone we mean that each component function Tl is strictly increasing with
respect to its last argument xl. It is well known that the KR map is unique up to coordinate
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ordering, and that T actually possesses an explicit construction in terms of the CDFs of
the marginal conditional densities of p0 and ρ. We refer the reader to (Santambrogio, 2015,
Chap. 2.3) or Zech and Marzouk (2022a) for this construction and for standard properties
of KR maps.

Ck-regularity of a ‘straight-line’ velocity field

Given the KR map T , we now define our candidate velocity field which we will later prove to
satisfy Ck-regularity. First, let G : Dˆr0, 1s Ñ Dˆr0, 1s be the ‘straight-line interpolation’
(giving rise to an analogue of the displacement interpolation between ρ and p0 (McCann,
1997)) between the identity map and T ,

Gtpxq :“ tT pxq ` p1´ tqx. (3.2)

In Marzouk et al. (2023), it is established that Gt : D Ñ D is invertible for each t P r0, 1s.
Then, let

F : D ˆ r0, 1s Ñ D, F px, tq “ G´1
t pxq,

based on which we define the following velocity field

f∆
p0
py, sq “ T pF py, sqq ´ F py, sq, @py, sq P D ˆ r0, 1s. (3.3)

Then, the flow induced by f∆
p0

: Dˆr0, 1s Ñ D has the straight-line trajectories Xf∆
p0 px, tq “

tT pxq ` p1´ tqx, and indeed pushes p0 to ρ; see Marzouk et al. (2023) for details.
In order to state the next result, we require the following mild assumption on the

reference density.

Assumption 3.1 Let ρ P CkpDq be uniformly lower bounded by κ ą 0. Moreover, sup-
pose that ρ factorizes into k-smooth marginal distributions; that is, there exist univariate
densities ρl P C

kpr0, 1sq such that ρpxq “
śd
l“1 ρlpxlq.

This assumption allows for many natural choices of reference distributions on the unit
cube, such as the uniform distribution, or truncated Gaussian distributions with diagonal
covariance matrix. We also note that the assumption of ρ being a product distribution
is made for convenience, and can be relaxed at the expense of further technicalities; see
Remark 12 for further details.

Theorem 9 Let k ě 1, and let ρ be some reference density satisfying Assumption 3.1.
Moreover, suppose that p0 P Mpk, L1, L2q. Let T : r0, 1sd Ñ r0, 1sd and f∆

p0
respectively

denote the KR map and the straight-line velocity field between p0 and ρ (constructed above).
Then:

1. It holds that f∆
p0
P CkpΩq with }f∆

p0
}CkpΩq ď C, for some C ą 0 that depends only on

ρ, k, d, L1, L2.

2. For g∆
p0

: Ω Ñ Rd defined as

rg∆
p0
px, sqsj :“

pf∆
p0
px, sqqj

xjp1´ xjq
, j “ 1, . . . , d (3.4)
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it holds that g∆
p0
P CkpΩq, and there exists another constant C̃ “ C̃pd, L1, L2q, such

that }g∆
p0
}CkpΩq ď C̃. In particular it holds that f∆

p0
P V (cf. (2.4)), i.e., the normal

component f∆
p0
px, tq ¨ νx vanishes at every point px, tq P BD ˆ r0, 1s.

The above result shows that for Ck-regular target densities p0, the velocity field f∆
p0

inherits Ck regularity. Crucially, Part 2 of the theorem also shows that f∆
p0

is an ‘admissible’
velocity field whose normal component vanishes on the ‘tubular’ boundary BD ˆ r0, 1s.
The proof uses certain anisotropic regularity results for KR maps developed in Wang and
Marzouk (2022), along with technical results showing that this anisotropic regularity is
preserved under composition and inversion of maps. In order to deduce the boundary
properties in Part 2, we then use a so-called Hardy inequality. For the full proof, we refer
to Appendix B.1.

Convergence theorem for estimators over Ck-classes

We are now ready to state the main theorem of this section, which gives a convergence rate
for ODE-MLEs whenever p0 PMpk, L1, L2q. For r ą 0, define

Fprq :“
 

f P CkpΩ,Rdq : }f}Ck ď r
(

X V. (3.5)

Theorem 10 Let k ą d{2 ` 3{2, 0 ă γ ă k ´ d{2 ´ 3{2, 0 ă L2 ď L1 ă 8, and
suppose ρ satisfies Assumption 3.1. Then, there exist constants r “ rpk, L1, L2q ą 0 and
C “ Cpk, L1, L2q ą 0 such that for any p0 PMpk, L1, L2q, the velocity field f̂ maximizing
the objective (2.5) over Fprq satisfies

En
P0

“

h2ppT f̂ q7ρ, p0q
‰

ď Cn´η, with η “
2pk ´ 1´ γq

2pk ´ 1´ γq ` d` 1
ą 0.

The proof of Theorem 10 can be found in Appendix B.1. In essence, the result follows
from an application of the general Theorem 2 with F “ Fn “ Fprq and with ‘approximat-
ing’ velocity field f˚ “ f˚n “ f∆

p0
given by Theorem 9, using also classical metric entropy

estimates for Ck classes. Note that the approximation error hppT f
˚
n q7ρ, p0q from (2.11) then

vanishes, such that there is no need for F to depend on n.

Remark 11 (On the parameterization of Fprq) The choice of F “ Fprq underlying
Theorem 10 is informed by the regularity that we can expect a velocity between two Ck

probability densities to have. In practical implementations, of course, one cannot employ the
full class Fprq and must resort to a subclass of Fprq described by finitely many parameters,
whose size would typically increase as n grows. One example are neural network-based
parameterizations, which will be discussed in Section 4. Alternatively, one could use classical
approximating classes such as polynomials, wavelets, or splines (Triebel, 2008; DeVore and
Lorentz, 1993).

Typically, those approximating classes will not satisfy that the normal component of
fpx, tq vanishes at the boundary. In order to enforce this property, one can employ a bound-
ary cut-off construction where one first chooses an approximating class (e.g., polynomials,
wavelets, splines, neural networks) and then multiplies the field’s j-th component by the
‘cut-off’ function xjp1 ´ xjq for all j P t1, . . . , du. The fact that such a construction still
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yields a sufficiently rich class Fprq is implied by the regularity result in Theorem 9, part 2:
Indeed, the theorem implies that the triangular velocity field f∆

p0
may be expressed as the

product of some Ck-velocity field f̃ P CkpΩ,Rdq with the above component-wise cutoff:

rf∆
p0
sj “ f̃j ¨ xjp1´ xjq, @j P t1, . . . , du.

This is precisely the construction that will be used to construct the neural network-based
‘ansatz space’ in Section 4 below.

Remark 12 (On Assumption 3.1) While our general Theorem 2 only required ρ to be
Lipschitz continuous (and lower bounded), the present results hold under slightly more
stringent requirements on ρ. The Ck regularity is crucial for guaranteeing the existence of
a Ck transport map between ρ and p0. In contrast, the assumption that ρ factorizes into its
marginal distributions can be relaxed at the expense of further technicalities. An inspection
of the proofs reveals that the factorization property is only needed in the proof of Theorem
9 because we cite a regularity result from Wang and Marzouk (2022) for Knothe–Rosenblatt
maps which uses this assumption. The latter result, however, can be generalized to general
Ck-smooth reference densities.

4. Neural ODEs: Neural Network Parameterization of Velocity Fields

In this section, we study the case where the underlying velocity field is parameterized by a
neural network class, i.e., neural ODEs (Chen et al., 2018; Grathwohl et al., 2018). Like in
Section 3, our strategy will be to apply Theorem 2, this time to classes of neural networks.
To do so, we will separately study the metric entropy rates and the “best approximation”
properties of the neural network classes defined below.

We now introduce our notation for neural network classes with ReLUm activation func-
tion. Let η1pxq “ maxtx, 0u being the ReLU activation function, and ηmpxq “ maxtx, 0um

be the ReLUm activation function.

Definition 13 Let m ě 1 and fix d1, d2 ě 1. Then, the class of ReLUm networks mapping
from r0, 1sd1 to Rd2, with height L, width W , sparsity constraint S, and norm constraint B,
is defined by

Φd1,d2pL,W,S,Bq “
!

`

W pLqηmp¨q ` b
pLq

˘

˝ ¨ ¨ ¨ ˝
`

W p1qηmp¨q ` b
p1q
˘

:

W pLq P R1ˆW , bpLq P Rd2 ,W p1q P RWˆd1 , bp1q P RW ,W plq P RWˆW ,

bplq P RW p1 ă l ă Lq,
L
ÿ

l“1

`

}W plq}0 ` }b
plq}0

˘

ď S, max
1ďlďL

`

}W plq}8,8 _ }b
plq}8

˘

ď B
)

.

We refer to an element of Φd1,d2pL,W, S,Bq as a ReLUm network. For any index 1 ď l ď L,
we write Fl for the network composed of the first l-layers, that is,

Fl “
`

W
plq
F ηmp¨q ` b

plq
F

˘

˝ ¨ ¨ ¨ ˝
`

W
p1q
F ηmp¨q ` b

p1q
F

˘

.

We refer to such networks as l´ReLUm networks. We use Φd1,d2

l pL,W, S,Bq to denote all
such l-layer networks.
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Since we will need the C1pΩq metric entropy of the above network classes, we shall also
need the gradient space ∇Φd1,d2pL,W,S,Bq. Note that for any 1 ď l ď L´ 1, any l-ReLU2

network Fl P Φd1,d2

l pL,W, S,Bq is a map from Rd1 to RW . For any 1 ď j ď W , we use
Fl,j to denote the j´th component. Then, we may write Flpxq and its Jacobian ∇Flpxq as
follows:

Flpxq “ rFl,1pxq, Fl,2pxq, . . . , Fl,W pxqs
T ,

∇Flpxq “

»

—

—

—

–

B
Bx1

Fl,1pxq
B
Bx2

Fl,1pxq . . . B
Bxd1

Fl,1pxq

...
. . .

B
Bx1

Fl,W pxq
. . . B

Bxd1
Fl,W pxq

fi

ffi

ffi

ffi

fl

When l “ L, FL maps Rd1 to Rd2 and the Jacobian can be written as a d2 ˆ d1 matrix.

4.1 Metric Entropy Rates

In order to apply Theorem 2, we need to control the C1pr0, 1sd1q-metric entropy of these
parametric classes. We now present our results on entropy rates of the NN class Φd1,d2pL,W, S,Bq
in C1pr0, 1sd1q norm. Our results are similar to those in Lu et al. (2021) except that we use
ReLU2 networks, in place of the ReLU3 networks considered there.

The following theorem gives an upper bound for the metric entropy rate of Φd1,1pL,W, S,Bq,
i.e., the case where d2 “ 1. The subsequent corollary will then deal with the case of multi-
dimensional outputs.

Theorem 14 Let d1 P N. Consider the ReLU2 network space Φd1,1pL,W, S,Bq with L “
Op1q,W “ OpNq, S “ OpNq and B “ OpNq. Then

HpΦd1,1pL,W, S,Bq, C1pr0, 1sd1q, τq “ O
`

N logpτ´1q `N logN
˘

.

Proof The proof of this theorem is based on translating covering numbers of the NN
parameter space (in l8 norm) into covering numbers of the NN function space (in C1

norm). For this purpose, we shall need Lipschitz-type estimates from the NN parameter
space into the NN function space and its gradient space, which are respectively given by
Lemma 30 and Lemma 32.

We first fix a sparsity pattern (i.e., the locations of the non-zero entries are fixed) and
let k “ L in Lemma 30 and Lemma 32. Following the arguments in the proof of Lemma 3
in Suzuki (2019), we get the following upper bound for the covering number with respect
to C1pr0, 1sd1q norm:

˜

τ

maxtNLW 2L´1´1pB _ d1q
2L`1, ALW 2L´1´1pB _ d1q

2Lu

¸´S

,

where AL, NL are the constants from Lemmata 30 and 32, which only depend on L. Note

that the number of possible sparsity patterns is upper bounded by
`

pW`1qL

S

˘

ď pW ` 1qLS

(see Suzuki (2019); Schmidt-Hieber (2020); Lu et al. (2021)). Plugging in the magnitudes
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for the network parameters, we get the following metric entropy bound:

HpΦd1,1pL,W, S,Bq, C1pr0, 1sd1q, τq “ logNpΦd1,1pL,W, S,Bq, C1r0, 1sd1 , τq

ď log

»

–pW ` 1qLS

˜

τ

maxtNLW 2L´1´1pB _ d1q
2L`1, ALW 2L´1´1pB _ d1q

2Lu

¸´S
fi

fl

À max
!

S log
”

τ´1pW ` 1qLNLW
2L´1´1pB _ d1q

2L`1
ı

,

S log
”

τ´1pW ` 1qLALW
2L´1´1pB _ d1q

2L
ı )

À S
”

logpτ´1q ` 2L logpW pB _ d1qq

ı

“ O
´

N logpτ´1q `N logN
¯

.

For the purpose of modeling velocity fields as neural networks, we need to consider the above
neural network classes with d1 “ d` 1 and d2 “ d, i.e., as mappings from Ω “ r0, 1sd`1 to
Rd; this entropy rate is obtained by a tensorizing argument.

Corollary 15 Let d ě 1 be fixed and let N ě d be sufficiently large. Consider the ReLU2

network class Φd`1,dpL,W, S,Bq with L “ Op1q, W “ OpNq, S “ OpNq, and B “ OpNq.
Then, the metric entropy satisfies

HpΦd`1,dpL,W, S,Bq, C1pΩq, τq “ O
´

N logpτ´1q `N logN
¯

.

