Topological Dimensionality Reduction

Jose Perea

Dpt. of Computational Mathematics, Science & Engineering (CMSE)

Dpt. of Mathematics

Twisted Cylinder $\subset \mathbb{R}^3$

Mobius Band $\subset \mathbb{R}^{n^2}$

 $\mathbb{R}\mathbf{P}^2$

Projective coordinates

Eilenberg-MacLane Coordinates

Theorem (Brown representability):

CW-complex

Homotopy classes of maps

Theorem (Brown representability):

$$H^n(B;G) \cong [B,K(G,n)]$$

Where
$$\pi_j\big(K(G,n)\big) = \left\{ \begin{array}{c} G \ , \ j=n \\ \\ \{0\} \ , \ j \neq n \end{array} \right.$$

Theorem (Brown representability):

Eilenberg-MacLane Coordinates

$$X \subset (\mathbb{M}, \mathbf{d})$$

Partition of unity:

$$\varphi_j: B \longrightarrow [0,1]$$

$$j \in J$$

$$\sum_{j \in J} \varphi_j(b) = 1$$

$$\operatorname{supp}(\varphi_{\mathbf{j}})\subset\operatorname{clos}(U_{j})$$

$$\mathcal{U} = \left\{ U_j \right\}_{j \in J}$$

$$\{ \varphi_j \}_{j \in J}$$
Partition of 1

$B = \bigcup \mathcal{U}$

Example:

$$U_j = \{b \in B : \mathbf{d}(b, x_j) < \alpha\}$$
$$= B_{\alpha}(x_j)$$

$$\varphi_j(b) = \frac{|\alpha - \mathbf{d}(b, x_j)|_+}{\sum_{k \in J} |\alpha - \mathbf{d}(b, x_k)|_+}$$

$$|\lambda|_{+} = \max\{\lambda, 0\} , \lambda \in \mathbb{R}$$

$$H^n(\mathcal{N}(\mathcal{U});G) \xrightarrow{\varphi^*} H^n(B;G) \cong [B,K(G,n)]$$

$$\#(J) = N$$

$$0 \leftarrow H^{n}(\mathcal{N}(\mathcal{U}^{\alpha}); G) \leftarrow H^{n}(\mathcal{N}(\mathcal{U}^{\beta}); G) \leftarrow H^{n}(\mathcal{N}(\mathcal{U}^{\gamma}); G)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$[\cup \mathcal{U}^{\alpha}, K(G, n)] \leftarrow [\cup \mathcal{U}^{\beta}, K(G, n)] \leftarrow [\cup \mathcal{U}^{\gamma}, K(G, n)]$$

Circular Coordinates:
$$[\eta] \in H^1(\mathcal{N}(\mathcal{U}); \mathbb{Z}) \longrightarrow H^1(\mathcal{N}(\mathcal{U}); \mathbb{R})$$

$$\theta = \eta + \delta^0 \tau$$

$$S^1 = K(\mathbb{Z}, 1)$$

$$f_{\eta}: \bigcup_{j=J} U_{j} \longrightarrow S^{1}$$

$$U_{j} \ni b \mapsto \exp\left\{2\pi i \left(\tau_{j} + \sum_{k} \varphi_{k}(b)\theta_{jk}\right)\right\}$$

$$\mathcal{U} = \left\{ U_j \right\}_{j \in J}$$

Partition of 1 $\{\varphi_i\}_{i\in J}$

Mumford Data

J. van Hateren natural (4,000) images dataset

Mumford Data

• Consider the set of high-contrast intensity-centered and contrast-normalized 3×3 patches from natural images.

Facts:

• \mathcal{M} fills out S^7

ullet Not all regions of $\,S^7\,$ are equally densely populated

X(15,30) Top 30% densest points (w.r.t. distance to 15th nearest neighbor)

The three circle model

On the Local Behavior of Spaces of Natural Images, Carlsson et al, 2008

Projective Coordinates (\mathbb{R}):

$$\mathbb{R}\mathbf{P}^{\infty} = K(\mathbb{Z}_2, 1)$$

$$[\theta] \in H^1(\mathcal{N}(\mathcal{U}); \mathbb{Z}_2)$$

$$\mathcal{U} = \left\{ U_j \right\}_{j=0}^n$$

$$\{\varphi_j\}_{j=0}^n$$

Partition of 1

$$f_{\theta}: \bigcup \mathcal{U} \longrightarrow \mathbb{R}\mathbf{P}^n$$

$$U_j \ni b \mapsto \left[\theta_{j0}\sqrt{\varphi_0(b)} : \cdots : \theta_{jn}\sqrt{\varphi_n(b)}\right]$$

 $\mathbb{R}\mathbf{P}^n$

Supports a version of Principal Component Analysis

(Projective PCA)

Projective coordinates

Data $\subset \mathbb{R}^{n^2}$

Lens Space Coordinates:

$$L_q^{\infty} = K(\mathbb{Z}_q, 1)$$

$$[\nu] \in H^1(\mathcal{N}(\mathcal{U}); \mathbb{Z}_q)$$

$$f_{\nu}: \bigcup_{j=1}^{N} U_{j} \longrightarrow L_{q}^{N} = S^{2N-1}/\mathbb{Z}_{q}$$

$$L_q^N$$

Supports a version of Principal Component Analysis

(Lens PCA)

Lens Spaces

$$B^3 = \{ x \in \mathbb{R}^3 : ||x|| \le 1 \}$$

$$L_q^2 \cong B^3/x \sim x'$$

The Moore space $M(\mathbb{Z}_3,1)$

Lens PCA (recovered variance)

