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Abstract

We propose a new research direction for eye-typing which is poten-
tially much faster: dwell-free eye-typing. Dwell-free eye-typing is
in principle possible because we can exploit the high redundancy of
natural languages to allow users to simply look at or near their de-
sired letters without stopping to dwell on each letter. As a first step
we created a system that simulated a perfect recognizer for dwell-
free eye-typing. We used this system to investigate how fast users
can potentially write using a dwell-free eye-typing interface. We
found that after 40 minutes of practice, users reached a mean en-
try rate of 46 wpm. This indicates that dwell-free eye-typing may
be more than twice as fast as the current state-of-the-art methods
for writing by gaze. A human performance model further demon-
strates that it is highly unlikely traditional eye-typing systems will
ever surpass our dwell-free eye-typing performance estimate.
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1 Introduction

Gaze interaction techniques enable users with certain motor dis-
abilities to communicate via an eye-tracker. For users with certain
motor disabilities gaze interaction may be the only communication
channel available. Given their importance to such users, gaze com-
munication systems have been actively researched for over 30 years
[Majaranta and Rédihd 2002]. Unfortunately the record-speeds in
gaze communication are relatively slow and range from 7-26 wpm
[Majaranta and Réihéd 2002; Majaranta et al. 2009; Wobbrock et al.
2008; Tuisku et al. 2008; Ward and MacKay 2002].

The primary technique used for gaze communication is eye-typing.
To eye-type, the user looks at a letter on an on-screen keyboard. If
the user’s gaze remains fixed on the same letter for a set time pe-
riod (the dwell-timeout) the system assumes the user intended to
write that letter. Despite significant progress, even the best eye-
typing systems are relatively slow with reported entry rates ranging
from 7-20 wpm [Majaranta and Rdihd 2002; Majaranta et al. 2009].
Majaranta et al. [2009] carried out a longitudinal experiment in
which users adjusted the dwell-timeout progressively throughout
the experiment. They found that after ten 15-minute sessions users
reached a mean entry rate of 20 wpm. Their learning curve showed
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that participants quickly improved from 5-10 wpm in the first ses-
sion to 13-20 wpm in the fifth session (Figure 2 in [Majaranta et al.
2009]). Thereafter the learning curve plateaued with only some of
the participants making further minor improvements. The best par-
ticipant improved from 20 wpm in the fifth session to 23 wpm in
the last session. It is therefore plausible that these entry rates are
close to the limit for traditional dwell-based eye-typing.

Besides eye-typing, the only other fast gaze communication tech-
nique is Dasher [Majaranta et al. 2009; Tuisku et al. 2008; Ward and
MacKay 2002]. Dasher allows users to write by zooming through
a world of boxes. Each box represents an individual letter and the
size of a box is proportional to the probability of that letter given
the preceding letters. The entry rates for Dasher range between
16-26 wpm [Tuisku et al. 2008; Ward and MacKay 2002] (note
that the higher entry rates stem from a single expert user in [Ward
and MacKay 2002]). Hence Dasher’s performance is similar to eye-
typing with a user-adjustable dwell-timeout [Majaranta et al. 2009].

Thus the fastest gaze communication systems available appear to
have reached a plateau at around 20 wpm. To break out of this
local optimum we propose a paradigm shift in gaze communica-
tion: dwell-free eye-typing. In dwell-free eye-typing users do not
need to look at each letter for a fixed period. Instead, the system
recognizes sequences of words from users’ continuous eye-traces.
Users need only gaze through the desired letters in their desired
phrase or sentence. After looking at a designated area, the sys-
tem processes the eye-trace and infers the desired word sequence.
Since such a system eliminates dwell-timeouts for key selections,
this technique could potentially be faster than state-of-the-art dwell-
based eye-typing interfaces. This dwell-free interaction technique
is also likely to be more natural, fluid, and less frustrating for users.
We also hypothesize that dwell-free eye-typing may enable users to
learn and thereafter quickly recall the movement patterns for famil-
iar words or phrases from motor memory. This may be plausible
given that previous research has shown that users of a stylus in-
terface can reliably recall 15 unfamiliar gesture trajectories per 45
minute practice session [Zhai and Kristensson 2003].

