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Abstract Malware has been a major problem in desktop computing for decades.
With the recent trend towards mobile computing, malware is moving rapidly to mo-
bile platforms. “Total mobile malware has grown 151% over the past year”, accord-
ing to McAfee’s quarterly threat report from September 2016. By design, Android is
‘open’ to download apps from different sources. Its security depends on restricting
apps by combining digital signatures, sand-boxing, and permissions. Unfortunately,
these restrictions can be bypassed, without the user noticing, by colluding apps for
which combined permissions allow them to carry out attacks. In this chapter we re-
port on recent and ongoing research results from our ACID project which suggest a
number of reliable means to detect collusion, tackling the aforementioned problems.
In the chapter we present our conceptual work on the topic of collusion and discuss
a number of automated tools arising from it.

1 Introduction

One of the most fundamental principles in computer security is ensuring effective
isolation of software. Programs written by different independent software vendors
(ISVs) have to be properly separated to avoid any accidental data flows as well as
all deliberate data leaks. Strictly speaking, even subroutines of a program need to
be properly isolated and some computer systems attempt that too via, for example,
protection of stack frames and memory tagging. This isolation principle helps ensure
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both reliability of software (by limiting the effect of design flaws, insecure design,
bugs, etc.) as well as protect from outright malicious code (malicious data-leaking
libraries, exploiting vulnerabilities via injecting shell-code, etc.)

The era of personal computing slightly diminished the requirement for isolation.
It was believed that PCs – being single-user devices – will be OK with all software
running at the same privilege. First personal computers had no hardware and soft-
ware support for software isolation. However, reliability and privacy demanded a
better solution so these primitive OSes were replaced by multiple descendants of
Windows NT, Unix and Linux. Requirements for better isolation also drove special
hardware features examples include Intel SGX enclaves and ARM TrustZone.

In the cloud environments (like Docker, Amazon EC2, Microsoft Azure, etc.)
which execute software from different sources and operate on data belonging to
different entities, guaranteed isolation becomes even more important because any
cross-container data leaks (deliberate or accidental) may be devastating. Communi-
cations across cloud containers have to be covert because no explicit APIs is pro-
vided. The problem of covert communication between programs running in time-
sharing computer systems was first discussed as early as in 1970s [36].

The situation is quite different in mass-market operating systems for mobile de-
vices such as smart phones - there is no need for covert channels at all. While cor-
responding operating systems (Symbian, MeeGo, iOS, Android, Tizen, etc.) were
designed with the isolation principle in mind, the requirement for openness led to
the ability of software in the device to communicate in many different ways. An-
droid OS is a perfect example of such a hybrid design - apps run in sandboxes
but they have documented means of sending and receiving messages to/from each
other; they can also create shared objects and files. These inter-app communication
mechanisms are handy but, unfortunately, also make it possible to carry out harmful
actions in a collaborative fashion.

Extreme commonality of Android as well as rapid growth of malicious and
privacy-leaking apps made it a perfect target for our team to look for colluding
behaviours. Authors of malicious software would be interested in flying under the
radar for as long as possible. Unscrupulous advertisers could also benefit from hid-
ing privacy-invading functionality in multiple apps. These reasons led us to believe
that Android may be one of the first targets for collusion attacks. We also realised
that security practitioners who analyse threats for Android desperately need tools
which would help them uncover colluding apps. Such apps may be outright ma-
licious or they may be unwanted programs which often do aggressive advertising
coupled with disregard for users’ privacy (like those which would use users’ con-
tacts to expand their advertising further). Having a popular OS which allowed (and
to some extent even provides support to) colluding apps was a major risk.

Before we started there were no tools or established methods to uncover these
attacks: discovering such behaviours is very tricky - two or more mobile apps,
when analysed independently, may not appear to be malicious. However, together
they could become harmful by exchanging information with one another. Multi-app
threats such as these were considered theoretical for some years, but as part of this
research we discovered colluding code embedded in many Android apps in the wild
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[48]. Our goal was to find effective methods of detecting colluding apps in Android
[6, 7, 8, ?, 12, 13, 37]. This would potentially pave a way for spotting collusions in
many other environments that implement software sandboxing, from other mobile
operating systems to virtual machines in server farms.

1.1 Background

Malware has been a major problem in desktop computing for decades. With the re-
cent trend towards mobile computing, malware is moving rapidly to mobile plat-
forms. Total mobile malware has grown 151% over the past year, according to
McAfees quarterly threat report from September 2016. Criminals are clearly mo-
tivated by the opportunity - the number of smartphones in use is predicted to grow
from 2.6 billion in 2016 to 6.1 billion in 2020, predominantly Android, with more
than 10 billion apps downloaded to date. Smartphones pose a particular security
risk because they hold personal details (accounts, locations, contacts, photos) and
have potential capabilities for eavesdropping (with cameras/microphone, wireless
connections).

By design, Android is “open” to download apps from different sources. Its secu-
rity depends on restricting apps by combining digital signatures, sandboxing, and
permissions. Unfortunately, these restrictions can be bypassed, without the user
noticing, by colluding apps for which combined permissions allow them to carry
out attacks.

A basic example of collusion consists of one app permitted to access personal
data, which passes the data to a second app allowed to transmit data over the net-
work. While collusion is not a widespread threat today, it opens an avenue to cir-
cumvent Android permission restrictions that could be easily exploited by criminals
to become a serious threat in the near future.

Almost all current research efforts are focusing on detection of single malicious
apps. The threat of colluding apps is challenging to detect because of the myriad and
possibly stealthy ways in which apps might communicate with each other. Existing
Anti-Virus (AV) products are not designed to detect collusion. A review of the liter-
ature shows that detecting application collusion introduces a new set of challenges
including: the detection of communication channels between apps, the exponential
number of app combinations, and the difficulty of actually proving that two or more
apps are really colluding.

1.2 Contribution

In this chapter we report on recent and ongoing research results from our ACID
project which suggest a number of reliable means to detect collusion, tackling the



4 Asavoae etal.

aforementioned problems. In the chapter we present our conceptual work on the
topic of collusion and discuss a number of automated tools arising from it.

We start with an overview on the Android Operating System, which introduced
the various security mechanism built in.

Then we give a definition for app collusion, and distinguish collusion from the
closely related phenomena of collaboration and confused deputy attacks.

Based on this we address the exponential complexity of the problem by intro-
ducing a filtering phase. We develop two methods based on a lightweight analysis
to detect if a set of apps has any collusion potential. These methods extract fea-
tures through static analysis and use first order logic and machine learning to assess
whether an analysed app set has collusion potential. By developing two methods
to detect collusion potential we address the problem of collusion with two distinct
approaches.

The first order logic approach allows us to define collusion potential through ex-
perts, which may identify attack vectors that are not yet being seen in the real world.
Whereas the machine learning approach uses Android permissions to systematically
assign the degree of collusion potential a set of apps may pose. A mix of techniques
as such provides for an insightful understanding of possibly colluding behaviours
and also adds confidence into filtering.

Once we have reduced the search space, we use a more computational intensive
approach, namely software model checking, to validate the actual existence of col-
lusion between the analysed apps. To this end, model checking provides dynamic
information on possible app executions that lead to collusion; counter examples
(witness traces) are generated in such cases.

In order to evaluate our approaches, we have developed a set of specifically
crafted apps and gathered a data set of more than 50,000 real-world apps. Some of
our approaches have been validated by using the crafted app set and tested against
the real-world apps.

The above effort has been demonstrated through a number of publications
through the different teams involved focusing on different aspects. The chapter al-
lows us to provide a consolidated perspective on the problem. By systematically
taking related work into account, we aim to provide a comprehensive presentation
of state of the art in collusion analysis.

This chapter reports previously published work [13, 6, 7, 8, 11, 37], however,
we expand on these publications by providing more detail and also the singular
approach into context.

2 The Android Operating System

The Android operating system consists of three software layers above a Linux ker-
nel as shown in Figure 1. The Linux kernel is slightly modified for an embedded
environment. It runs device-specific hardware drivers, and manages power and the
file system. Android is agnostic of the processor (ARM, x86, and MIPS) but does
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take advantage of some hardware-specific security capabilities, e.g., the ARM v6
eXecute-Never feature for designating a non-executable memory area.

Libraries
Android runtime

Dalvik VM

Application framework

Applications

Linux kernel

Fig. 1: Android operating system layers

Above the kernel, libraries of native machine code provide common services to
apps. Examples include Surface Manager for graphics; WebKit for browser render-
ing; and SQLite for basic datastore. In the same layer, each app runs in its own
instance of Android runtime (ART) except for some apps that are native, e.g., core
Android services. A replacement for the Dalvik virtual machine (VM) since Android
4.4, the ART is designed to run Dalvik executable (DEX) bytecode on resource-
constrained mobile devices. It introduces ahead-of-time (AOT) compilation con-
verting bytecode to native code at installation time (in contrast to the Dalvik VM
which interpreted code at runtime).

The application framework above the libraries offers packages and classes to
provide common services to apps, for examples: the Activity Manager for start-
ing activities; the Package Manager for installing apps and maintaining information
about them; and the Notification Manager to give notifications about certain events
to interested apps.

The highest application layer consists of user-installed or pre-installed apps. Java
source code is compiled into JAR (Java archive) files composed of multiple Java
class files, associated metadata and resources, and optional manifest. JAR files can
be translated into DEX bytecode and zipped into Android package (APK) files for
distribution and installation. APK files contain .dex files, resources, assets, lib folder
of processor-specific code, META-INF folder containing manifest MANIFEST.MF
and other files, and additional AndroidManifest.xml file. The AndroidManifest.xml
file contains the necessary configuration information to install the app, notably
defining permissions to request from the user.
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2.1 App Components

Android apps are built composed of one or more components which must be de-
clared in the manifest.

