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Abstract. A parallel computational model is defined which addresses I/O contention, latency, and pipe-lined
message passing between tasks allocated to different processors. The model can be used for parallel task-allocat
on either a network of workstations or on a multi-stage inter-connected parallel machine. To study performance
bounds more closely, basic properties are developed for when the precedence constraints form a directed tree.
is shown that the problem of optimally scheduling a directed one-level precedence tree on an unlimited numbe
of identical processors in this model is NP-hard. The problem of scheduling a directed two-level precedence tre
is also shown to be NP-hard even when the system latency is zero.

An approximation algorithm is then presented for scheduling directed one-level task trees on an unlimited
number of processors with an approximation ratio of 3. Simulation results show that this algorithm is, in fact,
much faster than its worst-case performance bound. Better simulation results are obtained by improving ou
approximation algorithm using heusistics. Restricting the problem to the case of equal task execution times, :
linear-time algorithm is presented to find an optimal schedule.

1. Introduction

Models for scheduling tasks on a parallel MIMD architecture have usually included a
communication cost associated with the sending of data between tasks which are located ¢
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different processors. Early work on this problem used graph theoretic techniques such a
network flow and/or enumeration techniques (El-Dissouki and Huen, 1980; Ma et al., 1982;
Stone, 1977). Later work concentrated on approximation algorithms (Anger et al., 1990;
Hwangetal., 1989; Lo, 1988; Papadimitriou and Yannakakis, 1990). Researchthen evolve
to more restricted models which allowed an infinite number of processors in the system
Polynomial algorithms were found for the cases where the precedence constraints form
tree under certain constraints (Cheng and Sin, 1990eti&mie, 1989, 1992; Colin and
Chrétienne, 1991, Lopez, 1992). A good review of models and algorithms developed for this
problem can be found in (Cheng and Sin, 1990;efibrine et al., 1995; Lo, 1983; Norman
and Thanisch, 1993). Most of this work was very theoretical in nature, i.e., the models
were too simplistic for practical application to real machines. More recently, Valiant's BSP
Model (Valiant, 1990a, 1990b) provided a general framework with which to study more
practical algorithms in an asynchronous distributed memory parallel architecture. The LogF
model (Culler etal., 1993) and the QRQW model (Gibbons et al., 1994) attempted to furthet
bridge the theoretical and practical models.

This paper uses a practical and realistic model based on Valiant's asynchronous distribute
memory architecture while taking into consideration the read/write contention of the QRQW
model, the latency/overhead time of the LogP model, and the pipe-lined message sendin
cost which is proportional to the message size. The model can be used for a loosely
coupled parallel architecture where communication times are small but still significant. It
is also general enough to represent a communication network of computers or workstation
each with its own memory and microprocessor. The growth of such networks mandate
more study into the efficient use of their parallel computing power. Unlike the LogP
and QRQW models in which specific algorithms are designed to match the model, our
model is general enough to be used for any algorithm which can be represented as a set
tasks which communicate with each other and whose execution and communication cos
are known or can be estimated. An example where such an algorithm would be helpful
is a network of computers using PVM parallel software (Geist et al., 1993). In today’s
environment, PVM program tasks are either scheduled by the programmer or, more often
they are arbitrarily allocated to processors(also called processing elements or PE’s). Th
work of this paper is designed to allow the compiler and/or operating system to perform suct
tasks.

Previously, on a simpler and more theoretical model where message sending time i
the only cost for communication, it has been shown that scheduling a two-level directed
precedence tree (Géiénne, 1994) and that scheduling a general directed precedence intree
with task lengths (Lenstra et al., 1996) are both NP-hard. These important results show the
we must either put constraints on the task set or develop approximation algorithms with
good performance bounds. By constraining our model so that the set of tasks form only ¢
one-level directed precedence tree and by allowing for communication costs for both the
sending and receiving of messages, we prove that task allocation on even this more practic
model is still NP-hard. We then proceed to develop an approximation algorithm for this
case and to look at an even simpler case which does lend itself to a polynomial solution.

The results are summarized in Table 1.
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Table 1 Summary of NP-hardness proofs and algorithms presented in this paper.