Proof Let φ “ rφ1, . . . , φds
T P Φd`1,dpL,W,S,Bq. Then for each j it holds that φj P

Φd`1,1pL,W, S,Bq with L “ Op1q and W,S,B “ OpNq.
For j “ 1, . . . , d, let tψmj u

Mj

m“1 be a τ -covering of the j-th coordinate. We now con-

struct a covering set of Φd`1,dpL,W, S,Bq by taking the product set Ψ “ tψm1 u
M1
m“1 ˆ ¨ ¨ ¨ ˆ

tψmd u
Md
m“1 To show that Cartesian product is indeed a covering set, note that for any mem-

ber φ “ rφ1, . . . , φds
T P Φd`1,dpL,W, S,Bq, we can find ψ “ rψm1

1 , . . . , ψmdd sT such that
}φj ´ ψ

mj
j }C1 ď τ , where 1 ď mj ďMj . It is then not hard to verify }φ´ ψ}C1 ď τ .

Assume Mj ď M̃ for 1 ď j ď d, then the covering number satisfies |Ψ| ď M̃d and the
metric entropy is upper bounded by d log M̃ . From Theorem 14, M̃ is upper bounded as
OpN logpτ´1q`N logNq and since we take d to be a fixed constant, the metric entropy for
Φd`1,dpL,W, S,Bq is the same asymptotically.

4.2 Approximation Theory

The goal of this section is to show that functions f P CkpΩq can be efficiently approximated
by neural networks of a certain architecture. Recall from the general Theorem 2 that we
not only need our approximating NN class to be able to approximate the target function
f : Ω Ñ Rd in the C1pΩq-norm, but also require its (spatial) gradient to be Lipschitz
continuous.

Approximation results for Ck functions on compact domains with neural networks are by
now standard, e.g., Pinkus (1999) or the more recent works Yarotsky (2017); Yarotsky and
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Zhevnerchuk (2020). However, the specific statement we require, which involves the uniform
approximation of some function and its (higher) derivatives, appears not to be readily
available in the literature. We therefore provide a full proof in Appendix D. The argument
leverages a widely recognized technique, first introduced in Mhaskar and Micchelli (1992);
Mhaskar (1993), based on spline approximation. In principle, better convergence rates than
those stated below are theoretically achievable with respect to the number of trainable
parameters; see, for example, Pinkus (1999, Section 6) or Yarotsky and Zhevnerchuk (2020)
regarding uniform approximation. However, such approximations typically result in neural
networks that depend non-continuously on the function being approximated (DeVore et al.,
1989), thus limiting their practical relevance.

The results that are directly related to our setting are the following theorem and corol-
lary. Their proofs can be found in Appendix D.

Theorem 16 Let k, d1, m P N and k ` 1 ď m. Then there exists C “ Cpd1, k,mq such
that for all f P Ckpr0, 1sd1 ,Rq and all N P N there exists a ReLUm´1 neural network
f̃ P Φd1,1pL,W, S,Bq with

L ď C, W ď N, S ď N, B ď C}f}Cpr0,1sd1 q `N
1{d1 (4.1)

such that f̃ P Cm´2pr0, 1sd1 ,Rq and

}f ´ f̃}W r,8pr0,1sd1 q ď CN
´ k´r

d1 |f |Ckpr0,1sd1 q @r P t0, . . . , ku. (4.2)

The next corollary shows that the assumption m ą k in Theorem 16 can be dropped. We
emphasize, however, that a ReLUm´1 network always belongs to Wm´1,8 but it generally
does not belong to Wm,8. Consequently, the network approximation f̃ PW k,8, where k ě
m is permitted, constructed in the following corollary is rather specific. Moreover, we state
the result in the more general case of approximating a function f “ pfjq

d2
j“1 : r0, 1sd1 Ñ Rd2

for some d2 P N, which is how we will use it in the following.

Corollary 17 Let k, d1, d2, m P N, and m ě 3. Then there exists C “ Cpd1, d2, k,mq
such that for all f P Ckpr0, 1sd1 ,Rd2q and all N P N there exists a ReLUm´1 neural network
f̃ P Φd1,d2pL,W, S,Bq with

L ď C, W ď N, S ď N, B ď C}f}Cpr0,1sd1 ,Rd2 q `N
1{d1 (4.3)

such that f̃ P Cm´2pr0, 1sd1 ,Rd2q and for all j P t1, . . . , d2u

}fj ´ f̃j}W r,8pr0,1sd1 q ď CN
´ k´r

d1 |fj |Ckpr0,1sd1 q @r P t0, . . . , ku. (4.4)

4.3 Statistical Convergence Rates for Neural ODEs

Ansatz Space

As elaborated in Section 2, we need to ensure that the velocity fields in F satisfy certain
boundary conditions in order for the pullback distributions pT f q7ρ, f P F , to be supported
on the same domain D. Lemma 1, Theorem 9 together with Remark 11 suggest that a
suitable ansatz space can be formed by multiplying the preceding neural network classes by
‘component-wise’ cutoff functions.
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Definition 18 Let χdpx1, . . . xdq : D Ñ D be given by

χdpx1, . . . xdq “ rx1p1´ x1q, . . . , xdp1´ xdqs
T .

Let b be the coordinate-wise multiplication of two vectors (of the same dimension). Then
for any velocity field f : Ω “ r0, 1sd ˆ r0, 1s Ñ Rd, f b χd yields a vector field on D with
vanishing normal components at the boundary. Similarly, we let c denote coordinate-wise
division of two vectors.

Definition 19 We let

Φd`1,d
ansatzpL,W, S,Bq :“

!

fNNpx1, . . . , xd, tq b χdpx1, . . . , xdq, f
NN P Φd`1,dpL,W, S,Bq

)

,

where Φd`1,dpL,W, S,Bq is the class of ReLU2 networks defined in Definition 13 and L,W, S,B
are the respective network parameters. For r ě 0, we further define the following bounded
sparse neural network classes

FNNpL,W, S,B, rq “ Φd`1,d
ansatzpL,W,S,Bq X tf PW

2,8pΩq : }f}W 2,8pΩq ď ru. (4.5)

Main statistical convergence result

Finally, we obtain the following nonparametric convergence rate for neural ODEs, by com-
bining the preceding results about approximation and statistical complexity.

Theorem 20 Fix an integer k ě 1 and constants 0 ă L2 ď L1 ă 8, and suppose ρ is a
reference density satisfying Assumption 3.1. Then there exist parameter choices L “ Op1q,
W “ Opn

d`1
d`1`2pk´1q q, S “ Opn

d`1
d`1`2pk´1q q, B “ Opn

d`1
d`1`2pk´1q q, and r “ Op1q such that for

all p0 PMpk, L1, L2q, the neural ODE estimator f̂ given by (2.5) over the class of velocity
fields FNNpL,W,S,B, rq satisfies the convergence rate

En
P0

“

h2ppT f̂ q7ρ, p0q
‰

À n
´

2pk´1q
d`1`2pk´1q log n.

Proof Our proof strategy will be to apply our general Theorem 2 to the neural network
classes of velocity fields Φd`1,d

ansatzpL,W,S,Bq. To this end, we bound the approximation error
(Step 1) and the metric entropy rates (Step 2) separately.

Step 1: Approximation error. Suppose that p0 P Mpk, L1, L2q. By Theorem 9,

there exists a velocity field f∆ P CkpΩq X V such that pT f
∆
q7ρ “ p0 and such that for any

i P rds, the i-th component f∆
i vanishes ‘linearly’ at the boundaries, i.e.,

f∆
i

xip1´xiq
P CkpΩq.

Let us now define the velocity field

f˚px1, . . . , xdq “ f∆ c χd “
´ f∆

1 px1q

x1p1´ x1q
, . . . ,

f∆
d px1, . . . , xdq

xdp1´ xdq

¯T
.

Theorem 9 moreover implies that for any k, L1, L2 there exists some constant C̃ such that

sup
p0PMpk,L1,L2q

}f˚}CkpΩ,Rdq ď C̃.
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Note that f˚ does not necessarily satisfy the same boundary-vanishing properties as f∆.
By Corollary 17 with d1 “ d ` 1 and d2 “ d, there exists a constant Cd,k such that for all
N ě 1 and with

L ď Cd,k,W ď N,S ď N,B ď Cd,k}f}CkpΩq `N
1{pd`1q, (4.6)

there is a ReLU2 neural network f̃ P Φd`1,dpL,W,S,Bq with f̃ P C1pΩq, satisfying the
approximation properties

}f̃ ´ f˚}C1pΩq ď Cd,kd
k´1
d`1N´

k´1
d`1 }f˚}CkpΩq, (4.7)

and
}f̃ ´ f˚}W 2,8pΩq ď Cd,kd

k´2
d`1N´

k´2
d`1 }f˚}CkpΩq. (4.8)

Later in the proof, we will make a choice of N which balances the approximation error
analysed here with the metric entropy term analysed in Step 2.

Defining f̂∆ “ f̃ b χd, it then follows from standard multiplication inequalities that

}f̂∆ ´ f∆}C1pΩq “ }
`

f̃ ´ f˚
˘

b χd}C1pΩq À }f̃ ´ f
˚}C1pΩq}χd}C1pΩq À N´

k´1
d`1 .

Similarly, we see that }f∆ ´ f̂∆}W 2,8pΩq “ OpN
´ k´2
d`1 q. Thus, using the triangle inequality

and the fact that f∆ P CkpΩq, it follows that for some r ą 0,

sup
p0PMpk,L1,L2q

}f̂∆}C1pΩq ` }f̂
∆}W 2,8pΩq ď r.

In summary, we have now proved the existence of an approximating element

f̂∆ P FNNpL,W, S,B, rq “ Φd`1,d
ansatzpL,W,S,Bq X tf PW

2,8pΩq : }f}W 2,8pΩq ď ru

which approximates f∆ at rate }f̂∆ ´ f∆}C1pΩq “ OpN
´ k´1
d`1 q. In particular, we may now

also deduce an approximation for the corresponding pullback densities in Hellinger distance.
Indeed, using the Lipschitz estimates from Lemma 6, Theorem 7, Theorem 8 and Lemma
24, we obtain that

hppT f̂
∆
q7ρ, pT f

∆
q7ρq “ hppT f̂

∆
q7ρ, p0q “ OpN´

k´1
d`1 q.

Step 2: Metric entropy bound. Given N ě 1, we now derive the required upper
bound for the square-root metric entropy for the neural network class FNN pL,W, S,B, rq,
again with the choices from (4.6). Later on, we will choose N to be of the same order as B,
so let us assume now that B ď N . Note that for any f, g P Φd`1,dpL,W, S,Bq (such that

f b χd, g b χd P Φd`1,d
ansatzpL,W, S,Bq) it holds that

}f b χd ´ g b χd}C1pΩq À }f ´ g}C1pΩq}χd}C1pΩq À }f ´ g}C1pΩq,

which implies that for some constant c ě 1 and any τ ą 0,

NpΦd`1,d
ansatzpL,W, S,Bq, C

1pΩq, τq ď NpΦd`1,dpL,W,S,Bq, C1pΩq, τ{cq.
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Thus, using the upper bound from Corollary 15 regarding metric entropy of neural network
classes, we obtain using (4.5) that

IpRq “ R`

ż R

0
H1{2pFNNpL,W,S,B, rq, C

1pΩq, τqdτ

À R`

ż R

0
H1{2pΦd`1,d

ansatzpL,W,S,Bq, C
1pΩq, τqdτ

ď R`

ż R

0
H1{2pΦd`1,dpL,W, S,Bq, C1pΩq, τ{cqdτ

À R`

ż R

0

a

Nplog τ´1 ` logpNqqdτ

À R`
?
N

ż 1

0

a

log τ´1 ` logNdτ `
?
N

ż R

1

a

log τ´1 ` logNdτ

À R`
?
N

ż 1

0

a

log τ´1dτ `
?
N

ż 1

0

a

logpNqdτ

`
?
N

ż R

1

a

log τ´1 ` logNdτ

À R`
?
N
π

2
`
a

N logN `
a

N logNpR´ 1q À
a

N logNR “: ΨpRq

With this choice of upper bound ΨpRq, it is clear that ΨpRq{R2 is non-increasing in R.
Then, we can re-write the condition 2.9 as Ψpδnq À

?
nδ2

n, which is equivalent to

δn Á

c

N logN

n
.

Step 3: Balancing terms. In order to balance the approximation error with the
metric entropy term, we will choose N such that

N´
k´1
d`1 »

c

N logN

n
.

Up to the
?

logN factor, this is achieved by choosing N » n
d`1

d`1`2pk´1q . Now, applying the
general Theorem 2 with this choice yields the convergence rate

En
P0
rh2ppT f̂ q7ρ, p0qs À n

´
2pk´1q

d`1`2pk´1q log n.

Remark 21 (On the rate from Theorem 20) The final rate obtained in Theorem 20,
up to a logarithmic factor, equals the optimal minimax rate

n
´

2pk´1q
d`1`2pk´1q

26



Distribution learning via neural differential equations

for nonparametric estimation of a pk´1q-smooth function or density on a pd`1q-dimensional
domain, in L2 or Hellinger loss. The presence of d` 1 (in place of d) in our rate is due to
the fact that we are considering time-dependent velocity fields: given any transport map,
there are infinitely many velocity fields whose time-one flow map matches this transport,
and maximum likelihood estimation does not impose restrictions on the intermediate ODE
trajectories between t “ 0 and t “ 1. Some recent work, e.g., Finlay et al. (2020); Onken
et al. (2021); Marzouk et al. (2023), considers neural ODEs with regularized trajectories.
In such settings, one might be able to improve the d ` 1 term to d; see below for further
discussion.