• Activities represent screens of the user interface and allow the user to interact
with the app. Activities run only in the foreground. Apps are generally composed
of a set of activities, such as a “main” activity launched when a user starts an app.

• Services operate in the background to carry out long-running tasks for other apps,
such as listening to incoming connections or downloading a file.

• Broadcast receivers respond to messages that are sent through Intent objects, by
the same or other apps.

• Content providers manage data shared across apps. Apps with content providers
enable other apps to read and write their local data.

Any component can be public or private. If a component is public, components
of other apps can interact with it, e.g., start the Activity, start the Service. If a com-
ponent is private, only components from the app that runs with the same user ID
(UID) can interact with that component.

2.2 Communications

Android allows any app to start another app’s component in order to avoid duplicate
coding for the same function. However, this can not be done directly because apps
are separate processes. To activate a component in another app, an app must deliver
a message to the system that specifies the intent to start that component.

Intents are message objects that contain information about the operation to be
performed and relevant data. Intents are delivered by various methods to applica-
tion components, depending on the type of component. Intents about certain events
are broadcasted, e.g., an incoming phone call. Intents can be explicit for specific
recipients or implicit, i.e., broadcast through the system to any components listen-
ing. Components can provide Intent filters to specify which Intents a component is
willing to handle.

Besides Intents, processes can communicate by standard Unix communication
methods (files, sockets), Android offers three inter-process communication (IPC)
mechanisms:

• Binder: a remote procedure call mechanism implemented as a custom Linux
driver;

• Services: interfaces directly accessible using Binder;
• Content Provider: provide access to data on the device.
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2.3 App Distribution and Installation

Android apps can be downloaded from the official Google Play market or many
third party app stores. To catch malicious apps from being distributed, Google uses
a variety of services including Bouncer, Verify Apps, and Safety Net. Since 2012,
the Bouncer service automatically scans the Google Play market for potentially ma-
licious apps (known malware) and apps with suspicious behaviours. It does not ex-
amine apps installed on devices or apps in third party app stores. Currently, however,
none of these services look for apps exhibiting collusion behaviours.

The Verify Apps service scans apps upon installation on an Android device and
scans the device in the background periodically or when triggered by potentially
harmful behaviours, e.g., root access. It warns users of potentially harmful apps
(PHAs) which may be submitted online for analysis.

The Safety Net service looks for network-based security threats, e.g., SMS abuse,
by analyzing hundreds of millions of network connections daily. Google has the
option to remotely remove malicious apps.

2.4 Android Security Approach

Android security aims to protect user data and system resources (including the net-
work), which are regarded as the valuable assets. Apps are assumed to be untrusted
by default and therefore considered potential threats to the system and other apps.
The primary method of protection is isolation of apps from other apps, users from
other users, and apps from certain resources. IPC is possible but mediated by Binder.
However, the user is ultimately in control of security by choosing which permissions
to grant to apps. For more detailed information about Android security, the reader is
referred to the extensive literature [27, 21, 22, 32, 59].

Android security is built on key security features provided by the Linux ker-
nel, namely: a user-based permissions system; process isolation; and secure IPC. In
Linux, each Linus user is assigned a user (UID) and group ID (GID). Access to each
resource is controlled by three sets of permissions: owner (UID), group (GID), and
world. The kernel isolates processes such that users can not read another user’s files
or exhaust another’s memory or CPU resources. Android builds on these mecha-
nisms. An Android app runs under a unique UID, and all resources for that app are
assigned full permissions for that UID and no permissions otherwise. Apps can not
access data or memory of other apps by default. A user with root UID can bypass
any permissions on any file, but only the kernel and a small subset of core apps run
with root permission.

By default, apps are treated as untrusted and can not interact with each other and
have limited access to the operating system. All code above the Linux kernel (in-
cluding libraries, application framework, and app runtime) is run within a sandbox
to prevent harm to other apps or the system.
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Apps must be digitally signed by their creators although their certificate can be
self signed. A digital signature does not imply that an app is safe, only that the app
has not been changed since creation and the app creator can be identified and held
accountable for the behaviour of their app.

A permissions system controls how apps can access personal information, sensi-
tive input devices, and device metadata. By default, apps collecting personal infor-
mation restricts data access to themselves. Access to sensitive user data is available
only through protected APIs. Other types of protected APIs include: cost sensitive
APIs that might generate a cost to the user; APIs to access sensitive data input de-
vices such as camera and microphone; and APIs to access device metadata. App
permissions are extracted from the manifest at install time by the PackageManager.

The default set of Android permissions is grouped into four categories as shown
in Table 1.

Table 1: The default set of Android permissions

Category Description Examples

Normal Can not cause real harm
ACCESS NETWORK STATE
INTERNET
SET WALLPAPER

Dangerous Possibly causing harm
READ CONTACTS
ACCESS FINE LOCATION
READ PHONE STATE

Signature Automatically granted if the app is signed
by the same digital certificate as the app
that created the permission

ACCESS VR MANAGER
WRITE BLOCKED NUMBERS
BIND TRUST AGENT

SignatureOrSystem Similar to Signature except automatically
granted to the Android system image in
addition to the requesting app

GET APP OPS STATS
MANAGE DEVICE ADMINS
ACCESS CACHE FILESYSTEM

The permissions system has known deficiencies. First, apps tend to request for
excessive permissions. Second, users tend to grant permissions to apps without fully
understanding the permissions or their implications in terms of risk. Third, the per-
missions system is concerned only with limiting the actions of individual apps. It
is possible for two or more apps to collude for a malicious action by combining
their permissions, even though each of the colluding apps is properly restricted by
permissions.

3 App Collusion

ISO 27005 defines a threat as “A potential cause of an incident, that may result in
harm of systems and organisations.” For mobile devices, the range of such threats
includes [62]:
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• Information theft happens when information is sent outside the device bound-
aries.

• Money theft happens, e.g., when an app makes money through sensitive API calls
(e.g. SMS).

• Service or resource misuse occurs, for example, when a device is remotely con-
trolled or some device function is affected.

As we have seen before, the Android OS runs apps in sandboxes, trying to keep
them separate from each other, especially that no information can be exchanged
between them. However, at the same time Android has communication channels
between apps. These can be documented ones (overt channels), or undocumented
ones (covert channels). An example of an overt channel would be a shared file or
intent; an example of a covert channel would be volume manipulation (the volume
is readable by all apps) in order to pass a message in a special code.

Broadly speaking, app collusion is when, in performing a threat, several apps are
working together, i.e., they exchange information which they could not obtain on
their own.

This informal definition is close to app collaboration, where several apps share
information (which they could not obtain on their own), in order to achieve a docu-
mented objective.

A typical example of collusion is shown in Figure 2, where two apps perform the
threat of information theft: the Contact app reads the contacts database to pass
the data to the Weather app, which sends the data outside the device boundaries.
The information between apps is exchanged through shared preferences.

In contrast, a typical example of collaboration would be the cooperation between
a picture app and an email app. Here, the user can choose a picture to be sent via
email. This requires the picture to be communicated over an overt channel from the
picture app to the email app. Here, the communication is performed via a shared
image file, to which both apps have access.

These examples show that the distinction between collusion and collaboration
actually lies in the notion of intention. In the case of the weather app, the intent is
malicious and undocumented, in the case of sending the email, the intent is docu-
mented, visible to the user and useful.

To sharpen the argument, it might be the case that the picture app actually makes
the pictures readable by all apps, so that harm can be caused by some malicious app
sending pictures without authorisation. This would provide a situation, where a bug
or a vulnerability of one app is abused by another app, leading to a border case for
collusion. In this case one would speak about “confused deputy” attack: the picture
app has a vulnerability, which is maliciously abused by the other app, however, the
picture app was – in the way we describe it here – not designed with the intention to
collude. An early reference on such attacks is the work by Hardy [34].

This discussion demonstrates that notions such as “malicious”, intent, and visibil-
ity (including app documentation - external and built-into the app) play a role when
one wants to distinguish between collusion, cooperation, and confused deputy. This
is typical in cyber security, see e.g. Harley’s book chapter “Antimalware evaluation
and Testing”, especially the section headed “Is It or Isn’t It?”, p.470–474, [35]. It
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is often a challenge, especially for borderline cases, to distinguish between benign
and malicious application behaviours. One approach is to use a pre-labeled “ma-
licious” data set of APKs where all the aforementioned factors have been already
accounted for. Many security companies routinely classify Android apps into clean
and malicious categories to provide anti-malware detection in their products and we
had access to such set from Intel Security (McAfee). All apps classified as mali-
cious fall into three mentioned threat categories. Now, collusion can be regarded as
a camouflage mechanism applied to conceal these basic threat’s behaviours. After
splitting malicious actions into multiple individual apps they would easily appear
harmless when checked individually. Indeed, even permissions of each such app
would indicate it cannot pose a threat in isolation. But in combination, however,
they may realise a threat. Taking into account all the details contributing to “mali-
ciousness” – deceitful distribution, lack of documentation, hidden functionality, etc.
– is practically impossible to formalise.

In our book chapter, we aim to apply purely technical methods to discover col-
lusion. Thus, we will leave out of our definition all aspects relating to psychology,
sociology, or documentation. In the light of the above discussion our technical def-
inition of collusion thus applies to all three identified cases, namely collusion, co-
operation, and confused deputy. If someone aims to distinguish between these, then
further manual analysis would be required, involving the distribution methods, doc-
umentation, and all other surrounding facts and details.