This new dwell-free technique is obviously non-trivial to realize.
However, as Shannon [1948] observed in his groundbreaking pa-
per on information theory, natural languages are highly redundant.
As a consequence, while a particular eye-trace might be compat-
ible with a vast number of possible letter sequences, the majority
of these will be improbable under a language model. By capturing
language regularities in such a language model, a system can infer
users’ intended text from noisy input. A well-known example is
speech recognition [Padmanabhan and Picheny 2002]. A more re-
lated example is Salvucci’s [2000; 1999] work on fixation tracing.
Salvucci pioneered the use of hidden Markov models for inferring
users’ intended individual words from eye-traces over an on-screen
keyboard. His system performed isolated word recognition using
a small set of 1000 words. Another related example is the gesture
keyboard (commercialized as ShapeWriter, T9 Trace and Swype).
This technique enables users to write individual words by gesturing
on a capacitative on-screen keyboard. Users’ intended words are
recognized from the finger traces using a pattern recognition algo-
rithm [Kristensson and Zhai 2004; Zhai and Kristensson 2003].



1.1 Estimating Dwell-Free Eye-Typing Performance

We envision a dwell-free eye-typing system reminiscent of how
state-of-the-art continuous speech recognition systems convert spo-
ken utterances into text [Padmanabhan and Picheny 2002]. Anal-
ogous to speech recognition, our hypothetical system converts a
stream of time-ordered observations into a sequence of words. Both
speech recognition and our proposed eye-trace recognition rely
heavily on a language model to aid their inference from noisy data.
Neither requires the user to explicitly wait for each word or letter to
be recognized.

However, engineering such an unproven and complex system is a
tremendous undertaking. To put this into perspective, speech recog-
nition and handwriting recognition are separate research fields with
dedicated conferences and journals focusing on how to efficiently
and accurately recognize users’ input. Dwell-free eye-typing recog-
nition may require an undertaking of similar magnitude.

Thus, before championing a major research effort towards creating
dwell-free eye-typing systems, we wondered whether users would
be able to write substantially faster using this paradigm. Text entry
is a complex task, more complex than visual target selection. For
instance, eye-typing users must model the desired words, the letter
sequences that comprise those words, and the locations of the letters
on the keyboard. Therefore, we conducted a text entry study to
obtain a human performance estimate of dwell-free eye-typing by
simulating a perfect recognizer. As we will see, the possible gains
are substantial, with users reaching entry rates that are twice that of
traditional state-of-the-art eye-typing interfaces.

We designed our system to factor in how much information a com-
plete dwell-free eye-typing interface would require to accurately
infer users’ intended words. This enabled us to investigate the
plausible human performance of dwell-free eye-typing. Our system
knows what the user is intending to write and verifies that the user
is gazing at the letter key sequence corresponding to the stimulus.
This provides users with an experience similar to what they might
expect from a highly accurate dwell-free eye-typing interface.

In our experiment, users had to gaze in the proximity of the desired
key but not necessarily directly at it. Our system recognized an
intended letter as long as the user gazed within a 1.5 key radii of
the center of the key. We also made the keyboard relatively small,
measuring 15 X 6 cm on the screen. This allowed users to move be-
tween keys quickly with minimum eye movement. We also decided
not to require users to go to the spacebar between words. Both con-
tinuous speech recognition and unconstrained handwriting recogni-
tion segment users’ input into words without explicit demarcation.

2 Method

We recruited eight participants (4 male, 4 female) from the uni-
versity campus. Their ages ranged from 20 to 29 (mean = 25.5,
sd = 4.3). Participants used a Tobii P10 workstation with an in-
tegrated gaze-tracker running Windows XP. The physical screen
size was 30 X 23 cm and the resolution was 1024 x 768 pixels. The
on-screen QWERTY keyboard’s physical size was 15 x 6cm and
its screen size was 500 x 200 pixels. We obtained eye-tracking
samples by installing a callback function into the Tobii eye-tracker
driver using the Tobii API. This ensured we received the raw and
unsmoothed tracker signal. We wanted to use the raw signal be-
cause it eliminates lag when users are quickly changing their gaze.
The eye-tracker had a sampling rate of 40 Hz and an accuracy of
0.5°. We used the Windows multimedia timer framework to times-
tamp all eye-tracking events with an accuracy of 3 £ 1 ms.
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Figure 1: Entry rate (wpm) for all participants in each session. The
bold black line shows the overall mean.

2.1 Procedure

Each participant was paid £15 to take part in a single 100-minute
session. The participant first calibrated the eye-tracker. We used
nine evenly distributed circular targets. The participant was asked
to gaze at the targets in sequence. Calibration took place in the
same screen region used during the typing experiment. After cal-
ibration, the participant completed five 10-minute typing sessions.
Each session was separated by a 10-minute break. We decided on
10-minute breaks because a pilot study revealed that shorter breaks
resulted in decreased performance during later sessions.

