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Abstract
We study repeated bilateral trade where an adaptive σ-smooth adversary generates the valuations of
sellers and buyers. We completely characterize the regret regimes for fixed-price mechanisms under
different feedback models in the two cases where the learner can post the same or different prices to
buyers and sellers. We begin by showing that, in the full-feedback scenario, the minimax regret after
T rounds is of order

√
T . Under partial feedback, any algorithm that has to post the same price to

buyers and sellers suffers worst-case linear regret. However, when the learner can post two different
prices at each round, we design an algorithm enjoying regret of order T 3/4, ignoring log factors. We
prove that this rate is optimal by presenting a surprising T 3/4 lower bound, which is the paper’s main
technical contribution.
Keywords: two-sided markets, online learning, regret minimization, smoothed analysis

1. Introduction

In the bilateral trade problem, two strategic agents—a seller and a buyer—wish to trade some
good. They both privately hold a personal valuation for it and strive to maximize their quasi-linear
utility. The solution to the problem consists of designing a mechanism that intermediates between
the two parties to make the trade happen. In general, an ideal mechanism for the bilateral trade
problem would optimize the efficiency, i.e., the gain in social welfare resulting from trading the
item from seller to buyer, while enforcing incentive compatibility (IC) and individual rationality
(IR). The assumption that makes a two-sided mechanism design more complex than its one-sided
counterpart is budget balance (BB): the mechanism cannot subsidize the market. Unfortunately,
as Vickrey (1961) observed in his seminal work, the optimal incentive compatible mechanism
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maximizing social welfare for bilateral trade may not be budget balanced. A more general result
due to Myerson and Satterthwaite (1983) shows some problem instances where a fully efficient
mechanism for bilateral trade that satisfies IC, IR, and BB does not exist. This impossibility result
holds even if prior information on the buyer and seller’s valuations is available and the truthful notion
is relaxed to Bayesian incentive compatibility. To circumvent this obstacle, the subsequent vast
body of work primarily aims at approximately maximize expected efficiency (where the expectation
is with respect to the valuations’ randomness). There are many incentive compatible, individually
rational, and budget balanced mechanisms that give a constant approximation to the social welfare
(see, e.g., Blumrosen and Dobzinski, 2014; Dütting et al., 2021), and more recently to the more
challenging problem of approximating the gain from trade (Deng et al., 2022). Although in some
sense necessary—without any information on the priors there is no way to extract any meaningful
approximation to the social welfare (Dütting et al., 2021)—the Bayesian assumption of perfect
knowledge of the valuations’ underlying distributions is unrealistic.

Following recent work (Cesa-Bianchi et al., 2021; Azar et al., 2022; Cesa-Bianchi et al., 2024), we
study this fundamental mechanism design problem in an online learning setting where at each time t,
a new seller/buyer pair arrives. The seller has a private valuation st ∈ [0, 1] representing the smallest
price they are willing to accept in order to trade. Similarly, the buyer has a private value bt ∈ [0, 1]
representing the highest price they would pay for the item. We assume an adversary generates both
valuations. Independently, the learner posts two (possibly randomized) prices: pt ∈ [0, 1] to the
seller and qt ∈ [0, 1] to the buyer. We require budget balance: it must hold that pt ≤ qt for all t or,
equivalently, that the pair (pt, qt) belongs to the upper triangle U =

{
(x, y) ∈ [0, 1]2 | x ≤ y

}
. A

trade happens if and only if both agents agree to trade, i.e., when st ≤ pt and qt ≤ bt. When this is
the case, the learner observes some feedback zt and is awarded the gain from trade, which measures
the increase in the agents’ social welfare at the end of each time t:

GFTt(p, q) =
(

(bt − q)︸ ︷︷ ︸
buyer’s utility

+ (p− st)︸ ︷︷ ︸
seller’s utility

)
· I{st ≤ p ≤ q ≤ bt}∗.

When the two prices p and q are equal, we omit one of the arguments to simplify the notation. When
we want to stress the dependence on the valuations, we use the notation GFT(p, q, st, bt) instead of
GFTt(p, q); moreover, we omit the dependence in t when we refer to the generic gain from trade
function. We consider the following learning protocol (σ-smoothness is formally defined below).

Learning protocol for sequential bilateral trade against a σ-smooth adversary
for time t = 1, 2, . . . do

The adversary privately chooses the σ-smooth distribution of a r.v. (St, Bt) on [0, 1]2

Seller and buyer valuations (st, bt) are drawn from (St, Bt)
The learner posts prices (pt, qt) ∈ U
The learner receives a (hidden) reward GFTt(pt, qt) ∈ [0, 1]
Feedback zt is revealed to the learner

∗Other works consider the similar definition (bt − st) · I{st ≤ p ≤ q ≤ bt}. Our results translate with minimal effort
to this definition.
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The regret of a learning algorithm A against an adversary S generating the sequence of random
pairs (St, Bt) is defined by:

RT (A,S) = max
(p,q)∈U

E

[
T∑
t=1

GFTt(p, q)−
T∑
t=1

GFTt(Pt, Qt)

]
.

We use Pt, Qt to stress that the prices are possibly randomized, with the convention that uppercase
letters refer to random variables and the corresponding lowercase letters to their realizations. The
expectation in the previous formula is then with respect to the internal randomization of the learning
algorithm and the adversary. The regretRT (A) of a learning algorithmA is defined as its performance
against the hardest adversary, i.e., as the supremum over all adversaries S (in a certain class we
describe in the next paragraph) of RT (A,S). Our goal is to study the minimax regret R?T , which
measures the performance of the best algorithm against the worst possible adversary, i.e., the infimum
over all algorithms A of RT (A). The set of learning algorithms we allow varies with the settings we
consider, i.e., with how many prices are posted and what feedback is available—see below.

Smoothed analysis of algorithms, initially introduced by Spielman and Teng (2004) and later
formalized for online learning by Rakhlin et al. (2011) and Haghtalab et al. (2020), is an approach to
the analysis of algorithms in which the instances at every round are generated from a distribution
that is not too concentrated. Recent works on the smoothed analysis of online learning algorithms
include Haghtalab et al. (2020), Haghtalab et al. (2022), and Block et al. (2022)—see Section 1.3 for
additional related works.

In this work, we consider a (stochastic) smoothed valuation-generating model that, in the
limit, recovers the adversarial regime. This is a natural choice for the bilateral trade problem,
where algorithms with sublinear regret only exist for the stochastic i.i.d. setting (with additional
assumptions) and where the adversarial model is known to be intractable (Cesa-Bianchi et al., 2024).
At each time step t, a pair of valuations (st, bt) is sampled according to the random variable (St, Bt),
whose distribution is chosen by the adversary. Our adversary is adaptive because the distribution of
(St, Bt) may depend on the past realizations of the valuations and the past internal randomization of
the algorithm. We focus on σ-smoothed adversaries, where the distributions of (St, Bt) are not too
concentrated, according to the following notion.

Definition 1 (Haghtalab et al. (2021)) Let X be a domain supporting a uniform distribution ν. A
measure µ on X is said to be σ-smooth if for all measurable subsets A ⊆ X , we have µ(A) ≤ ν(A)

σ .

We say that a random variable is σ-smooth if its distribution is σ-smooth. We consider two families
of learning algorithms, corresponding to two ways of being budget balanced:

• Single-price mechanisms. If we want to enforce a stricter notion of budget balance, namely strong
budget balance, the mechanism is neither allowed to subsidize nor extract revenue from the system.
This is modeled by imposing pt = qt, for all t.

• Two-price mechanisms. If a budget balanced algorithm enforces (weak) budget balance, then two
different prices can be posted, pt to the seller and qt to the buyer, as long as pt ≤ qt at each time
step. Namely, we only require that trades are never subsidized; the mechanism can still make a
profit.

Observation 1 The only reason for a budget balanced algorithm to post two different prices is to
obtain more information. A direct verification shows that the expected gain from trade can always be
maximized by posting the same price to both the seller and the buyer.
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Full Feedback Two-bit Feedback One-bit Feedback

Single Price Õ
(√
T
)

Theorem 2 Ω(T ) Ω(T )

Two Prices Ω
(√
T
)

Ω(T 3/4) Theorem 4 Õ
(
T 3/4

)
Theorem 5

Table 1: Overview of the regret regimes against a σ-smooth adversary. The lower bound for the full feedback model is
from Cesa-Bianchi et al. (2024, Thm. 3.3), the one for single price with two-bit feedback is from Theorem 5 in the same
paper. Our classification identifies three minimax regret regimes:

√
T (green), T 3/4 (orange), and T (red).

We consider three natural types of feedback models presented in increasing order of difficulty for the
learner. The last two are partial feedback models that enjoy the desirable property of requiring only a
minimal amount of information from the agents:

• Full feedback. zt = (st, bt): The learner observes both seller and buyer valuations. This model
corresponds to a direct revelation mechanism.

• Two-bit feedback. zt =
(
I{st ≤ pt}, I{qt ≤ bt}

)
: The learner observes separately if the two

agents accept the prices offered to each of them.

• One-bit feedback. zt = I{st ≤ pt ≤ qt ≤ bt}: The learner only observes whether or not the trade
occurs. This is arguably the minimal feedback the learner could get.

We remark that by Observation 1, the only reason to post two distinct prices in a given round is to get
information. This implies that, in the full feedback model, there is no reason to do that, as all the
relevant information is revealed anyway.

1.1 Overview of Our Results

We characterize (up to logarithmic factors) the dependence in the time horizon of the minimax regret
regimes for the online learning version of the bilateral trade problem against an adaptive σ-smooth
adversary for various feedback models and notions of budget balance, as outlined in Table 1. We
prove the following results:

• For the full feedback model, we analyze a continuous version of Hedge, posting a single price at
each time step and enjoying a O(

√
T lnT ) bound on the regret (Theorem 2). By Cesa-Bianchi

et al. (2024, Theorem 3.3), this rate is optimal up to logarithmic factors.

• For the one-bit feedback model, we design the Blind-Exp3 algorithm, posting two prices at each
time step and enjoying a Õ(T 3/4) bound on the regret (Theorem 5). The same rate was already
obtained by the Scouting Blindits algorithm in Cesa-Bianchi et al. (2024), but only under the
additional assumptions that the adversary chooses the seller/buyer valuations according to an i.i.d.
process. In this work, we drop this assumption and show that smoothness alone is the crucial
property enabling sublinear regret.

• We prove that, surprisingly, the T 3/4 rate is optimal up to logarithmic terms (Theorem 4), even if
the adversary is forced to choose valuations according an i.i.d. process and the learner has access
to the more informative two-bit feedback. Notably, our lower bound closes –in an unexpected way–
an open problem in Cesa-Bianchi et al. (2024).

• We prove that no algorithm can achieve worst-case sublinear regret when the platform is forced
to post a single price but receives partial feedback (one or two bits), even in the case where
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the seller/buyer evaluations are σ-smooth, independent of each other, and form an independent
sequence (Theorem 3). This complements a result in Cesa-Bianchi et al. (2024, Theorem 5), where
the same lower bound was proven for an i.i.d. smoothed adversary.

We highlight three salient qualitative features of our results. First, we construct a (surprising) lower
bound of order T 3/4 for the minimax regret of the problem with partial feedback where the learner is
allowed to post two prices. This lower bound, which is also our main technical contribution, is strictly
worse that the T 2/3 rate that can be obtained with access to bandit feedback,† and substantially departs
from the rates

√
T , T 2/3, T that can be found in the two most closely related partial feedback models

in the literature: online learning with feedback graphs (Alon et al., 2017) and partial monitoring
(Bartók et al., 2014). Second, we introduce the first sublinear-regret learning algorithm for the partial
feedback version of the bilateral trade problem beyond the (strict) stochastic i.i.d. assumption on the
valuations. Third, our results imply that, from the online learning perspective, there is no difference
between receiving one or two bits of feedback when two prices can be posted. This is in agreement,
and extends beyond the i.i.d. case, what was already noted in Cesa-Bianchi et al. (2024, Section 7)
for the smoothed i.i.d. case. This is also in stark contrast with what happens in the stochastic case:
if only one price can be posted, then O(T 2/3) regret is achievable when the learner has access to
two-bit feedback and S,B are independent and smooth. On the other hand, one bit of feedback is not
enough to obtain sublinear regret—see Cesa-Bianchi et al. (2024, Sections 5 and 8).