When analysing the APKs of various apps for collusion, we look at the actions
that are being executed by these APKs. Actions are operations provided by the An-
droid API (such as record audio, access file, write file, send data, etc.). We denote
the set of all actions by Act. Note that this set also includes actions describing com-
munication. Using an overt channel in Android requires an API call.

An action can be can be characterised by a number of static attributes such as per-
missions, e.g., when an app needs to record audio, the permission RECORD AUDIO
needs to be set in the manifest while the permission WRITE EXTERNAL STORAGE
needs to be set for writing a file.

Technically, we consider a threat to be a sequence of actions. We consider a threat
to be realised by collusion if it is distributed over several apps, i.e.,

Definition 1. there is non-singleton set S of apps such that:

• each app in S contributes the execution of at least one action to the threat,
• each app in S communicates with at least one other app.

This definition will be narrowed down further when discussing concrete techniques
for discovering collusion.

To illustrate our definition we present an abstract example1.

Example 1 (Stealing contact data). The two apps graphically represented in Figure
2 perform information theft: the Contact app reads the contacts database to pass
the data to the Weather app, which sends the data outside the device boundaries.
The information is sent through shared preferences.

1 Concrete examples are available on request.
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Contact_app Weather_app

READ
CONTACTS INTERNET

Shared
Prefs.

Fig. 2: An example of colluding apps

Using the collusion definition we can describe the actions performed by both
apps as:

• ActContact app = {aread contacts,sendshared pre f s,} and
• ActWeather app = {asend f ile,recvshared pre f s,}
with the permissions pms (aread contacts)= {Permission contacts} and pms(asend f ile)=
{Permission internet}. The information threat T is given by

T = 〈aread contacts,sendshared pre f s,recvshared pre f s,asend f ile〉

.

This data leakage example is in line with the collusion definitions given in most
existing work [52, 42, 46, 40, 17, 5] which regards collusion as the combination
of inter-app communication with information leakage. However, our definition of a
threat is broader, as it includes also financial and resource / service abuse.

3.1 App Collusion in the Wild

We present our analysis of a set of apps in the wild that use collusion to maximise
the effects of their malicious payloads [11]. To the best of our knowledge, this is
the first time that a large set of colluding apps have been identified in the wild. This
does not necessarily mean that there are no more colluding apps in the while, as
one of the main problems (that we are addressing in our work) is the lack of tools
to identify colluding apps. We identified these sets of apps while looking for col-
lusion potential on a set of more than 40,000 apps downloaded from App markets.
While performing this analysis we found a group of apps that was communicat-
ing using both intents and shared preference files. A manual review of the flagged
apps revealed that they were sharing information through shared preferences files
to synchronise the execution of a potentially harmful payload. Both the colluding
and malicious payload were included inside a library, the MoPlus SDK, embedded
in all apps. This library has been known to be malicious since November 2015 [58].
However, the collusion behaviour of the SDK was hitherto unknown. In the rest of
this section, we briefly describe this colluding behaviour.

The detected colluding behaviour looked different from the behaviour predicted
by most app collusion research [57, 47] so far. In a nutshell, all apps including the
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MoPlus SDK that are running on a device will talk to each other to check which
of the apps has the most privileges. This app will then be chosen to execute the
local HTTP server able to receive commands from the C&C server, maximising the
effects of the malicious payload.

The MoPlus SDK includes the MoPlusService and the MoPlusReceiver compo-
nents. In all analysed apps, the service is exported. In Android, this is considered to
be a dangerous practice, as also other apps will be able to call and access this ser-
vice. However, in this case it is a feature used by the SDK to enable communication
between its apps.

The colluding behaviour is executed when the MoPlusService is created (onCreate
method). This behaviour is triggered by the MoPlus SDK of each app and can
be divided in two phases: establishing app priority and executing the malicious
payload. To establish the app priority (Figure 3, the MoPlus SDK executes a
number of checks, including the verifying if the app embedding the SDK has
granted the INTERNET, READ PHONE STATE, ACCESS NETWORK STATE,
WRITE CONTACTS, WRITE EXTERNAL STORAGE or GET TASKS permis-
sions.

com.baidu.searchbox

MoPlus
SDK

Priority	=	100L

com.baidu.searchbox.push_sync

Save priority value1

com.baidu.BaiduMap

MoPlus
SDK

Priority	=	10L

com.baidu.BaiduMap.push_sync

Save priority value1

com.myapp

MoPlus
SDK

Priority	=	0L

com.myapp.push_sync

Save priority value1

App Sandbox App Sandbox App Sandbox

Fig. 3: Phase 1 of the colluding behaviour execution. Each app saves a priority value that depends
on the amount of access it has to the system resources. Priority values are shown for the sake of
explanation.

After the priority has been obtained and stored, each service inspects the contents
of the shared preference files to get its priority, returning the package name of the
one with highest priority. Then, each service cancels previous intents being regis-
tered (to avoid launching the service more than once) and sends an intent targeting
only the process with the higher previously saved priority (Figure 4).

3.1.1 Discussion

It is important to notice that although the applications already include a malicious
payload that could be executed on their own, if two apps with the Moplus SDK
were to be installed in the same device, they would not be able to execute their
individual malicious payloads. Although this assumption may seem unrealistic at
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com.baidu.searchbox

MoPlus
SDK

Priority	=	100L

com.baidu.searchbox.push_sync

com.baidu.BaiduMap

MoPlus
SDK

Priority	=	10L

com.baidu.BaiduMap.push_sync

com.myapp

MoPlus
SDK

Priority	=	0L

com.myapp.push_sync

Read priority values1

App Sandbox App Sandbox App Sandbox

Launch 
Intent

2

Fig. 4: Phase 2 of the colluding behaviour execution. Each app checks the WORLD READABLE
SharedPreference files and sends and intent to the app with highest priority

first, implementing these kinds of behaviours inside SDKs makes this much more
likely to happen. If we consider this assumption, then, the colluding behaviour al-
lows two things: first, it enables the execution of the malicious payload avoiding
concurrency problems between all instances of the SDK running. Second, it allows
the SDK instance with highest access to resources to be the one executing, maximis-
ing the result of the attack. This introduces an important remark in how colluding
applications have to be analysed. This is, having the static features that allow them to
execute a threat doesn’t mean they will be able to achieve that threat in all scenarios,
like the one presented in our case. This means, that when considering app collusion
we must look not only to the specific features or capabilities of the app, but also how
those capabilities work when the app is being executed with other apps. If we are
considering collusion it does not make much sense to consider the capabilities of an
app in isolation with respect to other apps, we have to consider the app executing in
an environment where there are other apps installed.

3.1.2 Relation with Collusion Definition

This set of apps found in the wild relates to our collusion definition in the follow-
ing way. Consider a set of apps S = {app1,app2, · · · ,appn} that implements the
MoPlus SDK. As, they embed the MoPlus SDK, the attacks that can be achieved
by them includes writing into the contacts database, launching intents and installing
applications without user interaction among others. This set of threats was identified
by TrendMicro researchers [58].

Consider now the installation of an application without the user interaction as
a threat Tinstall . As all apps embed the MoPlus SDK, all apps include the code to
potentially execute such threat, but only apps that request the necessary permis-
sions are able to execute it. If appi is the only app installed in the device, and
has the necessary permissions, executing Tinstall will require the following actions
{Open serveri,Receive commandi, Install appi}, the underscore being the app exe-
cuting the action.
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However, if another MoPlus SDK app, app j, is installed in the same device
but doesn’t have the permissions required to achieve Tinstall the threat won’t be
realised because of concurrency problems, both apps share the port where they
receive the commands. To avoid these, the MoPlus SDK includes the previously
described leader selection mechanisms that uses the SharedPreferences . In this
setting, we can describe the set of actions required by both apps to execute the
threat as ActMoplus = {Check permissionsi,Check permissions j, Save priority ii,
Save priority j j, Read priority i j,Read priority ji, Launch service i j, Open serveri,
Receive commandi, Install appi}. Considering Read priority xy and Save priority xy
as actions that make use of the SharedPreferences as a communication channel, we
can consider that the presented set of actions follows under our collusion definition
as (1) there is a sequence of actions that execute a threat executed collectively by
appi and app j and (2) both apps communicate with each other.

4 Filtering

A frontal attack on detecting collusions to analyse pairs, triplets and even larger sets
is not practical given the search space. An effective collusion-discovery tool must
include an effective set of methods to isolate potential sets which require further
examination.

4.1 Rule based collusion detection

Here, in a first step we extract information about app communications and access to
protected-resources. Using rules in first order logic codified in Prolog, the method
identifies sets of apps that might be colluding.

The goal of this is to serve as a fast, computationally cheap filter that detects
potentially colluding apps. For such a first filter it is enough to be based on per-
missions, In practical work on real world apps this filter turns out to be effective to
detect colluding apps in the wild.

Our filter (1) uses Androguard [20] to extract facts about the communication
channels and permissions of all single apps in a given app set S, (2) which is then
abstracted into an over-approximation of actions and communication channels that
could be used by a single app. (3) Finally the collusion rules are fired if the proper
combinations of actions and communications are found in S.

4.1.1 Actions

We utilise an action set Actprolog composed out of four different high level actions:
accessing sensitive information, using an API that can directly cost money, control-
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ling device services (e.g. camera, etc.), and sending information to other devices and
the Internet. To find out which of these actions an app could carry out, we extract
its set of permissions pmsprolog with Androguard. For each found permission, our
tool creates a new Prolog fact in the form uses(app, permission). Then permissions
extracted are mapped to one of the four high level actions. This is done with a set of
previously defined Prolog rules. The mapping of all Android permissions to the four
high-level actions can be found in the project Github repository2. As an example, an
app that declares the INTERNET permission will be capable of sending information
outside the device:

uses(App,PInternet)→ information outside(App)

4.1.2 Communications

The communication channels established by an app are characterised by its API calls
and the permissions declared in its manifest file. We cover communication actions
(comprolog) that can be created as follows:

• Intents are messages used to request tasks from other application components
(activities, services or broadcast receivers). Activities, services and broadcast re-
ceivers declare the intents they can handle by declaring a set of intent filters.