One may also wonder why the smoothness index appearing in the final rate is k ´ 1,
rather than k. Indeed, this is due to the fact that for the given k-smooth reference and target
densities fromMpk, L1, L2q, the velocity field whose time-one flow realizes the corresponding
KR map also belongs to Ck. Considering the C1 metric entropy then yields the index k´1.
This sub-optimality could possibly be resolved by using additional information about the
coupling velocity field: as observed in Irons et al. (2022) and Wang and Marzouk (2022),
KR maps between Ck densities actually possess anisotropic regularity—specifically, higher
regularity in their ‘diagonal’ input variables. It can be shown that the corresponding velocity
field also satisfies this property (see Appendix B.1). With this additional smoothness, one
might be able to improve the convergence index from k ´ 1 to k. However, even with
this additional knowledge, it is unclear how to construct neural network classes with such
anisotropic regularity, rendering this observation less relevant for practical settings; we have
thus omitted a generalization to this setting.

The second term appearing in the final rate, log n, appears due to the metric entropy
integral of the neural network class. This log n factor is commonly present in statistical
theory for neural networks; see, e.g., Schmidt-Hieber (2020), which studies nonparametric
regression using ReLU networks; Lu et al. (2021), which studies the problem of learning
PDE solution fields with neural networks; and more recently Oko et al. (2023), which studies
the statistical convergence of diffusion models.

5. Discussion and Future Work

We have developed the first statistical finite-sample guarantees for likelihood-based distri-
bution learning with neural ODEs. Our results show that neural ODE models are efficient
distribution estimators, under relatively mild assumptions. We obtained these results by
first developing a broader framework for analyzing ODE-parameterized maximum likeli-
hood density estimators. This framework is applicable to any class of velocity field, and
characterizes the impact of the chosen class on statistical performance. We then specialized
this theory to Ck velocity fields and to specific spaces of velocity fields described by neural
networks, obtaining concrete minimax rates.

Our work suggests many important avenues for further work. First, our analysis exposes
an interesting impact of the time-dependent construction intrinsic to neural ODEs, i.e.,
the fact that one seeks a velocity field f that depends on both space (x P Rd) and time
(t P r0, 1s). While this construction confers several advantages (e.g., invertibility of maps,
computational tractability of maps and densities), as noted in Remark 21, the additional
degree of freedom t raises the dimension-dependence of the minimax convergence rate to
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d ` 1, from the optimal value of d. Several regularization schemes (Finlay et al., 2020;
Onken et al., 2021; Marzouk et al., 2023) have recently been proposed to control this “extra”
freedom by promoting smooth or even straight-line ODE trajectories, with good empirical
success. These regularization methods take the form of penalty terms added to the log-
likelihood training objective, and it is desirable to understand their impact on statistical
rates. To that end, Wang and Marzouk (2022) develop convergence theory for penalized
nonparametric density estimation using transport maps, and it would be fruitful to integrate
such results with the ODE framework developed in this paper.

Second, we note that our work only considers density estimation on the hypercube
r0, 1sd. Indeed, some of our arguments—for example, the construction of a suitable neural
network ansatz space for velocity fields in Section 4.3, satisfying the no-flow boundary
condition; and the lower bounds for densities used in the proof of Theorem 9—rely crucially
on this fact. In future work, however, it would be useful to extend the present statistical
convergence analysis to more general bounded domains and to unbounded domains. The
latter will require a more refined understanding of the tail properties of the associated ODE
flow maps.

To our knowledge, the question of computational guarantees for neural ODE training is
quite open. It remains challenging to characterize the loss landscape and its interaction with
optimization algorithms; here one must also assess the impact of ODE time discretization,
and the potential impact of different ways of computing gradients in this setting, e.g.,
“discretize-then-optimize” versus “optimize-then-discretize” approaches that use continuous
adjoints (Gholami et al., 2019).

We also note that several recently proposed generative modeling methods, e.g., flow
matching (Lipman et al., 2022), rectified flow (Liu et al., 2022), and stochastic interpolants
(Albergo et al., 2023), produce deterministic ODEs but depart from the maximum likelihood
training approach considered in this paper. It is of interest to elucidate the statistical
performance of such methods as well; some results in this direction have appeared very
recently, after the submission of the current work (Gao et al., 2024; Fukumizu et al., 2024).
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Appendix A. Remaining Proofs for Section 2

A.1 Proofs from Statements in the Main Text

Proof [Proof of Lemma 1] We divide the proof into two steps. To simplify notation we drop
the index f and write X “ Xf . Recall that this is a map from D “ r0, 1sd ˆ r0, 1s Ñ Rd.
Its components are denoted by X “ pX1, . . . , Xdq.
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Step 1: Trajectories remain in D. By definition

Xpx, tq “ x`

ż t

0
fpXpx, sq, sqds, t P r0, 1s. (A.1)

For an interior point x P p0, 1qd, we show that Xpx, tq P p0, 1qd for all t P p0, 1q, i.e.,
0 ă Xjpx, tq ă 1 for all j “ 1, . . . , d. By symmetry, it suffices to show X1px, tq ą 0.

Consider a point y “ p0, y2, . . . , ydq P t0u ˆ p0, 1q
d´1 Ď BD. Then, the normal outer

vector νy “ p´1, 0, . . . , 0q P Rd at y is well-defined. Since f P V, the definition of V in (2.4)
yields fpyq ¨ νy “ 0, and thus

f1py, tq “ 0 @y P t0u ˆ p0, 1qd´1.

Moreover, f P C1pΩq implies }By1f}CpDq ă 8. Hence, using the fundamental theorem of
calculus

|f1py, tq| ď y1}By1f}CpDq ď y1}f}C1pDq for all y P r0, 1s ˆ p0, 1qd´1,

and by continuity of f1 the inequality extends to all y P D.

Thus for x P p0, 1qd, t P r0, 1s

d

dt
X1px, tq “ f1pXpx, tq, tq ě ´X1px, tq}f}C1 , X1px, 0q “ x1 ą 0,

or equivalently ´ d
dtX1px, tq ď ´}f}C1p´X1px, T qq. Applying Grönwall’s inequality (in its

differential form), we obtain that

´X1px, tq ď ´x1 expp´t}f}C1q ðñ X1px, tq ě x1 expp´t}f}C1q ą 0.

Step 2: Bijectivity and differentiability. For any interior point x P p0, 1q, by Step
1 and the Picard-Lindelöf theorem, there exists a unique solution t ÞÑ pXpx, tq, tq : r0, 1s Ñ
p0, 1qd ˆ r0, 1s of (2.2) (or (A.1)). Consider the time-reversed ODE

Y 1py, sq “ ´fpY py, sq, 1´ sq, Y py, 0q “ y. (A.2)

Clearly f̃pz, δq :“ ´fpz, 1 ´ δq also belongs to V, cp. (2.4), and hence for any interior
point y P p0, 1qd, by Step 1 and the Picard-Lindelöf theorem, there exists a unique solution
t ÞÑ pY py, tq, tq : r0, 1s Ñ p0, 1qdˆr0, 1s of (A.2). In either case, since the trajectories cannot
cross, both maps x ÞÑ Xpx, 1q : p0, 1qd Ñ p0, 1qd and y ÞÑ Y py, 1q : p0, 1qd Ñ p0, 1qd are
injective. Furthermore XpY py, 1q, 1q “ y for all y P p0, 1qd. By a continuity argument, we
conclude that Xp¨, 1q : D Ñ D is bijective. The same argument yields that x ÞÑ Xpx, tq :

D Ñ D is bijective for any t P r0, 1s.

Finally, using Corollary 3.1 in Hartman (2002) as well as the subsequent remark (which
are applicable since f P C1 by assumption), we see that in fact Xp¨, tq P C1pp0, 1qdq and
detp∇Xpx, tqq ‰ 0. Once more by symmetry in the forward and backward in time ODEs,
also Xp¨, tq´1 P C1pp0, 1qdq. Thus Xp¨, tq : D Ñ D is a C1-diffeomorphism.
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Proof [Proof of Theorem 5] The proof can be seen from making quantitative the arguments
underlying Theorem 10.13 in van de Geer (2000), in combination with several straightfor-
ward modifications of the assumptions there.

Let c be the constant from (10.70) in van de Geer (2000). Then, since p˚n ě c is
lower bounded and p0 ď K is upper bounded, it holds that p0{pn˚ ď Kc´1 , whence the
assumption (10.69) in van de Geer (2000) is clearly fulfilled. Next, we notice that the
relevant entropy integral in Theorem 10.13 of van de Geer (2000) is given by the expression
(for some constant c ą 0)

max
!

R,

ż R

R2{c
H

1{2
B

´

 

p P Q˚n : h
`p` p˚n

2
, p˚n

˘

ď δ
(

, L2pp˚nq, τ
¯

dτ
)

, (A.3)

which is clearly upper bounded by our entropy integral IBpPn, R, p˚nq from (2.12). Thus,
any choice Ψ fulfilling the hypotheses of our theorem automatically also represents a desired
upper bound for the entropy integral (A.3). It follows that Theorem 10.13 in van de Geer
(2000) is applicable, and we obtain the convergence in probability

hppT f̂ q7ρ, p0q “ OPn0 pδn ` hpp
˚, p0qq.

It remains to show the non-asymptotic concentration inequality from (2.10), which is a
stronger statement than mere convergence in probability. This follows from an inspection
of the proof of Theorem 10.13 of van de Geer (2000), which we now detail. Indeed, the last
step of the latter proof is based on the following case distinction for the terms I and II
defined on p. 191 of van de Geer (2000).

Case 1: I ď II. In this case, denoting p̂ :“ pT f̂ q7ρ, one obtains

h2
´ p̂` p˚n

2
, p˚n

¯

ď 4p1` c0qhpp
˚
n, p0q.

Here, c0 can be any constant such that p0{p
˚
n ď c2

0 (cf. (10.69) in van de Geer (2000)); in
particular we may set c0 :“

?
Lc´1. Using Lemma 4.2 from van de Geer (2000), it follows

that

h2pp̂, p˚q ď 16h2
´ p̂` p˚

2
, p˚

¯

ď 64p1` c0qhpp
˚, p0q.

Case 2: I ă II. In this case, one obtains that

h2
´ p̂` p˚

2
, p˚

¯

ď

ż

log
´ p̂` p˚

2p˚

¯

dpPn ´ P0q,

where Pn denotes the empirical measure and P0 is the data-generating law. In this case,
using the same concentration arguments as in Theorem 7.4 of van de Geer (2000), one
obtains that for any δ ě δn, and some C ą 0 only depending on c0 (and thus only depending
on c,K),

Pn0
`

hpp̂, p˚q ě δ
˘

ď C exp
´

´
nδ2

C

¯

.

Then, using the triangle inequality

hpp̂, p0q ď hpp̂, p˚q ` hpp˚, p0q
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completes the proof.

Proof [Proof of Lemma 6]

For notational convenience let us write }f ´ g}C1pΩq “ ε for some ε ą 0. Then, for any

x P D Ă Rd, we have that

ˇ

ˇ

ˇ

ˇ

ˇ

dXf px, tq

dt
´
dXgpx, tq

dt

ˇ

ˇ

ˇ

ˇ

ˇ

“ |fpXf px, tq, tq ´ gpXgpx, tq, tq|

ď |fpXf px, tq, tq ´ fpXgpx, tq, tq|

` |fpXgpx, tq, tq ´ gpXgpx, tq, tq|.

By assumption, we have suptPr0,1smaxi,j }p∇xfp¨, tqqi,j}CpDq ď r, and it follows that

sup
tPr0,1s

}∇xfp¨, tq}CpD,Rdˆdq “ sup
tPr0,1s,xPD

}∇xfpx, tq}2 ď sup
tPr0,1s,xPD

}∇xfpx, tq}F

ď d sup
tPr0,1s

max
i,j
}p∇xfp¨, tqqi,j}CpDq ď dr,

where we have equipped Rdˆd with the usual operator norm for matrices. Therefore, we
can conclude that |fpXf px, tq, tq ´ fpXgpx, tq, tq| ď dr|Xf px, tq ´Xgpx, tq|. Next, we have

|Xf px, tq ´Xgpx, tq| “
ˇ

ˇ

ˇ

ż t

0
fpXf px, sq, sq ´ gpXgpx, sq, sqds

ˇ

ˇ

ˇ

ď

ż t

0
|fpXf px, sq, sq ´ gpXgpx, sq, sq|ds

ď

ż t

0
|fpXf px, sq, sq ´ fpXgpx, sq, sq|ds`

ż t

0
|fpXgpx, sq, sq ´ gpXgpx, sq, sq|ds

ď dr

ż t

0
|Xf px, sq ´Xgpx, sq|ds` tε

Using Grönwall’s inequality (integral form), we get

|T f pxq ´ T gpxq| “ |Xf px, 1q ´Xgpx, 1q| ď εedr, @x.

Therefore maxj }X
f
j p¨, 1q ´X

f
j p¨, 1q}CpDq ď εedr.

