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Abstract

A description is given of a language that combines an original view of an interpreted
functional language with a unifying approach to multi-dimensional data as it occurs in
graphics and sound environments. With the formal notion of intensionality a method
is obtained to combine many aspects of the production and processing in these environ-
ments. This language comprises a user-extensible object-oriented type system. Values of
any type can transparently take the form of a function on a multi-dimensional, contin-
uous or discrete, domain. In this way a unification is obtained of at least the following:
3D modeling, animation, texturing, image processing, sound synthesis and (scientific)
visualisation.

CR Categories: D.3.2 [Programming Languages] Language Classification - Applica-
tive languages; Extensible languages; Specialized application languages; 1.3.3 [Computer
Graphics] Picture/Image Generation - Display algorithms; 1.3.5 [Computer Graphics]
Computational Geometry and Object Modeling- Geometric algorithms, languages, and
systems; Modeling packages; 1.3.7 [Computer Graphics] Three-Dimensional Graphics and
Realism- Animation; Color, shading, shadowing and texture; 1.4.0 [Image Processing] Gen-
eral - Image processing software; 1.6.2 [Simulation and Modeling] Simulation Languages;
Additional Keywords: Sound synthesis, Image compositing

1 Introduction

In this introduction a summary will be given of the historical origin of the use of intensional
principles. Thereafter follows an outline of the rest of the paper.

Intensionality stems from the linguistic expression ‘in tense’, meaning ‘relating to time’.
This concept originated in the context of the development of logical systems, in order to be
able to construct better semantical models of time related notions as they occur in natural
language. In simple logical models, the meaning of a syntactical item is related to sets of
individuals. The underlying thought of the intensional paradigm is to make the meaning
of such an item a function from time to these sets (or to a relation of these sets). This is
necessary in order to fulfill a historical demand made by Frege, who stated that the formal
meaning of a sentence should be deducible from the meaning of its constituents. Let’s take a
simple example:

A former president of the USA.

In order to be able to attach a meaning to this sentence fragment, one can not take the
naive approach to deduce this from the simple meaning of ‘President of the USA’, being an
individual. Instead, this meaning must be taken as a function from history to individuals, in
order to let ‘former’ have any sense.



Subsequently the concept was elaborated to comprise other contexts, apart from time. The
crucial point is that the semantical strengthening is completely transparent to the syntax.

TL is the successor to a language on which a range of 3D graphics products was based.
(Pronounce ZL as “I, A1”, not as “ill”) The goal of this former language was the exploitation
of the interpreter paradigm, to combine a simple but powerful modeling language with a
user-interface written in the same language, as front end for a ray-tracer. In a certain stage of
the development of this earlier language, the possibility for writing procedural texture maps
was integrated in the language. This means that surface attributes, like intensity and color,
of objects become functions of the coordinates of the surface. At first a limited number of
primitive parameterized functions was made available, like chessboard and stochastic fractal
intensity patterns. To combine and adjust these simple textures, higher-order map functions
where introduced, which took map functions as their parameters. In the following example mp
becomes a 2-dimensional 1/f noise pattern with fractal parameter 0.7, which is subsequently
scaled to have values in [0.2,0.8] rather then in [0,1].

mp = fract( 0.7 );
smp = scalmap( mp, 0.2, 0.8 );

By this time it was realized that it would be more elegant to make maps subject to the
standard arithmatical operators and functions as if they were constant numbers. So, this
language was adapted to make the following possible:

smp = 0.2 + 0.6%mp;

In this way the higher-order aspect was replaced by intensionality. In the context of this
language it means that values of a certain type can transparently take the form of a function on
one (or more) of a number of standard domains. Functions and operators that are applicable
to the ground type(s) of these ‘intensionally’ defined entities, automatically become available
for the maps. If the coordinates were made available as primitive maps, the user would be
able to create his own maps as well as make any combination of them. The 2D coordinate
system was made available with the functions mu and mv.

m= 0.5+ ( sin( 55*mu() ) + sin( 34*mv() ) ) / 4;

At first this principle was further elaborated to comprise all forms of texturing techniques.
This means that the 3-dimensional domain was added to be able to create so-called solid-
textures [6][7], which are functions of a local 3D coordinate system. For this purpose the
set of built-in coordinate functions was extended with mx, my and mz. Also bump-maps were
added. These are modulations of the surface normal to simulate non-smooth surfaces [1]. To
get a closed arithmetical system, bump maps were modeled as complex-valued functions.