1.2 Technical Challenges and Our Techniques

The repeated bilateral trade problem is characterized by two key features that set it apart from the
standard model of online learning with full or bandit feedback: the nature of the action space and the
partial feedback structure. Both these features need to be taken into account to construct the T 3/4

lower bound, which is the main technical endeavor of this work.

The action space & the smooth adversary. The action space of the bilateral trade problem is
continuous (the prices live in a subset of [0, 1]2), while the gain from trade is discontinuous. This
entails that, without any smoothness assumptions on the distributions, the problem turns out to be
utterly intractable in the standard adversarial setting—see the “needle in a haystack” phenomenon
in Cesa-Bianchi et al. (2024, Theorem 6) and Azar et al. (2022, Theorem 3). We show that the
σ-smoothness induces regularity on the expected gain from trade (Lemma 1), which in turn allows us
to prove a key discretization result (Claim 1). In the full feedback model, we actually prove something
stronger: a continuous version of the Hedge algorithm directly exhibits sublinear regret with respect
to the best continuous price, without resorting to a finite grid of candidate prices (Theorem 2). We
expand on this technique, which may be of general and independent interest, in Appendix A.

Partial feedback. The main peculiarity of the bilateral trade problem lies in the partial feedback
models that are naturally associated with it. Receiving only information about the relative ordering
of the prices posted and the realized valuations does not allow the learner to directly reconstruct
the gain from trade received at each time step. For instance, if the learner posts the same price 0.5

†Although our decision space is two-dimensional, one can see that, in a bandit feedback (in which the learner observes
the gain from trade at each time step) with a smooth adversary, a regret of order T 2/3 can be obtained by running an
optimal bandit algorithm (e.g., MOSS of Audibert and Bubeck 2009, whose upper bound on the regret is of order

√
KT )

on a discretization of K = Θ(T 1/3) equally spaced prices on the diagonal {(p, q) ∈ U | p = q}. Similar results appeared,
e.g., in Kleinberg (2004); Auer et al. (2007). This is not in contradiction with our T 3/4 lower bound because the feedback
model considered there is less informative.
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to both agents and they both accept, there is no way of assessing whether its gain from trade is
constant (e.g., (s, b) = (0, 1)) or arbitrarily small (e.g., s = 0.5− ε and b = 0.5 + ε). Conversely, if
one of the two agents rejects the price posted, the learner can only infer loose bounds on the lost
trade opportunity. The key technical tool to address this challenge is given by a one-bit estimation
technique that exploits the possibility of posting two prices to estimate the gain from trade it would
have achieved by posting one single price to both agents (Cesa-Bianchi et al., 2024; Azar et al., 2022).
This tool, together with our discretization result (Lemma 1) are behind our Blind-Exp3 algorithm
achieving a T 3/4 regret.

Our T 3/4 lower bound. At a (very) high level, we show that bilateral trade with partial feedback
contains instances that are closely related to instances of online learning with feedback graphs
(Alon et al., 2015). The corresponding feedback graph GK is over 2K actions: K of them are
“exploring” and the others are “exploiting”. Exploring actions are costly and reveal feedback on the
corresponding exploiting actions. One of the exploiting actions is optimal, but none of them returns
any feedback. We build “hard” instances so that any algorithm is forced to spend a long time playing
each one of the many exploring actions. By selecting optimally the number of arms in the reduction
and the difference in reward between exploiting actions, we obtain the T 3/4 rate. This proof sketch
hides many technical challenges; crucially, we need to carefully design σ-smooth distributions of the
adversary with the desired properties. This presents two problems: on the one hand, the gains from
trade achievable at different prices are related (while in usual lower bound constructions for online
learning with feedback graphs, the rewards can be chosen independently, Alon et al. 2015); on the
other hand, the embedding needs to preserve the feedback structure, which is significantly different
from the standard bandit or expert feedback and requires novel and subtle arguments.

1.3 Additional Related Work

Further applications of smoothed analysis to online learning problems include the works by Block
and Simchowitz (2022), Block et al. (2023), Cesa-Bianchi et al. (2024), Aggarwal et al. (2024), and
Durvasula et al. (2023). Sachs et al. (2022) study a related stochastic adversary in the more general
online convex optimization setting; however, they do not insist on the smoothness of the distributions.

In online learning settings with partial feedback, like the one we study here, smoothed analysis
has been primarily applied to linear contextual bandits (Kannan et al., 2018; Raghavan et al., 2020;
Sivakumar et al., 2020, 2022), where contexts are drawn from smooth distributions. However, the
focus of those works has been on improving regret bounds specifically for the greedy algorithm,
whose worst-case regret is linear. Although the smoothed adversary causes the expected gain from
trade to be Lipschitz, the best possible regret rates for the partial feedback models considered here are
provably worse than those achievable with bandit feedback. To the best of our knowledge, bilateral
trade with a smoothed adversary was previously studied only by Cesa-Bianchi et al. (2021) in the
two-bit feedback model.Another line of work considers regret bounds parameterized by variations of
losses across time and other related measures of smoothness (Hazan and Kale, 2010; Chiang et al.,
2012; Steinhardt and Liang, 2014). See also Chen et al. (2021) for recent results in this area.

The minimax regret of online learning with partial feedback is rather well understood when the
learner selects actions from a finite set—see, e.g., the vast literature on feedback graphs and the
recent work by Lattimore (2022) on partial monitoring. General analyses of settings with infinitely
many actions sets are mostly limited to bandit feedback (Kleinberg et al., 2019).
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Conference Version and Follow-up Work. A preliminary version of this paper appeared in the
Conference on Learning Theory (Cesa-Bianchi et al., 2023). In follow-up work, Bernasconi et al.
(2024) showed how to achieve sublinear regret in adversarial repeated bilateral trade by allowing
the learning algorithm to enforce a global notion of budget balance. Recently, many economically-
motivated problems, related to bilateral trade, have been studied from the (online) learning perspective.
For example, fair bilateral trade (Bachoc et al., 2024a), double auctions with one seller and two
buyers (Babaioff et al., 2024), brokerage (Bolic et al., 2024; Bachoc et al., 2024b), contextual bilateral
trade (Gaucher et al., 2024), and trading volume maximization (Cesari and Colomboni, 2024).

2. Warm-up: One-Price Setting

In this section, we present our discretization error result (sharpening by a constant the bound in
Cesa-Bianchi et al. 2024) and present our results in the single-price setting.

2.1 Regret due to Discretization

Our first theoretical result concerns the study of how discretization impacts the regret against σ-
smooth adversaries. Although the gain from trade is, in general, discontinuous, its expectation is
1/σ-Lipschitz, thus opening the way to discretization methods, as formalized by the following result.

Lemma 1 (Lipschitzness) Let (S,B) be a σ-smooth random variable on [0, 1]2, then the induced
expected gain from trade GFT is 1/σ-Lipschitz:

|E [GFT(y)− GFT(x)] | ≤ 1

σ
|y − x|, ∀x, y ∈ [0, 1]. (1)

Proof Let x > y be any two prices in [0, 1], and U and V , two independent uniform random variables
in [0, 1], we have the following chain of inequalities:

|E [GFT(y)− GFT(x)] | = |E [(B − S)(I{S ≤ y ≤ B} − I{S ≤ x ≤ B})] |
= |E [(B − S)(I{S ≤ y ≤ B ≤ x} − I{y ≤ S ≤ x ≤ B})] |
≤ P [S ≤ y ≤ B ≤ x] + P [y ≤ S ≤ x ≤ B]

= P [(S,B) ∈ [0, y]× [y, x]] + P [(S,B) ∈ [y, x]× [x, 1]]

≤ 1
σP [(U, V ) ∈ [0, y]× [y, x]] + 1

σP [(U, V ) ∈ [y, x]× [x, 1]]

= 1
σ [y · (x− y) + (1− x)(x− y)] ≤ 1

σ (x− y).

Note that in the second to last inequality we used the smoothness of (S,B).

This regularity result implies that the definition of regret we are considering is well posed, as
there always exists a single price maximizing the gain from trade in hindsight. To see this, consider
any choice of the sequence of σ-smooth distributions of the adversary; by Observation 1, we know
that we only need to focus on one single price, and from Lemma 1 that the total gain from trade is
Lipschitz and therefore continuous on [0, 1]. We prove now that for any fixed grid of prices G in
[0, 1], it is possible to relate the gain from trade of the best price in G with that of the best fixed price
in [0, 1], paying a discretization error that depends on the smoothness parameter and the coarseness
of the grid. To this end, for any finite grid G, we define the parameter δ(G) as follows:

δ(G) = max
p∈[0,1]

min
g∈G
|p− g|.
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Claim 1 (Discretization error) Let G be any finite grid of prices in [0, 1], then for any sequence of
σ-smooth distributions S = (S1, B1), . . . , (ST , BT ), we have the following:

max
p∈[0,1]

E

[
T∑
t=1

GFTt(p)

]
−max

g∈G
E

[
T∑
t=1

GFTt(g)

]
≤ δ(G)

σ
T .

Proof Let p∗ be the best fixed price in hindsight in [0, 1] with respect to the sequence S. We have
two cases. If p∗ ∈ G, then there is nothing to prove. If this is not the case, then there exists pG ∈ G,
such that |p∗ − pG| ≤ δ(G). We have the following:

E

[
T∑
t=1

GFTt(p∗)

]
−max

p∈G
E

[
T∑
t=1

GFTt(p)

]

≤ E

[
T∑
t=1

GFTt(p∗)

]
− E

[
T∑
t=1

GFTt(pG)

]

≤
|p∗ − pQ|

σ
≤ δ(G)

σ
,

where, in the second to last inequality, we used the Lipschitz property of the expected gain from
trade as in Lemma 1.

2.2 Posting a Single Price in Full Information

In the full feedback model, the learner observes a realization zt = (st, bt) of (St, Bt) at the end of
each round t, allowing for a reconstruction of the gain from trade that would have been achieved
by any other pair of prices. We show that running Hedge (Freund and Schapire, 1997) on the
continuum of arms/prices in [0, 1] gives a regret rate that is optimal in T and exponentially better
in the smoothness parameter compared to the direct “discretization + discrete Hedge” approach‡.
Our algorithm, Continuous-Price Hedge, is a version of the classic Hedge algorithm played on a
continuum of prices where, at time t, a price pt is drawn according to the continuous distribution µt
with density ft defined on [0, 1] as follows:

ft(p) =
exp
(
η ·
∑t−1

s=1 GFTs(p)
)∫

[0,1] exp
(
η ·
∑t−1

s=1 GFTs(x)
)

dx
.

We refer to the pseudocode for the choice of η and further details. Crucially, it is possible to efficiently
sample prices from the distributions ft because the function

∑t−1
s=1 GFTs (and consequently, the

density ft) is piece-wise constant with Θ(t) discontinuities.
While continuous versions of Hedge have already been studied, we are the first to provide

positive results under the assumption that expected rewards are Lipschitz. Previous work (Maillard
and Munos, 2010; Krichene et al., 2015) assumes Lipschitzness of the rewards for any realization.
The latter assumption is, however, not applicable for gain from trade, which is discontinuous and not
even one-sided Lipschitz in general. This seemingly small difference –from a rewards family that is

‡We refer to the conference version for further details (Cesa-Bianchi et al., 2023, Theorem 2).
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Learning algorithm with full feedback: Continuous-Price Hedge
Input: Learning rate η ∈ (0, 1)
Initialization: Initialize W1(x) = 1, for all x ∈ [0, 1]

for time t = 1, 2, . . . do
Let µt be a distribution with pdf defined by ft(x) = Wt(x)

‖Wt‖1
, for all x ∈ [0, 1]

Post price pt drawn according to distribution µt
Update Wt+1(x) = Wt(x) · exp

(
η GFTt(x)

)
, for each x ∈ [0, 1]

realization-wise Lipshitz to one that is regular only in expectation– entails significant technical issues
in the analysis that we bypass by proving two general results that we believe are of independent
interest: a log-exp analogous of Minkowski’s integral inequality (Lemma 3 in Appendix B) and a
generalized freezing lemma (Lemma 5 in Appendix C). Given the technical nature of the arguments,
we postpone the proof of these results to the Appendices, and we report here the statement of our
result.