Now, it remains to bound maxi,j }p∇xT f p¨q´∇xT gp¨qqi,j}CpDq, which could be achieved

by bounding the Frobenius norm of the difference in Jacobian }∇xT f pxq ´∇xT gpxq}F by
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equivalence of norms. Similarly as above, we can write for t P r0, 1s

}∇xXf px, tq ´∇xXgpx, tq}F “ }

ż t

0
∇xpfpXf px, sq, sq ´ gpXgpx, sq, sqqds}F

ď

ż t

0
}∇xpfpXf px, sq, sq ´ gpXgpx, sq, sqq}Fds

“

ż t

0

›

›

›

´

∇XfpXf px, sq, sq∇xXf px, sq ´∇XgpXgpx, sq, sq∇xXgpx, sq
¯ ›

›

›

F
ds

ď

ż t

0
}p∇XfpXgpx, sq, sq ´∇XgpXgpx, sq, sqq∇xXgpx, sq}Fds

`

ż t

0
}p∇XfpXf px, sq, sq ´∇XfpXgpx, sq, sqq∇xXgpx, sq}Fds

`

ż t

0
}∇XfpXf px, sq, sqp∇xXf px, sq ´∇xXgpx, sqq}Fds

“: I ` II ` III,

where ∇XfpXf px, sq, sq and ∇XgpXgpx, sq, sqq denote the spatial derivative of f and g
evaluated at pXf px, sq, sq and pXgpx, sq, sqq respectively.

To bound term I, note that }f ´ g}C1pΩq “ ε gives

|p∇XfpXgpx, tq, tq ´∇XgpXgpx, tq, tqqi,j | ď ε for all px, tq P Ω, pi, jq P rds2.

To establish bounds on ∇xXgpx, tq, we note that

∇xXgpx, tq “ Idˆd `

ż t

0
∇x

“

gpXgpx, sq, sq
‰

ds

“ Idˆd `

ż t

0
p∇XgpXgpx, sq, sqq∇xXgpx, sqds,

where Idˆd is the identity matrix of dimension d. Using the standard multiplication in-
equality }M1M2}F ď }M1}F }M2}F for the Frobenius norm and }g}C1pΩq ď r, it follows that
for all points px, tq,

}∇xXgpx, tq}F ď
?
d`

ż t

0
}∇XgpXgpx, sq, sq}F }∇xXgpx, sq}Fds

ď
?
d` dr

ż t

0
}∇xXgpx, sq}Fds.

By Grönwall’s inequality, it follows that }∇xXgpx, tq}F ď
?
dedrt and in particular }∇xXgpx, 1q}F ď?

dedr. Therefore,

}p∇XfpXgpx, sq, sq ´∇XgpXgpx, sq, sqq∇xXgpx, sq}F

ď }∇xXgpx, sq}F }∇XfpXgpx, sq, sq ´∇XgpXgpx, sq, sq}F ď d
3
2 εedrs,
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and term I may be bounded as

I “

ż t

0
}p∇XfpXgpx, sq, sq ´∇XgpXgpx, sq, sqq∇xXgpx, sq}Fds

ď

ż t

0
d

3
2 εedrsds “

pedrt ´ 1q
?
dε

r
ď
pedr ´ 1q

?
dε

r
.

To bound II, by the Lipschitz property, we have at any px, tq,

}∇XfpXf px, tq, tq ´∇XfpXgpx, tq, tq}F ď r|Xf px, tq ´Xgpx, tq|.

Since |Xf px, sq ´Xgpx, sq| ď εedr at all point px, sq from the previous part, we obtain that

}p∇XfpXf px, sq, sq´∇XfpXgpx, sq, sqq∇xXgpx, sq}F

ď }∇xXgpx, sq}F }∇XfpXf px, sq, sq ´∇XfpXgpx, sq, sq}F

ď
?
dedrsrεedrs “

?
drεe2drs.

Then, we have

II “

ż t

0
}p∇XfpXf px, sq, sq ´∇XfpXgpx, sq, sqq∇XXgpx, sq}Fds

ď

ż t

0

?
drεe2drsds ď

pe2dr ´ 1qrε

2
?
dr

Finally, to bound III, we have

}∇XfpXf px, sq, sqp∇xXf px, sq ´∇xXgpx, sqq}F

ď }∇XfpXf px, sq, sq}F }∇xXf px, sq ´∇xXgpx, sq}F ,

where we can bound }∇XfpXf px, sq, sq}F by dr.

Combining all the terms, we obtain

}∇xpXf px, tq ´Xgpx, tqq}F

ď
pedr ´ 1q

?
dε

r
`
pe2dr ´ 1qrε

2
?
dr

` dr

ż t

0
}∇xXf px, sq ´∇xXgpx, sq}Fds.

Grönwall’s inequality then gives

}∇xpXf px, 1q ´Xgpx, 1qq}F ď ε
pe2dr ´ 1qr ` 2pedr ´ 1qd

2
?
dr

edr ď
re3dr ` 2de2dr

2
?
dr

ε

.

Since the above inequality holds for all x, considering pointwise entries in the Jacobian
gives

max
i,j
}p∇xXf p¨, 1q ´∇xXgp¨, 1qqi,j}CpDq ď

re3dr ` 2de2dr

2
?
dr

ε.
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Using the C1 norm, we conclude that

}T f pxq ´ T gpxq}C1pDq “ }X
f px, 1q ´Xgpx, 1q}C1pDq

ď max
!

εedr,
re3dr ` 2de2dr

2
?
dr

ε
)

ď C}f ´ g}C1pΩq,

where C “ maxtedr, re
3dr`2de2dr

2
?
dr

u.

Proof [Proof of Theorem 7] For notational convenience, let us write }T ´G}C1pDq “ ε.

}T 7ρ´G7ρ}CpDq “ }ρpT q det∇T ´ ρpGq det∇G}CpDq
ď }ρpT q det∇T ´ ρpGq det∇T }CpDq ` }ρpGqdet∇T ´ ρpGqdet∇G}CpDq
ď }ρpT q ´ ρpGq}CpDq}det∇T q}CpDq ` }ρpGq}CpDq}det∇T ´ det∇G}CpDq.

We bound these two terms separately. By the Lipschitz continuity of ρ, we have }ρpT q ´
ρpGq}CpDq ď }ρ}Lip}T ´G}CpDq ď |ρ|Lipε.

Moreover, by (Zech and Marzouk, 2022a, Lemma E.1),

| det∇T pxq ´ det∇Gpxq| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

d
ź

i“1

λipxq ´
d
ź

i“1

ηipxq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

exp
´

řd
i“1

|λipxq´ηipxq|
λdpxq

¯

śd
i“1 λipxq

mintλdpxq, ηdpxqu

d
ÿ

i“1

|λipxq ´ ηipxq|

which is upper bounded by C̃
řd
i“1 |λipxq ´ ηipxq|.

By Weyl’s theorem, maxi |λipxq ´ ηipxq| ď }∇T pxq ´ ∇Gpxq}2. Furthermore, @x P
D, }∇T pxq ´∇Gpxq}2 ď dε. Thus we can conclude that | det∇T pxq ´ det∇Gpxq| ď C̃d2ε
at all x P D, from which it follows that }det∇T ´ det∇G}CpDq ď C̃d2ε.

Putting everything together, we have

}T 7ρ´G7ρ}CpDq ď
´

|ρ|Lip}det∇T pxq}CpDq ` C̃d2}ρ}CpDq

¯

ε.

Finally, using the fact that for a d-dimensional matrix A, | detA| ď p trA
d q

d, we have

}T7ρ´G7ρ}CpDq ď
´

|ρ|Lip}T }
d
C1pDq ` C̃d

2}ρ}CpDq

¯

ε.

Proof [Proof of Theorem 8] For notational convenience we write X “ Xf . The map
pT f q : D Ñ D is obtained by integrating the ODE (2.2) forward in time, i.e., pT f qpxq “
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x`
ş1
0 fpXpx, tq, tqdt. Taking the operator norm of the Jacobian, we obtain

}∇xpT f qpxq}2 “
›

›

›
Idˆd `

ż 1

0
∇yfpXpy, tq, tqdt

›

›

›

2

“

›

›

›
Idˆd `

ż 1

0
∇XfpXpx, tq, tq∇xXpx, tqdt

›

›

›

2

ď 1`

ż 1

0
}∇XfpXpx, tq, tq}2}∇xXpx, tq}2dt

Since }f}C1pDˆr0,1sq ď M , we have }∇XfpXpx, sq, sq}2 ď dM,@s P r0, 1s. On the other
hand,

}∇xXpx, tq}2 “ }Idˆd `
ż t

0
∇XfpXpx, sq, tq∇xXpx, sqds}2

ď 1`

ż t

0
}∇XfpXpx, sq, sq}2}∇xXpx, sq}2ds

ď 1` dM

ż t

0
}∇xXpx, sq}2ds.

It follows from Grönwall’s inequality that }∇xXpx, tq}2 ď edMt ď edM , @t P r0, 1s. Putting
things together, we get }∇xT f pxq}2 ď 1 ` dMedM ,@x P D, from which it follows that

λf1pxq ď 1` dMedM ,@x P D.

On the other hand, consider λfdpxq, the smallest singular value of ∇xT f pxq. By the
inverse function theorem, for all x P D, writing y “ T f pxq, we have that ∇ypT f q´1pyq “
p∇xT f pxqq´1. It follows that

1

λfdpxq
“

›

›r∇xT f pxqs´1
›

›

2
“

›

›∇ypT f q´1pyq
›

›

2
.

Observe that the inverse transport pT f q´1 is given by integrating the ODE backwards
in time. For this purpose, consider the following reverse ODE. For y P D so that y “
x`

ş1
0 fpXpx, tq, tqdt and Y py, tq “ Xpx, 1´ tq, we have

#

dY py,tq
dt “ ´fpY py, tq, 1´ tq,

Y py, 0q “ y.
(A.4)

Then, by a similar argument as above, we can show }∇ypT f q´1pyq}2 ď 1 ` dMedM . Thus

we have shown that λfdpxq ě
1

1`dMedM
,@x P D.

A.2 Auxiliary Results

We show three elementary lemmas. The first two provide bounds on the (bracketing) metric
entropy.
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Lemma 22 Let µ be a measure on D “ r0, 1sd with positive Lebesgue density and let
F Ď CpD,Rdq. Then for all τ ą 0 it holds that

NBpF , L2pD,µq, τq ď N
´

F , CpDq, τ

2
a

µpDq

¯

.

Proof Let N :“ NpF , CpDq, τq. By the definition of metric entropy, there exist functions
f1, . . . , fN on D such that for each f P F exists i P t1, . . . , Nu with }f ´ fi}CpDq ď τ . For
each i ď N , set fi,L :“ fi ´ τ and fi,U :“ fi ` τ . Then fi,L ď f ď fi,U on D. Since
}fi,Lpxq ´ fi,U pxq}L2pµq ď 2τ

a

µpDq, this implies

NBpF , L2pµq, 2τ
a

µpDqq ď NpF , CpDq, τq

for all τ ą 0 (cp. Definition 4).

Similarly:

Lemma 23 Let pX, } ¨ }Xq, pY, } ¨ }Y q be two normed spaces and A Ď X. Let Φ : AÑ Y be
Lipschitz continuous with Lipschitz constant L. Then for all τ ą 0

NpΦpFq, Y, τq ď NpF , X, τ
2L
q.

Proof Fix τ ą 0 and set τ̃ :“ τ
2L and N :“ NpF , X, τ̃q. Then we can find x1, . . . , xN P X

such that for each x P F exists i P t1, . . . , Nu with }x ´ xi}X ď τ̃ . In particular, we can
find x̃1, . . . , x̃N P F such that for each x P F exists i P t1, . . . , Nu with }x´ x̃i}X ď 2τ̃ .

Let y P ΦpFq arbitrary, i.e., y “ Φpxq for some x P F . Then there exists i P t1, . . . , Nu
such that

}y ´ Φpx̃iq}Y “ }Φpxq ´ Φpx̃iq}Y ď L}x´ x̃i}X ď 2Lτ̃ “ τ.

This shows the claim.

The next lemma states that the Hellinger distance is bounded by the L8-distance when-
ever the maximum of both densities is bounded from below.

Lemma 24 Let L ą 0 and D Ď Rd measurable with Lebesgue measure bounded by one.
Then for all probability densities p1pxq, p2pxq on D with ess infxPD maxtp1pxq, p2pxqu ě L,
it holds

hpp1, p2q ď
1
?

2L
}p1 ´ p2}CpDq.

Proof We have

hpp1, p2q
2 “

1

2

ż

D
p
a

p1pxq ´
a

p2pxqq
2dx “

1

2

ż

D

˜

p1pxq ´ p2pxq
a

p1pxq `
a

p2pxq

¸2

dx

ď
1

2

ż

D

˜

}p1 ´ p2}CpDq
?
L

¸2

dx “
1

2L
}p1 ´ p2}

2
CpDq.
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Appendix B. Proofs for Section 3

B.1 Proof of Theorem 9

In order to prove Theorem 9, we need three auxiliary Lemmas 25, 26, and 27. These
auxiliary statements regard certain anisotropic regularity classes which describe Knothe–
Rosenblatt maps between Ck-smooth densities, as was observed in Wang and Marzouk
(2022). For any k ě 1, we write rks “ t1, . . . , ku.

Step 1: Anisotropic regularity classes

For k ě 1 integer, let us define the following classes of triangular functions on D with
anisotropic regularity :

CkdiagpD,Rdq “
 

f P CkpD,Rdq triangular : @j P rds : Bjfj P C
kpDq

(

,

with norm

}f}CkdiagpDq
:“

d
ÿ

j“1

}fj}Ckpr0,1sjq ` }Bjfj}Ckpr0,1sjq.

