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Abstract
We propose reducing errors in text entry by combining speech
and gesture keyboard input. We describe a merge model that
combines recognition results in an asynchronous and flexible
manner. We collected speech and gesture data of users entering
both short email sentences and web search queries. By merging
recognition results from both modalities, word error rate was
reduced by 53% relative for email sentences and 29% relative
for web searches. For email utterances with speech errors, we
investigated providing gesture keyboard corrections of only the
erroneous words. Without the user explicitly indicating the in-
correct words, our model was able to reduce the word error rate
by 44% relative.
Index Terms: mobile text entry, multimodal interfaces

1. Introduction
It is difficult to correct speech recognition errors using speech
alone. Therefore speech interfaces often provide users with a
secondary input modality. In this paper we propose using a ca-
pacitive touch-screen gesture keyboard as a secondary modality
for speech. Capacitive touch-screens are attractive because of
their high-quality continuous touch-signals and their increasing
ubiquity on mobile phones. Previously Sim [1] used a capaci-
tive touch-screen keyboard to allow users to input information
such as word boundaries or the first letter of the intended word.
Sim found that touch input reduced the decoding time and the
error rate on a 5K WSJ task.

Here we find that we can substantially reduce error rates by
combining speech with a touch-screen gesture keyboard. A ges-
ture keyboard enables users to quickly write words by swiping a
finger over the touch-screen keyboard [2]. For example, to write
the word “speech” the users pushes down on the S key and slides
to the P, E, C and H keys before lifting up to complete the ges-
ture (see figure 1). The system then performs a pattern match to
find the word whose shape on the keyboard most resembles the
gestured shape. Gesture keyboards have been commercialized
as ShapeWriter, Swype, T9 Trace and Flext9.

We merge the speech and gesture keyboard modalities using
our recently proposed merge model [3]. This model supports
two key features: asynchronicity and spotty correction. Asyn-
chronicity means that users do not need to synchronize speech
and gestures. Informal testing revealed that users have difficulty
speaking and gesturing simultaneously. This is similar to Sim’s
[1] finding that a user had difficulty speaking while touching the
first letter of each word. In addition, the asynchronous merge
model also allows users to perform post hoc error correction
in which recognition results from a primary modality are later
merged with the recognition results from a secondary modality.

The second key feature is spotty correction. Our merge
model can merge recognition results from a modality that only
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Figure 1: The ideal shape of the word “speech” on a gesture
keyboard. The starting point is indicated with a dot.

received a subset of the words received by the other modality.
This enables spotty correction in which the user only needs to
input the erroneous words in the second modality to correct the
errors in the first modality. This is done without explicitly spec-
ifying the erroneous words. For example, say the user spoke
“the cat sat” and the system recognized “the bat sat”. Using
spotty correction the user simply gestures “cat” and the system
then attempts to locate and replace the erroneous word.

2. Asynchronous Multimodal Text Entry
2.1. Speech Recognition

We used the CMU Sphinx speech recognizer, training a US-
English acoustic model on 211 hours of WSJ data. We trained
cross-word triphones with a 3-state left-to-right HMM topol-
ogy. We used a 39-dimensional feature vector with 13 Mel-
frequency cepstral coefficients, deltas and delta deltas. Our
model had 8000 tied-states with 16 continuous Gaussians per
state and diagonal covariance matrices. We used the CMU pro-
nunciation dictionary (39 phones plus silence). Audio was
recorded at 16 kHz. We performed cepstral mean normalization
based on a prior window of audio. The recognizer was adapted
to each user’s voice using 40 sentences. We adapted the model
means using maximum likelihood linear regression with 7 re-
gression classes. We used the PocketSphinx decoder and tuned
it to near real-time recognition.

Our email language model was trained on text from a
Usenet corpus (1.8B words), a blog corpus (387M words), and
four months of Twitter messages (109M words). We collected
the Twitter data using the free streaming API which provide
access to 5% of all tweets. We trained our language model
only on sentences that were similar to short email sentences us-
ing cross-entropy difference selection [4]. In this recently pro-
posed method, each sentence is scored by the difference in per-
word cross-entropy between an in-domain language model and
a background model. We did this separately for the Usenet, blog
and Twitter datasets. Our in-domain trigram language model
was trained on sentences drawn from the W3C corpus and the
non-spam messages in the TREC 2006–7 spam track. We only
used sentences with six or fewer words. Our background mod-
els were trained on a similar amount of training data as our in-
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domain model but used sentences from Usenet, blog or Twitter.
For each of these three sources we chose the cross-entropy dif-
ference threshold that optimized performance on held out W3C
and TREC data. We built a mixture model from our three lan-
guage models using linear interpolation with mixture weights
optimized on the held out data. Our mixture model had 43M
n-grams. All models used interpolated modified Kneser-Ney
smoothing with no count cutoffs and a 64K vocabulary.