Theorem 2 Consider the problem of repeated bilateral trade against a σ-smooth adaptive adversary
in the full feedback model, for any σ ∈ (0, 1]. If we run Continuous-Price Hedge with learning rate
η ∈ (0, 1), then, for each time horizon T ∈ N, we have that

RT (Continuous-Price Hedge) ≤ 1

η
ln

(
ηT max( 1

σ , 2)

1− e−ηT

)
+ (e− 2)ηT .

In particular, if η =
√

ln(2T )
(e−2)T we have

RT (Continuous-Price Hedge) ≤
√

(e− 2)T ln(2T ) ·

(
5

2
+

ln
(
max( 1

σ , 2)
)

ln(2T )

)
.

Besides this specific result for gain from trade, in Appendix A, we prove a general version of
this Theorem, namely Theorem 6, that holds for any situation where the expected reward function is
Lipshitz, without requiring realization-wise regularity.

The bound in Theorem 2 is optimal in the time horizon (Cesa-Bianchi et al., 2024, Theorem
3.3) up to logarithmic terms, and exhibits an extremely mild dependence on 1/σ —disappearing
completely if T is larger than 1/σ— without requiring the knowledge of σ to tune the parameter
learning rate η. This dependence in the smoothness parameter is exponentially better than the one
achievable by directly combining Claim 1 with Hedge on a finite set of candidates. Indeed, this
latter, simpler approach yields a regret bound of O(

√
T log T/σ).§ In regimes where σ is small,

e.g., 1/σ = Tα, with α ≥ 1, the latter bound guarantees are vacuous, while Theorem 2 maintains a
near-optimal

√
T regret, only paying α multiplicatively.

2.3 Posting a Single Price in Partial Information

Cesa-Bianchi et al. (2024) proved that sublinear regret is achievable with one price and partial infor-
mation in the stochastic i.i.d. case, when seller and buyer distributions are smooth and independent

§We refer to the conference version (Cesa-Bianchi et al., 2023) for further details

9
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Figure 1: The squares Q1, . . . , Q6 appearing in the proof of Theorem 3.

of each other. They also showed that removing either the smoothness assumption or the mutual
independence of S and B leads to linear lower bounds. They did not, however, investigate whether
the i.i.d. assumption could be lifted in a setting other than the classic adversarial one while still
achieving sublinear regret. In contrast to the full information scenario above (and the one with two
prices and partial feedback that we discuss later), we give a negative answer to this question.

Theorem 3 Consider the problem of repeated bilateral trade against a σ-smooth adversary in the
two-bit feedback model, for any σ ≤ 1

64 . Then any learning algorithm that posts a single price
per time step suffers at least T

24 regret, even if S1, B1, S2, . . . is an independent family of random
variables.

Proof Consider the following six squares, depicted in Figure 1:

Q1 =
[
0, 1

8

]
×
[

3
8 ,

1
2

]
, Q2 =

[
1
4 ,

3
8

]
×
[

7
8 , 1

]
, Q3 =

[
1
2 ,

5
8

]
×
[

5
8 ,

3
4

]
,

Q4 =
[

1
2 ,

5
8

]
×
[

7
8 , 1

]
, Q5 =

[
0, 1

8

]
×
[

5
8 ,

3
4

]
, Q6 =

[
1
4 ,

3
8

]
×
[

3
8 ,

1
2

]
.

To each square Qi, we associate a uniform probability distribution over it: we say that the random
valuations (S,B) are distributed uniformly over Qi under Pi and Ei, for each i = 1, . . . , 6. Starting
from these distributions, we construct two other distributions: the “red” one and the “blue” one.
When (S,B) is sampled from the blue one, it is sampled u.a.r. from the union of the blue squares:
(Q1, Q2 and Q3). In formula, the probability measure Pblue is just a uniform mixture of P1, P2 and
P3. The same can be done for the red distribution over the red squares (Q4, Q5 and Q6). Note that
both the red and the blue distributions are 1/64 smooth.

From Cesa-Bianchi et al. (2024, Theorem 4.3), we know that any learning algorithm A that
can only post one price pt suffers linear regret against at least one of the following i.i.d. instance:
the adversary chooses at the beginning of time either the red or the blue distribution and extracts
valuations from it i.i.d. over the rounds. In formula:

max
color∈{blue,red}

(
max
p∈[0,1]

T∑
t=1

Ecolor[GFTt(p)− GFTt(pt)
])
≥ 1

24
T. (2)

We cannot use directly this construction for our result, as seller and buyer valuations are not
independent in the blue and red distributions. However, we can exploit the non i.i.d. structure of the

10
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smooth adversary, to generate an equivalent random sequence of smooth distributions such that each
one of them has independent seller and buyer valuations.

Consider the following family F of 1/64-smooth oblivious adversaries: each S of them is
characterized by a color red or blue, and a sequence {it} of T indices, where red adversaries have
it ∈ {4, 5, 6} and blue adversaries have it ∈ {1, 2, 3}. We denote with F red the set of all such
adversaries and with F blue the blue ones. Any S in the sequence generates the valuations as follows:
(St, Bt) is drawn independently and uniformly at random from Qit . Note that any S ∈ F enjoys
the property that the distribution chosen at each time step has independent seller and buyer. We
argue that any learning algorithm A suffers linear regret against at least one of these adversaries. In
formula:

RT (A) ≥ max
S∈F

[
max
p∈[0,1]

(
T∑
t=1

Eit [GFTt(p)− GFTt(pt)]

)]

= max
color∈{red,blue}

max
S∈F color

[
max
p∈[0,1]

(
T∑
t=1

Eit [GFTt(p)− GFTt(pt)]

)]

≥ max
color∈{red,blue}

[
max
p∈[0,1]

(
T∑
t=1

Ecolor [GFTt(p)− GFTt(pt)]

)]
. (3)

Note that the it are the indices induced by S. The previous inequality, combined with Equation (2)
concludes the proof. The only delicate step we need to clarify is the last inequality in Equation (3).
To this end, fix any color, let’s say red (same argument holds for blue). The regret of A against the
worst sequence in F red is at least the expected regret of A against a randomized adversary that is
obtained by drawing u.a.r. S from F red (note that the adversaries in F red are oblivious). Now, the
crucial argument is that the sequence of valuations (St, Bt) obtained by choosing u.a.r. an adversary
S from F red follows the exact same distribution as drawing (St, Bt) i.i.d. from the red distribution.
In fact, the valuations at different steps are independent and every square has the same probability of
being chosen at each time step.

3. A T 3/4 Lower Bound: Two Bits and Two Prices

In this section, we present the main contribution of this paper: an unexpected and intriguing lower
bound of order T 3/4. This result has two notable implications. First, it provides a formalization to
the intuition that partial feedback (both one and two-bit models) is strictly less informative than the
bandit feedback, being the regret of the latter of order at most T 2/3. Second, noting that the hard
instances used in the proof are i.i.d., we solve an open problem in Cesa-Bianchi et al. (2024), where
it was erroneously conjectured that the correct minimax rate was T 2/3.

We prove this result —formally stated in Theorem 4— in Section 3.2. Preliminarly, in Section 3.1
we introduce the hard family of adversaries used in Section 3.2, while Section 3.3 is devoted to the
formal derivation of a technical passage of the proof of Theorem 4, which is postponed there for the
sake of readability.

11
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Q1

Q2

Q3

Q4

Q5

Q6

0 v 1

R1
v,ε

R2
v,ε

R3
v,ε

R4
v,ε

Q6

p
0 v 2/3 1

Θ(ε)

Θ(ε)

Θ(1)

Figure 2: Left/center: The six squares Q1, . . . , Q6 (in green) are the support of the base density f , and the four
rectangles R1

v,ε, . . . , R
4
v,ε (in red and blue) inside Q6 are the regions where the density is perturbed with gv,ε. Right: The

corresponding qualitative plots of p 7→ E[GFT(p, S,B)] (black, dotted) and p 7→ Ev,ε[GFT(p, S,B)] (red, solid).

3.1 A hard family of adversaries

We construct a “hard” family of i.i.d. σ-smooth adversaries for the repeated bilateral trade learning
problem. Under each such adversary the valuations (St, Bt) are drawn i.i.d. from a fixed distribution,
for this reason, each adversary is identified by a probability measure over [0, 1]2, according to which
the random valuations are drawn. These probability measures are absolutely continuous with respect
to the Lebesgue measure and are obtained by suitable perturbations over a base distribution f , whose
support is given by the union of the six squares Q1, . . . , Q6 (see Figure 2, left):

Q1 =
[
0, 1

6

]
×
[

1
3 ,

1
2

)
, Q2 =

[
0, 1

6

]
×
[

1
2 ,

2
3

]
, Q3 =

[
0, 1

6

]
×
[

5
6 , 1
]
,

Q4 =
[

5
6 , 1
]
×
[

5
6 , 1
]
, Q5 =

[
5
6 , 1
]
×
[
0, 1

6

]
, Q6 =

[
1
3 ,

1
2

]
×
[

2
3 ,

5
6

]
.

The base probability density function f is defined for all (x, y) ∈ [0, 1]2 by

f(x, y) =
36

1 + 8a
·
(

5− 6(y + x)

6(y − x)
IQ1(x, y) + aIQ2(x, y) + 2aIQ3∪Q4∪Q5(x, y) + IQ6(x, y)

)
,

where a is set to 2 · ln(27/16) for normalization. Each perturbations is parametrized by a center v and
a scale ε, with (v, ε) ∈ Ξ =

{
(v, ε) ∈

(
1
3 ,

1
2

)
×
(
0, 1

12

)
| 1

3 + ε ≤ v ≤ 1
2 − ε

}
, and has support on

four disjoint rectangles (Figure 2, left):

R1
v,ε = [v − ε, v)×

[
3
4 ,

5
6

]
, R2

v,ε = [v − ε, v)×
[

2
3 ,

3
4

)
,

R3
v,ε = [v, v + ε)×

[
3
4 ,

5
6

]
, R4

v,ε = [v, v + ε)×
[

2
3 ,

3
4

)
.

The Riv,ε rectangles are included in Q6 and are the support of the corresponding perturbation gv,ε
defined for all (x, y) ∈ [0, 1]2 by

gv,ε(x, y) =
36

1 + 8a
·
(
IR1

v,ε∪R4
v,ε

(x, y)− IR2
v,ε∪R3

v,ε
(x, y)

)
.

The perturbed density functions are obtained by summing together the base probability density
function f and one of the perturbations gv,ε. Formally, for all (v, ε) ∈ Ξ, we let fv,ε = f + gv,ε.

Let P (resp., Pv,ε, for all (v, ε) ∈ Ξ) be a probability measure such that the sequence of
seller/buyer evaluations (S,B), (S1, B1), (S2, B2), . . . is i.i.d. and the distribution of (S,B) has

12



REGRET ANALYSIS OF BILATERAL TRADE WITH A SMOOTHED ADVERSARY

density f (resp., fv,ε) with respect to the Lebesgue measure. We denote the expectation with respect
to P (resp., Pv,ε, for all (v, ε) ∈ Ξ) by E (resp., Ev,ε). In Claim 2, we formally prove that P(S,B)

(resp., Pv,ε(S,B), for all (v, ε) ∈ Ξ) is 1/9-smooth. Therefore, each adversary corresponding to these
distributions is σ-smooth for any σ ≤ 1/9.

Claim 2 (Smoothness) P(S,B) and Pv,ε(S,B) are 1/9-smooth, for all (v, ε) ∈ Ξ.