We further introduce the class of bijective, monotone triangular maps with such anisotropic
regularity:

Akdiag :“
!

S : D Ñ D triangular and bijective,

S P CkdiagpD,Rdq, @j P rds : BjSj ą 0
)

.

For any constants 0 ă cmon ă L ă 8, we will also need the sub-classes with bounded norm

Akdiagpcmon, Lq :“
!

S P Akdiag, }S}CkdiagpD,Rdq ď L, inf
xPr0,1sk

BkSkpxq ě cmon

)

.

The following lemma shows that the above classes are closed under composition and inver-
sion.

Lemma 25 (i) If S,R P Akdiag, then S ˝ R P Akdiag. Moreover, for any cmon, L ą 0

there exist c1mon, L
1 ą 0 such that for any S,R P Akdiagpcmon, Lq, it holds that S ˝ R P

Akdiagpc1mon, L1q.
(ii) If S P Akdiag, then also S´1 P Akdiag. Moreover, for any cmon, L ą 0 there exist

c1mon, L
1 ą 0 such that for any S P Akdiagpcmon, Lq, it holds that S´1 P Akdiagpc1mon, L1q.

Proof We begin by proving part (i). First, we observe that S ˝ R is still bijective and
triangular. To see the triangularity, we observe that

rS ˝Rspxq “

»

—

—

—

—

—

—

—

–

S1pR1px1qq
...

SjpR1px1q, . . . , Rjpxrjsqq
...

SdpR1px1q, . . . . . . . . . , Rdpxqq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.
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Thus, the j-th component map only depends on the first j coordinates of x. Next, it is also
clear that since S,R P CkpD,Rdq, also S˝R P CkpD,Rdq. It remains to assert the regularity
of the ‘diagonal derivatives’ of S˝R. For any j P rds, denoting ypxq “ rR1px1q, . . . , Rjpxrjsqs,
using the chain rule and the fact that Rl, l ă j is independent of xj , we obtain that

B

Bxj
pS ˝Rqj “

B

Bxj

“

SjpR1px1q, . . . , Rkpxrjsq
‰

“

j
ÿ

l“1

´

B

Byl
Sj

¯

pypxqq
´

B

Bxj
Rl

¯

pxrlsq

“

´

B

Byj
Sj

¯

pypxqq
´

B

Bxj
Rj

¯

pxrjsq.

Since B
Byj
Sj : p0, 1qj Ñ R is a Ck function, y : x ÞÑ ypxq, p0, 1qj Ñ p0, 1qj is Ck function, and

finally also B
Bxj

Rj : p0, 1qj Ñ R is Ck function, we overall obtain that B
Bxj
pS ˝Rqj is also Ck.

It is clear from the chain rule and standard multiplication inequalities for Ck-norms that
we may choose the upper bound L1 for the norm of S ˝ R just depending on L. Moreover,
the preceding calculation clearly implies that for any j “ 1, . . . , d,

B

Bxj
pS ˝Rqj ě c2

mon “: c1mon ą 0,

which completes the proof of part (i).
Let us now turn to part (ii). Let ρ be the uniform density on D. Using Proposition

2.1 in Wang and Marzouk (2022), we know that for any S P Akdiagpcmon, Lq, the pullback

distribution pS :“ S7ρ is an upper and lower bounded CkpDq density, where the Ck norm,
and the upper and lower bounds only depend on cmon and L. Moreover, clearly S´1 is
again triangular and bijective. Moreover, it satisfies pS´1q7pS “ ρ. By uniqueness of the
KR-transport map, S´1 consitutes the unique Knothe–Rosenblatt transport map between
two Ck densities. Thus, again using Proposition 2.1 in Wang and Marzouk (2022), we see
that S´1 P Akdiagpcmon1 , L1q for some c1mon, L ą 0. This concludes the proof of the lemma.

Step 2: A Hardy-type inequality for functions with anisotropic regularity

Lemma 26 Let d, k P N, D “ r0, 1sd, and f P CkpDq such that Bxdf P CkpDq and

additionally fpxq “ 0 whenever xd “ 0. Then gpxq :“ fpxq
xd

P CkpDq and there exists
C “ Cpd, kq such that

}g}CkpDq ď C}Bxdf}CkpDq. (B.1)

Proof Denote by xrjs “ px1, . . . , xjq the first j coordinates of x. Since fpx1, . . . , xd´1, 0q “ 0

and xd ÞÑ fpxq P Ck`1pr0, 1sq for all xrd´1s P r0, 1s
d´1, it follows that for all x P D and any

l P t0, . . . , ku,

fpxq “
l
ÿ

j“1

Bjxdfpx1, . . . , xd´1, 0q
xjd
j!
`

ż xd

0
Bl`1
xd

fpx1, . . . , xd´1, tq
pxd ´ tq

l

l!
dt
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and thus for any l P t0, . . . , ku

fpxq

xd
“

l´1
ÿ

j“0

Bj`1
xd

fpx1, . . . , xd´1, 0q
xjd
j!

looooooooooooooooomooooooooooooooooon

“:g1pxq

`
1

xd

ż xd

0
Bl`1
xd

fpx1, . . . , xd´1, tq
pxd ´ tq

l

k!
dt

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

“:g2pxq

.

Now, fix a multiindex v P Nd such that |v| ď k. To prove the lemma, we need to
show that supxPD |B

vfpxq| is bounded by the right-hand side of (B.1) with some C solely
depending on k and d. Set l :“ k ´ vd ě 0. Clearly

|Bvg1pxq| ď
l´1
ÿ

j“0

ˇ

ˇ

ˇ
Bv
´

Bj`1
xd

fpx1, . . . , xd´1, 0q
xjd
j!

¯
ˇ

ˇ

ˇ
ď C}Bxdf}CkpDq.

For g2, we first observe that with the change of variables t “ xds, we obtain

g2pxq “

ż 1

0
Bk`1
xd

fpx1, . . . , xd´1, xdsq
xldp1´ sq

l

l!
ds.

Exchanging the integral with the derivative and repeatedly applying the product rule we
find

|Bvg2pxq| ď

ż 1

0

ˇ

ˇ

ˇ
Bv
´

Bk`1
xd

fpx´ 1, . . . , xd´1, xdsq
xkdp1´ sq

k

k!

¯ˇ

ˇ

ˇ
ds ď C}Bxdf}CkpDq.

Lemma 27 Consider the setting of Lemma 26, and additionally assume that fpxq “ 0

whenever xd “ 1. Then, gpxq :“ fpxq
xdp1´xdq

P CkpDq and there exists C “ Cpk, dq such that

}g}CkpDq ď C}Bxdf}CkpDq.

Proof We already know from the preceding lemma that the map x ÞÑ fpxq{xd belongs to
Ck. In order to show that g P Ck, we only need to prove that the restrction of g to the
‘half-cube’ D̃ “ tx P D : xd ě 1{2u belongs to Ck. To this end, let us define

f̃pxq :“
fpx1, . . . , xd´1, 1´ xdq

1´ xd
.

Clearly, showing that g P CkpD̃q is equivalent to showing that x ÞÑ f̃pxq{xd, restricted to
the ‘other half-cube’ tx P D : xd ď 1{2u. For this, we just need to show that f̃ satisfies
the conditions of Lemma 26. Since 1 ´ xd is bounded below when xd ď 1{2, clearly f̃ has
the needed regularity. Moreover, for any x with xd “ 0, f̃pxq “ fpx1, . . . , xd´1, 1q “ 0 by
assumption. We may thus apply Lemma 26 and the proof is complete.
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Step 3: The main argument

With the previous lemmas in hand, we are now ready to prove Theorem 9.
Proof [Proof of Theorem 9] The first assertion (i) of the Theorem is proven in Marzouk
et al. (2023), we thus only need to show the second part.

Let p0 PMpk, L1, L2q. Then, it is proven in Wang and Marzouk (2022) that the unique
KR map T between p0 and ρ belongs to the anisotropic regularity class Akdiagpk, L1, c1monq
for some L1, c1mon. Since the identity map Id : x ÞÑ x also belongs to Akdiagpk, L1, c1monq, and

since Akdiagpk, L1, c1monq is a convex set, we know that for any t P r0, 1s, Gt “ tT ` p1´ tqId

also belongs to Akdiagpk, L1, c1monq. By Lemma 25, it follows that for any t P r0, 1s, F p¨, tq
also satisfies the same isotropic regularity. As a result, we know that the triangular velocity
field f∆

p0
belongs to the class CkdiagpD,Rdq. Moreover, since f∆

p0
is the difference between

two bijective triangular maps D Ñ D, we know that for every j P rds and for every
xrj´1s P r0, 1s

j´1 each component map satisfies pf∆
p0
qjpxrj´1s, 0q “ pf∆

p0
qjpxrj´1s, 1q “ 0.

Thus, all the assumptions of Lemma 27 are satisfied, and it follows that for every j P rds,
the function

gjpxq “
pf∆
p0
qjpxq

xjp1´ xjq

belongs to CkpDq. The corresponding norm bound for gj also follows from Lemma 27.

B.2 Proof of Theorem 10

Metric entropy bounds for Hölder-Zygmund spaces

To prove Theorem 10, we will begin by deriving the necessary metric entropy bounds for
Fprq. For non-integer s ą 0 we denote by Cs the standard Hölder spaces of tsu-times
differentiable functions with s´ tsu-Hölder continuous s-th partial derivatives, normed by

}f}CspΩq “ }f}CtsupΩq ` max
|α|“tsu

sup
x‰yPΩ

|Bαfpxq ´ Bαfpyq|

|x´ y|s´tsu
.

For s ě 0, we will further denote by Bs
88pΩq the classical Besov spaces with indices p “

q “ 8; see Triebel (2008) for definitions. It is well known that those spaces are equal to the
Hölder-Zygmund spaces CspΩq, Bs

88pΩq “ CspΩq. Moreover, for non-integer s ą 0, they
are equivalent to Hölder spaces,

Bs
88pΩq “ CspΩq “ CspΩq.

For any s ą 0 and R ą 0, let us denote the closed ball with radius R in Bs
88pΩq by

AspRq :“ tf P L2pΩq : }f}Bs88pΩq ď Ru, R ą 0.

The following lemma on metric entropies of Besov spaces is based on classical results
which can be found e.g., in Triebel (2008).

Lemma 28 Let s1, s2 ą 0 and s1 ą s2. Then, there exists some constant C “ Cpd, s1, s2q ą

0 such that for any R ą 0, τ ą 0,

HpAs1pRq, Bs2
88pΩq, τq ď C

`

R{τ
˘

d
s1´s2 .
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Proof This result follows from Theorem 4.33 in Triebel (2008) with p0, p1, q0, q1 “ 8 and
s1, s2 in place of s0, s1 there. Note that with those choices, the requirement (4.126) in
Triebel (2008) is satisfied. Indeed, the theorem in Triebel (2008) implies that for any k, the

unit ball As1p1q in Bs1
88 can be covered by 2k many balls of }¨}Bs288 -radius at most ck´

s1´s2
d ,

where c ą 0 is some constant. Therefore, given any τ ą 0, setting kτ “ tpτ{cq
´ d
s1´s2 u ` 1,

we obtain that the τ -covering number of Asp1q is upper bounded by

HpAs1p1q, Bs2
88pΩq, τq ď logp2kτ q “ ptpτ{cq

´ d
s1´s2 u` 1q log 2 À τ

´ d
s1´s2

for any τ ď 1. [Note that for τ ě 1, we have that the left hand side is 0, so that the upper
bound in the lemma trivially holds true for R “ 1.] Then, the result for covering As1pRq
follows from noting that HpAs1pRq, Bs2

88pΩq, τq “ HpAs1p1q, Bs2
88pΩq, τ{Rq.

Proof of Theorem 10

Proof Let p0 PMpk, L1, L2q. Since k ě 2, clearly the Assumptions 2.1, 2.2 are fulfilled.
By Theorem 9, the velocity field f∆

p0
coupling p0 and ρ belongs to CkXV, and we have that

sup
p0PMpk,L1,L2q

}f∆
p0
}CkpΩq “: L̄ ă 8.

Thus, by choosing r ą L̄ we can ensure that f∆
p0
P Fprq. We will now employ Theorem

2. By what precedes, we may choose f˚ “ f∆
p0

, so that pT f
˚

q7ρ “ p˚ “ p0. We now
calculate the metric entropy integral of Fprq in the C1pΩq-norm. To do so, let us fix
γ P p0, 1q X k ´ d{2´ 3{2, we have that

B1`γ
88 pΩq “ C1`γpΩq “ C1`γpΩq Ď C1pΩq,

where the last inclusion is a continuous embedding.
Combining the preceding bounds and using Lemma 28, it follows that for all R ą 0 and

some constants 0 ă C1, C2, C3 ă 8,

ż R

0
H1{2pFprq, C1pΩq, τqdτ ď

ż R

0
H1{2pFprq, B1`γ

88 pΩq, C1τqdτ

ď

ż R

0
H1{2pAk88pC2rq, B

1`γ
88 pΩq, C1τqdτ

ď C3

ż R

0

´C2r

C1τ

¯
d`1

2pk´1´γq
dτ

À R
1´ d`1

2pk´1´γq .