• External Storage is a storage space shared between all the apps installed without
restrictions. Apps accessing the external storage need to declare the

READ EXTERNAL STORAGE

permission. To enable writing, apps must declare

WRITE EXTERNAL STORAGE.

• Shared Preferences are an OS feature to store key-value pairs of data. Although
it is not intended for inter-app communication, apps can use key-value pairs to
exchange information if proper permissions are defined (before Android 4.4).

We map apps to sending and receiving actions by inspecting their code and man-
ifest files. When using intents and shared preferences we are able to specify the
communication channel using the intent actions and preference files and packages
respectively. If an application sends a broadcast intent with the action SEND FILE
we consider the following:

send broadcast(App, Intentsend f ile)

→ send(App, Intentsend f ile)

We consider that two apps communicate if one of them is able to send and the other
to receive through the same channel. This allows to detect communication paths
composed by an arbitrary number of apps:

2 https://github.com/acidrepo/collusion_potential_detector
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send(Appa,channel)∧ receive(Appb,channel)→
communicate(Appa,Appb,channel)

4.1.3 Collusion Potential

To identify collusion potential in app sets, we put together the different communi-
cation channels found in an app and their high-level actions as identified by their
permissions. Then, using domain knowledge we created a threat set that describes
some of the possible threats that could be achieving with a collusion attack. Our
threat set τprolog considers information theft, money theft and service misuse. As
our definition states, each of the threats is characterised by a sequence of actions. In
fact, each of our collusion rules gathers the two elements required by the collusion
definition explained in Section 3: (1) each app of the group must execute at least one
action of the threat and (2) each app in S communicates at least with another app
in S. The following rule vies an example of an information threat executed through
two colluding apps:

sensitive information(Appa)
∧ information outside(Appb)
∧ communicate(Appa,Appb,channel)

→ collusion(Appa,Appb)

Note that more apps could be involved in this same threat as simply forwarders
of the information extracted by the first app until it arrives to the exfiltration app.
This case is also covered by Definition 1, as the forwarding app need to execute
their communication operations to succeed on their attack (fulfilling both of our
definition conditions).

Finally, the Prolog rules defining collusion potential, the facts extracted from
apps, and rules mapping permissions to high level actions and communications be-
tween apps are then put on a single file. This file is then fed into Prolog so collusion
queries can be made. The overall process is depicted in Figure 5.

4.2 Machine learning collusion detection

Security solutions using machine learning employ algorithms designed to distin-
guish between malicious and benign apps. To this end, they analyse various features
such as the APIs invoked, system calls, data-flows and resources used assuming a
single malicious app attack model. In this section, we extend the same notion to as-
sess the collusion threat which serves as an effective filtering mechanism for finding
collusion candidates of interest. We employ probabilistic generative modelling for
this task with the popular Naive Bayesian model.
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App1 Uses(App,INTERNET)
Uses(App,READ_CONTACTS)
Send(App,I_SEND)
Receive(App,SP_FILE)

Prolog Facts

App1->INTERNET
App2 -> READ_CONTACTS
…

PermissionsModified
Androguard

App1 ->SEND Intent
App2 ->FILE SharedPrefs.

Communication 
Channels

Uses(X,Internet) -> Information_outside(X)
Uses(X,READ_CONTACTS) -> Sensitive(X)
…

Send(X,Channel) and Receive(Y,Channel) ->
Communication(X,Y)
…

Sensitive(X) and Information_outside(Y) and 
Communication(X,Y) -> Collusion(X,Y)
…

…

App2

App1

…

Permission to action mapping

Communication rules

Collusion Potential Definition

Prolog
Program

Expert 
Knowledge

Fig. 5: General overview of the process followed in the rule based collusion detection approach.

4.2.1 Naive Bayes classifier

Let X = [x1, . . . ,xk] be a k-dimensional space with binary inputs, where k is the total
number of permissions in Android OS and x j ∈ {0,1} are independent Bernoulli
random variables. A variable x j takes the value 1 if permission j is found in the set
S of apps under consideration, 0 otherwise. Let Y = {m-malicious, b-benign} be a
one dimensional output space. The generative naive Bayes model specifies a joint
probability, p(x,y) = p(x | y).p(y), of the inputs x and the label y: the probability
p(x,y) of observing x and y at the same time is the same as the probability p(x |
y) of x happening when we know that y happens multiplied with the probability
p(y) that y happens. This explicitly models the actual distribution of each class
(i.e. malicious and benign in our case) assuming that some parameters stochastic
process generates the observations, and hence estimates the model parameters that
best explains the training data. Once the model parameters are estimated (say θ̂ ),
then we can compute p(ti | θ̂) which gives the probability of the ith test case is
generated by the derived model. This can be applied in a classification problem as
explained below.

Let p(x,y) be a joint distribution over X×Y from which a training set R= {xk
i ,y

1
i |

i = 1,2,3, ...,n} of n independent and identically distributed examples are drawn.
The generative naive Bayes classifier uses R to estimate p(x|y) and p(y) in the joint
distribution. If c(.) stands for counting the number of occurrences of an event in the
training set,

p̂(x = 0 | y = m) =
c(x = 0,y = m)+α

c(y = m)+2α
(1)
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where the pseudo count α > 0 is the smoothing parameter. If α = 0, i.e. taking the
empirical estimates of the probabilities without smoothing, then

p̂(x = 0 | y = m) =
c(x = 0,y = m)

c(y = m)
(2)

Equation (2) estimates the likelihoods using the training set R. Uninformative priors,
i.e. p̂(y = m), can also be estimated in the same way. Instead, we estimate prior
distribution in an informative way in this work as it would help us in modelling the
knowledge not available in data (e.g. permission’s critical level). Informative prior
estimation is described in section 4.2.3.

In order to classify the ith test case, the model predicts p(ti | θ̂) = m if and only
if:

p̂(x = ti,y = m)

p̂(x = ti,y = b)
> 1 (3)

4.2.2 Threat likelihood

As per our collusion definition in Section 3, estimating the collusion threat likeli-
hood Lc(S) of a non-singleton set S of apps involves two likelihood components
Lτ(S) and Lcom(S). Lτ(S) expresses how likely the app set S can fulfil the sequence
of actions required to execute a threat, and Lcom(S) is the ability to communicate
between apps in S. Using the multiplication rule of well-known basic principles of
counting:

Lc(S) = Lτ(S)×Lcom(S) (4)

As mentioned above, we employ so-called Naive Bayesian informative [50]
model to demonstrate the evaluation of equation (4). First, we define a model, then
train and validate the model, and finally test it using a testing data set.

4.2.3 Estimating Lτ

Let X = [x1, . . . ,xk] be a k-dimensional random variable as defined in section 4.2.1.
Then the probability mass function P(X) gives the probability of obtaining S with
permissions as described in X . Our probabilistic model P(X) is then given by the
equation (5):

P(X) =
k

∏
j=1

λ
x j
j (1−λ j)

1−x j (5)

where λ j ∈ [0,1] is a Bernoulli parameter. In order to compute Lτ for a given set S,

we define a sample statistic as Qs =
ln{(P(X))−1}

|S| , divide ln{(P(X))−1} by the number
of distinct permissions in set S, and scale down it to the range [0,1] by dividing
the max(Qs) which estimated using empirical data. Hence, for a given set S, Lτ =

Qs
max(Qs)

. The desired goal behind the above mathematical formulation is to make
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requesting more critical permissions to increase the likelihood of “being malicious”
than requesting less critical ones regardless of frequencies. Readers who require a
detailed explanation of the mathematical notion behind the above formulation are
invited to refer [50].

To complete our modelling, we need to estimate values λ̂ j that replace λ j in
the computation of Lτ . To this end – to avoid over fitting P(X) – we estimate λ j
using informative beta prior distributions [41] and define the maximum posterior
estimation

λ̂ j =
∑x j +α j

N +α j +β j
(6)

where N is the number of apps in the training data set and α j,β j are the penalty
effects. In this work we set α j = 1. The values for β j depend on the critical level of
permissions as given in [55, 50]. β j can take either the value 2N (if permission j is
most critical), N (if permission j is critical) or 1 (if permission j is non-critical).

4.2.4 Estimating Lcom

In order to materialise a collusion, there should be an inter app communication
closely related to the target threat. To establish this association we need to consider
number of factors including the contextual parameters. At this stage of the research
we do not focus on estimating the strength of connection (association) between the
threat and the communication. Instead we investigate what percentage of commu-
nication channels can be detected through static code analysis, and simply assume3

these channels can be used for malicious purpose by apps in set S. Hence we con-
sider Lcom to be a binary function such that Lcom ∈ {1,0} which takes the value 1
if there is inter app communication within S using either intents or external storage
(we do not investigate other channels in this work).

4.2.5 Proposed probabilistic filter

Our probabilistic filter consists of two sub filters: an inner and an outer one. The
inner filter applies on the top of the outer filter. The outer filter is based on the Lτ

value which we can compute using permissions only. Permissions are very easy and
cheap to extract from APKs - no decompilation, reverse engineering, complex code
or data flow analysis is required. Hence the outer filter is computationally efficient.
The majority of non-colluding app pairs in an average app set can be treated using
this filter only (see Figure 6). This avoids the expensive static/dynamics analysis
on these pairs. The inner filter is based on Lcom value which we currently compute
using static code analysis. A third party research prototype tool Didfail [15] was
employed in finding intent based inter app communications. A set of permission

3 This assumption might produce false positives, however, never false negatives. It is left as a future
work to improve this.
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based rules was defined to find communication using external storage. Algorithm 1
presents the proposed filter to find out colluding candidates of interest.