Proof To prove this result, it is enough to argue that the probability density functions of (S,B) are
uniformly upper bounded by 9 under both P and Pv,ε. We start by analyzing f ; in particular, note
that for all (x, y) ∈ Q1, it holds that

5− 6(y + x)

6(y − x)
= 1 +

5− 12y

6(y − x)
≤ 1 +

5− 121
3

6
(

1
3 −

1
6

) = 2 ≤ 2a, (4)

where in the first inequality we used that the expression is monotonically increasing for x ∈ [0, 1/6]
and decreasing for y ∈ [1/3, 1/2), while in the last inequality we applied the definition of the
normalization parameter a = 2 ln(27/16). Combining the definition of f with the inequalities in
Equation (4), we observe that for all (x, y) ∈ [0, 1]2, it holds that:

f(x, y) ≤ 72a

1 + 8a
≤ 8.04. (5)

We have then just proved the part of the statement concering P(S,B). We now move our attention to
Pv,ε(S,B) and observe that gv,ε is supported in Q6, for all (v, ε) ∈ Ξ. The probability density function
fv,ε is then different from f only in Q6, where we have the following uniform upper bound

fv,ε(x, y) =
72

1 + 8a
≤ 7.69.

This concludes the proof.

Expected gain from trade. The choice of distributions fv,ε is due to the specific structure of
the expected gain from trade and feedback they induce. We start analyzing the former. For each
(v, ε) ∈ Ξ, and p ∈ [0, 1], it is easy to argue, by linearity, that

Ev,ε
[
GFT(p, S,B)

]
= E

[
GFT(p, S,B)

]
+

∫
[0,p]×[p,1]

(y − x)gv,ε(x, y) dxdy

= E
[
GFT(p, S,B)

]
+ ε

864(1+8a) · Λv,ε(p) + ε2

72(1+8a) · Λ 3
4
, 1
12

(p) , (6)

where Λu,r is the tent map centered at u with radius r, Λu,r(x) =
(

1− |x−u|r

)+
. Equation (6) nicely

decomposes the expected gain from trade in a fixed term that depends only on the base distribution, a
perturbation term centered in v and a second order Θ(ε2) term. As we have an explicit formula for
the probability density function of (S,B) under P, we can express analytically the expected gain
from trade E [GFT(p, S,B)]:

E
[
GFT(p, S,B)

]
=

1

6(1 + 8a)
·



3p
(
5 + 29a− 6(1 + 3a)p

)
if p ∈

[
0, 1

6

]
2 + 13a if p ∈

(
1
6 ,

1
2

]
−18ap2 + 3ap+ 2(1 + 8a) if p ∈

(
1
2 ,

2
3

]
−18p2 + 15p+ 10a if p ∈

(
2
3 ,

5
6

]
72ap(1− p) if p ∈

(
5
6 , 1
]

(7)
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To have a qualitative understanding of Equation (7) we refer to Figure 2 (dotted black plot on the
right): it is clear that the maximum is attained in the plateau, for p ∈ [1

6 ,
1
2 ]. We highlight that we

constructed the base distribution with the explicit goal of having this plateau of maximizers, whose
existence is crucial to the lower bound construction. Furthermore, for each (v, ε) ∈ Ξ, price v
is the unique maximizer of the perturbed expected gain from trade Ev,ε

[
GFT(p, S,B)

]
, which is

increasing on
[
0, 1

6

]
, constant on

[
1
6 , v−ε

]
, has a symmetric spike on [v−ε, v+ε], becomes constant

again on
[
v + ε, 1

2

]
, and decreases on

[
1
2 , 1
]

(Figure 2, red plot on the right). Recalling that, as noted
in Observation 1, the expected gain from trade is maximized on the diagonal

{
(p, p) | p ∈ [0, 1]

}
,

we obtain that the expected gain from trade under Ev,ε is maximized by posting (v, v); it holds:

max
(p,q)∈U

Ev,ε
[
GFT(p, q, S,B)

]
= Ev,ε

[
GFT(v, S,B)

]
,

where we denote with U the upper right triangle of the [0, 1]2 squares, which corresponds to the set
of budget balanced prices that the learner can post.

Two-bit feedback. We move our attention to the description of the distribution of the 2-bit feed-
back

(
I
{
S ≤ p

}
, I
{
q ≤ B

})
. It is the same regardless of the underlying perturbed probability

measure unless the learner selects a pair of prices (p, q) in one of the four rectangles Rjv,ε where
the perturbations occur. We denote with Rv,ε the union of the four rectangles Rjv,ε. For the sake of
simplicity, we use the random variable Z to denote

(
I
{
S ≤ p

}
, I
{
q ≤ B

})
.

Claim 3 Fix any (v, ε) ∈ Ξ, (p, q) ∈ U \Rv,ε, and let Z = (I{S ≤ p}, I{q ≤ B}). Then Z follows
the same distribution both under P and Pv,ε. Formally, the following holds

Pv,ε
[
Z = (i, j)

]
= P

[
Z = (i, j)

]
∀ (i, j) ∈ {0, 1}2.

Proof For each (v, ε) ∈ Ξ, and each (p, q) ∈ U , the distribution under Pv,ε of the 2-bit feedback Z
is given by:

• P [Z = (0, 0)] = Pv,ε
[
S > p ∩B < q

]
=
∫ 1
p

∫ q
0 f(x, y) dxdy +

∫ 1
p

∫ q
0 gv,ε(x, y) dxdy.

• P [Z = (0, 1)] = Pv,ε
[
S > p ∩B ≥ q

]
=
∫ 1
p

∫ 1
q f(x, y) dxdy +

∫ 1
p

∫ 1
q gv,ε(x, y) dxdy.

• P [Z = (1, 0)] = Pv,ε
[
S ≤ p ∩B < q

]
=
∫ p

0

∫ q
0 f(x, y) dxdy +

∫ p
0

∫ q
0 gv,ε(x, y) dxdy.

• P [Z = (1, 1)] = Pv,ε
[
S ≤ p ∩B ≥ q

]
=
∫ p

0

∫ 1
q f(x, y) dxdy +

∫ p
0

∫ 1
q gv,ε(x, y) dxdy.

By symmetry, all integrals of gv,ε in the previous formulae vanish if (p, q) does not belong to Rv,ε,
so that the only non-zero contribution is the one of f , which is shared by all distributions.

The cost of exploration and of suboptimality. The family of adversaries has two crucial features:
first, prices that are ε-far from the optimal one yield Θ(ε) instantaneous regret; second, the learner
is forced to post prices in a suboptimal region Q6 to locate the actual perturbation (see Claim 3),
incurring in constant instantaneous regret. We formalize these two properties in the following claims.
By the analytic expression of the expected gain from trade it is easy to derive a bound on the cost of
posting prices far from the optimal one.

14



REGRET ANALYSIS OF BILATERAL TRADE WITH A SMOOTHED ADVERSARY

Claim 4 (Cost of suboptimality) Fix any perturbation pair (v, ε) ∈ Ξ and let (p, q) be any price
not in ([v − ε, v + ε]× [1/3, 2/3]) ∩ U , then the following holds:

Ev,ε
[
GFT(v, S,B)

]
− Ev,ε

[
GFT(p, q, S,B)

]
≥ 1

104
ε.

Proof Consider any (p, q) /∈ ([v − ε, v + ε] × [1/3, 2/3]) ∩ U , we divide the analysis in two cases,
depending on whether p ∈ [2/3, 5/6] or not. If p /∈ [2/3, 5/6], then:

Ev,ε
[
GFT(p, q, S,B)

]
≤ Ev,ε

[
GFT(p, S,B)

]
(Posting different prices is suboptimal)

= E
[
GFT(p, S,B)

]
(By Equation (6), as p /∈ [v − ε, v + ε] ∪ [2/3, 5/6])

≤ E
[
GFT(v, S,B)

]
. (v is optimal under P, see Equation (7))

Plugging the above inequality in the left-hand side of the statement of the Claim, together with the
gain from trade decomposition of Equation (6) yields:

Ev,ε
[
GFT(v, S,B)

]
− Ev,ε

[
GFT(p, q, S,B)

]
≥ ε

864(1+8a) ≥
ε

104
,

where the last inequality follows from the definition of the normalization parameter a. Consider now
the other case, i.e. p ∈ [2/3, 5/6], we have

Ev,ε
[
GFT(p, q, S,B)

]
≤ Ev,ε

[
GFT(p, S,B)

]
(Posting different prices is suboptimal)

≤ E
[
GFT(p, S,B)

]
+ ε2

72(1+8a) (By Equation (6), as p ∈ [2/3, 5/6])

≤ E
[
GFT(2/3, S,B)

]
+ ε2

72(1+8a) . (E [GFT(·)] is decreasing in [2/3, 5/6])

= 10a+2
6(1+8a) + ε2

72(1+8a) . (By Equation (7))

We substitute this inequality in the left-hand side of the statement of the Claim:

Ev,ε
[
GFT(v, S,B)

]
− Ev,ε

[
GFT(p, q, S,B)

]
≥ 13a+2

6(1+8a) + ε
864(1+8a) −

10a+2
6(1+8a) −

ε2

72(1+8a)

≥ 3a
6(1+8a) ≥

ε
104
. (As ε ≤ 1/12)

This concludes the proof.

To bound the istantaneous regret when posting prices in the exploration region Q6 we need to resort
once again to the analytic expression of the gain from trade in Equations (6) and (7).

Claim 5 (Cost of exploration) Fix any perturbation pair (v, ε) ∈ Ξ and let (p, q) ∈ Q6, the
following holds:

Ev,ε
[
GFT(v, S,B)

]
− Ev,ε

[
GFT(p, q, S,B)

]
≥ 1

20
.

Proof Fix any perturbation pair (v, ε) ∈ Ξ and consider any pair of prices (p, q) ∈ Q6. The expected
gain from trade corresponding to (p, q) is dominated by the one attainable by posting (1

2 ,
2
3) (each

pair of valuations (s, b) such that a trade happens for (p, q) also yields a trade under (1
2 ,

2
3) ). Thus

the following holds:

Ev,ε
[
GFT(p, q, S,B)

]
≤ Ev,ε

[
GFT

(
1
2 ,

2
3 , S,B

)]
≤ Ev,ε

[
GFT

(
2
3 , S,B

)]
.
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On the other hand, posting v is at least as good as posting 1/2:

Ev,ε
[
GFT(v, S,B)

]
≥ Ev,ε

[
GFT

(
1
2 , S,B

)]
.

Putting the two inequalities together we get the claimed bound:

Ev,ε
[
GFT(v, S,B)− GFT(p, q, S,B)

]
≥ Ev,ε

[
GFT

(
1
2 , S,B

)
− GFT

(
2
3 , S,B

)]
=

a

2 + 16a
.

The statement follows by plugging in the value of the normalization parameter a = 2 · ln(27/16).

3.2 The T 3/4 Lower Bound

The family of adversaries we introduced are the crucial ingredient for our lower bound. Set K =⌈
T 1/4

⌉
, ε = 1/(12K) and, for each i ∈ {1, . . . ,K}, let vi = 1/3 + (2i− 1)ε be a candidate center. For

the sake of convenience, for each i ∈ [K] denote Pvi,ε by Pi and the corresponding expectation by
Ei, and similarly, denote P by P0 and the corresponding expectation by E0.

Price regions. The family of measures P0,P1, . . . ,PK naturally partitions the [0, 1]2 square into
price regions characterized by similar feedback and similar expected gain from trade:

• The expolaration regions: the square Q6 contains the K disjoint supports of the perturbations.
Denote with Rji (i ∈ [K]) the support of the perturbations characterizing Pi (Rj(vi,ε) for our

choice of ε) and with Ri the union for j = 1, . . . , 4 of the Rji . Recall, posting prices in Rji
is the only way to discriminate between Pi and the other distributions (Claim 3), but induces
Ω(1) instantaneous regret (Claim 5).

• The (exploitation) candidate regions: for each i ∈ [K], let Oi be the trapezoid induced by
the intersection of [vi − ε, vi + ε] × [1/3, 2/3) with U . The learner gets no information by
posting prices there, but each Oi contains (vi, vi) which is optimal under Pi and guarantees
Θ(ε) regret under Pj for j 6= i (Claim 4).