Arbitrary task Equal task
execution times execution times
Directed one- level Approx. ratio 3 (NP-hard) Optimal
task treesyin+1tasks  Running time o) O(n) + sorting

The paper is organized as follows. Section 2 defines the communication model use
and develops some basic properties of the model. Section 3 proves NP-hardness resu
by a series of reductions from the knapsack problem. Section 4 considers algorithms fo
the case when the precedence constraints form a directed one-level tree. We give a 3-OF
approximation algorithm and an optimal liner-time algorithm for the special case of equal
execution times of all tasks other than the root task in the system. Section 5 shows tha
the algorithms perform very close to optimal most of the time under simulated conditions.
Conclusions follow.

2. The communication model

LetJ = {to, t1, ..., tn} be a set of tasks whose precedence constraints form a directed grapt
PC(J). In a precedence graph for a set of tasks, the weight on a directed @dgey)
which points fromu to v represents the communication time neededuftr send data to
v if uandv are allocated on different processors. The weight on each node represents it
execution time. In this model, we consider the case when all processors in the system ar
identical. Thus a task has the same execution time on any processor(PE) in the system.
A directed graphG is adirected out-tredf there is a vertexu in G such that there is
exactly one directed path fromto any other vertex. The vertexis theroot. Each vertex
in G having no outgoing edge islaaf. A directed out-tree is &-level treeif the length
of the path from the root to each leafks By reversing the direction of all edges in a
directed out-tree, we obtaindirected in-tree A directed treds either a directed out-tree
or a directed in-tree. An example is illustrated in figure 1.
Lete(tj)) = g andc(tj) = ¢ be the execution and communication time of the task
respectively. For convenience, we define differenceof taskt; to bed, = ¢ — ¢. We

O
(1) )

Figure 1L In (1), a directed out-tree is illustrated. In (2), a directed in-tree is illustrated.
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Figure 2  Taskt; is allocated to process® andt; is allocated toP;. During timex — (x + §), tj is executed
on R . The sending time from tot; is¢ci. L, the system latency, is the units of time from w@rstarts to send
data untilP; starts to receive the data froR, and the receiving time is .

scheduleJ on uniform processorBy, Py, ..., P. with a system I/O latency,. Note that

r < n. In this model, task takesg time to finish its computation and after its completion
(might not be immediately) transmits data to the processor on whicht taslkallocated

if there is a precedence relation frdmo t;. Taskt; cannot start executing unless it has
received all data fronty. We assume that the communication time is zero between two
tasks allocated to the same processot. dhdt; are allocated to different processors, then
the sending time fot; is c; and the receiving time far; is alsoc;. All data streams are
transmitted in a pipelined fashion, i.e., aftestarts sending, all data arrivetatin ¢ + L

units of time. If a task needs to send or receive two data elements at the same time, the tw
I/O operations must take place in sequence. An example of a timing diagram for executing
tasks in this model is shown in figure 2.

Realization of a scheduling. A schedulingsS, for J is an assignment of tasks to processors.

A legal realizationfor Sis the assignment of starting times for all tasks allocated to each
processor such that it satisfies the precedence constraints and the 1/O latency requireme
Given a realization, led(t;) and f (t;) be, respectively, the start and finish execution times
for tj on the processor to which it is allocated. Isét;) and f (¢;) be the start and finish
times to send data to the procestois located on. Thenakesparof a processoP; for

a realization is the time at which the proces$bifinishes all tasks allocated to it. The
makespan of a legal realization is the largest makespan among all processors. A leg:
realization with the smallest makespan isestrealization. The makespan of a scheduling
Sis the makespan of its best realization and is denotéd @. An optimal scheduling J

is a scheduling with the smallest possible makespan. For convenience, we assugme that
is allocated toP,. We now state a property which can be easily verified.

Lemma 2.1. Let J = {tg,t1,...,t,} be a set of tasks who$eC(J) forms a directed
one-level tree with the roopt When scheduling J on an unlimited number of identical
processorsthere is an optimal scheduling where every procesaxcept the one on which t

is located is allocated no more than one task.

We next state a lemma with regard to properties of a best realization.
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Lemma2.2. LetJ={tp,t1,...,t,} be asetofn 1tasks whos®C(J) forms a directed
one-level out-tree with the roof and whose execution times of tasks other thagatisfy
the condition ¢ > €44, 1 < i < n. Given a scheduling for,Jet t, t,,,...,t,, _, be
tasks allocated to Pand let {,, t,, ..., ty, be tasks not allocated tooP There exists
a best realization for the given schedullng with the followmg propertigs s(to) = 0;
@ u < Uy, 1 <i < w; (3) s(cy) = & + ZJ 1qu forall 1 <i < w; 4
s(t,) = e+ ZJ 1Cu; + Zl w+1euj, forall1 <i <n-—w; (51, is allocated on P
with s(t, ) =s(c,) +L+c,, 1 <i <w.

