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ABSTRACT

Spoken programming languages significantly differ from nat-
ural English due to the inherent variability in speech patterns
among programmers and the wide range of programming con-
structs. In this paper, we employ Wav2Vec 2.0 to enhance the
accuracy of transcribing spoken programming languages like
Java. Adapting a model with just one hour of spoken pro-
grams that had prior exposure to a substantial amount of natu-
ral English-labeled data, we achieve a word error rate (WER)
of 8.7%, surpassing the high 28.4% WER of a model trained
solely on natural English. Decoding with a domain-specific
N-gram model and subsequently rescoring the N-best list with
a fine-tuned large language model tailored to the program-
ming domain resulted in a WER of 5.5% on our test set.

Index Terms— low resource speech recognition, large
pre-trained models, voice programming, language modeling

1. INTRODUCTION

The traditional approach for automatic speech recognition
(ASR) relies on a supervised approach where ASR models
are trained with a vast amount of audio examples paired with
their corresponding transcriptions. One of the major chal-
lenges of building an ASR system for a certain domain is the
need for ample labeled training data. In recent years, ASR
systems have made significant progress due to the emergence
of semi-supervised and unsupervised learning paradigms for
low-resource domains [1, 2, 3]. In this paper, we aim to
address one such domain, dictating a Java program in a line-
by-line manner. While some work has tried to infer an entire
function or class from a single utterance [4, 5, 6], we think
line-by-line dictation may better match how programmers
incrementally build complex and novel programs. Further,
even if a block of code is generated from a single utterance,
the user may need to correct errors in the generation. Finally,
for existing code bases, programmers may need to modify
individual lines of code to, for example, fix bugs.

The speech patterns among different programmers and
programming constructs is highly variable compared to natu-
ral language. For instance, programmers might verbalize the
loop for(i=0;i<n;i++) in a natural way such as “cre-
ate a for loop that iterates from one to n” or they may opt for

a more literal approach such as “for open paren i equal one
i less than n i plus plus close paren”. A truly user-friendly
approach would allow programmers to use whichever speak-
ing style they prefer [7, 8]. This distinctive dialect and hybrid
language style along with limited data in this domain make
accurate recognition challenging. Nevertheless, the potential
benefits of achieving accurate speech recognition in program-
ming are substantial. Such advancements would allow indi-
viduals with motor impairments to input programs by voice
rather than by typing. We intend to pursue a two-step pipeline
for converting speech into code. The first step is to recognize
the literal words spoken by the programmers. The second
step is to convert those literal words into the target program-
ming language. This second step could be done via machine
translation guided by knowledge of the target programming
language and the current code base. Different models could
be swapped in for the second step using the same recognition
system for the first step. We focus on the first step here.

In this work, we leverage Wav2vec 2.0 [9] which can learn
representations directly from audio without requiring a large
amount of labeled training data. We adapt Wav2vec using
just one hour of spoken Java programs from novice and ex-
pert programmers and explore the impact of models trained
in general spoken English and spoken programming language
on recognition accuracy, along with the impact of different
data quantities. To the best of our knowledge, this is the first
work on recognizing line-by-line spoken programs.

Large language models like CodeBert [4], CodeGPT [6],
and PLBART [10] have made significant advancements in
code generation, primarily focusing on single-turn code gen-
eration where users express the intent of a whole block of
code (e.g. an entire function) in one utterance. Nijkamp et
al. [11] demonstrated how multi-turn program synthesis can
be effective for improving program synthesis quality where
users articulate their intentions for subprograms. While ex-
isting models leverage comments that programmers write to
express the functionality of a section of code, these comments
might lack information or fail to perfectly align with the writ-
ten code. In our prior research, we found significant variations
in how a simple method was verbalized by various program-
mers. Some phrased it naturally as “create a public method
called cube that takes one parameter num and return the cube
of num”, while others verbalized literally: “public int cube
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open paren int num close paren new line return num times
num times num”. In this work, we demonstrate how speech
recognition accuracy on such spoken lines of code benefits
from using a small corpus of spoken code to adapt both the
neural speech recognizer and the decoder’s language models.
Our contributions are as follows:

• We conduct the first study that recognizes line-by-line
spoken programs using pre-trained models.

• We show how to improve line-by-line spoken Java recog-
nition by adapting a large pre-trained language model
that was trained on various programming languages.

• We release1 the human transcripts of the spoken pro-
grams, filtered comments from the CodexGlue dataset,
and our best N-gram language model for spoken Java.