We have all the ingredients for proving the main result of the paper. We constructed a family
of K i.i.d. σ-smooth adversaries for the repeated bilateral trade problem, each characterized by a
probability measure Pi where the valuations (S,B) are sampled from. Under each Pi the expected
gain from trade is maximized in a different pair of prices (vi, vi). Every time the learner posts a price
that is Ω(ε) far from the optimal vi it suffers instantaneous regret that is Ω(ε) (Claim 4). To identify
the optimal vi, the learner needs to identify the actual perturbation. There are K = Θ(1/ε) different
possible perturbations and, due to the feedback structure, the learner needs to probe separately the K
disjoint exploration regions in Q6 (Ω(1/ε2) times each) to identify the actual perturbation it is playing
against. Recall, posting prices in the suboptimal region Q6 leads to a constant instantaneous regret
(Claim 5). All in all any learner suffers a regret of order Ω

(
min

(
K/ε2, εT

))
= Ω(T 3/4), given our

choices of K and ε. We formalize this intuition in the following theorem.

Theorem 4 Consider the problem of repeated bilateral trade against a σ-smooth adversary in the
two-bit feedback model, for any σ ≤ 1

9 . If T ≥ 6562, then any learning algorithm A that posts two
prices per time step suffers at least a regret of

RT (A) ≥ 1

106
T

3/4 .
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Proof We prove the lower bound via Yao’s Principle: there exists a randomized family of adversaries
that induces any deterministic algorithm A to suffer Ω(T 3/4) regret. Let K and ε as above, (K =⌈
T 1/4

⌉
, and ε = 1/(12K)) and consider the K + 1 adversaries corresponding to the probability

measures P0, P1, . . .PK described at the beginning of the Section. A suitable mixture over these
adversaries is the randomized family we apply Yao’s Principle on.

For any fixed deterministic algorithmA, we introduce some notation. Let (P1, Q1), (P2, Q2) . . .
be the prices played by A on the basis of the sequential feedback received Z1, Z2, . . . . For any
i ∈ [K], define Nt(i) as the random variables counting the number of times the learning algorithm
A plays in the exploration region Ri; similarly, Mt(i) counts the number of times that A plays in
candidate region Oi:

Nt(i) =
t∑

s=1

I{(Ps, Qs) ∈ Ri}, Mt(i) =
t∑

s=1

I{(Ps, Qs) ∈ Oi}.

Using these variables, we can define the Nt and Mt as the counters of how many times exploring,
respectively exploiting, actions have been played up to time t, for any t ∈ [T ]:

Nt =
∑
i∈[K]

Nt(i) , Mt =
∑
i∈[K]

Mt(i) .

In the following Claim, whose proof is deferred to Section 3.3, we relate the expected values ofMT (i)
under P0 and Pi as a function of the expected number of times the algorithm plays the corresponding
exploring actions, i.e., NT (i). This formalizes the intuition that to discriminate between the different
Pi the learner needs to play exploring actions.

Claim 6 The following inequality holds true for any i ∈ [K]:

Ei
[
MT (i)

]
− E0

[
MT (i)

]
≤ 2εT ·

√
E0[NT (i)].

We are now ready to bound directly the performance of the learner against the adversaries.
Consider any Pi, for i ∈ [K]; algorithm A suffers Θ(1) instantaneous regret when it posts prices in
the exploration region Q6 (we count these events with NT ) and suffers at least Θ(ε) instantaneous
regret when posts prices that are nor in Q6, nor in Oi, which contains the optimal price vi (we count
these events with T −NT −MT (i)). All in all, we have the following lower bound on the regret
suffered by A:

Ei [RT (A)] ≥ ε
104︸︷︷︸

Claim 4

Ei [T −NT −MT (i)] + 1
20︸︷︷︸

Claim 5

Ei [NT ]

≥ ε
104

(
T − E0 [MT (i)]− 2εT

√
E0 [NT (i)]

)
. (by Claim 6)

Averaging with respect to Pi, i = 1, . . . ,K, we get:

1

K

K∑
i=1

Ei [RT (A)] ≥ ε

104

(
T − E0 [MT ]

K
− 2εT

√
E0 [NT ]

K

)
(by Jensen Inequality)

≥ ε

104

(
9

10
− 2ε

√
E0 [NT (i)]

K

)
T (T ≥ 6562 =⇒ K ≥ 10)

≥ 1

107

(
27− 5

√
E0 [NT ]

T 3/4

)
T

3/4, (8)
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where the last inequality follows by the definition of ε and K. We can quantify the regret suffered by
A in a simpler way: every time A plays in the exploration region Q6 it suffers constant regret:

E0 [RT (A)] ≥ 1
20E

0 [NT ] . (9)

Consider now the randomized family of adversaries generated as follows: with probability 1/2,
the sequence of valuations is drawn i.i.d. according to P0, while with the remaining probability one
of the K probability measures Pi is chosen, uniformly at random. We conclude by Yao’s principle,
showing that any deterministic algorithm A suffers Ω(T 3/4) regret:

R∗T ≥
1

2
E0 [RT (A)] +

1

2K

K∑
i=1

Ei [RT (A)] (by Yao’s principle)

≥ 1

2

[
1

20
E0 [NT ] +

T 3/4

107

(
27− 5

√
E0 [NT ]

T 3/4

)]
(by Equations (8) and (9))

≥ 1

106
T

3/4,

where the last inequality holds for any possible value of E0 [NT ].

We conclude with an observation about our result and analysis. Our main goal is to provide an
asymptotic lower bound to the minimax regret; as such, we do not optimize the constant multiplying
the leading term but often prefer looser bounds to favor readability.

3.3 The Final Ingredient: Claim 6

This Section is devoted to the proof of the technical Claim 6, which quantifies the different behaviour
of any deterministic algorithm against the two adversaries Pi and P0, in terms of the number of times
that the exploring actions are played.

Claim 6 The following inequality holds true for any i ∈ [K]:

Ei
[
MT (i)

]
− E0

[
MT (i)

]
≤ 2εT ·

√
E0[NT (i)].

Proof For any t ∈ [T ], the action (Pt, Qt) selected by A at round t (and therefore to wich region
(Pt, Qt) belongs to) is a deterministic function of Z1, . . . , Zt−1. In formula, we then have the
following

Ei
[
MT (i)

]
− E0

[
MT (i)

]
=

T∑
t=2

(
Pi
[
(Pt, Qt) ∈ Oi

]
− P0

[
(Pt, Qt) ∈ Oi

])
≤

T∑
t=2

∥∥Pi(Z1,...,Zt−1) − P0
(Z1,...,Zt−1)

∥∥
TV
, (10)

where ‖·‖TV denotes the total variation norm, and Pi(Z1,...,Zt)
denotes the push-forward measure

over {0, 1}2t induced by the feedback variables when the valuations are drawn according to Pi. We
move now our attention towards bounding the total variation norm. To that end we use the Pinsker’s
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inequality and apply the chain rule for the KL divergence DKL. For each i ∈ [K] and t ∈ [T ] we
have the following:

∥∥P0
(Z1,...,Zt)

− Pi(Z1,...,Zt)

∥∥
TV
≤
√

1

2
DKL

(
P0

(Z1,...,Zt)
, Pi(Z1,...,Zt)

)
=

√√√√1

2

(
DKL

(
P0
Z1
, PiZ1

)
+

t∑
s=2

E0
[
DKL

(
P0
Zs|Z1,...,Zs−1

, PiZs|Z1,...,Zs−1

)])
. (11)

We bound the two types of KL terms separately; starting from the one relative to the first time step.
The pair of prices (P1, Q1) is deterministic and, by Claim 3, the KL divergence between the

feedback observed against P0 and Pi is non-zero if and only if (P1, Q1) belongs to the support of the
perturbation defining Pi, that we called Ri. We have the following:

DKL

(
P0
Z1
,PiZ1

)
=

∑
z∈{0,1}2

log

(
P0 [Z1 = z]

Pi [Z1 = z]

)
P0 [Z1 = z] I{(P1, Q1) ∈ Ri}. (12)

Focus on the terms of the form Pi [Z1 = z]. To get a better understanding of them, we introduce
four rectangles that represent the regions of the [0, 1]2 square which correspond to the four possible
feedback z ∈ {0, 1}2 received by the learner:

Q1,1 = [0, P1]×[Q1, 1], Q0,1 = (P1, 1]×[Q1, 1], Q1,0 = [0, P1]×[0, Q1), Q0,0 = (P1, 1]×[0, Q1).

By definition of Pi and of the rectangles Qz , we have that Pi [Z1 = z] = P0 [Z1 = z] + ∆z,
where ∆z = 36

1+8a

(
|(R1

i ∪R4
i ) ∩Qz| − |(R2

i ∪R3
i ) ∩Qz|

)
and we denoted with | · | the area.

Now, the function x → x log x/x+a is monotonically decreasing in its domain; moreover, the
probabilities P0 [Z1 = z] are at least 1/6 for any z ∈ {0, 1}2, when (P1, Q1) is in Ri. Applying these
considerations to Equation (12) we have that

DKL

(
P0
Z1
,PiZ1

)
≤ 1

6

∑
z∈{0,1}2

log

(
1/6

1/6 + ∆z

)
I{(P1, Q1) ∈ Ri}. (13)

A first, crucial, consideration on the ∆z is that ∆0,0 and ∆1,1 are non-negative, while the remaining
terms are non-positive. This is due to the definition of these terms as difference between two areas;
for z = (0, 0) and (1, 1) it holds that |(R1

i ∪R4
i ) ∩Qz| ≥ |(R2

i ∪R3
i ) ∩Qz|; for the other two z the

converse inequality holds. This means that

∆0,0 ·∆1,1 ≥ 0, ∆1,0 ·∆0,1 ≥ 0. (14)

Consider now the two sums of terms with the same sign. The absolute value of ∆0,0 + ∆1,1 is
mazimized when (P1, Q1) is equal to (v, 3/4) (i.e., at the center of the Ri rectangle); the same holds
for ∆1,0 + ∆0,1, so

max{|∆0,0 + ∆1,1|, |∆1,0 + ∆0,1|} = 6
1+8aε ≤

2
3ε. (15)

Finally, by definition of the Qz and that of the perturbation rectangles, it holds that the ∆z terms sum
up to 0 :

∆0,0 + ∆1,1 + ∆1,0 + ∆0,1 = 0. (16)
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We get back to Equation (13) and apply the simple inequalities we just proved, together with the fact
that the function x→ log 1/(1+6x) is monotonically non-increasing:

DKL

(
P0
Z1
,PiZ1

)
≤ 1

6

(
log

1

1 + 6(∆0,0 + ∆1,1)
+ log

1

1 + 6(∆1,0 + ∆0,1)

)
I{(P1, Q1) ∈ Ri}

(by Equation (14))

=
1

6

(
log

1

1− 36|∆0,0 + ∆1,1| · |∆1,0 + ∆0,1|

)
I{(P1, Q1) ∈ Ri} (by Equation (16))

≤ 1

6

(
log

1

1− 16ε2

)
I{(P1, Q1) ∈ Ri} (by Equation (15))

≤ 3ε2I{(P1, Q1) ∈ Ri}, (17)

where the last inequality can be verified analytically and holds for any ε ∈ (0, 1/10), and ε =
1/12dT 1/4e ≤ 1/10.

The other terms in Equation (11) can be handled similarly: A is a deterministic algorithm, thus
for any time s and fixed feedback history Z1, . . . Zs−1, it holds that (Ps, Qs) is a fixed element of
[0, 1]2:

DKL(P0
Zs|Z1,...,Zs−1

, PiZs|Z1,...,Zs−1
)

=
∑

z∈{0,1}2
log P0[Zs=z|Z1,...,Zs−1]

Pi[Zs=z|Z1,...,Zs−1]
P0 [Z1 = z | Z1, . . . , Zs−1] I{(Ps, Qs) ∈ Ri | Z1, . . . , Zs−1}

=
∑

z∈{0,1}2
log P0[Zs=z|(Ps,Qs)∈Ri]

Pi[Zs=z|(Ps,Qs)∈Ri]
P0 [Zs = z | (Ps, Qs) ∈ Ri] I{(Ps, Qs) ∈ Ri | Z1, . . . , Zs−1}.