Proof: Itis obviously true that any best realization execugesn Py as soon as possible.
After finishing the computation df, executing other tasks allocated Bnbefore doing
communication forty does not decrease the makespan. Thus we may assume that al
optimal realization makespans could exedyt®n Py only afterty sends all of its data to
other processors. Ldt(R) be the finish time fot; in a realizationR. Let R be an optimal
realization with some,, < &,,,. Let R’ be the revised realization by swapping the order
of sending data fot,, andt,_,. The finish times for processors other tfArand P, are
the same irR andR’ and

fu (R ="f(cy_ ) +cy +L+ey;

fu (R ="f(cy ) +Cy +Cy,, +L+6y,;
fui (R/) = f(Cui,l) +Cy, + L+ ST

fu . (R)="f(y )+cy+cCu,+L+e,.

Sincegy, < &,,,,thusf, ,(R) > f, ., (R). Itis always true thaf,,,,(R) > f, (R). Thus
the makespan foR’ is no worse than the makespan fr By using this lemma, we can
find an optimal realization with the property thegt > e, ,, forall1 <i < w. ]

i+1?

An example for a best realization of a scheduling as described in Lemma 2.2 is illustratec
in figure 3.

The symmetric property. In the following lemma, let (G) be the resulting graph obtained
from a directed grapts by reversing the direction of each edgedn The weights on nodes
and edges remain the same. Note th@i$ a directed tree, ther(G) is also a directed tree.

Figure 3 The form of a best realization for the precedence graph (shown above) whengtagkandts are
assigned td® and the rest of the tasks are each assigned to another processor. Natésttia execution time
for taskt;. In this given setof task, = 4,c, =3,c1 =2,c5 =2, =3, &2 = 4,63 = 3,4 = 4, andes = 3.
Sinceey > e > 65, this is a best realizatiofor the above task assignmeatcording to Lemma 2.2
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Lemma 2.3. Let J be a set of tasks whoB€&(J) is a directed tree. Let'Joe the same
set of tasks except thRC(J') = r (PC(J)). If there is a scheduling for J whose makespan
is M, then there exists a scheduling forwhose makespan is also M.

Proof: Let Sbe a scheduling fod with a realization whose makesparMis SinceJ and

J’ have the same set of taskis also a scheduling fad’. Let R be a realization fos on

J with the makespaiM. We construct the realizatioR’ for Son J’ whose makespan is
alsoM. Let fr(tj) be the finish time for task in R and letar(tj) be the finish time for
taskt; to receive its needed dataif the task sending that data is allocated to a processor
that is different from the processor thats on. Thersg (t)) = M — fr(t;) is the starting
execution time for task in R" andsr (¢;) = M — ag(tj) is the starting time for task to
transmit data irR’. The makespan dr’ is alsoM. |

Intuitively, in the proof of Lemma 2.3, we “reverse” the time arrowRrio deriveR'.

The positive difference property.Let J = {to, ts, ..., ty} be a set of tasks whose PO

is a directed tree rooted fat We will show that a task whose difference (i.e., the execution
time minus the communication time) is non-positive can be allocated on a processor with
its parent to have an optimal scheduling.

Lemma 2.4. Let S be a scheduling for a set of tasks wheg€gJ) is a directed one-level
tree. By re-allocating all tasks with non-positive differencesgotire resulting scheduling
has equal or better makespan than that of S.

Proof: ByLemma 2.3, we may assume that®@Cis a one-level directed out-tree. Once
we prove this case, the case whenPCs a directed in-tree follows.

Lett, be a task with a non-positive difference which is allocated to a processor other
than Py in an optimal scheduling. The parenttgfis ty andtg is allocated orP,. By re-
allocatingt,, on Py, the makespan fd®; is increased by,,. Sinced,, < 0, the makespan on
Py does not increase. On the other hand, the makespd®,for- 0, is also not increased.
Thus the new scheduling is also optimal. We can continue this process until all tasks with
non-positive differences satisfy the property specified in the lemma. |

3. NP-hardness results

A communication model where the sending time and I/O latency are both zeswripkfied
model A model that does not assume this isegular model In this section, we prove
that the optimal scheduling problem for a set of tagkis NP-hard in the regular model
even when PQJ) is a directed one-level tree. The proof of the NP-hardness result is done
by reducing the well-known knapsack problem to it. The proof is rather involved. We will
also show that the proof holds when extended to the simplified model whei®) PCa
two-level directed tree.
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3.1. Problem formulation

Definition3.1 LetJ = {to, 11, ..., t,} be aset of tasks whose PD) is a directed one-level
out-tree rooted at,.