Algorithm 1: Probabilistic filter. The outer filter is based on Lτ and the inner
filter is based on Lcom.

Λ : Set of individual apps;
Ω : Set of pairs of colluding candidates of interest;
input : Λ={app1, app2, app3, ... , appn}
output: Ω={pair1, pair2, pair3, ... , pairm}
if |Λ | ≥ 2 then

Let Θ = set of all possible app pairs in Λ ;
foreach pair j in Θ do

Compute Lτ as described in section 4.2.3;
/* outer filter */
if Lτ ≥ threshold then

Compute Lcom as described in section 4.2.4 ;
/* inner filter */
if Lcom == 1 then

Return (pair j);
end

end
end

end

4.2.6 Experimental setup and validation

Algorithm 1 was automated using R4 and Bash scripts. As mentioned above, it also
includes calls to a third party research prototype [15] to find intent based commu-
nications in computing Lcom. Model parameters in Equation 5 was estimated using
training datasets produced from a 29k size app sample provided by Intel security.

Our validation data set consists of 240 app pairs in which half (120) of them are
known colluding pairs while the other half non-colluding pairs. In order to prevent
over fitting, app pairs in the validation and testing sets were not included in the
training set. As shown in Figure 6 proposed method assigns higher Lτ scores5 for
colluding pairs than clean pairs. Table 2 presents the confusion matrix obtained
for the proposed method by fitting a linear discriminant line (LDL), i.e. the blue
dotted line in Figure 6. Sensitivity=0.95, specificity=0.94, precision=0.94 and the
F-score=0.95.

4 http://www.r-project.org/
5 We plot Lτ values in Figure 6 as outer filter in algorithm 1 depends on it, and to show that majority
of non-colluding app pairs can be treated using Lτ only. However, it should be noted that Lc = Lτ

for colluding pairs as Lcom = 1.
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However as shown in Figure 6, colluding and non-colluding are not easily sepa-
rable two classes by a LDL. There are some overlaps between class elements. As a
result it produces false classifications in Table 2. It is possible to reduce false alarms
by changing the threshold. For example either setting the best possible discriminant
line or its upper bound (or even higher, see figure 6) as the threshold will produce
zero false positives or vice versa in Table 2. But as a result it will increase false neg-
ative rate that will affect on the F-score - the performance measure of the classifier.
Hence it would be a trade-off between a class accuracy and overall performance.
However since the base rate of colluding apps in the wild is close to zero as far as
anyone knows, the false positive rate of this method would have to be vanishingly
small to be useful in practice. Instead of LDL, using a non-linear discriminator
would also be another possibility to reduce false alarms. This is left as a future work
to investigate.

The average processing time per app pair was 80s which consists of ≤ 1s for
the outer filter and rest of the time for the inner filter. Average time was calculated
on a mobile workstation with an Intel Core i7-4810MQ 2.8GHz CPU and 32GB of
RAM.

0 50 100 150 200

0.
2

0.
6

1.
0

App pair index

TL

Colluding pairs Non-colluding pairs

LT =0.55

Fig. 6: Validation: Lτ score obtained by each pair in the validation data set.

Table 2: Confusion matrix for the naive Bayesian method.

n=240 Actual
Colluding

Actual
Non-colluding

Predicted
Colluding 114 7

Predicted
Non-colluding 6 113
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4.3 Evaluation of filtering

We validate both our filtering methods against a known ground truth by applying
them to a set of artificially created apps. Furthermore, we report on managing com-
plexity by scaling up our rule based detection method to deal with 50000+ real world
applications.

4.3.1 Testing the Prolog filter

The validation of the Prolog filter has been carried out with fourteen artificially
crafted apps that cover information theft, money theft and service misuse. Created
apps use Intents, Shared Preferences and External storage as communication chan-
nels. They are organised in four colluding sets:

• The Document Extractor set consists of one app (id 1) that looks for sensitive
documents on the external storage; the other app (id 2) sends the information
received (via SharedPreferences) to a remote server.

• The Botnet set consists of four apps. One app (id 3) acts as a relay that re-
ceives orders from the command and control center. The other colluding apps
execute commands (delivered via BroadcastIntents ) depending on their permis-
sions: sending SMS messages (id 4), stealing the user’s contacts (id 5) and start-
ing and stopping tasks (id 6).

• The Contact Extractor set consists of three apps. The first (id 7) reads contacts
from the address book, the second (id 8) forwards them via the external storage
to the third one (id 9), which sends them to the Internet. The first and second app
communicate via BroadcastIntents .

• The Location Stealing set consists of one app (id 12) that reads the user location
and shares it with the second app (id 13), which sends the information to the
Internet.

The three non-colluding apps are a document viewer (id 10), an information sharing
app (id 11) and a location viewer (id 14). The first app is able to display different file
types in the device screen and use other apps (via broadcast intents) to share their
uniform resource identifier (URI). The second app receives text fragments from
other apps and sends them to a remote server. The third app receives a location from
another app (with the same intent used by apps 12 and 13) and shows it to the user
on the screen.

Table 3 shows the results obtained with our rule based approached. The entry
“dark red club” in row 1 and column 2 means: the program detects that app id 1
sends information to app id 2, and these two apps collude on an “information theft”.
As we take communication direction into consideration, the resulting matrix is non-
symmetric, e.g., there is no entry in row 2 and column 1. The entry “light red club” in
row 1 and column 10 means: the program flags collusion of type “information theft”
though the set {id 1, id 10} is clean.This provides further information about the col-
lusion attack. For instance, one can see the information leak in information theft
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Table 3: Collusion Matrix of the Prolog program.♣ = Information theft. $ = Money
theft. ♠ = Service misuse. ♣, $, ♠ = False positives.

id 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 ♣ ♣ ♣
2
3 $♣ ♠ ♠
4
5 ♣ ♣ ♣
6 ♣ ♣
7 ♣ ♣ ♣ ♣ ♣
8 ♣
9
10 ♣
11
12 ♣ ♣
13
14

attacks. Additionally, the way we defined the communication rules makes it possi-
ble to identify transitive collusion attacks (i.e. app 7 colluding with app 9 through
app 8). The approach identifies all colluding app sets. It also flags eight false pos-
itives due to over-approximation. Note, that there are no false negatives due to the
nature of our test set: it utilises only those communication methods that our Prolog
approach is able to identify.

Our false positives happen mainly because two reasons. First, we do not con-
sider in our initial classification some of the communication channels that are al-
ready widely use by apps in Android. For example, the Intent with action VIEW or
SEND are very common in Android applications. It is unlikely that apps would use
them for collusion as other apps could have registered to receive the same informa-
tion. Second, in this approach, we identify apps that are communicating by sharing
access to sensitive resources, but we do not look at how that access is shared. It
must be noted, that the main aim of this approach is to reduce the amount of app
combinations that are being passed through the data-flow analysis.

4.3.2 Testing the Probabilistic filter

We tested the Probabilistic filter with a different sample consisting of 91 app pairs.
Figure 7 presents the outcome for this set. Each cell in the table denotes a Lτ value
for the corresponding app pair. Note that though there are 196 possible pairs (i.e.
14x14 cells in the table), for readability, we leave the lower half empty since the
table is symmetric. Pairs on the diagonal are also not interesting to our discussion. To
minimise false negatives, we use the lower bound (=0.50) gained from the validation
dataset for the discriminant line as threshold for Lτ . We report possible collusion if
Lτ ≥ 0.5 and Lcom = 1, otherwise we report non-collusion. Dark red shows true
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positives, light red shows false positives, dark green shows true negatives, and light
green shows false negatives.

With regards to false alarms, app pair (1,2) was not detected by our analysis
due to the third party tool does not detect communication using SharedPreferences.
Since we do only pairwise analysis, app pair (7,9) was not reported. That pair de-
pends on transitive communication. Pair (12,13) was not reported since Lτ is less
than the chosen threshold. As mentioned in section 4.2.6, it would be possible to
reduce false alarms by changing the LDL threshold, but subject to degrading the
overall performance measure of the classifier.

Precise estimation of Lcom would be useful to reduce false alarms in our analysis.
But it should be noted that existence of a communication is only a necessary condi-
tion to happen a collusion, but not a sufficient condition to detect it. In this context it
is worth to mention that a recent study [23] shows that 84.4% of non-colluding apps
in the market place can communicate with other apps either using explicit (11.3%)
or implicit (73.1%) intent calls. Therefore the threat element (i.e. Lτ ) is far more
informative in collusion estimation than the communication element (Lcom) in our
model.

Both validation and testing samples are blind samples and we have not properly
investigated them for the biasedness or realisticity.

Fig. 7: Testing the proposed filter. For readability – we leave the upper half empty since the table
is symmetric. Pairs on the diagonal are also not interesting to our discussion. Dark red shows true
positives, light red shows false positives, dark green shows true negatives, and light green shows
false negatives.

5 Model-checking for collusion

Filtering is an effective method to isolate app sets. Using software model checking,
we provide a sound method for proving app sets to be clean that also returns example
traces for potential collusion based on the K framework [54] – c.f. Figure 8. We start
with a set of apps in the form of an Application Package File (APK). The DEX code
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in each APK file is disassembled into the Smali format with open source tools.
The Smali code of the apps is parsed by the K tool. Compilation in the K tool
translates the K representation of the Android apps into a rewrite theory in Maude
[18]. Finally, the Maude model checker searches the transition system compiled by
the K tool to provide an answer if the input set of Android apps colludes or not. In
the case when collusion is detected, the tool provides a readable counter example
trace. In this section we focus on information theft only.