Thus, the requirement (2.9) from Theorem 2 simplifies to

?
nδ2

n Á δn ` δ
1´ d`1

2pk´1´γq
n .
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This is satisfied if both δn Á n´1{2 as well as

?
n Á δ

´1´ d`1
2pk´1´γq

n , which is equivalent to δn Á n
´

k´1´γ
2pk´1´γq`d`1 .

The desired result now follows directly from Theorem 2.

Appendix C. Auxiliary Results for Section 4.1

In this appendix, we prove some auxiliary results about the uniform boundedness and
Lipschitz properties of the ReLU2 neural network class Φd1,1pL,W, S,Bq and its gradient
space ∇Φd1,1pL,W, S,Bq, which will be used in the proof of Theorem 14. Our arguments
are similar to those in Schmidt-Hieber (2020), Suzuki (2019), and Lu et al. (2021) with
two key differences: (i) to ensure smoothness of the gradient space, we consider ReLU2

networks, whereas Schmidt-Hieber (2020) and Suzuki (2019) consider ReLU networks, and
Lu et al. (2021) considers ReLU3 networks; and (ii) to obtain the C1 metric entropy rate in
Theorem 14, we construct a covering of both the NN function space and its gradient space.

Lemma 29 For any 1 ď l ď L, the following inequality holds for the class of ReLU2

networks Φd1,1pL,W,S,Bq:

sup
xPD,FlPΦ

d1,1
l pL,W,S,Bq

}Flpxq}8 ď ClW
2l´1´1pB _ d1q

2l´1,

where Cl is a constant independent of W , B, d1, depending only on l.

Proof [Proof of Lemma 29] We prove the lemma by induction. First note for any matrix
A P Rdˆd, }A}8,8 ď B implies }A}8 ď dB. When l “ 1, we have for all x P D,

}F1pxq}8 “ }W
p1q
F x` b

p1q
F }8 ď }W

p1q
F }8}x}8 ` }b

p1q
F }8 ď d1B `B ď 2pB _ d1q

2.

Assuming the claim holds for l ´ 1, where l ě 2, we have that

}Flpxq}8 “ }W
plq
F η2pFl´1pxqq ` b

plq
F }8 ďWB}Fl´1pxq}

2
8 `B

ďW pB _ d1q

´

Cl´1W
2l´2´1pB _ d1q

2l´1´1
¯2
`B

ď C2
l´1W

2l´1´2`1pB _ d1q
2l´2`1 ` pB _ d1q

ď pC2
l´1 ` 1qW 2l´1´1pB _ d1q

2l´1 “ ClW
2l´1´1pB _ d1q

2l´1.

Hence the claim follows from induction.

Lemma 30 For any 1 ď l ď L, suppose that a pair of two different ReLU2 networks
Fl, Gl P Φd1,1

l pL,W, S,Bq are given by

Flpxq “ pW
plq
F η2p¨q ` b

plq
F q ˝ ¨ ¨ ¨ ˝ pW

p1q
F η2p¨q ` b

p1q
F q,
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Glpxq “ pW
plq
G η2p¨q ` b

plq
G q ˝ ¨ ¨ ¨ ˝ pW

p1q
G η2p¨q ` b

p1q
G q.

Assume that the l8 norm between the neural network weights is uniformly upper bounded

by δ, i.e., }W
pl1q
F ´W

pl1q
G }8,8 ď δ, }b

pl1q
F ´ b

pl1q
G }8 ď δ, for all 1 ď l1 ď l. Then we have

sup
xPD

}Flpxq ´Glpxq}8 ď AlδW
2l´1´1pB _ d1q

2l ,

for some constant Al that only depends on l.

Proof [Proof of Lemma 30] We prove the lemma by induction. For any x P D and F1, G1 P

Φd1,1
1 pL, S,W,Bq, it holds that

}F1pxq ´G1pxq}8 “ }W
p1q
F x` b

p1q
F ´W

p1q
G x´ b

p1q
G }8

ď }W
p1q
F ´W

p1q
G }8}x}8 ` }b

p1q
F ´ b

p1q
G }8

ď δd1 ` δ “ δpd1 ` 1q ď 2δpB _ d1q ď 2δpB _ d1q
2.

Now suppose the claim holds for l´ 1. For the induction step, we will use that η2pxq “
x2 satisfies |η2pxq ´ η2pyq| ď 2 maxt|x|, |y|u|x ´ y|. Thus, for any x P D and Fl, Gl P

Φd1,1
l pL,W, S,Bq, we have

}Flpxq ´Glpxq}8 “ }W
plq
F η2pFl´1pxqq ` b

plq
F ´W

plq
G η2pGl´1pxqq ´ b

plq
G }8

ď }W
plq
F η2pFl´1pxqq ´W

plq
G η2pGl´1pxqq}8 ` }b

plq
F ´ b

plq
G }8

ď }W
plq
F η2pFl´1pxqq ´W

plq
G η2pFl´1pxqq}8

` }W
plq
G η2pFl´1pxqq ´W

plq
G η2pGl´1pxqq}8 ` δ

ď }W
plq
F ´W

plq
G }8}η2pFl´1pxqq}8

` }W
plq
G }8}η2pFl´1pxqq ´ η2pGl´1pxqq}8 ` δ

ďWδ}Fl´1pxq}
2
8

`WBp2 sup
Fl´1PΦ

d1,1
l´1 pL,W,S,Bq

}Fl´1pxq}8q}Fl´1pxq ´Gl´1pxq}8 ` δ

ďWδpCl´1W
2l´2´1pB _ d1q

2l´1´1q2

` 2WBpCl´1W
2l´2´1pB _ d1q

2l´1´1qpAl´1δW
2l´2´1pB _ d1q

2l´1
q ` δ

ď δC2
l´1W

2l´1´1pB _ d1q
2l´2

` 2δCl´1Al´1W
2l´1´1pB _ d1q

1`2l´1´1`2l´1
` δ

ď δW 2l´1´1
´

C2
l´1pB _ d1q

2l´2 ` 2Cl´1Al´1pB _ d1q
2l ` 1

¯

ď AlδW
2l´1´1pB _ d1q

2l ,

for some constant Al that only depends on l. Hence the claim follows from induction.
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Lemma 31 For any 1 ď l ď L, the following inequality holds for the class of ReLU2

networks:
sup

xPD,FlPΦ
d1,1
l pL,W,S,Bq

}∇Flpxq}8 ďMkW
2l´1´1pB _ d1q

2l ,

for some constant Ml that only depends on l.

Proof We prove the lemma by induction. When l “ 1, it holds that for all x P D

}∇F1pxq}8 ď }W
p1q
F }8 ď d1B ď pB _ d1q

2.

Suppose the claim holds for l ´ 1. Then, we may compute

}∇Flpxq}8 “ }W
plq
F ∇rη2 ˝ Fl´1spxq}8 ď }W

plq
F }8}∇rη2 ˝ Fl´1spxq}8

ďWB}∇rη2 ˝ Fl´1spxq}8 ďW pB _ d1q}∇rη2 ˝ Fl´1spxq}8.

Since the operator 8-norm of a matrix equals the maximum row sum, we have

}∇rη2 ˝ Fl´1spxq}8 “ sup
1ďjďW

d1
ÿ

i“1

|η12pFl´1,jpxqq
BFl´1,j

Bxi
|

ď 2}Fl´1}8 sup
1ďjďW

d1
ÿ

i“1

|
BFl´1,j

Bxi
|

ď 2Cl´1W
2l´2´1pB _ d1q

2l´1´1}∇Fl´1pxq}8.

Then, we get

}∇Flpxq}8 ďW pB _ d1q}∇rη2 ˝ Fl´1spxq}8

ďW pB _ d1q2Cl´1W
2l´2´1pB _ d1q

2l´1´1}∇Fl´1pxq}8

ďW pB _ d1q2Cl´1W
2l´2´1pB _ d1q

2l´1´1W 2l´2´1pB _ d1q
2l´1

ďMlW
2l´1´1pB _ d1q

2l ,

if we absorb all the constants into Ml. The claim then follows from induction.

Lemma 32 For any 1 ď l ď L, suppose that a pair of two different ReLU2 networks
Fl, Gl P Φd1,1

l pL,W, S,Bq are given by

Flpxq “ pW
plq
F ηp¨q ` b

plq
F q ˝ ¨ ¨ ¨ ˝ pW

p1q
F ηp¨q ` b

p1q
F q,

Glpxq “ pW
plq
G ηp¨q ` b

plq
G q ˝ ¨ ¨ ¨ ˝ pW

p1q
G ηp¨q ` b

p1q
G q.

Assume that the l8 norm between the neural network weights is uniformly upper bounded

by δ, i.e., }W
pl1q
F ´W

pl1q
G }8,8 ď δ, }b

pl1q
F ´ b

pl1q
G }8 ď δ, 1 ď l1 ď l. Then we have

sup
xPD

}∇Flpxq ´∇Glpxq}8 ď δNlW
2l´1´1pB _ d1q

2l`1,

where Nl is a constant the only depends on l.
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Proof [Proof of Lemma 32] We prove this lemma by induction. When l “ 1, it holds that
for all x P D,

}∇F1pxq ´∇G1pxq}8 “ }W
p1q
F ´W

p1q
G }8 ď δd1 ď δpB _ d1q ď δpB _ d1q

3.

Assume that the claim holds for l´1. Then, for any x P D, and Fl, Gl P Φd1,1
l pL, S,W,Bq

satisfying the conditions in the lemma, we can bound }∇Flpxq ´∇Glpxq}8 using the chain
rule and triangular inequality as follows:

}∇Flpxq ´∇Glpxq}8 “ }W
plq
F ∇rη2 ˝ Fl´1spxq ´W

plq
G ∇rη2 ˝Gl´1spxq}8

ď }W
plq
F ∇rη2 ˝ Fl´1spxq ´W

plq
G ∇rη2 ˝ Fl´1spxq}8

` }W
plq
G ∇rη2 ˝ Fl´1spxq ´W

plq
G ∇rη2 ˝Gl´1spxq}8

ď }W
plq
F ´W

plq
G }8}∇rη2 ˝ Fl´1spxq}8

` }W
plq
G }8}∇rη2 ˝ Fl´1spxq ´∇rη2 ˝Gl´1spxq}8

ď δW }∇rη2 ˝ Fl´1spxq}8 `BW }∇rη2 ˝ Fl´1spxq ´∇rη2 ˝Gl´1spxq}8

:“ I ` II.

From Lemma 29 and 31, we can bound I by

I “ δW }∇rη2 ˝ Fl´1spxq}8 ď δW2}Fl´1}8}∇rFl´1spxq}8

ď 2δWCl´1W
2l´2´1pB _ d1q

2l´1´1Ml´1W
2l´2´1pB _ d1q

2l´1

“ 2Cl´1Ml´1δW
2l´1´1pB _ d1q

2l´1

To bound II, note that

II “ BW }∇rη2 ˝ Fl´1spxq ´∇rη2 ˝Gl´1spxq}8

“ BW sup
1ďjďW pl´1q

p

d1
ÿ

i“1

|η12pFl´1,jq
BFl´1,j

Bxi
´ η12pGl´1,jq

BGl´1,j

Bxi
|q,

and it holds that for all j, 1 ď j ďW pl´1q,

d1
ÿ

i“1

|η12pFl´1,jq
BFl´1,j

Bxi
´ η12pGl´1,jq

BGl´1,j

Bxi
|

ď

d1
ÿ

i“1

|η12pFl´1,jq
BFl´1,j

Bxi
´ η12pGl´1,jq

BFl´1,j

Bxi
|

`

d1
ÿ

i“1

|η12pGl´1,jq
BFl´1,j

Bxi
´ η12pGl´1,jq

BGl´1,j

Bxi
| :“ III ` IV.
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III can be bounded as follows:

III “
d1
ÿ

i“1

|η12pFl´1,jq
BFl´1,j

Bxi
´ η12pGl´1,jq

BFl´1,j

Bxi
|

ď

d1
ÿ

i“1

|η12pFl´1,jq ´ η
1
2pGl´1,jq||

BFl´1,j

Bxi
|

ď 2}Fl´1 ´Gl´1}8

d1
ÿ

i“1

|
BFl´1,j

Bxi
| ď 2}Fl´1 ´Gl´1}8}∇rFl´1spxq}8

ď Al´1δW
2l´2´1pB _ d1q

2l´1
Ml´1W

2l´2´1pB _ d1q
2l´1

“ δAl´1Ml´1W
2l´1´2pB _ d1q

2l ,

where the last inequality follows from Lemma 30 and 31.
Applying the inductive hypothesis and Lemma 29, IV can be bounded as follows:

IV “
d1
ÿ

i“1

|η12pGl´1,jq
BFl´1,j

Bxi
´ η12pGl´1,jq

BGl´1,j

Bxi
|

ď 2 sup
xPD

}Gl´1pxq}8

d1
ÿ

i“1

|
BFl´1,j

Bxi
´
BGl´1,j

Bxi
|

ď 2 sup
xPD

}Gl´1pxq}8}∇rFl´1spxq ´∇rGl´1spxq}8

ď 2Cl´1W
2l´2´1pB _ d1q

2l´1´1pδNl´1W
2l´2´1pB _ d1q

2l´1`1q

Putting everything together, }∇Flpxq ´∇Glpxq}8 is upper bounded by:

δ2Cl´1Ml´1W
2l´1´1pB _ d1q

2l´1 ` δBAl´1Ml´1W
2l´1´1pB _ d1q

2l`

BW p2Cl´1W
2l´2´1pB _ d1q

2l´1´1pδNl´1W
2l´2´1pB _ d1q

2l´1`1qq

ď 2δCl´1Ml´1W
2l´1´1pB _ d1q

2l´1 ` δAl´1Ml´1W
2l´1´1pB _ d1q

2l`1

` 2δCl´1Nl´1W
2l´1´1pB _ d1q

2l`1 ď δNlW
2l´1´1pB _ d1q

2l`1,

where Nl is a constant that only depends on l. Hence the claim follows by induction.