(i) Thedecision problem OPTS, e, c, L, M) is asfollows: Given a positive integht, is
there a scheduling fal whose makespan is less than or equitsn a communication
model with 1/O latencyL?

(i) The decision problem K-OPT@&, J, e, c, L, M) is as follows: Given positive integers
k andM, is there a scheduling faf whose makespan is less than or equalitaising
exactlyk processors with exactly one task allocated on each df thé processors in
a communication model with I/O latendy?

Lemma 3.2. TheOPTSJ, e, c, L, M) problem is equivalent to the following problem
Does there exist an integer i that is at most n such K&@PTSi, J, e, c,L, M) has a
“yes answeP

Lemma 3.3. TheK-OPTSK, J, e, c, L, M) problem can also be formulated as follaws
Is there an assignment of values to the set of binary variaples . ., X} such that the
following are satisfie@d

n n
doxi-d = e+e—M, @
i=1 i=1
and
Zx,—-c,—+(L+e.)-xi§M—eo, forall1<i <n 2)
j<i
n
Y oxi=k-1 (3)
i=1

Proof: If t; is allocated onPy, thenx; = 0. Otherwise,x, = 1. The overall finish
time onPyis e+ Y (1 — %) -& + Y. ;X - C. This value must be less than or
equal toM. This gives the first equation. The overall finish timelBn0 < i < wis

& + sti Xj - C¢j + (L + &) - x. This value must be less than or equaMo This gives
the second equation. The third equation is trivial. m|

3.2. OPTS(J, e, c, L, M)is NP-hard

We will prove that OPTE&J, e, ¢, L, M) is NP-hard even when RQ) is a directed one-level
out-tree by a reduction from the knapsack problem.
We first prove that a particular instance of the knapsack problem is NP-hard.

Definition 3.4

() The decision version of the knapsack problem KNPs, v, B, V) is as follows: Letv
be a list ofm elements where thigh element has positive sizeand positive value;,
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ands + v > §41+ vip1, 1 <i < m. Given two positive integer® andV, is there
a subset of elemen8C M suchthad ;s < Band} ;_qvi > V?

(i) The decision version of the knapsack problem with the cardinality constraint K¢KNP
m, s, v, B, V) is as follows: LetM be a list ofm elements where thigh element has
positive sizes and positive value;, ands + vi > §.1 + viy1, 1 <i < m. Given
three positive integetls, B andV, is there a subset of exactiyelementsS € M such
that) ;s < Band) ;_qvi > V?

It is well-known that KNRm, s, v, B, V) is NP-hard (Garey and Johnson, 1979). This
problem is easily solvable in polynomial time if the valuggre all the same or the sizgs

are all the same. We now give a lemma, which leads to a corollary stating that the knapsac
problem with the cardinality constraint is also NP-hard.

Lemma 3.5. Given positive values;s..., s, vi1,..., v, B, V, and an integer klet

V=maxV,Y " v}+1ls=s+qv =v+V,B =B+k-q,andV =V +k-V.

Let m be an integer such that smk + 2. Then there exists a positive value g such that
) vi+s=zv,+5, 1<i<m

(i) 2-(wp+Sy =D, —V +14+w;+s)and

(i) SN +v) =B +V/ + 1

Proof: Letq=maxB+V+1,v}+8 —2-Sn—vj,+h}, whereh = 3"ty — v/ 41,
Itis easy to see that > 0.

() Thusv +5 =vi+V+s+q=2vipg+V+sSu+q=v,,+5,,.
(if) Note thatg > v; + S — 2 Sn — vy, + h.

2 (45— h+vi+8)=2-v,4+2-(Sn+q) —h—v; —5—q
=20 +2-sn+q—h—vi—5
>Vn+2-Snt @ +Si—2-Sn—vpth—h-v -5
=0

Thus 2- (v, +Sp) = h+vi+s =2 v =V + 1+ (v; +5).

(iii) Becausek < m—2, 3" s > Y™ s 4 (k+ 1) - g. Note thatB’ = B +k - .
Henced ™'s —B' > Y™ 's + (k+1)g— (B+k-q) > q— B. Since by definition
q>B+V+1,Y"'s > B +V+1. Thisimpliesy " (s +v/) > B'+ V' +1.

i

Corollary 3.6. The knapsack problem with the cardinality constraint is NP-hard.