2.2. Gesture Keyboard Recognition

We will now describe the gesture recognition procedure, which
is an adaptation of the standard algorithm [2].

If the spatial length of the trace is less than a threshold (38
pixels or 6 mm on a 4th generation iPod Touch), then the system
assumes the user intended to touch a single key rather than ar-
ticulate a touch-screen gesture. Unlike previous work [2] which
only returned the nearest key on the keyboard when the user
tapped a single key, we provide additional letter hypotheses to
the merge model by computing a likelihood Pk for each key k:

Pk = exp

(
− d

2
k

σ2
k

)
, (1)

where dk is the Euclidean distance between the first touch-
point of the user’s trace and the key k, and σk is a variance
estimate. Motivated by previous empirical work on modeling
on-screen keyboard touch-errors [5] we assume the distance be-
tween a touch-point and the center of an intended key is approx-
imately normal.

If the trace is not a tap then we need to recognize the
user’s continuous gesture as a word. First define

[
x y 1

]T
as a point in homogeneous coordinates on a two-dimensional
Cartesian plane. Then let the sequences U = (u1,u2, ...,un)
and V = (v1,v2, ...,vn) be two ordered sequences of n
equidistant points. The sequence U represent the series of
two-dimensional touch-points the user has traced on the touch-
screen. The sequence V represents the shape of the ideal traced
out word on the keyboard layout (see figure 1). This shape is
generated by serially connecting the centers of the correspond-
ing letter keys for a word. Both sequences are resampled to have
the same number of n sampling points. Next we define T as an
affine transform, also in homogeneous coordinates:

T =

 s 0 dx
0 s dy
0 0 1

 . (2)

Here dx and dy are the horizontal and vertical translation
components, and s ∈ (0, 1] is a scale factor. dx and dy are set to
the respective one-dimensional distances between the centroids
of U and V , and s is set to the maximum ratio of the diagonals
the bounding boxes of U and V . Given U and V we compute a
likelihood Pw of a word w as:

Pw = exp

(
−
[(

x2s
σ2
s

)
+

(
x2l
σ2
l

)])
, (3)

where σs and σl are variance estimates, and

xs =
1

n

∑
i

(||Tui − vi||), (4)

and

xl =
1

n

∑
i

(||ui − vi||). (5)
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Figure 2: An example of a speech recognition WCN that has
been softened. The added edges are in dotted red. The * symbol
represents wildcard transitions. This figure is adapted from [3].
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Figure 3: An example of a gesture keyboard recognition WCN
with added dotted red edges. This figure is adapted from [3].

xs is a matching score between U and V which is scale and
translation invariant. xl is a similar score, but is dependent on
where U and V are positioned on the on-screen keyboard. It is
possible to make the recognition scale-translation invariant by
setting xl = 0.

We tuned the number of sampling points and the parameters
σk, σs and σl to optimal values on a development set. The ges-
ture keyboard recognizer used the same 64K vocabulary as the
speech recognizer. Each gesture is recognized independently
and produces a set of words and likelihoods under the model.
We then construct a lattice that connects each word with every
word in the subsequent set. This lattice is then rescored with the
speech recognizer’s trigram language model. From the rescored
lattice we construct a word confusion network (WCN) [6].

2.3. Merge Model

To combine the speech and gesture modalities we use a merge
model that we have previously developed [3]. This model is
capable of combining output from several recognizers asyn-
chronously. The model was originally developed for combi-
nation of multiple speech signals for a speech-only correction
interface [7]. Here we demonstrate how this model can also be
used to fuse speech and gesture keyboard recognition results.
What follows is a high-level overview of how the model works
with illustrative figures adapted from the original paper [3].