Fig. 8: Work-flow for the Android formal semantics in the K framework.

5.1 Software model checking

Software model checking is a methodology widely used for the verification of prop-
erties about programs w.r.t. their executions. A profane view on model checking
would be to see it as instance of the travelling salesman problem: every state of the
system shall be visited and checked. This means that, upfront, model checking is
nothing but a specialised search in a certain type of graph or, as it is known in the
field, a transition system.

Initially, the application of model checking focused on simple transition systems,
especially coming from hardware. Simplicity was necessary to contain a notorious
efficiency problem known as the “state space explosion. Namely, the methodology
would fail to produce timely efficient results due to the exponential nature of the
complexity of the model checking procedures w.r.t. the number of system states.

Modern model checking tools attempt to meet the challenge posed by (higher
level) programs, i.e., software, that are known to quickly produce a large (potentially
unbounded) number of states, e.g., due to dynamic data structures, parallelism, etc.
Hence, software model checking uses, in addition to basic model checking, other
techniques (e.g. theorem proving or abstract interpretation) in order to coherently
simplify the transition system given to the model checker.

A standard example is given by imperative programming languages. Here, a pro-
gram p is viewed as a sequence of program locations pci, i≥ 0, that identify instruc-
tions. The effect of an instruction I at pci is a relation ri which associates the states
before with the states after the execution of I. Software model checking computes
the transitive closure R of the relations ri to obtain the set of reachable states of the
program p.
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Note, however, that for infinite state programs the computation of R may not
terminate or may require an unreasonable amount of time or memory to terminate.
Hence software model checking transforms the state space of the program into a
“simpler” one by, essentially, eliminating unnecessary details in the relation ri thus
obtaining an abstract program a defined by the relations a(ri). The model checking
of a, usually named “abstract” model checking, trades off precision for efficiency.
A rigorous choice of the abstract set of states (i.e. abstract domain) and the abstract
relations a(ri) (i.e. abstract semantics) ensures that the abstract model checking is
sound (i.e. proving the property in the abstract system implies the property is proved
in the original, concrete, system).

5.1.1 Challenges

In the following we will explain how we define a transition system using K and
what abstractions we define in order to allow for an effective check for collusion.

Formalising Dalvik Byte-code in K poses a number of challenges: there are about
220 instructions to be formalised, the code is object oriented, it is register based (in
contrast to stack based, as Java Byte-code), it utilises callbacks and intent based
communication, see [3]. We provide two different semantics for DEX code, namely
a concrete and an abstract one. While the concrete semantics has the benefit to be
intuitive and thus easy to be validated, it is the abstract semantics that we employ
for app model checking. We see the step from the descriptive level provided by [3]
to the concrete, formal semantics as a ‘controllable’ one, where human intuition
is able to bridge the gap. In future work, we intend to justify the step from the
concrete semantics to the abstract one by a formal proof. Our implementation of
both Android semantics in K is freely available6. The code of the colluding apps
discussed in this paper is accessible via an encrypted web-page. The password is
available on request7.

5.2 The K framework

The K framework [54] proposes a methodology for the design and analysis of pro-
gramming languages; the framework comes with a rewriting-based specification
language and tool support for parsing, interpreting, model-checking and deductive
formal verification. The ideal work-flow in the K framework starts with a formal
and executable language syntax and semantics, given as a K specification, which
then is tested on program examples in order to gain confidence in the language def-
inition. Here, the K framework offers model checking via compilation into Maude
programs (i.e., using the existing reachability tool and LTL Maude model checker).

6 http://www.cs.swan.ac.uk/˜csmarkus/ProcessesAndData/androidsmali-semantics-k
7 http://www.cs.swansea.ac.uk/˜csmarkus/ProcessesAndData/sites/default/files/
uploads/resources/code.zip.
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A K specification consists of configurations, computations, and rules, using a
specialised notation to write semantic entities, i.e., K-cells. For example, the K-cell
representing the set of program variables as a mapping from identifiers Id to values
Val is given by 〈Id 7→ Val〉vars. Configurations in K are labelled and nested K-cells,
used to represent the structure of the program state. Rules in K are of two types:
computational and structural. Computational rules represent transitions in a pro-
gram execution and are specified as configuration updates. Structural rules provide
internal changes of the program state such that the configuration form can enable
the application of computational rules.

5.3 A concrete semantics for Dalvik code

The concrete semantics specifies system configurations and transition rules for all
Smali instructions and a number of Android API calls in K. Here, we strictly follow
their explanation [2].

5.3.1 System configurations

Configurations are defined in K style as cells which might contains sub-cells. Top of
a configuration is a “sandboxes” cell, containing a “broadcasts” sub-cell abstracting
the Android intent broadcast service and possibly multiple “sandbox” cells captur-
ing states of installed apps.

In K, the asterisk symbol next to the name “sandbox” specifies that the number of
“sandbox” cells within a “sandboxes” cell is 0 or more. Each sandbox cell simulates
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.List

callback
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Fig. 9: Android configuration.

the environment in which an application is isolated. It contains the classes of the
application, the currently executed thread, and the memory storing the objects that
have been instantiated so far. For the current thread, we store the instructions left to
be run in a “k” cell, while the content of the current registers are kept in a “regs”
cell . Classes and Method cells can be defined similarly. In turn, each “method” cell
consists of the name of the method, the return type of the method and the statements
of the method within a “methodbody” cell. Finally, “object” cells are used to store
the objects that have been instantiated so far. They are stored within the “memory”
cell of a “sandbox”. As depicted in Figure 10, an object cell contains a reference
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Fig. 10: Sub-cells of a configuration: broadcasts and object.

(an integer), its type, values of its corresponding fields, a Boolean value to indicate
whether the object is sensitive and the set of applications that have created this
object. The last two cells have been added for the sake of program analysis.

5.3.2 Smali instructions

As a concrete example of how to formalise an instruction, let us consider the
iget R1,R2,CN → FN : FT instruction. iget retrieves the field value of an ob-
ject. Here, CN is the name of a class, FN and FT are the name of the field to be read
and its type, register R2 holds the reference to the object to be read from, and – after
execution of the instruction – register R1 shall hold the value of the field FN. The K
rule for its semantics is illustrated in Figure 11. This K rule is enabled when (i) the
k cell of a thread starts with an iget instruction, (ii) R2 is resolved to a reference
I2 of some object where (iii) FN maps to a value of TV1. When the rule is applied,
TV1 is copied into R1.

The semantics for Smali instructions in K is organised in a number of separate
modules as shown in Figure 12, where arrows specify import. The “semantic-core”
contains the semantics rules for basic instructions and directives such as “nop” (no
operation), “.registers n” and “.locals n” where n is an integer. Additionally, it also
defines several auxiliary functions which are used later in other modules for seman-
tic rules. For example, the function “isKImplementedAPI” is defined to determine



Title Suppressed Due to Excessive Length 29

iget R1 :Register ,R2 :Register ,CN :Type → FN :FieldName : FT :Type

•K

k

R1 7→ S1 :StoreRegister R2 7→ S2 :StoreRegister S1 7→ —

TV1

S2 7→ typedvalue (I2 ,T2 :Type,—,—)

regs

I2

objectref

T2

objecttype

FN 7→ TV1

objectfields

object

objects

memory

Fig. 11: K rule for the semantics of iget instruction.
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Fig. 12: Semantic module structure.

whether an API method has been implemented within the K framework; if not, the
interpreter will look for it within the classes of the invoking application.

The “loading” module is responsible for constructing the initial configuration.
When running a Smali file in the K framework, it will parse the file according to the
defined syntax and placed the entire resulting abstract syntax tree (AST) in a cell.
The rules defined in the loading module are used to take this AST and distribute
its elements to the right cells of the initial configuration. In particular, each appli-
cation is placed in a sandbox cell, its classes are placed in the classes cell, etc. The
“invoke/return” module defines the semantic rules for invoking methods and return
instructions. The “control” module specifies the semantics of instructions such as
“if-then” and “goto”, which may change the program counter in a non-trivially way.
The “read/write” module implements the semantics of instructions for manipulating
objects in the memory such as instantiating new objects or array, initialising ele-
ments of an array, retrieving value of an object field and changing the value of an
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object field. Finally, the “arithmetics” module specifies the semantics of arithmetic
instructions such as addition, subtraction, multiply, division and bit-wise operations.

In some situations, our semantics has to deal with unknown values such as the
device’s location returned by Android OS. In K, unknown values can be represented
by the built-in constant ·K. To this end, we provide for each of the “control”, “read-
/write”, “arithmetics” modules a counter-part that is responsible for unknown val-
ues. For example, when the value to be compared with 0 in an ifz Smali instruc-
tion is unknown, we assume that the result is either true or false, thereby leading to
a non-deterministic execution of the Smali program. Similarly, arithmetical opera-
tions propagate unknown values.

5.3.3 Semantics for the Android APIs

Regarding the semantics of the Android APIs which encompasses a rich set of pre-
defined classes and methods, API classes and methods usually come together with
Android OS on an Android device and hence are not included in the DEX code of an
app. Obviously, one may obtain the Smali code of those API classes and methods.
However, this will significantly increase the size of the Smali code to be analysed
in K and consequently the state space of the obtained models. To this end, we di-
rectly implement the semantics of some of these classes and methods in K rules,
based on their description[2]. While the first approach appears to be more faithful,
it would significantly increase the size of the Smali code to be analysed in K and
consequently the state space of the obtained models. This is avoided by the second
approach where one can choose the abstraction level required for the analysis in
question.