So this first intensional system was an embedded part of a graphics language. It was
intended for the description of (procedural) texture maps. The possible domains were 2D
and 3D continuous coordinate systems and the range value-types were real, complex (bump)
and 3D-vector (color).

After these developments there were several reasons to decide to start a new language.
In the old language, implementing new types made it necessary to adapt the C source of the
kernel. And when new implicit (built-in) functions were added to the language, it was up to
the implementer to make these also available for the texture maps. It was also understood
that the same principle that was at the core of the texture generating facilities, could be used
to formalise image and time related activities.



In ZL the intensional principle is at the heart of the language. The domains are 1-, 2- and
3-dimensional, both discrete and continuous. All (static) data types can become intensionally
defined. Obviously the 1D domain is intended to represent time. For instance 1D dependent
matrix valued functions can be used as transformations for procedural animations. Discrete
time appears in 3 instances; relating to sound as sample-time and control-time, and relating
to animation as frame time. 2D discrete domains have a purpose as basis for images. If
necessary there is automatic conversion to a continuous domain by any available interpolation
scheme, e.g. when an image is used as a texture map or when two images of different size
are composited. The 3D discrete domain is the basis of, for instance, scientific data-sets.
Continuous domains are basically abstract mathematical entities, which serve in many ways
the desired unification.

It must be noted that intensionality can be regarded as an extrapolation of Perlin’s ideas,
as first revealed in his Pixel Stream Editor [7], which are also to be found in the texture
facilities of so-called shading languages [4]. The implicitness of intensional domains and the
applicative style of programming are responsible for the higher order of the language and the
stronger unifying power. For instance, a parameterized function can be written to generate
a (texture) map. In ZL it it is then possible to call such a function with any map (of the
right type) as argument, where in other languages the kind of parameters would be limited
to static values.

In database contexts, one sometimes finds the term intensionality with a related but
different meaning. It then means that the value of a field is stored as a formula, dependent
on other fields, instead of a plain value. Maybe the term ‘modal’ would be better in that
context because of the absence of an (explicit or implicit) intensional domain.

In our context the opposite notion of extensionality could be used to give a new definition
of a rendering process:

extensionalizing a value on a discrete domain, through lazy evaluation of the
related intensional dependencies.

Rendering in this sense gives rise to a number of file generating functions in ZL. For each
dimensionality there is a rendering function for the appropriate type(s); 1D Real valued:
sound files, 2D Pixel: images, 3D Real, Complex or Real3 ‘scientific’ data-sets. The latter
two cases (2D and 3D) also bring about a time dependent (animated) version. This kind of
rendering is called ‘extensional rendering’ in this paper.

Rendering in the normal meaning of making (2D) images of (3D) scenes, plays a different
role in ZL. For this purpose a solid-model type and a link to an associated ray-tracer are
implemented in the language. This could be called ‘projective rendering’, because of the loss
in dimensionality. The intensional principle of the language takes care of the texturing and
animation of the 3D scenery. To all the rendering functions (in both senses) applies: the
result of the function call is an (intensional) value in the language, with all ‘civil rights’. File
generation is only a side effect. Particularly, the resulting value can directly be assigned to
an identifier, and/or be brought into use in other contexts.

im = raytrace( model );

Other (pre-projection) aspects of rendering (e.g. radiosity related concepts) could, follow-
ing Kajiya, be captured in the phrase ‘equational rendering’ [5].

The language characteristics of ZL will only be superficially treated in this paper, in favour
of the media-related types and the intensional semantics. Following a short presentation of the



elementary language elements and implemented types, the notion of maps as central part of
the intensional paradigm will be treated. Examples will be given in the form of implemented
image and sound generating primitives.

2 1L as an interpreted functional language

The interpreter consists of a kernel written in (ANSI) C and an extensible set of C-modules
for the implementation of the different types with their associated functionality in the form of
implicit operators and functions. ZL exploits fully the consequences of being an interpreted
language. An interpreter performs operations according to an input character string. As a
consequence, the types for functions and strings are the same in Z£. In other words, quoting
and function-calling are complementary operations. In the following examples, ‘}’ is the
prompt during interactive terminal operation. In this mode ZL reads strings from the console
and prints the result of the last evaluated expression.