The model operates on WCNs. The original WCNs are soft-
ened by adding three extra transitions to every cluster. First,
an epsilon transition is added that enables the current cluster
to go to the next cluster without generating a word. Second,
a wildcard self-loop enables the current cluster to generate any
word while remaining in the same cluster. Third, a wildcard-
next transition allows a cluster to generate any word and pro-
ceed to the next cluster. The probability of each of these added
transitions can be varied between the WCNs being combined and
can also be varied between different clusters within a WCN.

The first WCN is obtained from the speech recognizer. The
second WCN is obtained from the gesture keyboard recognizer.
Figures 2 and 3 show example WCNs from the speech and ges-
ture keyboard recognizers.

The model works by searching for a joint path through the
softened WCNs. We explain the search using the token passing
model [8]. A token in our model tracks three pieces of infor-
mation. First, the position in each of the WCNs. Second, the
accumulated log probability. Third, the previous few words of
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language-model context.
A search is initiated with a token that starts in the first clus-

ter in both WCNs. A token is finished when it reaches the last
cluster in both WCNs. At each step of the search, we select a
token from the pool of unfinished tokens. From the selected to-
ken’s position in each WCN, we compute all possible moves that
generate a single word (either a real word or a wildcard word).
We then take the cross-product between candidate moves in
each WCN. We consider a combination of moves valid only if it
obeys two rules. First, at least one of the moves must generate
a real word (i.e. not every WCN can use a wildcard). Second, if
multiple WCNs generate real words, these words must match.

Every move is assessed a probability under a language
model. The merge model uses the same language model as both
recognizers. Since large WCNs have a vast number of possi-
ble combinations, an admissible search is intractable. We apply
pruning beams to focus the search on only the most promising
possibilities. See the original paper [3] for more details.

The free parameters of the merge model, such as the wild-
card and epsilon transitions, were tuned on speech and gesture
keyboard development data recorded by the authors. As we will
describe shortly, the model was tested in three distinct scenar-
ios: merging full speech and gesture results, merging spotty cor-
rections, and merging preemptive corrections. Different sets of
parameter values were tuned for each scenario.

3. Recognition Experiments
3.1. Mobile Email

We tested the entry of brief mobile email sentences using speech
and a gesture keyboard. We selected sentences of length 1–6
words typed by Enron employees on their BlackBerry devices
[9]. We collected the data for speech and gesture keyboard from
separate pools of participants. Experiments were done offline.

3.1.1. Data Collection

Four American English speakers spoke the email sentences.
Their audio was recorded at 16 kHz using a Plantronics Voy-
ager Pro wireless microphone. The other four participants used
a gesture keyboard to write the email sentences. These partici-
pants used a 4th generation iPod Touch with a capacitive touch-
screen. The gesture keyboard on-screen display measured 49.9
mm × 22.4 mm (320 × 144 pixels). The dimensions of each
individual key measured 5.0 × 7.5 mm (32 × 48 pixels). Each
sample point received from the capacitive touch-screen was dis-
played as a red dot to provide trace feedback to the participant.
The interface is shown in figure 4. In total we collected 148
paired sentences with each participant doing between 32 and 41
sentences. The sentences had an out-of-vocabulary rate of 0.7%
with respect to our 64K vocabulary.

3.1.2. Results

We first tested the merge model on complete utterances with
gesture traces for every word in each utterance. The results are
shown in table 1. Overall speech recognition (SR) was the least
accurate modality with 27% WER. The gesture keyboard (GK)
was much better at 14%WER and the scale-translation invariant
version of the gesture keyboard (IGK) performed about the same
(14% WER). We find it interesting that the scale-translation in-
variant version of the gesture keyboard had similar performance
as the location-dependent version. We conjecture this is be-
cause location information can both aid and hinder recognition

Figure 4: The iPod Touch gesture keyboard interface.

Recognizer(s) Combo WER SER Oracle
model WER

SR - 27.2% 54.7% 8.6%
GK - 14.2% 44.6% 8.1%
IGK - 14.1% 41.9% 8.2%
SR+GK Merge 6.6% 25.0% 3.3%
SR+IGK Merge 6.6% 25.0% 3.5%
SR+GK CNC 10.3% 32.4% 1.0%
SR+IGK CNC 7.7% 27.0% 1.2%

Table 1: Results for a single modality and for combining modal-
ities in the mobile email domain.

depending on how carefully the user is gesturing on the key-
board. We also computed the WCN oracle WER which is the
path through the WCN with the lowest error rate. As expected
the oracle WER was substantially lower for all modalities.