Appendix D. Neural Network Approximation Theory

In the following we work with the standard normalized one-dimensional B-spline of order
m ě 1 with equidistant knots, see e.g., (Schumaker, 2007, (4.46)–(4.47)):

Bmpxq :“
m
ÿ

i“0

p´1qi
`

m
i

˘

maxt0, x´ ium´1

pm´ 1q!
PWm´1,8pRq (D.1a)
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where 00 :“ 0. Additionally, for n P N we2 consider the stretched and shifted versions
(Schumaker, 2007, (4.49))

Bm
n,jpxq :“ Bmpnx´ jq PWm´1,8pRq, j P Z. (D.1b)

Note that Bm
n,j |r0,1s P C

m´2pr0, 1sq is a piecewise polynomial of degree m´1 on the intervals

r
j
n ,

j`1
n s, and thus the function is C8 on

Mn :“ r0, 1sz
! j

n

ˇ

ˇ

ˇ
1 ď j ď n´ 1

)

.

Moreover supppBm
n,jq Ď r

j
n ,

m`j
n s.

D.1 One Dimensional Spline Approximation

It is well-known that one can construct continuous linear functionals λmn,j : Cpr0, 1sq Ñ R
such that

Qmn rf spxq :“
n´1
ÿ

j“´m`1

λmn,jrf sB
m
n,jpxq (D.2)

yields an approximation to f that converges at a rate depending on the regularity k P N
of the target function f P Ckpr0, 1sq as long as the the order m P N of the spline is larger
or equal to k ` 1.3 While various approximation results for Sobolev or Besov spaces have
been established in the literature, e.g., Oswald (1990), for our purposes approximation of
Ck functions as stated in the following variant4 of (Schumaker, 2007, Theorem 6.20) is
sufficient:

Theorem 33 Let k P N0, m P N and k ` 1 ď m. Then there exists C “ Cpk,mq such that
for every n P N, there exist continuous (w.r.t. the topology of pointwise convergence) linear
functionals λmn,j : Cpr0, 1sq Ñ R, j P t´m` 1, . . . , n´ 1u, such that

1. for all n P N, j P t´m` 1, . . . , n´ 1u, f P Cpr0, 1sq

|λmn,jrf s| ď C}f}Cpr0,1sq, (D.3)

2. for all r P t0, . . . , ku, f P Ckpr0, 1sq and with Qmn as in (D.2)

sup
xPMn

ˇ

ˇ

ˇ

dr

dxr
pf ´Qmn rf sq

ˇ

ˇ

ˇ
ď Cn´pk´rq|f |Ckpr0,1sq. (D.4)

Proof We proceed in three steps: In step 1 we show an extension result for functions in
Ckpr0, 1sq, in step 2 we verify the error bound (D.4) and in step 3 we show continuity of
the λmn,j and (D.3).

2. In Appendix D only, n denotes a stretching parameter rather than the sample size in the maximum
likelihood estimation problem (2.5).

3. Here and throughout Appendix D, we always interpret continuity of a functional from Cpr0, 1sdq Ñ R
w.r.t. to the topology of pointwise convergence on Cpr0, 1sdq.

4. The main difference to the presentation in Schumaker (2007) is our treatment of the boundary, which
avoids the use of different spline basis functions near the endpoints 0 and 1 of the interval.
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Step 1. Using standard techniques, we wish to define a bounded linear extension
operator E : Cpr0, 1sq Ñ Cpr´m, 1 `msq that additionally is stable between Crpr0, 1sq Ñ
Crpr´m, 1`msq for each r P t0, . . . , ku.

Fix distinct numbers ´ 1
m ă γ0 ă ¨ ¨ ¨ ă γk ă 0 and let g P Ckpr0, 1sq. Set g̃pxq :“ gpxq

if x P r0, 1s and

g̃pxq :“
k
ÿ

j“0

αjgpγjxq @x P r´m, 0s, (D.5)

for certain αj P R that remain to be determined. It holds g̃ P Ckpr´m, 1sq iff g̃prqp0q “ gprqp0q
for all r P t0, . . . , ku, i.e.,

gprqp0q “ gprqp0q
k
ÿ

j“0

αjγ
r
j @r P t0, . . . , ku.

This condition being satisfied for arbitrary g P Ckpr0, 1sq is equivalent to
¨

˚

˚

˚

˚

˝

1 1 ¨ ¨ ¨ 1
γ1

0 γ1
1 ¨ ¨ ¨ γ1

k
...

. . .
...

γk0 γk1 ¨ ¨ ¨ γkk

˛

‹

‹

‹

‹

‚

¨

˚

˚

˝

α0
...
αk

˛

‹

‹

‚

“

¨

˚

˚

˝

1
...
1

˛

‹

‹

‚

. (D.6)

Since the matrix on the left-hand side is a Vandermonde matrix with distinct nodes γ0, . . . , γk,
it is regular. Hence there exists a unique set of numbers pαjq

k
j“0 satisfying (D.6).

In the same fashion g̃pxq can be extended to x P r1, 1 `ms. This yields a linear map
E : Cpr0, 1sq Ñ Cpr´m, 1`msq that evidently (cp. (D.5)) satisfies

|Eg|Crpr´m,1`msq ď C|g|Crpr0,1sq @g P Ckpr0, 1sq, @r P t0, . . . , ku, (D.7)

for some constant C depending on pγjq
k
j“0 and pαjq

k
j“0 (and hence on k and m) but inde-

pendent of g.
Step 2. According to (Schumaker, 2007, Theorem 6.20), there exist bounded linear

functionals λ̃mn,j : Cpr´m,m`1sq Ñ R such that for each l P t0, . . . , n´1u and r P t0, . . . , ku

it holds5

›

›

›

›

›

›

›

dr

dxr

¨

˝f ´
l
ÿ

j“l´m`1

λ̃mn,jpEfqB
m
n,jpxq

˛

‚

›

›

›

›

›

›

›

L8pr l
n
, l`1
n
sq

ď Cn´pk´rqω
´

pEfqpkq,
1

n

¯

Cr l`1´m
n

, l`m
n
s
,

(D.8)
where C “ Cpmq is independent of f , l and n, and

ω
´

pEfqpkq,
1

n

¯

Cr l`1´m
n

, l`m
n
s
“ sup

x,yPr l`1´m
n

, l`m
n
s

|x´y|ď 1
n

|pEfqpkqpxq ´ pEfqpkqpyq|

5. In the notation of (Schumaker, 2007, Theorem 6.20), we use equidistant knots “yl :“ l
n

” for l P
t´mn, . . . , p1`mqnu on the interval “ra, bs :“ r´m, 1`ms” with “σ :“ k ` 1” and “q :“ 8”.
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denotes the modulus of continuity for the kth derivative of Ef . Using (D.7) this term can
be bounded by 2|Ef |Ckpr´m,1`msq ď 2C|f |Ckpr0,1sq.

With

λmn,jrf s :“ λ̃mn,jrEf s j P t´m` 1, . . . , n´ 1u (D.9)

we obtain by (D.2)

Qmn rf s “
n´1
ÿ

j“´m`1

λmn,jrf sB
m
n,jpxq “

n´1
ÿ

j“´m`1

λ̃mn,jrEf sB
m
n,jpxq.

Since supppBm
n,jq Ď r

j
n ,

j`m
n s as pointed out earlier, (D.8) shows the error bound (D.4) on

the interval r ln ,
l`1
n s. Because l P t0, . . . , n´ 1u was arbitrary, this shows (D.4).

Step 3. It remains to argue continuity of λmn,j and the bound (D.3). By construction of

λ̃mn,j , see6 (Schumaker, 2007, (6.39)), for j P t´m` 1, . . . , n´ 1u the term λ̃mn,jrf s is a linear

combination of finitely many point evaluations of f in r´m` 1,ms. Hence λ̃mn,j : Cpr´m`
1,msq Ñ R is continuous w.r.t. the topology of pointwise convergence. Now suppose that
pgiqiPN Ď Cpr0, 1sq is a sequence of functions converging pointwise to g P Cpr0, 1sq. Then
the construction of E (cp. (D.5)) implies that Egi Ñ Eg P Cpr´m` 1,msq pointwise, and
thus by definition of λmn,j in (D.9)

λmn,jrgs “ λ̃mn,jrEgis Ñ λ̃mn,jrEgs P R as iÑ8,

which shows the claimed continuity of λmn,j : Cpr0, 1sq Ñ R.

Moreover, as shown in the proof of (Schumaker, 2007, Theorem 6.22)

|λ̃mn,jrgs| ď p2mq
m}g}Cpr´m,1`msq @g P Cpr´m, 1`msq,

so that for any f P Cpr0, 1sq

|λmn,jrf s| “ |λ̃
m
n,jrEf s| ď p2mq

m}Ef}Cpr´m,1`msq ď Cp2mqm}f}Cpr0,1sq

for some C depending on k and m but independent of n, j and f .

D.2 Multidimensional Spline Approximation

We next extend Theorem 33 to the multidimensional case. In principle such a statement is
provided in (Schumaker, 2007, Theorem 12.7), however this result requires mixed regularity
of the target function, which we wish to avoid.

To give the statement, we first introduce some notation. Fix m, n P N. With λmn,j :

Cpr0, 1sq Ñ R as in Theorem 33, for f P Cpr0, 1sdq and a multiindex ν “ pν1, . . . , νdq P
t´m` 1, . . . , n´ 1u define

λmn,νrf s :“ λm,xdn,νd
. . . λm,x1

n,ν1
rf s P R. (D.10)

6. We use the notation λ̃mn,i for “λi” in (Schumaker, 2007, Chapter 6).

49



Marzouk, Ren, Wang, and Zech

Here λm,xin,νi : Cpr0, 1sq Ñ R is understood to act on the xi variable only. Additionally with
Bm
n,j in (D.1b)

Bm
n,νpx1, . . . , xdq :“

d
ź

i“1

Bm
n,νipxiq,

and
Qm
n rf spx1, . . . , xdq :“

ÿ

´m`1ďν1,...,νdďn´1

λmn,νrf sBn,νpx1, . . . , xdq.

Lemma 34 Let m, n P N, ν P t´m` 1, . . . , n´ 1ud and ν P t´m` 1, . . . , n´ 1u.

1. Equation (D.10) defines a continuous (w.r.t. the topology of pointwise convergence)
linear functional λmn,ν : Cpr0, 1sdq Ñ R.

2. There exists C “ Cpm, dq independent of n and ν such that

|λmn,νrf s| ď C}f}Cpr0,1sdq @f P Cpr0, 1sdq.

3. If f P Ckpr0, 1sdq then for all j P t1, . . . , du and α P Nd0 with |α| ď k and αj “ 0 it
holds

Bαxλ
m,xj
n,ν rf s “ λ

m,xj
n,ν rB

α
x f s P C

k´|α|pr0, 1sd´1q. (D.11)

Proof Throughout fix ν P t´m`1, . . . , n´1u, ν P t´m`1, . . . , n´1ud and f P Cpr0, 1sdq
arbitrary.

We first show that λ
m,xj
n,ν rf s P Cpr0, 1sd´1q for each j P t1, . . . , du. This then implies that

λmn,νrf s P R in (D.10) is well-defined. Wlog j “ 1. Let xi P r0, 1s
d´1, i P N, be a sequence

of points converging to x˚ P r0, 1sd´1. Then gipx1q :“ fpx1,xiq, i P N, defines a sequence of
functions in Cpr0, 1sq converging pointwise to gpx1q :“ fpx1,x

˚q. By Theorem 33 we thus
have λm,x1

n,ν rgis Ñ λm,x1
n,ν rgs P R as iÑ 8, i.e., λm,x1

n,ν rf spxiq Ñ λm,x1
n,ν rf spx˚q as iÑ 8. This

shows continuity of x ÞÑ λm,x1
n,ν rf spxq for x P r0, 1sd.

Next we claim that λ
m,xj
n,ν : Cpr0, 1sdq Ñ Cpr0, 1sd´1q is continuous w.r.t. the topologies

of pointwise convergence on both spaces for all j P t1, . . . , du. This then immediately yields
that λmn,ν : Cpr0, 1sdq Ñ R in (D.10) (obtained by repeated application of such operators)

is continuous. Wlog j “ 1. Let fi P Cpr0, 1s
dq, i P N, be a sequence of functions converging

pointwise to f P Cpr0, 1sdq and fix x˚ P r0, 1sd´1. Then gipx1q :“ fipx1,x
˚q, i P N, is a

sequence of functions in Cpr0, 1sq that converges pointwise to gpx1q :“ fpx1,x
˚q P Cpr0, 1sq.

Thus by Theorem 33

λm,x1
n,ν rfispx

˚q “ λm,x1
n,ν rgis Ñ λm,x1

n,ν rgs “ λm,x1
n,ν rf spx

˚q as iÑ8,

which shows the claimed continuity and concludes the proof of 1.
Next, 2 follows directly by d fold application of (D.3) to the definition (D.10) of λmn,ν .