} 445
9
} n445n
4+5
} "4+5" ()
9

In normal use string-functions will be assigned to identifiers before being called, thus resulting
in a more conventional look.

}£="8%1+6"; £( 88 )
94

As will be obvious from the previous example, the parameter mechanism is like that of a
shell or batch language. $ is the ‘fetch parameter’ operator. It is a genuine unary operator,
expecting any integer valued expression. Basic control mechanisms are C-style conditional
expressions and (recursive) function calls.

}fac = "$1 <271 : $1 * fac( $1-1 )";
} gcd = "$2 7 ged( $2, $1 % $2 ) : $1;
} fac(7);
5040
} gcd( 7735, 14586 );
221

As can be seen, boolean as well as integer (these are distinct types) expressions can serve
as condition. Also lists can be used, the empty list being regarded as false. The interpreter
tests for tail-recursion, so iterative constructs can be implemented without the risk of stack
overflow:

} for = "$1 > $2 ? return(); $3($1); for( $1+1, $2, $3 )";
} for( 1, 4, "print( exp( $1 ) )" );

2.7183

7.3891



20.086
54 .598
nil

(‘nil’ being the notation for the empty list, the default value of ‘return’) Being a functional
language, the only constituents of ZL are expressions. So ’anything that happens’ will always
leave a result.

There are mechanisms to link user-defined functions to operators, either new ones or
overloading build-in operators. Among the other language features are: a more involved
parameter mechanism, global and local identifier scope, protection and checking of global
identifiers, a module concept, program-files, comments, debug modes and a generic call-back
mechanism for coupling with user interfaces.

3 Types

New types are implemented in C-modules by calling kernel-functions during initialisation
time. There are some things all types have in common. They have a name, an integer
identification, a size and a number of methods applicable to all of them. When creating a
new type in a C-module, the name is given to the kernel. Let that name be ‘Mine’. The
kernel then creates two ZL identifiers:

e ‘Minetyp’ is an integer identifier with the value of the internal identification;

e ‘Mine’ is an implicit function which converts any parameter to the type ‘Mine’ if at all
possible.

} Inttyp
5
} Int( pi )
3

The type identification is very useful in combination with ‘typeof’, a function that returns
this integer for any parameter:

} typeof( "abc" ) == Stringtyp
T

The name of a type can be obtained, as a string, with ‘typename’. As mentioned above this
is also the function-name to convert any value to this type:

} Realtyp
6
} typename( 6 )
Real
} typename (typeof (sqrt(-1))) () (8)
8.0+ 0.0 1

Types are defined in independent C-modules and can be linked at will to the kernel when
creating an executable for the interpreter.



Types in ZL can be either static or dynamic. Dynamic types are implemented as memory
pointers to allocated memory blocks, with automatic maintenance of reference counts. List
is a good example of a dynamic type. Only static types can become intensionally defined.

One of the methods that is always defined when a type is called into existence is the one
that is invoked by a call of ‘print’. Another one is to copy a value of the type. This is
important in the case of dynamic types. Simple assignments of these types copy a pointer
and increment a reference count. A copy of a value is created with the operator ‘%’. On top
of the normal copy, there exists for some dynamic types another kind of copy. The so called
deep-copy, with operator ‘&&’, recursively copies sub elements of a value. Again, lists are an
obvious example.

Conversions from one type to another are done by coercions. Which method is invoked
for an implicit function or operator is determined by the type context. So all arguments have
their influence on the choice of method, instead of one argument determining a class. If there
is no applicable method for the current context, the kernel tries to create one by coercing the
arguments. By this convention it is possible to safely implement new functions and operators
with automatic overloading of symbols when necessary. The possible coercion rules towards
a target type are defined together with that type in its C-module.

3.1 Lists

Lists are implemented in the usual way with the constant ‘nil’ and the functions ‘cons’,
‘head’ and ‘tail’. There are no type restrictions for list elements.

}1=[T, 2, 3.0 );

is syntactic (well, actually semantic) sugar for:
}1=cons(T, cons( 2, cons( 3.0, nil ) ) );
@ and ’ are index operators.

} 1én

is equivalent with calling tail n times.