The same calculations we carried over for s = 1 can be repeated for the generic s, yielding the same
bound of 3ε2:

DKL

(
P0
Zs|Z1:s1

, PiZs|Z1,...,Zs−1

)
≤ 3ε2I{(Ps, Qs) ∈ Ri | Z1, . . . , Zs−1} (18)

Plugging Equation (17) and Equation (18) into Equation (11), we get the desired bound on the total
variation distance:∥∥P0

(Z1,...,Zt)
− Pk(Z1,...,Zt)

∥∥
TV
≤ 2ε

√
E0 [Nt−1(i)] ≤ 2ε

√
E0 [NT (i)]. (19)

Plugging Equation (19) into Equation (10) yields the Claim.

4. A T 3/4 Upper Bound: One Bit and Two Prices

In this section, we introduce our algorithm, Blind-Exp3, for the one-bit feedback setting against a
σ-smooth adaptive adversary that achieves a bound on the regret of order T 3/4, up to logarithmic
terms. A key technique that we use is a Monte Carlo estimation procedure ĜFT (see pseudocode for
details) that allows us to estimate the expected gain from trade E

[
GFT(p, St, Bt)

]
of a price p, by

posting two different prices (p̂, q̂) and receiving one bit of feedback.
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Estimation procedure of GFT using two prices and one-bit feedback
Input: price p
Environment: fixed pair of seller and buyer valuations (s, b)
Toss a biased coin with probability p of Heads
if Heads then draw U uniformly at random in [0, p] and set p̂← U , q̂ ← p
else draw V uniformly at random in [p, 1] and set p̂← p, q̂ ← V
Post price p̂ to the seller and q̂ to the buyer and observe the one-bit feedback I{s ≤ p̂ ≤ q̂ ≤ b}
Return ĜFT(p)← I{s ≤ p̂ ≤ q̂ ≤ b} . Unbiased estimator of GFT(p)

Learning algorithm with 1-bit feedback and two prices: Blind-Exp3

input: Learning rate η > 0, exploration rate γ ∈ (0, 1), grid of prices G, with |G| = K
initialization: Set w1(i) to 1 for all i ∈ [K] and W1 = K
for time t = 1, 2, . . . do

Let πt(i) = wt(i)
Wt

for all i ∈ [K]
Toss a biased coin with probability γ of Heads
if Tails then . Exploitation step

Post price pt drawn according to distribution πt and set r̂t(i) = 0 for all i ∈ [K]
else . Exploration step

Draw a price gIt uniformly at random in G
Use the estimation procedure on price gIt and receive ĜFTt(gIt)
Set r̂t(It) = K

γ · ĜFTt(gIt) and r̂t(j) = 0 for all j 6= It.

Let wt+1(i) = wt(i) · exp
(
ηr̂t(i)

)
for all i ∈ [K] . Exponential weight update

Let Wt+1 =
∑

pi∈Gwt+1(i)

Lemma 2 (Lemma 1 of Azar et al. (2022)) Fix any agents’ valuations (s, b) ∈ [0, 1]2. For any
price p ∈ [0, 1], it holds that ĜFT(p) is an unbiased estimator of GFT(p), i.e., E

[
ĜFT(p)

]
=

GFT(p), where the expectation is with respect to the randomness of the estimation procedure.

Once we have this procedure, we can present our algorithm. At high level, the algorithm mimics
the behavior of Exp3 on a fixed discretization of K prices, but the estimation procedure is used to
perform the uniform exploration step. Our algorithm is “blind” because—unlike what happens in
the bandit case—posting a price does not reveal the corresponding gain from trade. With a careful
analysis, we show that the uniform exploration term is indeed enough to achieve the tight regret
bound of order Õ(T 3/4). (We recall that the σ-smoothness of the valuation distributions is crucial to
ensure that the performance of the best fixed price in hindsight on a grid is “close enough” to the
performance of the best fixed price overall).

Theorem 5 Consider the problem of repeated bilateral trade against a σ-smooth adaptive adversary
in the one-bit feedback model, for any σ ∈ (0, 1]. If we run Blind-Exp3 with exploration rate
γ ∈ (0, 1), learning rate η > 0, and the uniform K-grid G such that 2ηK

γ ≤ 1, then, for each time
horizon T ∈ N, we have that

RT (Blind-Exp3) ≤ lnK

η
+

(
γ + η

K

γ
+

1

σK

)
T.
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In particular, if T ≥ 16, tuning the number of grid points K =
⌊
T 1/4

⌋
, the exploration rate γ =

(lnT )1/3

T 1/4 , and the learning rate η = 1
2

(lnT )
2/3

T 3/4
, then RT (Blind-Exp3) ≤ 2

(
1
σ + (lnT )1/3

)
· T 3/4 .

Proof The analysis of Blind-Exp3 needs to carefully take into account many sources of randomness:
the internal randomness of the algorithm, of the estimation procedures and of the σ-smooth distri-
butions of the adversary. Note, moreover, that the adversary is non-oblivious, so the choice of the
distribution (St, Bt) depends on all the realizations of the past randomization. Fix any exploration
rate γ ∈ (0, 1), learning rate η > 0 and number of grid points K ∈ N such that 2ηK/γ ≤ 1. Fix
also any time horizon T ∈ N. In the following, we use the random variables (Pt, Qt) to denote the
randomized prices posted by the algorithm at time t.

Fix any history of the algorithm (i.e. realization of all the randomness involved). We have the
following:

ln

(
WT+1

W1

)
= ln

(
T∏
t=1

Wt+1

Wt

)
=

T∑
t=1

ln

(
Wt+1

Wt

)
=

T∑
t=1

ln

∑
i∈[K]

πt(i) exp (ηr̂t(i))


≤

T∑
t=1

ln

1 + η
∑
i∈[K]

πt(i)r̂t(i) + η2
∑
i∈[K]

πt(i)
(
r̂t(i)

)2
≤ η

T∑
t=1

∑
i∈[K]

πt(i)r̂t(i) + η2
T∑
t=1

∑
i∈[K]

πt(i)
(
r̂t(i)

)2 (using r̂t(i) ≤ K
γ )

≤ η
T∑
t=1

∑
i∈[K]

πt(i)r̂t(i)

[
1 + η

K

γ

]
. (20)

Crucially, we can use the standard exponential and logarithmic inequalities exp(x) ≤ 1 + x+ x2

(valid whenever x ≤ 1), and ln(1 + x) ≤ x (valid whenever x > −1) only because the particular
choice of the parameters (2ηK/γ ≤ 1) implies that ηr̂t(i) ≤ 1 and

η
∑
i∈[K]

πt(i)r̂t(i) + η2
∑
i∈[K]

πt(i)
(
r̂t(i)

)2 ≤ 2η
∑
i∈[K]

πt(i)r̂t(i) ≤
K

γ
.

Inequality 20 is the pivot of our analysis, as we construct upper and lower bounds to its two
extremes. We start from its first term, take the expectation with respect to the whole randomness of
the process and consider any price gi in the grid G:

E
[
ln

(
WT+1

W1

)]
= E [ln (WT+1)]− lnK ≥ E [ln (wT+1(i))]− lnK

= η

T∑
t=1

E [r̂t(i)]− lnK = η
T∑
t=1

E [GFTt(gi)]− lnK. (21)

The only delicate passage of the previous formula is the last equality, where we used that E [r̂t(i)] =
E [GFTt(gi)]. To see why the latter holds, consider the filtration {Ft}t relative to the story of the
process: Ft is the σ-algebra generated by all the random variables involved in the process up to time
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t (excluded). Moreover, let E it be the event that at round t the coin toss results in Heads and the price
selected u.a.r. for exploration is gi. We have the following:

E [r̂t(i) | Ft] = E
[
I
{
E it
}
r̂t(i) | Ft

]
r̂t(i) = I

{
E it
}
r̂t(i)

= E
[
I
{
E it
}
E
[
r̂t(i) | Ft, E it

]
| Ft

]
Law of total exp.

=
K

γ
E
[
I
{
E it
}
E
[
ĜFTt(gi) | Ft, E it

]
| Ft

]
Def. of r̂t(i)

=
K

γ
P[E it | Ft]E [GFTt(gi) | Ft] Lemma 2 and (St, Bt) indep. of E it

= E [GFTt(gi) | Ft] .

For the final step, note that, conditioned onFt, the event E it has probability γ/K: the random coin gives
Tails with probability γ and price gi is chosen (independently) u.a.r. as the one to be actually explored
with probability 1/K. Taking the expectation with respect to Ft gives that E [r̂t(i)] = E [GFTt(gi)].

Let’s go back to Equation (20) and focus on the last term. Conditioning with respect to Ft:

E [πt(i)r̂t(i) | Ft] = πt(i)E [r̂t(i) | Ft] = πt(i)E [GFTt(gi) | Ft] .

Taking the expectation with respect to Ft and summing over all the gi ∈ G, we have the following:

E [GFTt(Pt, Qt)] ≥ (1− γ)
∑
i∈[K]

E [πt(i)GFTt(gi)] = (1− γ)
∑
i∈[K]

E [πt(i)r̂t(i)] , (22)

where the first inequality follows from the fact that with probability 1 − γ the learner at time t
chooses exploitation and thus posts a price in the grid G according to distribution πt. We can plug
Equation (21) and Equation (22) into Equation (20) to obtain the following:

η

T∑
t=1

E [GFTt(gi)]− lnK ≤ η

1− γ

(
1 + η

K

γ

) T∑
t=1

E [GFTt(Pt, Qt)] .

Multiplying everything by (1−γ)/η, rearranging, and using that the gain from trade is always upper
bounded by 1, we get:

T∑
t=1

E [GFTt(gi)]−
T∑
t=1

E [GFTt(Pt, Qt)] ≤
lnK

η
+

(
γ + η

K

γ

)
T.

The argument so far holds for any adaptive adversary S and any choice of price on the grid gi. This,
together with the discretization result Claim 1 gives the desired bound:

RT (Blind-Exp3) ≤ lnK

η
+

(
γ + η

K

γ
+

1

σK

)
T.

The dependence of the regret rate of Blind-Exp3 on the (unknown) smoothness parameter is possibly
suboptimal, given the lower bound in Theorem 4, and exponentially worse than the one provided
by Continuous-Price Hedge in full feedback. Continuous-Price Hedge crucially relies on the full
feedback received by the learner to work, that is used to compute a weight for the counterfactual
performance of each price p. In partial feedback, it is not clear how to estimate these (uncountably
many) weights, thus making it hard to extend such continuous method beyond full feedback.

23



CESA-BIANCHI, CESARI, COLOMBONI, FUSCO, LEONARDI

5. Conclusions and Open Problems

In this paper, we initiated the study of σ-smooth adversaries in online learning for pricing problems.
Focusing on the repeated bilateral trade problem, we proved that a single bit of feedback is sufficient
to achieve sublinear regret, pushing the boundary of learnability beyond the i.i.d. setting. We hope
that the smoothed adversarial approach will find more applications to learning pricing strategies that
cannot otherwise be efficiently learned in the adversarial model under partial feedback.

The surprising minimax regret regime of T 3/4 surpasses the
√
T vs. T 2/3 dichotomy observed

in other partial feedback models (e.g., partial monitoring and feedback graph), and motivates the
intriguing question of whether techniques based on the generalized information ratio (Lattimore and
Szepesvári, 2019) could be used to define a unified algorithmic tool in our framework and, more
generally, to analyze online problems in digital markets.

Finally, we remark that there is still a gap in our understanding of the precise impact of the
smoothness parameter on the minimax regret rate for the partial information feedback model. We
leave this as an open question for future research.
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Appendix A. An Improved Analysis of Continuous Hedge

In what follows, we denote with B[0,1], respectively B[0,+∞], the Borel σ-algebra of [0, 1], respectively
[0,+∞], while B stands for the Borel σ-algebra of R. For any any measurable function g : [0, 1]→ R,
we denote with ‖g‖1 the integral with respect the Lebesgue measure of |g| on [0, 1].