The experimental interface presented the user with a memorable
phrase from the MacKenzie and Soukoreff [2003] phrase set. Each
session used its own set of phrases and all participants wrote the
same phrases in the same order. After reading the phrase, the par-
ticipant pressed the spacebar key on the desktop keyboard. This
caused the on-screen keyboard to appear. Similar to Majaranta et
al. [2009], the phrase remained at the top of the interface as a refer-
ence. The participant was instructed to write the phrase as quickly
as possible. When the participant gazed in the vicinity of the first
letter key of the phrase, the letter turned red as a visual indica-
tion that the system had recognized that letter. Then the participant
moved on to the next letter. This was repeated until the participant
had completed the entire phrase. To complete the phrase the partici-
pant gazed at a result area positioned above the on-screen keyboard.
After completion of a phrase, the participant was shown the entry
rate in words-per-minute for that phrase.

3 Results

In total we recorded 400 minutes of eye-trace data. Participants en-
tered a total of 2026 phrases. We measured the entry rate in words-
per-minute (wpm). We used the standard definition of a word as
five consecutive characters. Entry time was measured as the inter-
val from when the user first gazed inside the keyboard to when the
user gazed at the result area after having completed the stimulus
phrase. While the users did not have to gaze at the spacebar, our
entry rate calculation includes the spaces in the stimulus phrase.

The mean entry rate was 36 wpm in the first session and 46 wpm
in the fifth session. Participants’ entry rate improved in the first
few sessions and then reached a plateau (Figure 1). The high entry
rates demonstrate that a well-implemented dwell-free interface has
the potential to dramatically increase entry rates compared to the
current state-of-the-art. In the last 10-minute session, the fastest
participant had a mean entry of 54 wpm, and the slowest participant
had a mean entry rate of 37 wpm.
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Figure 2: Theoretical entry rates assuming different dwell-times
and overhead times. The horizontal purple line shows the speed of
users in the final session (46 wpm). We omit the data point for O ms
overhead and 0 ms dwell time since its entry rate is infinite.

We created a human performance model in order to better under-
stand the limitations of standard dwell-based eye-typing. Concep-
tually, writing a single character using an eye-typing system can be
broken down into two components: dwell-time and overhead time.
The dwell-time is the duration the user has to gaze at a desired let-
ter key in order to select it. The overhead time consists of the time
to transition between keys and the time to perform any necessary
error correction. Figure 2 shows theoretical entry rates at different
dwell-times and at three different overhead times. Each individual
data point on the plot shows the entry rate in wpm as a function of
dwell-time plus overhead time. Our dwell-free experimental sys-
tem is the horizontal purple line intersecting the y-axis at 46 wpm.
It is constant in the plot since it is unaffected by dwell-time.

Typical dwell-times in the literature range from 400 to 1000 ms
[Majaranta and Ridihd 2002]. To get an estimate of a reasonable
overhead time we consulted the study by Majaranta et al. [2009].
Using adjustable dwell-timeouts they obtained the fastest entry
rates that have been reported for traditional eye-typing interfaces.
In their study, participants had an entry rate of 19.8 wpm with a
mean dwell-time of 282 ms in the final session. Based on these data
points, we calculated an overhead time of 318 ms.

Figure 2 shows that our human performance estimate for dwell-
free eye-typing is much faster than the entry rate at any reason-
able combination of dwell-time and overhead time for traditional
eye-typing. Assuming an overhead time of 300 ms (compared to
318 ms measured in [Majaranta et al. 2009]), even if the participants
at maximum performance had reduced their dwell-time to 100 ms
(compared to 282 ms measured in [Majaranta et al. 2009]), they
would still be far below our human performance estimate of dwell-
free eye-typing. Also, very low dwell-timeouts are likely to trig-
ger many false key activations (the so-called “Midas touch” prob-
lem [Jacob and Karn 2003]). Assuming no dwell-time for 300 ms
overhead (similar to [Majaranta et al. 2009]), our human perfor-
mance estimate for dwell-free eye-typing performs about the same.
This suggests that the overhead times observed by Majaranta et
al. [2009] may be similar to what we measured in our experiment.

Figure 3 shows a heat map of where users were looking during
the experiment. Unsurprisingly, the most likely letters in English,
such as the letter “e”, received the most gaze points. We also ob-
served that users gazed in a relatively broad region around the keys.
This may have been caused by inaccuarcies in the eye-tracker or
by users not gazing directly at the center of the keys. Analysis of
the trace data showed that 51% of the time participants activated
a key by gazing inside it. The remainder of the time participants’
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Figure 3: Heat map of gaze locations during the experiment for all
participants and all phrases.