} p = 103

instead of

} p = tail( tail( tail( 1 ) ) )

} 1'n

is equivalent with

} head( 16n )



3.2 Mathematical types

The mathematical types are Bool, Int, Real, Complex and Quat. Boolean values are written
as T and F. All the usual notations and operators are available. There is a rather exhaustive
set of functions for Real and Complex: abs, sqr, sqrt, exp, log, sin, cos, tan, asin, acos,
atan, sinh, cosh, tanh, asinh, acosh, atanh, sec, cosec, asec, acosec, sech, cosech,
asech, acosech. They will return complex values for real arguments whenever necessary. As
mentioned in the introduction, a special use of complex values is their interpretation as range
type for texture bump maps. Quaternions are arithmatically fully implemented. There is a
normalisation function to bring them on the 4D ‘unit sphere’ for the standard interpretation
as rotations [10]. For quaternions there are coercions from and to transformation matrices.

3.3 Vector types

All vector types necessary as base classes for the geometrical types and the intensional domains
are implemented.

Int2 = int[2], discrete 2D points

Int3 = int[3], discrete 3D points

Real2 = real[2], 2D points

Real3d = real[3], 3D points or homogeneous 2D lines
Reald = reall4], homogeneous 3D planes

Intl2 = int[2][2], discrete 2D ‘box’

Intl3 = int[2][3], discrete 3D ‘box’

Reall2 = real[2][2], 2D line vector representation

[2]
Reall3 = real[2][3], 3D line

Besides common operators for addition and scalar multiplication, they also have the ’ index
operator. There are also matrix types for the representation of linear transformation in all
dimensionalities.

3.4 Geometrical types

A complete set of 2D and 3D geometrical types (points, lines, planes and transformations)
along with their constructions is implemented. Some examples:

} x =pl *x p2

dot-product of two points

} p =pl *x p2

cross-product of two 3D points

Jx=k "1

angle between two lines, or between a 3D line and a plane
}1l=ml|l+n

line through two points, or a 3D plane through a point and a line



} t = rotate( 37.5, 1 )
transformation matrix of a rotation around a line
etc.
Special attention is deserved for the possibility to raise a matrix to a real power:
}ti =t " 0.3

This works for any transformation! It is the basis for interpolation of transformations on the
matrix level. Again it must be noted that because of the coercion mechanism, quaternions
can be freely mixed with matrices in calculations. For 1D (time) manipulation there are also
1D transformations implemented.

3.4.1 Points as colors

Besides as geometrical coordinates, Real3 can also be interpreted as representing colors. In
this respect there are a couple of functions: rgbtohsv, hsvtorgb and nyuvtorgb. The first
two are usual conversions for rgb and hsv (hue, saturation, value) representations, except that
they incorporate a correction to avoid first order discontinuities in hue transitions. The third
one interprets its argument to lie in a normalised YUV space, normalised in the sense that
each value in the interval ( [0,1], [-0.5,0.5], [-0.5,0.5] ) represents a distinct color.

3.5 Pixels

The implemented pixel type consists of 4 unsigned bytes, red, green, blue and ‘alpha’. Coer-
cions to and from Real3 (colors) and Real exist, as well to Complex. The last one is useful
for bump maps stored in file. The usual compositing-algebra is implemented [9].

4 Maps

Map is the type of intensionally defined entities. They are functions of one or more of
the standard domains to any one of the static ZL types. They are normally not evaluated
in the interpreter context but when invoked in some kind of rendering operation, like ray-
tracing, image processing or sound synthesis. An exception to this is the function ‘evalmap’,
which explicitly evaluates a map after setting the domain with ‘setmapdom’. All functions
and operators for a certain type are automatically applicable to maps of that type, delivering
maps as result. So the syntax for creating maps is exactly the same as for normal expressions.
But when one of the arguments is a map, the result is a map, which is a ‘compiled’ version
of the expression instead of the evaluated result.
The type a map evaluates to is obtainable with ‘typeofmap’.