2. EXPERIMENTS

2.1. Datasets and Preprocessing

Previously, we conducted a data collection study involving
programmers speaking Java to a hypothetical system [7].
Each participant was presented with 20 programs, from a
pool of 30 unique programs. They were asked to verbalize
a single line (16 programs) or a multi-line block of code (4
programs). To introduce variability and to investigate how
to best collect data of this type, we designed half of the pro-
grams with a missing line, prompting users to invent it based
on the surrounding code. In the other half, participants were
asked to speak a highlighted line. In total, there were 41 Java
programmers, 16 had 4+ years of experience and 25 had 1–2
years of experience. All were native English speakers (24
male, 17 female). The audio recordings were captured using
a single audio channel sampled at 16 kHz. For data tran-
scription, we transcribed audio including all spoken words,
symbols, and spaces, e.g. “items at index i is equal to scan
dot next int”. Audio recordings that were mostly empty were
excluded. The average audio duration was 13.6 seconds.

In this paper, we extended our SpokenJava dataset by re-
cruiting more participants as part of our current research ef-
forts. We split our data into training, development, and test
sets, using an 80/10/10 split. We split the dataset by speakers
and by the target line of code; our aim is to measure recog-
nition performance on unseen programs spoken by unseen
users. We split the 20 programming statements into 19/10/10
and included the corresponding utterances in the train/dev/test
set. Our relatively compact SpokenJava dataset comprises
269/27/28 utterances, 29/6/6 users, and 60/5.7/6.9 minutes of
audio for the train/dev/test sets. The dataset includes various
programming constructs, including method signatures, if-else
statements, loops, input-output statements, arrays, single and
multi-line comments, decrement operations, math statements,
and variable declarations. This dataset is unique because it

1https://osf.io/h6nk4

focuses on spoken code, unlike existing datasets with written
code comments or function descriptions. We have made the
text transcripts of SpokenJava available1. Unfortunately, we
did not have ethics approval to release the audio recordings.

In our language modeling experiment, we used the Code-
SearchNet [12] dataset, encompassing six programming lan-
guages totaling 908K/45K/53K examples in the train/dev/test
sets. We used the filtered version of the CodeSearchNet
dataset from the CodeXGLUE [6] dataset. We extracted only
the docstrings or comments associated with Java code snip-
pets. We further refined the dataset to align it more closely
with our spoken code dataset by 1) breaking multi-line de-
scriptions into single lines, 2) splitting camel-case names such
as variable names into separate words, and 3) discarding lines
with symbols like angle brackets, hyphens, or underscores.
The resulting dataset contained 495 K examples.

2.2. Fine-Tuning Wav2vec2

We conducted fine-tuning experiments using the open-source
Wav2vec2 model [9], which was originally trained on natu-
ral English speech. Our primary objective was to investigate
whether this model could adapt to spoken Java. Additionally,
we wanted to assess the impact of data diversity and amount
on performance. We used the Fairseq toolkit [13] with the set-
tings from [9]. We used a learning rate of 1× 10−4 and used
the Adam optimizer with a tri-state rate schedule to improve
convergence. This schedule warmed up the learning rate for
the first 10% of updates, keeping it constant for the next 40%,
and then linearly decaying it. We applied a layer dropout rate
of 0.1. We fine-tuned models using 16-bit precision on two
NVIDIA RTX 2080 Ti GPUs with a batch size of 4 samples
per GPU. We updated all network parameters except for the
feature encoder. We use time-step and channel mask proba-
bilities of 0.65 and 0.25 respectively following [9].

Initially, we started with the Wav2vec2 base model, pre-
trained on 960 hours of unlabeled spoken English data from
the Librispeech dataset. This model consisted of 12 trans-
former layers, each with 8 attention heads. We fine-tuned
this base model with SpokenJava training data for 10K up-
dates using the configuration in [9] and observed no signifi-
cant improvement beyond that. We validated the performance
on the Java dev set. We fine-tuned for 10K steps following [9]
Subsequently, we leveraged a fine-tuned checkpoint from the
base model, which had been trained on the LibriSpeech cor-
pus with text labels for a maximum of 300K updates. Build-
ing upon this checkpoint, we performed an additional round
of fine-tuning for 10K updates using our in-domain labeled
data, aiming to leverage the knowledge gained from labeled
natural English data during the initial fine-tuning stage.