Proof: We transform the knapsack problem KM s, v, B, V) into the following prob-
lem: Given

o V=maxV, Zim=1vi}+1;
eV =V +k.-V;
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q=maxB+V+1 v, +s—2-Sy— v+ 2o =V +1),
B'=B+Kk-q;

§S=s+0Q9,1<i<m;

vi=v+V,1<i<m,

does there exist an integethat is at mostm and K-KNRi, m, s’, v/, B’, V') has a “yes”

answer? Lemma 3.5 shows that K-KNPm, s/, v/, B/, V') is a valid instance for the

knapsack problem with the cardinality constraint. It is easy to see that these two problem:

are equivalent. Thus the knapsack problem with the cardinality constraint is also NP-hard
a

Given an instance of the knapsack problem KiPs, v, B, V), we know that we can ob-
tain an instance of the knapsack problem with the cardinality constraint K(KNPS', v’,

B’, V"), i < m, as specified in the proof of Corollary 3.6.

Given an instance of K-KN&, m, s', v/, B’, V') as specified in the proof of Corol-
lary 3.6, we then construct the following instance of the optimal scheduling problem
K-OPTSk + 2, J, e, c, L, M) with tasksto, ty, .. ., t, and whose PQJ) forms a directed
one-level out-tree rooted &t Let& = Y_;_; €, letCi = 3"|_; ¢j, andletD; = Y~ _, d;.

n=m+1,
L=&_,—B -V
d=v=v+V,1<i<n-1;
C=§=s+01l<i<n-1
ancn—l_l_L_B,;

Oh =Dpho1+1-V/;
eh=&-1—L-B =V
M=C,+d,+e—1;

Lemma3.7. K-OPTSk+2,J,e.c, L, M)isavalidinstance of the scheduling problem.
Proof: We need to verify thad,, > 0,€e, > 0, andL > 0.
(i) Notethaty; >0,1<i<n-1,n>k+2andy > V.
dh=Dp1+1-V’

n-1

=(Zvi>+(n—1)-v+1—v+k-v
i=1

>0

(i) Note thatg, =5 + v/. Thuse, > & > --- > g,_1. Since

e=&_-1—L-B -V
=&1—(2—-B -V)-B -V
=€n-1,
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e < e_;. ByLemma 35, 2¢e_1 > Dy1— V' + 1+ €. Starting from this
assumption, we verify that, =C,_1 —1— L — B > e —€,.

2-e-1>Dh1— V' +1+e
&SCh1+E1>22-En1—V =261+ 1+6e
SCh1+&1>22-E -V +1+e
&Ch1—1-2.B -V +&1>22-620—-2-B -2.V -1+1+¢
&Ch1—1-2.-B =V +&.1>2-L+e
&Ch1—1-L-B>e—-(-1—-L-B' -V)
<>Ch =€ — 6

Thusc, > e, —e,_1 > 0.
(i) By Lemma 3.5,£,_2 > B’ 4+ V' + 1. This impliesL > 0. m]

The following two lemmas shows that these two problems are equivalent.

Lemma 3.8. If x, = 0in the solution vector foK-OPTSk + 2, J, e,c, L, M) as for-
mulated in Lemma&.3, then we cannot answéyes to the above decision problem whose
PC(J) is a directed one-level out-tree.

Proof: Assume thatthat, = 0. Then}.[, di - x = Y d; - % < Dy_1. Equation (1)
inLemma 3.3 gives | ;d - X > & + & — M. Note thatM = Cp, + dy + € — 1. Thus
Zi”:l di - % > Dn_1+ 1. Henceitis impossible to havg = 0 if we want to have an “yes”
answer. O

Lemma 3.8 states that in order for K-ORKS- 2, J, e, ¢, L, M) to have a “yes” answer,
t, must not be allocated of.

A solution for a K-KNRk, m, s/, v/, B/, V') problem can be formulated as finding a
vector(xy, ..., Xm), such that; = 1 if theith item is selected in the knapsack.

Lemma 3.9. A solution vectoKXy, ..., Xm) for K-KNP(k, m, §', v/, B/, V') is equivalent
to a solution vectofXy, ..., Xn_1, 1) as formulated in Lemm&3 for K-OPTSk + 2, J, e,
¢, L, M) whosePC(J) is a directed one-level out-tred k < m — 2.