Finally we show (D.11) and assume d ě 2. Wlog j “ 1. Fix x2 P r0, 1s and x˚ P r0, 1sd´2.
Then

λm,x1
n,ν rBx2f spx2,x

˚q “ λm,x1
n,ν

”

lim
hÑ0

fpx1, x2 ` h,x
˚q ´ fpx1, x2,x

˚q

h

ı

“ lim
hÑ0

λm,x1
n,ν rf spx2 ` h,x

˚q ´ λm,x1
n,ν rf spx2,x

˚q

h
.
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The second equality follows by the fact that the difference quotient defines a family of
pointwise convergent functions in Cpr0, 1sdq indexed over h, and the operator λm,x1

n,ν :

Cpr0, 1sdq Ñ Cpr0, 1sd´1q is continuous w.r.t. the topology of pointwise convergence as
shown above. Hence the last limit converges pointwise for all px2, x

˚q P r0, 1sd´1, which
shows that λm,x1

n,ν rf spx2, . . . , xdq is indeed differentiable in x2 and the derivative in x2 may
be exchanged with λm,x1

n,ν . Repeatedly applying this argument yields the claim.

Theorem 35 Let k P N0, d, m P N and k` 1 ď m. Then there exists C “ Cpd, k,mq such
that for all r P t0, . . . , ku, α P Nd0 with |α| “ r, f P Ckpr0, 1sdq, and n ě 1,

sup
xPMd

n

|Bαx pfpxq ´Q
m
n rf spxqq| ď Cn´pk´rq|f |Ckpr0,1sdq. (D.12)

Proof In the following we use the notation

Q
m,xj
n rf s :“

n´1
ÿ

j“´m`1

λ
m,xj
n,j rf s,

so that
Qm
n rf s “ Qm,xdn . . . Qm,x1

n rf s. (D.13)

In this proof we will use the following facts:

• By Lemma 34, for any α P Nd0 with |α| ď k and αj “ 0 holds

BαxQ
m,xj
n rf s “

n´1
ÿ

i“´m`1

Bαxλ
m,xj
n,i rf sB

m
n,ipxjq “

n´1
ÿ

i“´m`1

λ
m,xj
n,i rB

α
x f sB

m
n,ipxjq “ Q

m,xj
n rBαx f s,

(D.14)
i.e., Q

m,xj
n commutes with Bαx .

• From (D.4) (with “k “ r”) we conclude that for any g P Cαj pr0, 1sdq and 0 ď αj ď
m´ 1

sup
xjPMn

|B
αj
xjQ

m,xj
n rgspx1, . . . , xdq| ď C sup

xjPr0,1s
|B
αj
xj gpx1, . . . , xdq| (D.15)

where xi P r0, 1s is arbitrary for all i ‰ j, and C “ Cpm, dq is independent of g.

• Again by (D.4), for g P Crpr0, 1sdq, 0 ď αj ď r ď m ´ 1 and xi P r0, 1s arbitrary for
all i ‰ j,

sup
xjPMn

|B
αj
xj pQ

m,xj
n rgspx1, . . . , xdq´gpx1, . . . , xdqq| ď Cn´pr´αjq sup

xjPr0,1s
|Brxjgpx1, . . . , xdq|.

(D.16)

Now fix α P Nd0 with |α| ď k. Then for any x “ px1, . . . , xdq PM
d
n (cp. (D.13))

|Bαx pfpxq´Q
m
n rf spxqq| ď

d
ÿ

j“1

ˇ

ˇBαx pQ
m,xd
n . . . Q

m,xj`1
n rf spxq´Qm,xdn . . . Q

m,xj
n rf spxqq

ˇ

ˇ, (D.17)
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where for j “ d the term Qm,xdn . . . Q
m,xj`1
n rf spxq is understood as fpxq. Fix j P t1, . . . , du

and denote

α´ :“ pα1, . . . , αj´1, 0, . . . , 0q
J and α` :“ p0, . . . , 0, αj`1, . . . , αdq

J.

With (D.14) and (D.15) we get

ˇ

ˇ

ˇ
Bαx

`

Qm,xdn . . . Q
m,xj`1
n rf spxq ´Qm,xdn . . . Q

m,xj
n rf spxq

˘

ˇ

ˇ

ˇ

“ |BαdxdQ
m,xd
n ¨ ¨ ¨ B

αj`1
xj`1Q

m,xj`1
n rB

αj
xj B

α´
x f ´ B

αj
xjQ

m,xj
n rB

α´
x f sspxq|

ď C sup
xdPr0,1s

|Bαdxd B
αd´1
xd´1Q

m,xd
n ¨ ¨ ¨ B

αj`1
xj`1Q

m,xj`1
n rB

αj
xj B

α´
x f ´ B

αj
xjQ

m,xj
n rB

α´
x f sspxq|

ď ¨ ¨ ¨ ď C sup
xd,...,xj`1Pr0,1s

|B
α`
x pB

αj
xj B

α´
x f ´ B

αj
xjQ

m,xj
n rB

α´
x f sqpxq|

“ C sup
xd,...,xj`1Pr0,1s

|B
αj
xj B

α`
x B

α´
x fpxq ´ B

αj
xjQ

m,xj
n rB

α`
x B

α´
x f spxq|.

By assumption B
α`
x B

α´
x f P Ck´|α``α´|pr0, 1sdq and thus by (D.16) the last term is bounded

by

Cn´pk´|α|q sup
xd,...,xjPr0,1s

|Bk´|α``α´|xj B
α`
x B

α´
x fpxq|.

Applying this estimate to (D.17) and taking the supremum over x P Md
n we find for any

α P Nd0 with |α| ď k

sup
xPMd

n

|Bαx pfpxq ´Q
m
n rf spxqq| ď Cn´pk´|α|q|f |Ckpr0,1sdq

for some C “ Cpk,m, dq as claimed.

D.3 Translating Spline Approximation to Neural Networks

Proof [Proof of theorem 16] We wish to express the function

f̃ :“ Qm
n rf s “

ÿ

´m`1ďν1,...,νd1ďn´1

λmn,νrf sB
m
n,νpxq (D.18)

by a ReLUm´1 network. To this end we use the following facts:

• According to (Li et al., 2020, Theorem 2.5), there exists a network of finite width
and depth that exactly expresses the square function x2 on R. It is now a standard

observation, that using the polarization formula xy “ px`yq2´x2´y2

2 , we may also
express the product of two numbers as a neural network. Repeatedly stacking such
networks, we conclude that there exists a neural network p̃ of finite width and depth
that takes px1, . . . , xd1q P Rd1 as input and outputs p̃px1, . . . , xd1q “

śd1
i“1 xi P R. That

is, for some fixed Cp̃ “ Cp̃pd1q holds p̃ P Φd1,1pL,W, S,Bq with L, W , S, B ď Cp̃.
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• For each n P N and each j P t´m` 1, . . . , n´ 1u the spline (cp. (D.1))

Bm
n,jpxq “

m
ÿ

i“0

p´1qm
`

m
i

˘

maxt0, nx´ pni` jqum´1

pm´ 1q!

corresponds to a ReLUm´1 network in Φd1,1pL,W,S,Bq with L “ 2, W “ m ` 1,
S “ 3pm` 1q and B “ nm` n´ 1. For the bound on B we used that the maximum
bias occurs in the term ni` j with i “ m and j “ n´ 1.

We first compute in parallel the terms

Bm
n,jpxiq @j P t´m` 1, . . . , n´ 1u, i P t1, . . . , d1u.

This can be achieved by a network f̃1 : Rd1 Ñ Rpn`m´1qd1 of depth 2, width pm ` 1qpn `
m´ 1qd1, and sparsity Op3pm` 1qpn`m´ 1qd1q. Additionally all weights and biases are
upper bounded by nm` n´ 1.

Next, given the output of f̃1, we consider a network f̃2 : Rpn`m´1qd1 Ñ Rpn`m´1qd1

consisting of pn ` m ´ 1qd1 parallel product networks p̃, such that f̃2 ˝ f̃1 produces the
outputs

Bm
n,νpxq “ p̃pBm

n,ν1
px1q, . . . , B

m
n,νd1

pxd1qq ´m` 1 ď ν1, . . . , νd1 ď n´ 1.

Then f̃2 has depth at most Cp̃, width at most Cp̃pm ` n ´ 1qd1 , sparsity at most Cp̃pm `
n´ 1qd1 , and all weights and biases are bounded by Cp̃.

Given the output of f̃2 ˝ f̃1, a network f̃3 : Rpn`m´1qd1 Ñ R consisting of only one linear
transformation is used to produce the function in (D.18). This network has depth 1, width
pm ` n ´ 1qd1 , sparsity pm ` n ´ 1qd1 , and upper bound C}f}Cpr0,1sd1 q for the modulus of
all weights and biases. The last bound holds according to Lemma 34.

Finally, to combine all three networks we use the so-called “sparse-concatenation” de-
noted by d, which was first introduced for ReLU networks in (Petersen and Voigtlaender,
2018, Definition 2.5), but which can be extended to ReLUm´1 networks, see (Opschoor
et al., 2022, Section 2.2.3). That is, we set

f̃ :“ f̃3 d f̃2 d f̃1.

It is a consequence of the properties of sparse concatenation (see Opschoor et al. (2022))
that this defines a network realizing the function f̃px1, . . . , xd1q “ f̃3pf̃2pf̃1px1, . . . , xd1qqq

such that the depth and width are bounded up to a multiplicative and additive constant
by the sum of the depth and sparsity of the three subnetworks. An upper bound on the
modulus of the network’s weights and biases is obtained, up to an additive constant, by
the maximal bound of the three subnetworks for this quantity. Finally, the sparsity of f̃
is bounded by the summed sparsity of f̃1, f̃2 and f̃3 together with the number of required
connections between f̃1 and f̃2, as well as between f̃2 and f̃3. Since each of the pm`n´1qd1

networks p̃ in f̃2 gets exactly d1 inputs, the former is bounded by Oppm`n´1qd1d1q. Since
f̃3 merely computes a linear combination of the pn `m ´ 1qd1 outputs of f̃2, the latter is
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bounded by Oppn`m´ 1qd1q. Absorbing some terms into the constant, for the network f̃
this leads to the bounds

L ď C

W ď Cp1`m` nqd1 “ Opnd1q

S ď Cp1` dpm` nqd1 `mpn`mqd1q “ Opnd1q

B ď Cp1` }f}Cpr0,1sd1 q ` nmq “ Opnq

for some C “ Cpd1,mq independent of n and f , and where the constants in the Op¨q notation
only depend on m and d1. Substituting Npnq :“ Cp1` pm` nqd1 `mpn`mqd1q “ Opnd1q

yields (4.1), and Theorem 35 implies (4.2).

Proof [Proof of corollary 17] Denote σmpxq “ maxt0, xum, p :“ rlogmpmaxt2, kuqs ě 1 and
m̃ :“ pmqp. Then

σm ˝ ¨ ¨ ¨ ˝ σm
loooooomoooooon

p times

“ σm̃ (D.19)

and by definition m̃ ě k. Fix N P N.

According to Theorem 16, for each j P t1, . . . , d2u there exists a ReLUm̃ network f̃j P
Φd1,1pLj,1,Wj,1, Sj,1, Bj,1q such that

Lj,1 ď C, Wj,1 ď N, Sj,1 ď N, Bj,1 ď C}fj}Cpr0,1sd1 q `N
1{d1 ,

for some C “ Cpd1, k, m̃q independent of j and

}fj ´ f̃j}W r,8pr0,1sd1 q ď CN
´ k´r

d1 |fj |Ckpr0,1sd1 q @r P t0, . . . , ku. (D.20)

Replacing each activation function σm̃ with the composition (D.19), we may interpret
f̃j as a ReLUm network in Φd1,1pLj,2,Wj,2, Sj,2, Bj,2q with

Lj,2 ď pC, Wj,2 ď N, Sj,2 ď pN, Bj,2 ď C}fj}Cpr0,1sd1 q `N
1{d1 ,

i.e., the depth and sparsity increase by the multiplicative k and m dependent factor p, but
the width and bound on the weights are not affected.

Next observe that xm “ σmpxq`p´1qmσmp´xq. Since xm, px`1qm, . . . , px`mqm are lin-
early independent functions, we can find coefficients c0, . . . , cm such that x “

řm
j“0 cjσmpxq`

p´1qmσmp´xq, i.e., the identity is expressible by a network of width 2pm` 1q and with one
hidden layer. By concatenating f̃j with Lj,2´ rpCs such identity networks, we may assume
that all f̃j have the same depth rpCs, i.e., f̃j P Φd1,1pLj,3,Wj,3, Sj,3, Bj,3q with

Lj,2 “ rpCs, Wj,2 ď maxtN, 2d1pm` 1qu, Sj,2 ď ppN `Kq

Bj,2 ď maxtC}fj}Cpr0,1sd1 q `N
1{d1 , max

j“1,...,m
cju,

where K is an absolute constant representing the size of the identity network of depth rpCs.
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Parallelizing these networks of the same depth, yields one big ReLUmnetwork pf̃jq
d2
j“1 P

Φd1,d2pL,W, S,Bq with

L “ rpCs, W ď d2 maxtN, 2d1pm` 1qu, S ď d2ppN `Kq

B ď maxtC}fj}Cpr0,1sd1 q `N
1{d1 , max

j“1,...,m
cju.

Setting Ñpd2, Nq :“ d2ppN `Kq yields the claimed bounds (4.3), and (4.4) follows by

(D.20) and N “ Ñ
d2
´Op1q.
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