In Figure 13, we show the structure for K modules which implements the seman-
tics of some API methods.

Semantics core

Broadcast

Syntax

Location

Intent Apache-Http

...

...

Fig. 13: Semantic module structure for Android API.
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In particular, we have implemented a number of APIs, including modules Lo-
cation, Intent, Broadcast, and Apache-Http. Other API classes and methods can be
implemented similarly. For those modules that are not (yet) implemented in K, we
provide a mechanism that a call to any of them returns an unknown result, i.e., the
“·K” value.

A typical example is the Location module which is responsible for imple-
menting the semantics of API methods relating to the Location Manager such
as registering a callback function when the device’s location changes, i.e., the
requestLocationUpdates method from LocationManager class. When
a registered callback method is called, it is provided with an input parameter refer-
ring to a Location object. The creator of this object is designated to the applica-
tion in the current sandbox by the object’s created cell. Furthermore, it is marked as
sensitive in its sensitive cell (see Figure 10).

The module Intent is responsible for implementing the semantics of API meth-
ods for creating and manipulating intents such as the constructor of Intent
class, adding extra string data into an intent, i.e., putExtra from Intent class
and retrieving extra string data from an intent, i.e., getStringExtra method
also from Intent class. The module Broadcast is responsible for implement-
ing the semantics of API methods relating to broadcasting intents, for exam-
ple: broadcasting an intent, i.e., sendBroadcast method from Context class;
and registering an callback function when receiving an broadcasted intent, i.e.,
registerReceivermethod from Context class. In particular, when sendBroadcast
with an intent, this intent will be place in broadcasts cell (see Figure 9)
in the configuration. Then, callback methods previously registered by a call to
registerReceiver will be called according to the newly placed intent in
broadcasts cell. Finally, the module Apache-Http implements the semantics
of methods relating to sending http request, i.e. executemethod from HttpUriRequest
class.

5.3.4 Detecting collusion on the concrete semantics level:

Finally, we detect information theft via collusion by annotating any “object” cell
with two additional values: “sensitive” and “created”. Sensitive is a Boolean value
indicating if the object is sensitive (e.g., device locations, contacts, private data,
etc.). Created is a set of app ids that initialise the object. Information theft collu-
sion is conducted when one app collects sensitive data from an Android device and
forwards to another app who will export it outside the device boundaries. In detail,
this process includes, within a device: (i) a sensitive object O1 is initialised by an
app A1, i.e., Sensitive of O1 is true and Created of O1 contains id A1; (ii) O1 (or its
content) is forwarded another app A2 via communication (possibly through a series
of actions of creating new objects or editing existing objects using O1 where their
Sensitive is updated to that of O1 and their Created is updated to include A1); (iii) A2
calls an API to export O1 (or any of these objects whose Sensitive is true and Cre-
ated contains id A1 6= A2). Information theft collusion is detected in our framework
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when A2 calls the API to export an object with Sensitive equal true and Created
containing any id A1 6= A2.

This characterisation of collusion as an information flow property implies the
conditions of Definition 1:

• A1 contributes in retrieving the sensitive data while A2 is exporting.
• A1 and A2 communicate with each other to transfer the sensitive data from A1 to

A2.

5.4 An abstract semantics for Dalvik

The abstract semantics lightens the configuration and the transitions in order to gain
efficiency for model checking while maintaining enough information to verify col-
lusion. The abstract configuration has a cell structure similar to the concrete config-
uration except for the memory cell: instead of creating objects, in abstract semantics
we record the information flow by propagating the object types and the constants (ei-
ther strings or numerical). Structurally, the K specification for the abstract semantics
is organised in the same way as the concrete one, c.f. Figure 12. In the followings
we describe the differences that render the abstraction.

In the “read/write” module the abstract semantics neglects the memory-related
details as described next: The abstract semantics for the instructions that create new
object instances (e.g., “new-instance Register, Type”) sets the register to the
type of the newly created object. The arithmetic instructions only define data depen-
dency between the source registers and the destination register. The move instruc-
tion, that copies one register into another, sets the contents of the source register into
the destination. Finally, the load/store instructions, that copy from or into the mem-
ory, are similarly abstracted into data-dependence. We exemplify this latest class of
instructions with the abstract semantics of the iget instruction in Figure 14.

RULE iget R1 :Register ,R2 :Register ,F :FieldId

•K

k

R1 7→ —

L2

R2 7→ L2 :K

regs

Fig. 14: K rule for the abstract semantics of iget instruction.

The abstract semantics is field insensitive, e.g., the iget instruction only main-
tains the information collected in the object register, R2. In order to add field sensi-
tivity to the abstraction, we only need to en-queue in R1 the field F such that after
the substitution we have R1 7→ F y L2.

The module “invoke/return” contains the most significant differences of the ab-
stract semantics w.r.t. the concrete semantics. The invoke instructions differentiate
the API calls from the app’s methods. The methods defined in the app are executed
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upon invocation (using a call stack) while the API calls are further discriminated into
app-communication (i.e., “send” or “receive”), APIs which trigger callbacks, APIs
which access sensitive data, APIs which publish data, and ordinary APIs. We cur-
rently consider only Intent based inter-app communication. All invoke instructions
add information to the data-flow as follows: the object for which the method is in-
voked depends on the parameters of the invoked method. Similarly, the move-result
instruction defines data-dependence between the parameters of the latest invoked
method and the register where the result is written. The data-flow abstraction allows
us to see an API call just as an instruction producing additional data dependency.
Hence, we do not need to treat separately these APIs as in the concrete seman-
tics (by either executing their code or giving them special semantics). This gives a
lightweight feature to the abstract semantics meanwhile enlarging the class of apps
that can be verified. Obviously, the price paid is the over approximation of the app
behaviours which induces false positive colluding results.

The rules producing transitions in the transition system are defined in the “con-
trol” module. The rules for branching instructions, i.e., if-then instructions, are
always considered non-deterministic in the abstract semantics. The rules for goto
instruction check if the goto destination was already traversed in the current execu-
tion and, if this is the case, the jump to the destination is replaced by a fall through.
As such, the loops are traversed at most once since the data-flow collection only
requires one loop traversal.

5.4.1 Detecting collusion on the abstract semantics level:

Detecting collusion on the abstract semantics level works as follows: When an API
accessing sensitive data is invoked in an app A1, the data-flow is augmented with
special a label “secret(A1)”. If, via the data-flow abstraction, the “secret” arrives
into the parameters of a publish invocation of a different app A2 (A1 6= A2) then we
discover a collusion pattern for information theft. Note that the “secret” could be
passed from A1 to A2 directly or via other apps A′s.

The property detected in the abstract semantics is a safe over-approximation of
Definition 1. Namely, (i) the set of colluding apps S includes two different apps A1
and A2, hence S is not a singleton set; (ii) the apps A1 and A2 execute the beginning
and the end of the threat (i.e. the extraction and the publication of the secret, respec-
tively) while the apps A′s act as messengers; (iii) all the discovered apps contribute
in communicating the secret.

Note, we say that the abstract collusion result is an over-approximation due to the
fact that only “non-colluding” results could be a guarantee for the non-existence of a
set S with the characteristics given by Definition 1. If a colluding set S is reported in
the abstract model checking then this is either a true collusion, as argued in (i–iii), or
a false witness to collusion. A false witness (also named “spurious counterexample”
in abstract model checking) may appear due to the overprotective nature of the data-
flow abstraction. This abstraction assumes that any data “touching” the secret may
take it and pass it (e.g. when the secret is given as parameter to an API call f then any
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other parameter and the result of f are assumed to know the secret). Consequently,
any collusion set S reported by the abstract model checking has to be verified (e.g.
by exercising the concrete semantics over S).

5.5 Experimental Results

We demonstrate how collusion is detected using our concrete and our abstract se-
mantics on two Android applications, called LocSender and LocReceiver.
Together, these two apps jointly carry out an “information theft”.

They consist of about 100 lines of Java code / 3000 lines of Smali code each.
Originally written to explore if collusion was actually possible (there is no APK
of the Soundcomber example), here they serve as a test for our model checking
approach.

LocSender obtains the location of the Android device and communicates it
using a broadcast intent. LocReceiver constantly waits for such a broadcast. On
receiving such message, it extracts the location information and finally sends it to the
Internet as an HTTP request. We have two variants of LocReceiver: one contains
a while loop pre-processing the HTTP request while the other does not. Addition-
ally, we create two further versions of each LocReceiver variant where collusion
is broken by (1) not sending the HTTP request at the end, (2) altering the name of
the intent that it waits for – named LocReceiver1 and LocReceiver2, re-
spectively. Furthermore, we (3) create a LocSender1 which sends a non-sensitive
piece of information rather than the location. In total, we will have eight experi-
ments where the two firsts have a collusion while the six lasts do not8. Figure 15
summarises the experimental results.

App1 App2 Loop Collusion Concrete Abstract
Runtime Detected Runtime Detected

LocSender LocReceiver X 55s X 30s X
LocSender LocReceiver X X time-out 33s X
LocSender LocReceiver1 1m13s 31.984s
LocSender LocReceiver1 X time-out 34s
LocSender LocReceiver2 53s 32s
LocSender LocReceiver2 X time-out 33s
LocSender1 LocReceiver 1m11s 32s
LocSender1 LocReceiver X time-out 34s

Fig. 15: Experimental result.