2.3. Training N-grams and Beam Search Decoding

We trained 4-gram word language models using SRILM [14].
Our first data set consisted of human-generated transcripts
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of people speaking lines of Java code. We reserved 5% of
the data as a held-out development set leaving 255 sentences
(4K words) in the training set. We trained separate 4-gram
language models on single-line comments from CodexGlue
[6] (495 K sentences, 4 M words) and LibriSpeech normal-
ized (40 M sentences, 803 M words). We uppercased all
text. All models used modified Kneser-Ney smoothing with
a vocabulary of 203 K words with out-of-vocabulary words
mapped to an unknown word. Our vocabulary merged a 200 K
word vocabulary from LibriSpeech2, all words appearing in
our training corpus, and words appearing at least five times
in CodexGlue. Requiring five occurrences helped exclude
idiosyncratic non-camel-case multi-word combinations. We
found that higher-order N-gram models did not provide gains.

Next, we created a mixture model by linearly interpolat-
ing 4-gram models from the SpokenJava, CodeXGlue, and
LibriSpeech datasets. We tuned the mixture weights to op-
timize the perplexity on the held-out development set. We
present our evaluation results by computing the Word Error
Rate (WER) through beam search decoding with both the Lib-
riSpeech 4-gram model and our best 4-gram mixture model
across various Wav2Vec2 models. We use a lexicon-based
beam search decoder available in the Flashlight framework
[15]. The decoder aims to maximize:

log pAM(ŷ|x) + α log pNGRAM(ŷ) + β|ŷ| (1)

where ŷ represents the output sequence, pAM corresponds
to the acoustic score, pNGRAM represents the language model
score, and |ŷ| is the characters in the transcription (including
spaces). α is the language model weight and β is the word in-
sertion penalty both of which were optimized based on mini-
mizing WER on the Java dev set. The word insertion penalty
helps balance the contribution of the acoustic and language
models. Our hyperparameter tuning searched over language
model weights in [0, 5] and word insertion penalties in [-5,
5] using Bayesian optimization3 for 128 trials. We explored
beam widths in [5, 500] and found a beam width of 35 de-
coded at 11.3 sentences/second with no loss in accuracy.

2.4. Rescoring With Transformer Language Models

Motivated by the success in enhancing ASR recognition by
rescoring with a transformer language model [16], we em-
ploy a similar strategy. We utilize the CodeGen-NL model
with 350 M parameters from the Hugging Face Transformers
Library [17] on two NVIDIA RTX 2080 Ti GPUs. Code-
Gen was trained on the Pile dataset4, a portion of which in-
cludes GitHub code repositories. We fine-tuned the model
with our SpokenJava corpus using a causal language model-
ing objective. We conducted a grid search to optimize hyper-
parameters based on minimizing per-token perplexity on the

2https://www.openslr.org/11/
3https://github.com/bayesian-optimization/
4https://pile.eleuther.ai/

held-out development set. We searched over learning rates in
[1e-5, 5e-5], weight decays in [0.001, 0.1], epochs in [1-10],
and training batch sizes of 2 and 4.

We rescored the top 50 candidates from our first pass
search, calculating a weighted linear combination following
[18]. The re-estimated final ranking for each candidate was:

logPAM(ŷ|x) +α1 log pNGRAM(ŷ) +α2 log pNLM(ŷ) + β|ŷ| (2)

Here, pAM corresponds to the acoustic score, pNGRAM and
pNLM represent the N-gram and transformer language model
scores respectively, α1 and α2 are the corresponding weights.

3. RESULTS AND DISCUSSION

We evaluate our models on the development and test sets, re-
porting WER in three scenarios: without external language
model decoding, with beam search decoding using an N-gram
language model, and with beam search decoding followed by
rescoring with a transformer language model. We selected the
model checkpoint with the lowest WER on the Java develop-
ment set for all evaluations.

The pre-trained Wav2Vec 2.0 base model fine-tuned on
960 hours of labeled data had a high WER on both the dev
and test sets. As shown in Table 2, with just one hour of Spo-
kenJava, we saw a 42.1% improvement in WER on the dev set
but only an 8.8% improvement on the test set relative to Lib-
riSpeech fine-tuned model. The model’s difficulty in general-
izing well on the test set, likely because of more diverse pro-
gramming statements, can be attributed to overfitting caused
by limited training data. Adapting a model already fine-tuned
on 960 hours of labeled LibriSpeech data resulted in a WER
of 8.1% and 8.7% on the dev and test sets respectively. The
addition of a large amount of natural English data seemed to
enhance the handling of diverse speakers and spoken content.