Proof: Note thatm = n— 1. By Lemma 3.7, K-OPT&+2, J,e,c, L, M) is a valid
instance for a scheduling problem.
We divide our proof into two parts.

Part (i): We first verify a solution vectofXy, . . ., Xn) for the scheduling problem K-OPTS
(k+2, J,e,c, L, M)givesasolutionvectgiy, . . ., Xm) for K-KNP(k, m, s, v', B’, V).
Thatis, given(%y, . .., %) as formulated in Lemma 3.3, we need to verify that', v/ -

% >V'and) " s -% <B.
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By Eg. (1) in Lemma 3.3 and the fact thgt = 1 (Lemma 3.8), we know that

>e+&—M—d,
=e+& - Ch+di+e—1) —
=Dn—2-dh+1
=Dh1—0dh+1
=Dn1+V' =V —dy+1
=V,+(Dn—1+1_v/)_dn
=V’

From Eq. (2) in Lemma 3.3 (by setting= n) and the fact that, = 1 (Lemma 3.8),
3§ %
i=1 i=1
<M-eg-L—-6&—=¢
=Ch+E@—-C)+e—-—-e—-L-—6e-0
=Cn_1— 1-L-—ocy
=Ch1—1-L—-(Chr-1—1-L-B)
=B

[N

- Xi

M

Part (ii): We now verify that a solution vectdgy, . .., Xyn) for K-KNP(k, m, s', v/, B/, V)
gives asolutionvectaiy, . .., X,) for the scheduling problem K-OPTiS+2, J, e, c, L,
M). That s, given the fact thgt ™, v/ - % > V' and}_\" | § - X < B’, we must derive
the three equations in Lemma 3.3.

n m
Zdi ~)_(i=Zvi,-)_(i + dy
i=1 i=1
>V’ +dy
:V’+Dn_1+1—V’
=Dpha1+1
:Dn+1_dn
:gn+eo+1—dn—cn—
=&+ —-—Ci+di+e—-1
=&+ —M
n m
Y x+(L+e) =) § %+c+L+e
i=1 i=1
<B'+ch+L+e
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=B +C_1—1-L-B' +L+e
=Chaat+ten—1+cn—C
=Ch+dy—1+e—g

=M —g

In the following equationsi, is any integer less tham. Recall thate; > g andc, =
Ch-1—1-L— B >e —en Thusc, + e > €.

n—-1
DG X+ (L+e) K=y ¢ X+t (L+en)
j<i j=1

n
=Y ¢ X+ (L+e) %
i=1
<M —e

Sincex, = Land}_ ", % =k, thus)_[" ; = k + 1. o

Theorem 3.10. The decision version of tl@PTS J, e, ¢, L, M) problem is NP-hard even
whenPC(J) is a directed one-level out-tree.

Proof: By Corollary 3.6 and Lemma 3.9. m|

Corollary 3.11. The decision version of th@PTSJ, e, ¢, L, M) problem is NP-hard
even wherPC(J) is a directed one-level in-tree.

Proof: This corollary follows from Lemma 2.3 and Theorem 3.10. m|

3.3. Other NP-hard instances

Definition 3.12 A directed graplc = (V, E) isaHARPOON graplof sizen if the set of
verticesV = {w, A1, ..., An, B1,...,Bylandthe setofedgds = {(w—> A) |1 < i <
n}U{(A — Bj) | 1<i < n}, where(u— v) denotes a directed edge pointed from vertex
u to vertexv. The vertexw is the root ofG. Vertices in{Aq, ..., Ay} areleading vertices
and vertices if{By, ..., By} aretailing vertices

Note thatG is a directed two-level out-tree in the above definition. An example for a
directed two-level out-tree in illustrated in in figure 4.

Fordiscussion here, I8t = {w, A4, ..., Ay, By, ..., By} be asetoftasks whose PL)
is a HARPOON graph with the roat, leading verticegAy, ..., Ay}, and tailing vertices
{By, ..., By}. The root task isv. The communication time frorw to any leading task
is large enough such that for any optimal scheduling all leading tasks are allocated on th
processor where the root tagkis allocated.

We use the following notation for tasks iH:

e gi1(w) is the execution time of task;
e J:1(A) is the execution time of task;;
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Figure 4 A directed two-level out-tree (called a HARPOON graph in&ierine (1994).

e 0:1(B)) is the execution time of task;;

e 0>(A) is the communication time needed to send data from #agk task A; if w and
A are allocated on different processors;

e 02(B;) is the communication time needed to send data from fagk taskB; if A; and
B; are allocated on different processors.