Visualization in

https://youtu.be/ lc730 xFkw

The state of the art:

$$B = \bigcup \mathcal{U}$$

• Sparse, stable and transductive circular coordinates:

$$[\eta] \in H^1(\mathcal{N}(\mathcal{U}); \mathbb{Z}) \longrightarrow f_{\eta} : B \longrightarrow S^1$$

• Real Projective coordinates :

$$[\theta] \in H^1(\mathcal{N}(\mathcal{U}); \mathbb{Z}/2)$$
 \longrightarrow $f_{\theta} : B \longrightarrow \mathbb{R}\mathbf{P}^n$

Complex Projective coordinates:

$$[\nu] \in H^2(\mathcal{N}(\mathcal{U}); \mathbb{Z}) \longrightarrow f_{\nu} : B \longrightarrow \mathbb{C}\mathbf{P}^n$$

• Lens Space Coordinates:

$$[\mu] \in H^1(\mathcal{N}(\mathcal{U}); \mathbb{Z}_q) \longrightarrow f_{\mu} : B \longrightarrow S^{2n-1}/(\mathbb{Z}_q)$$

Code

Python Library (w/ Chris Tralie):

DREiMac: Dimension Reduction with Eilenberg-MacLane Coordinates

https://github.com/ctralie/DREiMac

TALLEM: Topological Alignment of Locally Euclidean Models, J. Mike & J. Perea, Preprint, 2019

Locally Euclidean Models

Assembly of Locally Euclidean Models

$$\Omega_{jk}, \mathbf{v}_{jk} = \underset{\Omega \in O(d)}{\operatorname{argmin}} \sum_{x \in X_{jk}} \left\| \Omega f_k(x) + \mathbf{v} - f_j(x) \right\|^2$$

$$\mathbf{v} \in \mathbb{R}^d$$

$$\Omega_{jj} = id_{\mathbb{R}^d} \qquad \in O(d)$$

$$\Omega_{kj} = \Omega_{jk}^{-1}$$

Assembly of Locally Euclidean Models

"Theorem":

If conditions on X_{jkl} and f_j, f_k, f_l ,

then $\Omega_{jk}\Omega_{kl} \approx \Omega_{jl}$.

$$\Omega_{jj} = id_{\mathbb{R}^d} \qquad \in O(d)$$

$$\Omega_{kj} = \Omega_{jk}^{-1}$$

$$\mathcal{X} = \{X_j\}_{1 \le j \le J}$$

$$X = \bigcup \mathcal{X}$$

$$\Omega_{jk}\Omega_{kl} \approx \Omega_{jl}$$
 $\Omega_{jj} = id_{\mathbb{R}^d}$
 $\Omega_{kj} = \Omega_{jk}^{-1}$

Approximate rank d Vector Bundle Over $|\mathcal{N}(\mathcal{X})|$

$$\in O(d)$$

Approximate Cocycle Condition

$$\mathcal{X} = \{X_j\}_{1 \le j \le J}$$

Frames:

$$\Phi_j: X_j \longrightarrow V_d(\mathbb{R}^{Jd}) \quad \text{Stiefel manifold} \qquad \Phi_k(x) \approx \Phi_j(x) \cdot \Omega_{jk}$$

$$x \mapsto \left[\varphi_1(x)\Omega_{1j}, \dots, \varphi_J(x)\Omega_{Jj}\right]^* \qquad \qquad x \in X_{jk}$$

 $V_d(\mathbb{R}^{Jd})$ Supports O(d) - Equivariant PCA!!

$$\phi_j: X_j \longrightarrow V_d(\mathbb{R}^n) \qquad \phi_k(x) \approx \phi_j(x) \cdot \Omega_{jk} \qquad d \leq n < Jd$$

$$F: X \longrightarrow \mathbb{R}^n$$
 Assemblage $x \mapsto \sum_{j=1}^J \varphi_j(x) \phi_j(x) (f_j(x) + \theta_j)$

$$\exists \theta_j \in \mathbb{R}^d , \ 1 \le j \le J$$
$$\mathbf{v}_{jk} \approx \Omega_{jk} \theta_k - \theta_j$$

$$\varphi_j: X \longrightarrow [0,1]$$
 Partition of unity

$$\phi_j: X_j \longrightarrow V_d(\mathbb{R}^n) \qquad \phi_k(x) \approx \phi_j(x) \cdot \Omega_{jk} \qquad d \leq n < Jd$$

TALLEM: Topological Alignment of Locally Euclidean Models, J. Mike & J. Perea, Preprint, 2019

TALLEM: Topological Alignment of Locally Euclidean Models, J. Mike & J. Perea, Preprint, 2019

TALLEM vs Charting Methods

The data: a 2-sphere whose north and south pole are connected by a line segment.

17 × 17 images of a white dot of fixed intensity and varying location (1,900 of these — a 2-sphere)

17 × 17 images of a white dot of variable intensity at the center of the image patch (100 of these — a line segment).

TALLEM: Topological Alignment of Locally Euclidean Models, J. Mike & J. Perea, Preprint, 2019

TALLEM: Topological Alignment of Locally Euclidean Models, J. Mike & J. Perea, Preprint, 2019

References

- J. A. Perea, Multiscale Projective Coordinates via Persistent Cohomology of Sparse Filtrations Discrete & Computational Geometry, 2018
- J. A. Perea, Sparse Circular Coordinates via Principal \mathbb{Z} -Bundles **Proceedings of the Abel Symposium**, 2019
- L. Polanco and J. A. Perea, Coordinatizing Data with Lens Spaces and Persistent Cohomology **Proceedings of CCCG**, 2019
- J. Mike and J. A. Perea, *TALLEM: Topological Assembly of Locally Euclidean Models* **Preprint**, 2019