In our N-gram language modeling experiment, we found
that a mixture model produced the best results. Our best
N-gram model was a combination of 4-gram SpokenJava
(weighted at 0.7), 4-gram LibriSpeech (weighted at 0.1),
and 4-gram CodexGlue (weighted at 0.1). We think this im-
provement can be attributed to the inherent natural English
language in spoken Java programs, which benefited from
LibriSpeech data, as well as learning written comments from
a partially in-domain CodexGlue dataset.

Table 3 shows the impact of different language models on
the fine-tuned models, with the 4-gram LibriSpeech model as
the baseline. Despite having a limited amount of in-domain
text data, we achieved a substantial improvement in the WER
decoding with our 4-gram mixture model. Specifically, for the
960h-Libri fine-tuned model, the WER decreased by 49.8%
and 53.1% relative, and adding one hour of SpokenJava, it
decreased by 13.8% and 21% relative on dev and test sets
respectively, both in comparison to the LibriSpeech 4-gram
model. Rescoring with our adapted transformer model fur-
ther improved accuracy, resulting in a 19.6% and 8.3% rela-
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Table 1. Example human transcripts and predictions from the 960h-libri model decoded with a 4-gram LibriSpeech language
model (base model) and our rescored model. Word errors are underlined and in red.

Model Text

Human items at index i is equal to scan dot next int

Base model items a index eyes equal to scan dot next int

Best adapted model items at index is equal to scan dot next int

Human constructor public employee int age comma double salary

Base model instructor public employ n comet double salary

Best adapted model instructor public employ int age comma double salary

Human for int i equal zero i less than five i plus plus

Base model or in equal zero eye less than five eye plus plus

Best adapted model for int i equals zero i less than five i plus plus

Human create a public static method called print phrase that takes two arguments
the first is a string phrase and the second is a double called num

Base model create a public setoc method called print phrase that takes two arguments
the first is a string phrase and the second is a double called numb

Best adapted model create a public static method called print phrase that takes two arguments
the first is a string phrase and the second is a double called num

Table 2. WER on the development and test sets varying the
labeled data used for fine-tuning. Results obtained by CTC
greedy decoding without a language model.

Labeled Data Dev Test

960h LibriSpeech 31.1 28.4

1h SpokenJava 18.0 25.9
+ 960h LibriSpeech 8.1 8.7

Table 3. WER on the Java development and test sets of dif-
ferent Wav2Vec and language model combinations.

Model LM Dev Test

960h-Libri 4-gram-libri 22.3 24.1
960h-Libri 4-gram-mixture 11.2 11.3

960h-Libri + 1h-Java 4-gram-libri 6.5 7.6
960h-Libri + 1h-Java 4-gram-mixture 5.6 6.0

+ rescoring 4.5 5.5

tive reduction in WER on the dev and test sets respectively
compared to the beam search results.

To the best of our knowledge, there are no existing meth-
ods purpose-built for recognizing line-by-line programming
utterances. In [7], we tested performance using Google’s
speech-to-text on a different subset of our collected data
which resulted in a high WER of 25%. Despite language
model adaptation, the WER remained high at 19%, em-
phasizing the need for tailored approaches. As an initial
exploration, our study establishes the groundwork for future
comparisons in this domain.

We compared the predictions from our best model to the

base model trained only on natural English (Table 3). Our
best model seemed to have learned some key Java terms such
as “for” or “int” and common variable names like “i” indi-
cating effective domain-specific learning. The base model
learned the natural description of a small method but strug-
gled with fundamental Java keywords like “static” and abbre-
viated terms like “num”. Our best model still struggled with
text containing a blend of natural language words like “em-
ployee” and code-related words like “public” or “int”. This
suggests potential issues arising from sparse labeled data. Po-
tential solutions could include obtaining more labeled data,
employing data augmentation techniques (such as generating
text-to-speech audio from back-translated text), or enhancing
the model’s ability to recognize user-defined names.

4. CONCLUSIONS

In our study, we explore the effectiveness of utilizing Wav2Vec
2.0 for recognizing spoken line-by-line Java programs, a task
distinctly different from natural English speech. We demon-
strate that even a modest addition of just one hour of domain-
specific data to a model enriched with extensive knowledge
of English yields remarkable results, with a substantial 74.1%
relative reduction in WER compared to a model trained ex-
clusively on standard English. This significant improvement
holds promise for broader applicability beyond Java, poten-
tially extending to other spoken programming languages as
well. Our low final error rate of 5.5% provides a solid basis
for further work that converts the literal words spoken into
actual code and then investigates performance in actual use.
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