The following result implies directly theoretical guarantees for Hedge. We state the theorem in an
abstract way to highlight that its claims are really about the properties of some stochastic processes
rather than specific online learning protocols.

Theorem 6 Let (Y, EY) be a measurable space. Let ρ : [0, 1]×Y → [0, 1] be a (EY ⊗B[0,1])/B[0,1]-
measurable function. Let (Xt, Yt)t∈N be a [0, 1]× Y-valued stochastic process. For any t ∈ N, let
Ht = σ(X1, Y1, . . . , Xt−1, Yt−1) be the σ-algebra generated by the history up to the end of time
t− 1 (with the understanding thatH1 = σ

(
{∅}

)
). Let M ≥ 2 and η ∈ (0, 1). Assume that:

• For any t ∈ N, the conditional law PXt|Ht
of Xt given Ht admits as a density (w.r.t. the

Lebesgue measure on [0, 1]) the (random) function ft(·) =
∑t−1

s=1 exp
(
ηρ(·,Ys)

)
∫
[0,1]

∑t−1
s=1 exp

(
ηρ(x,Ys)

)
dx

(for

t = 1, f1 = I[0,1]) .

• For any t ∈ N, the two random variables Xt and Yt are conditionally independent givenHt.

• For any t ∈ N, the function [0, 1]→ [0, 1], x 7→ E
[
ρ(x, Yt)

]
is M -Lipschitz.

Then, for any T ∈ N,

max
x∈[0,1]

E

[
T∑
t=1

ρ(x, Yt)

]
− E

[
T∑
t=1

ρ(Xt, Yt)

]
≤ 1

η
ln

(
ηTM

1− e−ηT

)
+ (e− 2)ηT .

In particular, if η =
√

ln(2T )
(e−2)T we have

max
x∈[0,1]

E

[
T∑
t=1

ρ(x, Yt)

]
− E

[
T∑
t=1

ρ(Xt, Yt)

]
≤
√

(e− 2)T ln(2T ) ·
(

5

2
+

ln(M)

ln(2T )

)
.

Proof Define W1(x) = 1 for all x ∈ [0, 1] and, for each t ∈ N, define by induction Wt+1(·) =
Wt(·) exp(ηρ(·, Yt)). Then, denoting for any measurable function g : [0, 1]→ R, the integral with
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respect the Lebesgue measure of |g| on [0, 1] by ‖g‖1, we have

ln
(
‖WT+1‖1

)
= ln

(
T∏
t=1

‖Wt+1‖1
‖Wt‖1

)
=

T∑
t=1

ln

(∫
[0,1]

exp
(
ηρ(x, Yt)

)
ft(x) dx

)

≤
T∑
t=1

ln

(∫
[0,1]

(
1 + ηρ(x, Yt) + (e− 2)η2

(
ρ(x, Yt)

)2)
ft(x) dx

)

=
T∑
t=1

ln

(
1 +

∫
[0,1]

(
ηρ(x, Yt) + (e− 2)η2

(
ρ(x, Yt)

)2)
ft(x) dx

)

≤ η
T∑
t=1

∫
[0,1]

ρ(x, Yt)ft(x) dx+ (e− 2)η2
T∑
t=1

∫
[0,1]

(
ρ(x, Yt)

)2
ft(x) dx

≤ η
T∑
t=1

∫
[0,1]

ρ(x, Yt)ft(x) dx+ (e− 2)η2T

= η

T∑
t=1

E
[
ρ(Xt, Yt) | σ(Yt,Ht)

]
+ (e− 2)η2T ,

where the last equality follows from the generalized freezing lemma (Lemma 5) noticing that, for
each t ∈ [T ], Φt defined for each Borel subset A ⊂ [0, 1] via Φt[A] =

∫
A ft(x) dx is a regular

conditional probability for PXt|Ht
and

∫
[0,1] ρ(x, Yt)ft(x) dx =

∫
[0,1] ρ(x, Yt) dΦt(x). Hence, using

the tower rule,

E
[
ln
(
‖WT+1‖1

)]
≤ ηE

[
T∑
t=1

ρ(Xt, Yt)

]
+ (e− 2)η2T .

On the other hand, let x? ∈ [0, 1] be a point belonging to argmaxx∈[0,1]

∑T
t=1 E

[
ρ(x, Yt)

]
, which

does exist due to the fact that this last sum, as a function of x, is MT -Lipschitz (hence continuous
on the compact set [0, 1]). Then, for any x ∈ [0, 1],

T∑
t=1

E
[
ρ(x?, Yt)

]
−

T∑
t=1

E
[
ρ(x, Yt)

]
≤ T min

(
1,M |x− x?|

)
. (23)
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Let X be a uniform random variable on [0, 1] independent of Y1, . . . , YT . It follows that

E
[
ln
(
‖WT+1‖1

)]
= E

[
ln

(∫
[0,1]

exp

(
η

T∑
t=1

ρ(x, Yt)

)
dx

)]

= E

[
lnE

[
exp

(
η

T∑
t=1

ρ(X,Yt)

)
| X

]]

≥ lnE
[
exp

(
E

[
η

T∑
t=1

ρ(X,Yt) | (Y1, . . . , YT )

])]

= ln

(∫
[0,1]

exp

(
E

[
η

T∑
t=1

ρ(x, Yt)

])
dx

)

= η
T∑
t=1

E
[
ρ(x?, Yt)

]
+ ln

(∫
[0,1]

exp

(
η

(
T∑
t=1

E
[
ρ(x, Yt)

]
−

T∑
t=1

E
[
ρ(x?, Yt)

]))
dx

)

≥ η
T∑
t=1

E
[
ρ(x?, Yt)

]
+ ln

(∫
[0,1]

exp (−ηT min(1,M |x− x?|)) dx

)
= (?) ,

where

• the second and the third equalities follow from the Freezing Lemma (see Lemma 4 in the
appendix).

• the first inequality follows from the log-exp analogous of Minkowski’s integral inequality, in
the form of Corollary 2, with (V, EV) =

(
[0, 1],B[0,1]

)
, (W, EW) = (YT ,⊗TEY), V = X ,

W = (Y1, . . . , YT ), and g : [0, 1]× YT → [0,+∞],
(
x, (y1, . . . , yT )

)
7→ η

∑T
t=1 ρ(x, yt).

• the last inequality follows from Eq. (23).

Now, if x? ≤ 1
2 , then, for any x ∈

[
x?, x? + 1

M

]
we have that

min(1,M |x− x?|) = M |x− x?|

and then, recalling that M ≥ 2,

(?) ≥ η
T∑
t=1

E
[
ρ(x?, Yt)

]
+ ln

(∫
[x?,x?+ 1

M ]
exp (−ηT min(1,M |x− x?|)) dx

)

= η
T∑
t=1

E
[
ρ(x?, Yt)

]
+ ln

(
1− exp (−ηT )

ηTM

)
.

The case x? > 1
2 can be worked out analogously obtaining the same result. In any case, putting

everything together, we get

ηE

[
T∑
t=1

ρ(Xt, Yt)

]
+ (e− 2)η2T ≥ ηE

[
T∑
t=1

ρ(x?, Yt)

]
+ ln

(
1− exp (−ηT )

ηTM

)
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Online Protocol: X -Armed Experts
Instance parameters: Known action space X , unknown environment’s action space Y , unknown
reward function ρ : X × Y → [0, 1]

for time t = 1, 2, . . . do
The environment secretly selects an action Yt ∈ Y (possibly at random)
The learner secretly selects an action Xt ∈ X (possibly at random)
The learner gains reward ρ(Xt, Yt)
Xt is revealed to the environment and Gt(·) = ρ(·, Yt) is revealed to the learner

Learning algorithm with full feedback: Hedge for [0, 1]-Armed Experts
Input: η ∈ (0, 1)
Initialization: Initialize W1(x) = 1, for all x ∈ [0, 1]

for time t = 1, 2, . . . do
Play Xt ∼ µt, where µt is a distribution with density defined, for all x ∈ [0, 1], by

ft(x) = Wt(x)
‖Wt‖1

Update Wt+1(x) = Wt(x) · exp(ηGt(x)), for each x ∈ [0, 1]

which, dividing by η and rearranging, becomes

E

[
T∑
t=1

ρ(x?, Yt)

]
− E

[
T∑
t=1

ρ(Xt, Yt)

]
≤ 1

η
ln

(
ηTM

1− e−ηT

)
+ η(e− 2)T

So, if η =
√

ln(2T )
(e−2)T , we have

E

[
T∑
t=1

ρ(x?, Yt)

]
− E

[
T∑
t=1

ρ(Xt, Yt)

]
≤
√

(e− 2)T ln(2T ) ·
(

5

2
+

ln(M)

ln(2T )

)
.

In the same spirit of the previous theorem, we now obtain an immediate corollary that provides
theoretical guarantees for Hedge run for [0, 1]-armed experts (see the general online protocol of X -
armed experts and the corresponding definition of Hedge when X = [0, 1]) with Lipschitz expected
rewards.

Corollary 1 If there exists M ≥ 2 such that, for all t ∈ N, x 7→ E[Gt(x)] is an M -Lipschitz
function, then, for any time horizon T ∈ N, the regret of Hedge for [0, 1]-Armed Experts run with
parameter η ∈ (0, 1) is¶

max
x∈[0,1]

E

[
T∑
t=1

ρ(x, Yt)

]
− E

[
T∑
t=1

ρ(Xt, Yt)

]
≤ 1

η
ln

(
ηTM

1− e−ηT

)
+ (e− 2)ηT .

¶Formally, we are assuming that (Y, EY) is a measurable space; for all t ∈ N, Yt is chosen in a measurable way as a
function of the information available to the environment at the beginning of time t, including its possible randomization;
and ρ is a (B[0,1] ⊗ EY)/B[0,1]-measurable function.
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In particular, if η =
√

ln(2T )
(e−2)T we have

max
x∈[0,1]

E

[
T∑
t=1

ρ(x, Yt)

]
− E

[
T∑
t=1

ρ(Xt, Yt)

]
≤
√

(e− 2)T ln(2T ) ·
(

5

2
+

ln(M)

ln(2T )

)
.

We remark that Hedge achieves an extremely mild dependence on M —disappearing completely
if T is larger than M— without requiring the knowledge of M to tune the parameter η.

Finally, we highlight a key feature of our Theorem 6 and Corollary 1: they only assume that
expected rewards are Lipschitz. This is in contrast with the classic assumption that the rewards
themselves are Lipschitz. This seemingly small difference entails significant technical issues in the
analysis that we bypassed by proving two general lemmas (a log-exp analogous of Minkowski’s
integral inequality, Lemma 3, and a generalized freezing lemma Lemma 5) that we believe are of
independent interest. Besides the novelty of the techniques, having results in settings where rewards
are only required to be Lipschitz in expectation unlocks the possibility of using Hedge in problems
like bilateral trade, where the reward functions are not even continuous.

Appendix B. A Log-Exp Minkovski’s Integral Inequality

In this section, we prove a log-exp analogous to Minkowski’s integral inequality. In its original form,
Minkowski’s inequality states that∫

V

(∫
W

(
g(v, w)

)p
dµW(w)

)1/p

dµV(v) ≥
(∫
W

(∫
V
g(v, w) dµV(v)

)p
dµW(w)

)1/p

,

where p ≥ 1, (V, EV , µV) and (W, EW , µW) are two σ-finite measure spaces‖ and g : V × W →
[0,+∞] is a measurable function.

We now prove a log-exp analogous of Minkowski’s Integral Inequality. To the best of our
knowledge, the following result has not been previously presented in the literature, and we believe it
may be of independent interest.

We recall that B[0,+∞] denotes the Borel σ-algebra of [0,+∞].