8 All experiments are carried out on a Macbook Pro with an Intel i7 2.2GHz quad-core processor
and 16GB of memory.
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5.5.1 Evaluation

Our experiments indicate that our approach works correctly: if there is collusion it
is either detected or has a timeout, if there is no collusion then none is detected. In
case of detection, we obtain a trace providing evidence of a run leading to informa-
tion theft. The experiments further demonstrate the need for an abstract semantics,
beyond the obvious argument of speed: e.g. in case of a loop where the number of
iterations depends on an environmental parameter that can’t be determined, the con-
crete semantics yields a time out, while the abstract semantics still is able to produce
a result. Model checking with the abstract semantics is about twice as fast as with
the concrete semantics. At least for such small examples, our approach appears to
be feasible.

6 Related work

In this Section we review the different previous works that have addressed the iden-
tification and prevention of Android malicious software. We first review previous
approaches to detect and identify Android malware (single apps) in general. Then,
we address previous work on detection and identification of colluding apps. Finally,
we review works that focus on collusion prevention.

6.1 Detecting malicious applications

In general, techniques for detecting Android malware are categorised into two
groups: static and dynamic. In static analysis, certain features of an app are ex-
tracted and analysed using different approaches such as machine learning tech-
niques. For example, Kirin [26] proposes a set of policies which allows match-
ing permissions requested by an app as an indication for potentially malicious be-
haviour. DREBIN [4] trained Support Vector Machines for classifying malwares
using number of features: used hardware components, requested permissions, crit-
ical and suspicious API calls and network addresses. Similar static techniques can
be found in [16, 19, 38, 44, 63]. Conversely, dynamic analysis detects malware at
the run-time. It deploys suitable monitors on Android systems and constantly looks
for malicious behaviours imposed by software within the system. For example, [33]
keeps track of the network traffic (DNS and HTTP requests in particular) in an An-
droid system as input and then utilises Naive Bayes Classifier in order to detect ma-
licious behaviours. Similarly, [39] collects information about the usage of network
(data sent and received), memory and CPU and then uses multivariate time-series
techniques to decide if an app admitted malicious behaviours. A different approach
to translate Android apps into formal specifications and then employing existing
model checking techniques to explore all possible runs of the apps in order to search
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for a matching malicious activity represented by formulas of some temporal logic
can be found in [60, 10].

In contrast to malware detection, detecting colluding apps involves not only iden-
tifying whether a security threat can be carried out by these apps but also revealing
whether communication between them occurs during the attack. In other words,
existing malware detection techniques are not directly applicable for detecting col-
lusion.

6.2 Detecting malicious inter-app communication

Current research mostly focuses on detecting inter-app communication and infor-
mation leakage. DidFail [15] is a analysis tool for Android apps that detects pos-
sible information flows between multiple apps. Each APK is fed into the APK
transformer, a tool that annotates intent-related function calls with information that
uniquely identifies individual cases where intents are used in the app, and then trans-
formed APK is passed to two other tools: FlowDroid [5, 28] and Epicc [49]. The
FlowDroid tool performs static taint tracking in Android apps. That analysis is field,
flow and context sensitive with some object sensitivity. Epicc performs static anal-
ysis to map out inter-component communication within an Android app. Epicc [49]
provides flow and context sensitive analysis for app communication, but it does not
tackle each and every possible communication channels between apps’ components.
The most similar work to DidFail is IccTA [42] which statically analyses app sets to
detect flows of sensitive data. IccTA uses a single-phase approach that runs the full
analysis monolithically, as opposed to DidFail’s composition two-phase analysis.
DidFail authors acknowledge the fact that IccTA is more precise than the current
version of DidFail because of its greater context sensitivity. This supports our claim
in section 4.2 - “context would be the key” for improving the precision. FUSE [52],
a static information flow analysis tool for multi-apps, provides similar functions as
DidFail and IccTA in addition to visualising inter-component communication (ICC)
maps. DroidSafe [31] is a static information flow analysis tool to report potential
leaks of sensitive information in Android applications.

ComDroid [17] detects app communication vulnerabilities. Automatic detection
of inter-app permission leakage is provided [56]. Authors address three kinds of
such attacks: confused deputy, permission collusion and intent spoofing and use taint
analysis to detect them. An empirical evaluation of the robustness of ICC through
fuzz testing can be found in [45]. A study of network covert channels on Android
is [29, 30]. Authors show that covert channels can be successfully implemented in
Android for data leakage. A security framework for Android to protect against con-
fused deputy and collusion attacks is proposed [14]. The master thesis [53] provides
an analysis of covert channels on mobile devices. COVERT [9] is a tool for com-
positional analysing inter-app vulnerabilities. TaintDroid [25], an information-flow
tracking system, provides a real time analysis by leveraging Android’s virtualized
execution environment. DroidForce [51], build upon on FlowDroid, attempts to ad-
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dresses app collusion problem with a dynamic enforcement mechanism backed by a
flexible policy language. However static analysis encourages in collusion detection
due the scalability and completeness issues [24]. Desired properties for a practical
solution include, but not limited to: characterising the context associated with com-
munication channels with fine granularity, minimising false alarms and ability to
scalable for a large number of apps.

6.3 Other Approaches

Application collusion can also be mitigated by implementing compartmentalisation
techniques, like Samsung Knox [1]. These techniques isolate app groups by forbid-
ding any communication between apps in different groups. In [61] authors analyse
several compartmentalisation strategies to minimise the risk of app collusion. Their
results show that it is enough to have two or three app compartments to greatly re-
duce the risk posed by a set of 20 to 50 apps. In order to reduce the risk further, the
amount of app compartments must be increased exponentially.

Finally, Bartel et al. [43] propose the tool APKCombiner which joins two apps
into a single APK file. In this way, a security analyst can use inter-component, in-
stead of inter-app, communication analysers to analyse the inter app communication
mechanisms that exist between apps. From an evaluation set of 3000 apps they were
able of joining 88% of them. The average time required to join two apps with AP-
KCombiner is three minutes. This makes it hard to use for practical app analysis.

7 Conclusion and Future work

We summarise the state of the art w.r.t. collusion prevention and point the reader to
the current open research questions in the field.

A frontal approach to detecting collusions to analyse pairs, triplets and larger sets
is not practical given the search space. Thus, we consider the step of pre-filtering
apps essential for a collusion detection system if it were to be used in practice.
Even if we could find all collusions in all existing apps, new ones appear every day
and they could create new collusions with previously analysed apps. Continuously
re-analysing the growing space of all Android apps is infeasible so an effective
collusion-discovery tool must include an effective set of methods to isolate potential
sets which require further examination.

The best long-term solution would be to enforce more isolation in the Android
OS itself. For example, apps may be required to explicitly declare all communica-
tions (this includes not only inter-app channels but also declaring all Internet do-
mains, ports and services which they intend to use) via their manifests and then the
OS will be able to block all other undeclared communications. However, this will
not work for already existing apps (as well as many apps which could be created
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before such OS hardening were implemented) so in the meantime the best practical
approach is to employ, enhance and expand the array of filtering mechanisms we
developed to discover potentially colluding sets of apps.

A filter based on Android app permissions is the simplest one. Permissions are
very easy and cheap to extract from APKs – no de-compilation, reverse engineer-
ing, complex code or data flow analysis is required. Alternatively (or additionally),
to the two filters described in our chapter, imprecise heuristic methods to find “inter-
esting” app sets may include: statistical code analysis of apps (e.g. to locate APIs po-
tentially responsible to communication, accessing sensitive information, etc.); and
taking into account apps’ publication time and distribution channel (app market,
direct installation, etc.).

Attackers are more likely to release colluding apps in a relatively short time frame
and that they are likely to engineer the distribution in such a way that sufficient
number of users would install the whole set (likely from the same app market). To
discover such scenarios one can employ: analysis of security telemetry focused on
users devices to examine installation/removal of apps, list of processes simultane-
ously executing, device-specific APK download/installation logs from app markets
(like Google PlayTM) and meta-data about APKs in app markets (upload time by
developers, developer ID, source IP, etc.). Such data would allow constructing a full
view of existing app sets on user devices. Only naturally occurring sets (either in-
stalled on same device or actually executing simultaneously) may be analysed for
collusion which should drastically reduce the number of sets that require deeper
analysis.

Naturally, finding “interesting” app sets is not enough: in the end, some analysis
is required to figure out if a given set of apps colludes. Manual analysis is costly,
merging apps into a single one often fails, however software model checking of
suitable abstractions of an app set might be a way forward. We demonstrated that
both semantic approaches are – in principle – able to successfully model check for
app collusion realising the threat of information theft. Here, naturally the abstract
semantics outperforms the concrete one. Though it is still early days, we dare to
express the following expectation: we believe that our approach will scale thanks to
its powerful built-in abstraction mechanisms.

The aspiration set out in this chapter is to build a fully automated and effective
collusion detection system, and tool performance will be central to address scale. It
is not clear yet where the bottleneck will be when we apply our approach to real-life
apps in a fully operational deployment. Further work will focus on identifying these
bottlenecks to optimise the slowest elements of our tool-chain. Detecting covert
channels would be a challenge as modelling such will not be trivial; this is the
natural next step.

In the long run, collusions are a part of a general problem of effective isolation
of software. This problem exists in all environments which implement sandboxing
of software –from other mobile operating systems (like iOS and Tizen) to virtual
machines in server farms (like Amazon EC2, Microsoft Azure and similar). We can
see how covert communications between sandboxes may be used to breach security
and create data leaks. The tendency to have more and better isolation is, of course,
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a positive one but we should fully expect the attackers to employ collusion methods
more often to circumvent security. We endeavour to see if our methods developed
for Android would be applicable to a wider range of operating environments.
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