4.1 Map domains

4.1.1 Continuous domains

There are 3 continous map domains, one for each of the relevant dimensionalities. They are
available through implicit functions: m1, m2 and m3. Some possible interpretations are:
mi () global time



Figure 1: Chess figure

m2() normalised object surface for texturing

m3() space for solid textures
The following is an example which will produce a chess-board pattern when used as a texture
map (operator precedence as in C; + higher then &):

} chs = Int( 8*xm2()’0 ) + Int( 8%m2()’1 ) & 1 ? 0.0 : 1.0;

Now, chs is directly usable as intensity parameter for an attribute in a solid model. In fact,
using scalar multiplication of Real2 and because integers are converted to real when used as
intensity, it is also possible to write:

} d =8xm2(); chs = Int( 4°0 ) + Int( 4’1 ) & 1;
The following is a function which gives a chess-map with the number of fields as parameter:
} chf = "d = $1*m2(); Int( 4’0 ) + Int( 4’1 ) & 1";

This function can now be called with any real value, and the result can be used as a map.
Instead of with a plain constant:

} vchs = chf( 8 );
it can also be called with a map as parameter:
} vchs = chf( 4 + 8 * m2()’1 );

giving as result figure 1.

4.1.2 Discrete domains

As 1-dimensional domains are normally used as time-representation, there are 3 discrete
versions of them, reflecting the different uses of ‘sample-time’. These are:



mida() animation time, frame rate

midc () audio control time, the rate of sound parameters
mids () audio sample rate
And for the 2- and 3-dimensional cases:
m2d () images
m3d () volume data

4.1.3 Domain conversion

Most of the time, when mixing discrete and continuous domains, the system does what you
would expect it to do, namely, converting to and from the relevant domains. To this end
there are some quantities which exists globally as well as associated with individual maps.
Their value can be obtained or changed with functions of the same name:

dbnd2 : Int2 bounds of m2d in relation with m2

dbnd3 : Int3 bounds of m3d in relation with m3

frga : Real framerate, default 25

frqc : Real audio control rate, default 100

frqs : Real audio sample rate, default 44100
So when, for instance, you multiply a (discrete) image with a (continuous) noise, the noise
function is automatically sampled (evaluated) at points corresponding with the image pixels,
converting the image space to the square unit interval. Apart from this there is a complete
generic way to switch domains with ‘trfmap’.

} mi = trfmap( m, d )

The result is the map m, but with d as new domain, where d can be a map itself. The following
example is a function to convert a 2D map to a 3D solid map with a spherical projection:

ballprj = "m = m3(); x =m’0; y =m’l; z = m’2;

u = vatan2( y, x );
r = hypot( y, x );
v =2 * vatan2( r, -z );

trfmap( $1, real2( u, v ) )";

$1 is a 2D map, dependent on m2. So, the second parameter of trfmap is of type Real2. This
expression is the new domain. It is solely dependent on m3, so will be the result map. The
trigonometric functions with v as prefix are normalized versions, in the sense that their values
and arguments are supposed to lie in the interval [0,1].

When maps on discrete domains are evaluated on continuous domains (perhaps as an
automatic step in a conversion to another discrete domain), the values are to be interpolated.
The way this is done can be set with ‘polmode’.

e 0 — constant interpolation (no interpolation)
e 1 — linear interpolation
e more modes can be implemented

For the linear case the function ‘linpol’ must be implemented for the relevant types as a
function that interpolates between two values of that type according to a third real argument
in [0,1]:

10



} linpol( 4.2, 5.7, 0.4 )
4.8

linpol is implemented for: Real, Real2, Real3, Pixel, Complex, Quat, Transform.

4.2 Modifying maps

A map can always be looked upon as a function with a number of maps or values as arguments.
With the function ‘setmap’ each of these arguments can be replaced with another value or
map at a later instant. The third argument of setmap is the index of the parameter of the
map that is to be replaced. The default is 0 (for the first argument).

}mp =m1i() / 2;

Now mp is a map with two arguments, the first being m1(), the second (with index 1) the
constant 2, coerced to Real 2.0. With the index operator @ these arguments can be extracted.

}mp @ 1
2.0

After:
} setmap( mp, mr()’1, 1 );
mp is defined as:

Jmp =m1() / mr()’1;

5 Extensional rendering

5.1 Image rendering
An image can be generated with:
} im = writeimage( fname, m )

fname is a filename to be associated with the image. m is a map, probably dependent on m2
and/or m2d of the pixel type, or coercible to it. the resulting map im will be a m2d dependent
Pixel valued map. Here is an example to distort and artificially color an image. (figures 2

and 3)
( /* at the begin of a line begins a comment until the end of the line)