Lemma3.13. Thedecision version of the optimal scheduling prob@?TS J’, g;, gz, O,
M) is NP-hard in the simplified model wihC(J") being a two-level directed out-tre@here
01 is the function to map a task to its execution time ap@éghe function to map a task to
the amount of communication time needed to receive its data.

Proof: LetJ = {to, 11, ..., tn} be a set of tasks to be scheduled in the regular model and
whose PQJ) is a directed one-level out-tree. We will prove that if ORTS g;, g2, 0, M)
is solvable in polynomial time in the simplified model, then ORPT.®, ¢, L, M) is also
solvable in polynomial time.

Given OPTS$J, e, ¢, L, M) in the regular model, we construct ORS g3, g2, 0, M)
in the simplified model with the properties trai{w) = ey, 01(A) = ¢, 01(B) = & — ¢,
02(A)) = ¢, andg(Bj)) = ¢ + L. A scheduling for OPT&)', g1, 92, 0, M) in the
simplified model naturally corresponds to a scheduling for OBT& c, L, M) in the
regular model.

By Theorem 3.10, OPTS, €, ¢, L, M) isNP-hardinthe regular model. Hence ORTS
01, 02, 0, M) is also NP-hard in the simplified model. a

Note that a result that is similar to the one stated in Lemma 3.3 on a model without
latency and I/O contention is first described in €fehne (1994) by a transformation from
the knapsack problem that is as complex as the one stated in this paper. By using our rest
in Section 3.2, we can easily derive Lemma 3.13 on a model without latency, but enforcing
I/O contention rules.
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Corollary 3.14. The decision version of the optimal scheduling prob@®PTS J’, g1, gy,
0, M) is NP-hard in the simplified model withC(J") being a two-level directed in-tree.

Proof: Thisis a corollary of Lemmas 2.3 and 3.13. |

4. Algorithms for scheduling directed one-level task trees

Given an NP-hard problem, two approaches present themselves: 1) try to approximat
the solution with a fast polynomial algorithm or 2) try to restrict the problem such that
an optimal polynomial solution can be found. In this section, we take both approaches.
Section 4.1 gives an approximation algorithm and Section 4.2 gives an optimal algorithm
for a restricted case.

Consider the case of scheduling a directed one-level task tree using an unlimited numbe
of processors. By Lemma 2.3, we need only consider task graphs that are directed one-lev
out-trees. Letd = {tg, t1,...,tn} be a set of tasks whose P is a directed one-level
out-tree rooted aty. Let g andc be the execution and communication time of tgsk
respectively. Letl be the system I/O latency. We schedudl®n h identical processors
which are denoted a&, Py, ..., Ph_1.

4.1. Scheduling with arbitrary task execution times

We describe below an approximation algorithm for scheduling directed one-level task out-
trees on an unlimited number of processors. This is an NP-hard scheduling problem by
Theorem 3.10

We use the following notationE’ = 3, . _. &,andC” =}, _. . Gi. Without loss of
generality, assume thitis allocated on process®. We first give a lemma to help bound
from below the value of OP(D), the optimal makespan far on an unlimited number of
identical processors.

Lemma4.1. (i) An optimal scheduling for J is to schedule all tasks @rifRnd only if
for all tasks f withi > Oand ¢ > ¢, Zi”:la < ¢ + L + g. (ii) If scheduling all tasks
on R is not an optimal schedulinghenOPT(J) > e+ L. (iii) OPT(J) > eg+ E'+ C”.
(iv) OPT(J) > g,0<i <n.

Proof:

(i) The “only if” part of the proof is trivial since putting a task on another processor in

this case only increases the makespan. We now prove the “if” part.
Let She an optimal scheduling with all tasks allocated?0 Thus the makespan

of Sisey + Y ', &. Assume that there is a scheduliSgwith at least one task,
with 1 < w < nande, > ¢, such thaty' ;& > ¢, + L +e,. We know that
@+ Yi,8 —€ +C, <&+ ), e sincee, > c, and thatey + ¢, + L +
e, < e+ Zi”:leq by our assumption. This implies thet(S) < M(S) which is a
contradiction sincé& was an optimal scheduling. The conclusion follows.
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(i) Ifscheduling all tasks oty is not an optimal scheduling, then we must atleast schedule
one task;, i > 0, on processoP,. The makespan d®, is atleasey + ¢ + L + g.
Thus this part of the lemma holds.