Combining the modalities resulted in a 53% relative reduc-
tion in WER compared to just using the gesture keyboard, the
most accurate single modality. Our best result from the merge
model was at a lower WER than even the best oracle WER of
any of the modalities. This demonstrates the advantage of com-
plementary modalities which recognize input in different ways.
We also compared our merge model to confusion network com-
bination (CNC) [10] as implemented by SRILM [11]. Our merge
model model provided superior gains to CNC in WER. However,
CNC did have a better oracle WER. The oracle WER for CNC
is better since nothing gets eliminated during the combination
while our merge model performs pruning during its search.

As shown by the sentence error rate (SER) in table 1, com-
bining both modalities results in three out of four sentences be-
ing recognized completely correct. With speech alone less than
half of all sentences were recognized completely correct.

Our merge model is also capable of spotty error correction.
In spotty correction, one modality only receives recognition in-
put for a time-ordered subset of the words of the full sentence
in the other modality. Our idea is to enable users to see incor-
rectly recognized words in the speech modality and trace only
the words that are in error. This is done without providing any
location information about where the incorrect words are lo-
cated in the speech result. Table 2 shows the results on using
spotty correction on the 81 sentences which had at least one
incorrect word in the speech modality. As shown in the table,
spotty correction substantially reduced WER by 44% relative.

Last, we also tested preemptive error correction. In preemp-
tive error correction, users speak an utterance and simultane-
ously, or shortly thereafter, input a single word using a gesture
keyboard. If users can predict the most likely word to be mis-
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Recognizer(s) Combo WER SER
model

SR - 48.5% 100.0%
SR+GK Merge 28.8% 79.0%
SR+IGK Merge 27.1% 81.5%

Table 2: Results when merging spotty gesture keyboard correc-
tions with speech recognition results for email sentences where
the speech recognizer made at least one word error.

Recognizer(s) Combo WER SER
model

SR - 27.2% 54.7%
SR+GK Merge 26.6% 58.8%
SR+IGK Merge 26.8% 58.8%

Table 3: Results when merging a one word preemptive correc-
tion with speech recognition results in the mobile email domain.

recognized by the speech recognizer, a successful merge may
prevent the error. To test the viability of this idea, we first re-
cruited two participants who did not take part in any of the other
data collection tasks reported in this paper. None of the partic-
ipants had any speech recognition experience. These partici-
pants were shown email sentences and instructed to underline a
single word in each sentence which they thought was the most
likely to be misrecognized. We then selected these individual
words from the gesture keyboard data and merged the resulting
WCNs against the complete sentences from the speech recog-
nizer. Table 3 shows that this form of preemptive error correc-
tion had little impact.

3.2. Mobile Web Search

We also tested our merge model in the mobile web search do-
main. We used the system and the data from our past work [12].

We collected search queries from seven participants re-
cruited from the university campus. Each participant was shown
a search query on the screen and asked to input it using either
speech or the gesture keyboard while simultaneously walking
around. The three American English participants who spoke the
search queries had their audio recorded at 16 kHz using a Jabra
M5390 wireless microphone. The other four participants used a
gesture keyboard to write the search queries. These participants
used the same iPod Touch device and interface as described for
mobile email. In total, we collected 398 paired search queries
with each participant doing between 80 and 120 queries.

The resulting WER for speech recognition (SR), gesture key-
board (GK), and a combination of the two are shown in table 4.
Combining the modalities resulted in a 29% relative reduction
in WER in comparison to just using the gesture keyboard.

Recognizer(s) Combo WER SER
model

SR - 34.2% 49.3%
GK - 15.3% 31.4%
SR+GK Merge 10.8% 24.6%

Table 4: Results when using a single modality and when com-
bining modalities in the mobile search domain.

4. Conclusions
We have shown how speech and gesture keyboard input can be
combined to reduce errors in text entry. We described a merge
model that combined recognition results in an asynchronous
and flexible manner. We collected speech and gesture data from
users entering both email sentences and web search queries. By
merging recognition results from both modalities, word error
rate was reduced by 53% relative for emails and 29% relative
for web searches. For email utterances with speech errors, we
investigated providing gesture keyboard corrections of only the
erroneous words. Without the user needing to explicitly indi-
cate the incorrect words, our model was able to reduce word
error by 44% relative. Our results show that the gesture key-
board is a promising complementary input modality to speech.
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