Lemma 3 (Log-Exp Minkowski’s Integral Inequality) Let (V, EV , µV) and (W, EW , µW) be two
σ-finite measure spaces such that µV [V] 6= 0 6= µW [W]. Let g : V × W → [0,+∞] be a (EV ⊗
EY)/B[0,+∞] measurable function. Then (with the understanding that 0 · ∞ = 0):∫
V

ln

(∫
W

exp
(
g(v, w)

)
dµW(w)

)
dµV(v) ≥ µV [V] ln

(∫
W

exp

(∫
V
g(v, w) dµV(v)

)
dµW(w)

)
.

Proof Assume first that both µV and µW are finite measures. Let L∞(W) be the set of bounded
EW/B-measurable functions. Define

Φ: L∞(W)→ R f 7→ ln

∫
W

exp
(
f(w)

)
dµW(w).

‖We recall that a measure space (A, EA, µA) is σ-finite if there exist a countable family A1, A2, · · · ∈ EA such that
µA(Ak) < +∞ for all k ∈ N and

⋃
k∈NAk = A.
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Notice that Φ is convex. In fact, for any f1, f2 ∈ L∞(W) and any λ ∈ (0, 1), we have

Φ
(
(1− λ)f1 + λf2

)
= ln

∫
W

exp
(
(1− λ)f1(w) + λf2(w)

)
dµW(w)

= ln

∫
W

(
exp
(
f1(w)

))1−λ(
exp
(
f2(w)

))λ
dµW(w)

≤ ln

((∫
W

exp
(
f1(w)

)
dµW(w)

)1−λ(∫
W

exp (f2(w)) dµW(w)

)λ)

= (1− λ) ln

(∫
W

exp
(
f1(w)

)
dµW(w)

)
+ λ ln

(∫
W

exp (f2(w)) dµW(w)

)
= (1− λ)Φ(f1) + λΦ(f2) ,

where the inequality follows from Hölder inequality with p = 1
1−λ and q = 1

λ , the monotonicity of
the integral, and the fact that ln is monotonically increasing. Now, notice that Φ is differentiable from
the Banach space (L∞(W), ‖·‖∞) to R (where ‖f‖∞ = supw∈W |f(w)|), and for each f ∈ L∞(W)
the differential of Φ at any f ∈ L∞(W) satisfies

dΦ(f)(h) =

∫
W exp

(
f(w)

)
h(w) dµW(w)∫

W exp
(
f(w)

)
dµW(w)

, for each h ∈ L∞(W) .

The convexity and the differentiability of Φ together implies that for any f1, f2 ∈ L∞(W) it holds
that

Φ(f1) ≥ Φ(f2) + dΦ(f2)(f1 − f2) .

Now, if g ∈ L∞(V ×W) (i.e., if g is bounded and (EV ⊗ EW)/B[0,+∞] measurable), define

G : V → L∞(W) , v 7→ g(v, ·) ,

and define also

f2(·) =

∫
V
g(v′, ·) dµV(v′) ∈ L∞(W) .

It follows that, for any v ∈ V ,

ln

∫
W

exp
(
g(v, w)

)
dµW(w) = ln

∫
W

exp
(
G(v)(w)

)
dµW(w) = Φ

(
G(v)

)
≥ Φ(f2) + dΦ(f2)

(
G(v)− f2

)
= ln

(∫
W

exp

(∫
V
g(v′, w) dµV(v′)

)
dµW(w)

)

+

∫
W

(
exp
(∫
V g(v′, w) dµV(v′)

) (
g(v, w)−

∫
V g(v′, w) dµV(v′)

))
dµW(w)∫

W exp
(∫
V g(v′, w) dµV(v′)

)
dµW(w)

.
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Given that this last inequality holds for any v ∈ V , we can integrate both sides with respect to dµV(v)
and get∫
V

ln

(∫
W

exp
(
g(v, w)

)
dµW(w)

)
dµV(v)

≥ µV [V] ln

(∫
W

exp

(∫
V
g(v′, w) dµV(v′)

)
dµW(w)

)

+

∫
V

∫
W

(
exp
(∫
V g(v′, w) dµV(v′)

) (
g(v, w)−

∫
V g(v′, w) dµV(v′)

))
dµW(w)∫

W exp
(∫
V g(v′, w) dµV(v′)

)
dµW(w)

dµV(v)

= µV [V] ln

(∫
W

exp

(∫
V
g(v′, w) dµV(v′)

)
dµW(w)

)
,

where the last equality follows from Fubini’s theorem. Notice that we have proved the theorem under
the assumption that g ∈ L∞(V ×W) and that µV and µW are finite measures.

Now, if g /∈ L∞(V ×W) but µV and µW are finite, given that g ≥ 0, we can find a sequence
(gn)n∈N ⊂ L∞(V ×W) such that gn ↑ g pointwise, and obtain the conclusion from the monotone
convergence theorem. If µV [V] = +∞ but µW is finite, given that µV is σ-finite, we can find a
sequence A1 ⊂ A2 ⊂ . . . such that

⋃
n∈NAn = V and, for each n ∈ N it holds that An ∈ EV and

µV [An] < +∞ and apply the theorem to the restriction of µV to An and let n → ∞ to obtain the
conclusion via the monotone convergence theorem. Finally, if µW [W] = +∞, given that µW is
σ-finite, we can find a sequence B1 ⊂ B2 ⊂ . . . such that

⋃
n∈NBn = W and, for each n ∈ N it

holds that Bn ∈ EW and µW [Bn] < +∞ and apply the theorem to the restriction of µW to Bn and
let n→∞ to obtain the conclusion via the monotone convergence theorem again.

As an immediate corollary of the previous lemma, we get the following.

Corollary 2 (Log-Exp Minkowski’s Integral Inequality for probability measures) Let (V, EV)
and (W, EW) be two measurable spaces and let g : V × W → [0,+∞] be a EV ⊗ EW/B[0,+∞]-
measurable function. Assume that V and W are an V-valued and aW-valued random variables,
respectively, independent of each other. Then

E
[
lnE

[
exp
(
g(V,W )

)
| V
]]
≥ lnE

[
exp
(
E
[
g(V,W ) |W

])]
.

Appendix C. A Generalized Freezing Lemma

The classic “freezing lemma” (see, e.g., Cesari and Colomboni 2021, Lemma 8) states that the
conditional expectation of a measurable function of two independent random variables given one of
them can be computed as an expectation only with respect to the other random variable followed by
a composition with the random variable in the conditioning.

Lemma 4 (The freezing lemma) Let (Ω,F ,P) be a probability space. Let (V,FV) and (W,FW)
be two measurable spaces. Let f : V×W → [0,+∞], V : Ω→ V ,W : Ω→W be three measurable
functions. If V and W are P-independent, then

E
[
f(V,W ) | V

]
=
[
E
[
f(v,W )

]]
v=V

. (24)
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P-almost surely, where the right hand side is the composition[
E
[
f(v,W )

]]
v=V

=
(
v 7→ E

[
f(v,W )

])
◦ V .

The freezing lemma is extremely useful in derivations as it allows one to isolate the random parts
that are being averaged while keeping the others fixed. Unfortunately, the freezing lemma does not
cover the case where the expectations are replaced with conditional expectation on some σ-algebra,
which is often the case in online learning, where expectations and probabilities are typically intended
as conditional on the history up to the present time. This problem cannot be solved by simply
replacing expectations with conditional expectations everywhere because of the fact that versions of
conditional expectations remain as such if changed on a probability-zero event, making the naive
extension to the right-hand side of Eq. (24) not even well-defined. To aid us in giving a sound
statement of such a generalization of the freezing lemma, we begin by recalling the definition of
regular conditional probability.

Definition 7 (Regular conditional probability) Let (Ω,F ,P) be a probability space. Let (X , EX )
be a measurable space. Let X : Ω → X be a F/EX -measurable. Let H be a sub-σ-algebra of F .
We say that Φ: EX → [0, 1]Ω is a regular conditional probability for PX|H if:

• For each A ∈ EX , the function ω 7→ Φ[A](ω) isH/B[0,1]-measurable.

• For each ω ∈ Ω, the function A 7→ Φ[A](ω) is a probability measure.

• For each A ∈ EX and each H ∈ H, it holds that P
[
H ∩ {X ∈ A}

]
= E

[
IHΦ[A]

]
.

Notice that the first and the third bullet imply that Φ[A] = E[IX∈A | H] for each A ∈ EX .
We can now state and prove a generalized version of the freezing lemma, which we believe may

be of independent interest.
We recall that B[0,+∞] denotes the Borel σ-algebra of [0,+∞].

Lemma 5 (Generalized Freezing Lemma) Let (X , EX ) and (Y, EY) be two measurable spaces.
Let g : X ×Y → [0,∞] be a (EX ⊗EY)/B[0,+∞]- measurable function. Let (Ω, E ,P) be a probability
space and F ,G,H be three sub-σ-algebras of E . Let X : Ω→ X be a F/EX -measurable random
variable. Let Y : Ω → Y be a G/EY -measurable random variable. Assume that F and G are
P-conditionally independent givenH. Assume that Φ is a regular conditional probability for PX|H.
Then ∫

X
g(x, Y ) dΦ(x) = E

[
g(X,Y ) | σ(G,H)

]
.

Proof First, notice that the random variable
∫
X g
(
x, Y

)
dΦ(x) is σ(G,H)-measurable. In fact, if

A ∈ EX and B ∈ EY we have ∫
X
IA(x)IB(Y ) dΦ(x) = Φ[A]IB(Y ),

which implies that
∫
X IA(x)IB(Y ) dΦ(x), as a product of a H-measurable function and a G-

measurable function is σ(G,H)-measurable. Now, consider the family

C =

{
C ∈ EX ⊗ EY |

∫
X
IC(x, Y ) dΦ(x) is σ(G,H)-measurable

}
.
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Notice that X × Y ∈ C, that C is closed under complementation and that if (Cn)n∈N ⊂ C is such
that C1 ⊂ C2 ⊂ . . . then

⋃
n∈NCn ∈ C. Hence, C is a λ-system which contains the π-system

D = {C ∈ EX ⊗ EY | ∃A ∈ EX ,∃B ∈ EY , C = A×B}. Hence, by the π-λ theorem (Billingsley,
1995, Theorem 3.2) it holds that σ(D) ⊂ C, and since σ(D) = EX ⊗EY it holds that C = EX ⊗EY . It
follows that for each C ∈ EX ⊗ EY the random variable

∫
X IC(x, Y ) dΦ(x) is σ(G,H)-measurable.

By pointwise monotone increasing approximation via EX ⊗ EY -measurable simple functions∗∗, we
get that the random variable

∫
X g
(
x, Y

)
dΦ(x) is σ(G,H)-measurable.

Now, pick A ∈ EX , B ∈ EY , G ∈ G and H ∈ H. Notice that

E
[∫
X
IA(x)IB(Y ) dΦ(x)IG∩H

]
= E

[
IG∩(Y ∈B)Φ[A]IH

]
= E

[
E
[
IG∩(Y ∈B) | H

]
Φ[A]IH

]
= E

[
E
[
IG∩(Y ∈B) | H

]
E[IX∈A | H]IH

]
(F and G are conditionally independent givenH) = E

[
E
[
IG∩(Y ∈B)IX∈A | H

]
IH
]

= E
[
IG∩(Y ∈B)IX∈AIH

]
= E [IA(X)IB(Y )IG∩H ] .

Applying twice a π-λ argument as done above, we can prove that for each C ∈ EX ⊗ EY and each
K ∈ σ(G,H), it holds that

E
[∫
X
IC(x, Y ) dΦ(x)IK

]
= E [IC(X,Y )IK ] .

Applying again a pointwise monotone approximation argument using EX ⊗ EY -measurable simple
functions, we can prove that for each K ∈ σ(G,H) it holds that

E
[∫
X
g(x, Y ) dΦ(x)IK

]
= E [g(X,Y )IK ] .

Given that we have already proved that the random variable
∫
X g(x, Y ) dΦ(x) is σ(G,H)-measurable,

the conclusion follows.

∗∗We recall that simple functions are linear combinations of indicator functions.
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