/* open a stored image
imag = openimage( "screamhead" );
/* get the image in memory for efficiency
readimage( imag );
/* cast the pixels to real valued colors
x = Real3( imag );
/* set the global image-size to the size of this one
dbnd2( dbnd2( x ) );
/* get the intensity value (eq 0.299 * x’0 + 0.587 * x’1 + 0.114 * x’2)
y = yval(x);
/* make a function to add a 2D-noise distortion to the domain

11



Figure 2: screamhead

Figure 3: distohead
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Figure 4: anihead

distm = "m2() + $1 * dnoise( m2(), 0.1 )";
/* a function to distort an image, the image and the amount of distortion
/* are the parameters
disto = "trfmap( $1, distm($2) )";
/* a function with hue as parameter with the intensity also determining
/* the color saturation
huecol = "hsvtorgb( real3( $1, y, vy ) )";
/* the actual map for the new image;
/* the hue is produced by a noise.
/* the distortion is made proportional to the height in the image
dis = disto( huecol( noise( m2(), 0.9 )), 0.1x(m2()’1) );
/* render the resulting image
writeimage( "distohead", dis );

If m is also time dependent, the following function can be used:

} anim = writeanimage( fname, m, startfr, endfr )

An animated sequence of images will be generated, from frame number startfr to frame
number endfr. So if we parameterize the process above:

disf = "disto( huecol( $1+noise( m2(), 0.9 )), $2 * m2()’1 )";
writeanimage( "anihead", disf( m1(), 0.5*m1() ), 0, 25 );

The result is an animated coloring and distortion. (figure 4 gives frames 0, 5, 10, 15, 20 and
25 of the resulting sequence)

5.1.1 ‘Modeling’ images

To render an image which is a combination of a (large) number of linearly deformed, likely
smaller, images, the function rimage and it’s animated form ranimage are effective solutions.
Instead of one image-defining map, as writeimage, they take a list of image definitions as
argument. Each element of this list is a pair (2 element list) consisting of a 2D transformation
and a map.

po = real2( 0, 0 );
pm = real2( 0.5, 0.5 );
tf

"scale( 0.5, po ) * rotate( frandom( -pi, pi ), pm )";

13



Figure 5: fourhead

t0 = t£Q);

t1 = translate( 0.5, 0 ) *x tf();
t2 = translate( 0.5, 0.5 ) * tf();
t3 = translate( 0, 0.5 ) *x tf();

iml = [ [tO0, imag), [t1l, imag), [t2, imag), [t3, imag) );
rimage( "fourhead", iml );

(figure 5)

5.2 Imposing hierarchy

The principle from the previous section of dividing the domain in linear deformed subparts,
is even more essential for imposing a hierarchy on the time domain. First it must be made
clear that the list of 2D intervals, as used in ranimage, can form the outcome of a hierarchic
structure of transformation combinations. It is not the purpose of the language to impose
such a structuring organisation; on the contrary, it’s aim is to provide enough elements for
the user to implement any kind of structuring she wishes. The principle characteristic of the
use of 2D transformations is their ability to represent any combination of linear deformations,
and the possibility to invert them for the efficiency of the rendering process. This makes it
possible to sort the intervals in their resulting order. In the case of time, one expects to be
able to organise dependencies in a non-linear fashion. To be able to do so, the structure of a
so-called timeframe is recognised in the language. It is defined as follows:

A timeframe is a list. If nil, it is equivalent with time as defined by m1 (). Otherwise it
is to be interpreted in the time as defined by it’s tail, which is a timeframe.

This interpretation is defined by it’s first element, which is a list of one or two elements.
The first one is a 1D transformation, defining an interval. The optional second element is
a ml dependent, Real valued map, which defines a deformation function of the time on the
established interval. This function has to be monotonic on the unit interval, in order to make
it possible for the system to numerically invert it, and to make sure that subsequently defined
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intervals remain intervals.

5.3 Sound synthesis

In analogy with rimage there is a function implemented to calculate a ‘sound image’. The
result is a Real valued, mlds dependent, map, generated from a number of m1 and mlds
dependent maps. This function is ‘raudio’ (render audio) and its arguments are a filename
and a list. (the possibility to generate multi-channel audio is disregarded for the moment)

} m = raudio( name, lau );

The role of the ‘interval defining’ transformations in rimage is taken over by timeframes.
Apart from sound-generating (Real valued) maps, it is also possible to indicate ‘programmed’
executions of the setmap mechanism. As sound synthesizing maps can be memory intensive,
e.g. when involving delay units, it is not feasible to define a map for each interval. An
alternative option is to use a map for a hierarchically covering interval and changing it’s
parameters over the smaller intervals. In this context one can think of the map as a musical
instrument and playing the notes as varying parameters. The local time inside the specified
time-interval is available with the implicit map function 1t. This is just for ease of use,
because any timeframe can be evaluated from anytime else by the map function tfmap, with
the specific timeframe as parameter.