"on the way to the cottage"

Figure 4: One participant’s sequence of gaze locations for the
phrase “on the way to the cottage”. Green points are at the start of
the trace, red points are at the end of the trace.

gaze passed within the 1.5 key radii threshold but never went inside
the key. Figure 4 shows an example eye-trace from one participant.
The figure demonstrates how the user serially fixated on each letter
in the stimulus phrase.

Finally, we collected subjective data from our participants (Figure
5). Participants were asked to rate a set of statements on a 1-7
Likert scale (1 = Strongly Disagree, 7 = Strongly Agree). Encour-
agingly, users liked the dwell-free eye-typing interface and thought
it was fun to use. They also did not find it stressful. However, most
users agreed that they needed to concentrate during the task. Par-
ticipants also perceived they would improve with practice. Open
comments were highly positive: “I found it really fun!” and “It
feels like playing a computer game!”.

4 Discussion

Several factors are likely to affect a human performance estimate
of dwell-free eye-typing. First, similar to Majaranta et al. [2009],
our stimulus phrase remained visible during the writing task. How-
ever, studies have shown that users tend to write faster if they are
forced to memorize the phrase beforehand [Kristensson and Ver-
tanen 2012; Soukoreff and MacKenzie 2003]. Second, our partic-
ipants had to gaze at all letters in the phrases to proceed, which

Likert scale

T T T T T
Liked Stressful Concentrate Improve Fun

writing writing to with writing
text text write practice text

Figure 5: Box-and-whisker plot of participants’ ratings on a 1-7
Likert scale (1 = Strongly Disagree, 7 = Strongly Agree).



means that their error rate was always zero. However, an actual
implementation may be error-tolerant to spelling mistakes and may
not necessarily require users to gaze in the vicinity of all the letters
in the intended word. This is plausible given that a gesture key-
board can recognize a word without the gesture trace intersecting
any of the letter keys for the intended word [Kristensson and Zhai
2004; Zhai and Kristensson 2003]. Third, our study ignored error
correction. Error correction will reduce the entry rate. However, the
desire to correct errors is likely task dependent. For example, users
are probably willing to accept a much higher error rate when en-
gaging in real-time face-to-face communication than when writing
emails or essays.

While it may be challenging to create an efficient dwell-free eye-
typing interface, prior work on gesture keyboard recognition [Kris-
tensson and Zhai 2004] and speech recognition [Padmanabhan and
Picheny 2002] have convincingly demonstrated that it is possible
to infer users’ intended text from very noisy signals. We believe a
promising research direction would use hidden Markov models to
model the noisy eye-tracker observations. This would be comple-
mented by a domain-appropriate long-span language model, such
as our recently published language model for augmentative and al-
ternative communication [ Vertanen and Kristensson 2011].

5 Conclusions

We have argued that existing eye-typing interfaces are close to their
maximum speed. To realize significant further gains we need to
explore different research directions. We have further argued that
one promising direction is dwell-free eye-typing. As a first step
we investigated how quickly users could write using a dwell-free
eye-typing interface that simulated a perfect recognizer. We found
that users reached a mean entry rate of 46 wpm after 50 minutes of
practice. This is more than twice as fast as the entry rates observed
with an eye-typing interface using adjustable dwell-time [Majaranta
et al. 2009] and with the predictive zooming interface Dasher [Ward
and MacKay 2002; Tuisku et al. 2008]. Further, by modeling tra-
ditional eye-typing performance as a combination of overhead time
and dwell time, we demonstrated that traditional eye-typing sys-
tems are highly unlikely to ever reach the potential entry rates we
observed for dwell-free eye-typing. To surpass our human perfor-
mance estimate for dwell-free eye-typing a traditional eye-typing
interface would either have to involve no overhead time (which is
impossible) or use a dwell-timeout of 100 ms or less. However, the
record-speeds observed in traditional eye-typing so far have had a
mean dwell-timeout of 282 ms [Majaranta et al. 2009].

We believe dwell-free eye-typing is a necessary paradigm shift to
enable further progress in gaze communication. This will require
a substantial and collective undertaking by the eye-typing commu-
nity. But this undertaking may well be worth the effort. Our results
demonstrate that dwell-free eye-typing offers the potential for sub-
stantially faster gaze communication.
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