There is a number of functions dedicated to special sorts of sound synthesis. A simple
example is ‘fsin’, a sine generator which takes a sample and a frequency as argument.

} fmp = fsin( mids(), frq )

is an efficient alternative for

} pi2
} fmp

2xarg(-1);
sin( pi2*frg*mi () );

The following is an implementation of a FM synthesizer [2]. The arguments are a single
carrier frequency and a list of modulators, each consisting of a modulating frequency and a
modulation index.

fmgen = "fsin( mlds(), rfmgen( $1, $2 ) )";
rfmgen = "carrier = $1; modlist = $2;
modlist == nil ? return( carrier );
modfreq = modlist’0; modidx = modlist’1;
rfmgen( carrier + modidx*modfreq*fsin( mids(), modfreq ),
modlist@2 )";

5.4 3D Rendering

The logical equivalent of the sound and image generating primitives discussed so far, is the
generation of a 3D (voxel) data set like the ones used in medical and scientific visualisation.
This is done with the function r3D, again with a filename and a list. Each element of the list
is a pair consisting of a 3D transformation and a map. The animated counterpart is rani3D.

15



Figure 6: generated density

6 Projection rendering

The methods of modeling and rendering as employed in the language will not be described in
detail in this paper. ZL currently works with a ray-tracer and associated ¢sa (Counstructive
Solid Geometry) models. Important is, that surface and volume properties are implemented
in a ‘shade tree’ fashion [3], with the possibility to map any parameter. So any defined map
of (or coercible to) the proper type, defined in the language, can be used in a model as e.g.
a texture definition. Also at any hierarchic place in the model where a transformation is
expected, a time dependent map is recognised for animation purposes.

The render module is able to visualise generated voxel sets. Also it is possible to render
continuously m3 () based maps in a ‘hypertexture’ manner [8] or by generating iso-surfaces.

7 Density simulation

This is an example how new functionality can be added under the intensional paradigm. The
function density generates a list of coordinates, distributed over the proper dimensionality,
according to a Real valued map, which is interpeted as representing the required density in
space. The coordinates are generated by a simulated Poisson process and integration of the
density function over the proper domain. The arguments of density are the density map and
the interval where the simulation has to take place, in the form of a line representation.

xyz = m3Q);

r = hypot( xyz );

r=r>1.071.0 : r;

box = real3(-1,-1,-1) |+ real3(1,1,1);
pl = density( 3000*sin(pi*r)~50, box );

After this, pl will be a list of Real3 points, grouped around the origin in a shell (figure 6).
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8 Differential equations

Another example is solving an ordinary differential equation with initial value. For this
purpose a new primitive map is available; v3 is a function giving the velocity vector as a 3D
domain. It is now possible to formulate the general set of differential equations:

:.E = f('(E’ lU’t)
v = g(z,v,1)

Let m3() represent x, v3() represent v and m1 () represent ¢, then the functions f and g can
be formulated as maps mv and ma resp. The solution can be gotten with:

} mp = integrate( ma, mv, x0, vO );

Where x0 and vO are Real3 constants indicating the initial values. The result mp is a Real3
valued, mida dependent map giving the solution for .
Two special versions are recognised:

} mp = integrate( ma, x0, vO );

for
T ="
V= g(l‘at)
and

} mp = integrate( mv, x0 );

for

= f(z,t)

9 Conclusions

Intensionality is explained as a principle by which most multi-dimensional data manipulating
activities can be unified. An implementation of this paradigm is discussed in the context of
an interpreted functional language, in which many common problems are consistently solved;
such as conflicts between continuous and discrete domains, and combinations of discrete
domains of differing sizes. A formalisation of a class of rendering processes is established which
extends over all common phenominal dimensionalities. Also the connection with standard 3D
modeling, visualisation and animation is explained. This may lead to new insights in the
linking of procedural methods for texturing, animation and sound synthesis.
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