(i) By Lemma 2.4, we know that scheduling tasks wih> ¢; on a processor other than
P, does not improve the makespan. Thus all such tasks can be schedgdTdre
minimum makespan oR, for any scheduling is at least equaldgp+ E' + C”.

(iv) This partis trivial. m]

Using Lemma 4.1, our simple 3-OPT approximation algorithm to find a scheduling works
as follows.

Algorithm A /% a scheduling on at most+ 1 processorss/
1. Check whether scheduling all tasks Bis an optimal scheduling

(Lemma4.l).
2. Otherwise, allocate a tagki = 0, withg > ¢; to P, by itself, and
the rest of the tasks tBy;

Lemma 4.2. (i) Algorithm A runs in @n) time. (ii) The makespan of the scheduling
produced by Algorithré is less than three times the optimal makespan.

Proof: Part (i) is trivial. We prove part (ii). Note that if the condition in Step 1 holds, then
Algorithm A finds an optimal scheduling by part (i) in Lemma 4.1. Thus we look at the
case where the condition in Step 1 fails. ISg#be the scheduling produced in Step 2. The
makespan o, in Sis e + E’ 4+ C” which is at most OP{J) by part (iii) in Lemma 4.1.
The makespand?,i > Oande > ¢, islessthanorequal ®+C” + L +¢. Therefore,

we note thaky + C” is no more than OPD) by part (iii) in Lemma 4.1L is less than
OPT(J) by part (ii) in Lemma 4.1, an@, is also no more than ORJT) by part (iv) in
Lemma 4.1. Thus the makespan of any processor is less thaRB(J). |

4.2. Scheduling with equal task execution times

In this section, we consider the problem of finding an optimal scheduling for directed one-
level task out-trees when the execution times of non-root tasks are restricted to be equa
We show an algorithm for finding an optimal scheduling using an unlimited number of
processors.

Assume that all execution times are the same,ée= € =€, 1 <i, j < n. Inthis
section, we assume without loss of generality thak ¢i,1, 1 < i < n. Note that the
differenced; equalss — ¢;. We also assume for now thdt> 0,1 <i < n.

Lemma 4.3. There is an integer p such that allocating tp;1, ..., t, to processor p
and allocating tasks 1 < i < p, to processors other thang®s an optimal scheduling
for J.

Proof: LetShe an optimal scheduling far. By Lemma 2.2, a subset of tasks are allocated
to Py, while each of the remaining tasks is allocated to a processor by itself. Without loss
of generality, assume that tagks allocated taR,, if t; is not allocated td?.
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If Sis not formed by allocating taskg tx.1, . . ., t, on processoPy and allocating tasks
ti, 1 <i <k, to processors other tha®, then there is a tagkallocated orPy and another
taskt;, j > i, which is not allocated oRy. Letx be the smallest integer such that thsls
allocated orP,. Lety be the smallestinteger that is greater tk@amdty is allocated orP,, ,
whereay # 0. We construct another scheduliSgby takingS and applying the following
task re-allocations: tasl is re-allocated on processé¥%, and tasky is re-allocated on
processoPy. LetS be this resulting scheduling. By Lemma 2.2, Proce&sdirst executes
to. Since the execution times of all non-root tasks are edalan send out data to tasks not
allocating onPy in arbitrary order. Thus we may assume that our algorithm uses increasing
order of task number for best realizations®tnd S. The makespan oR; in S is not
larger than the makespan & for Ssincedy > 0 andd, < dx. The makespan d?, in S
is less than the makespanff in S, sincecy + L + € < ¢y + L +€y. Thus the makespan
of S is no greater than the makespanSofiWe can continue to apply this process until the
resulting schedule is of the form desired. m]

Note that a similar proof for a simpler and more theoretical model where message sendin
time is the only cost for communication was given in €ghne (1994). An example for
an optimal scheduling specified in Lemma 4.3 is illustrated in figure 5.

Algorithm E /x Scheduling om + 1 processors witk; = --- = e, = e. x/
1. if thereisamr suchthat > 0andL +e=(n—r) - ¢,

thenk =r; /« The makespan d?, = Makespan of. x/

2. else .
@ifL+e>(n-1)-¢

thenr = 0; /* Schedule all tasks oRy. */
(b) elsefind an integer suchthat. +e < (n—r)-eandL+e > (n—r —1)-¢;
endif; /x Notethath—r — 1) = (n— (r +1) %/
/* eo+Zir=1 G + (n—r)-eisthe schedule makespan of allocating, .. ., t,
on Py, which derives LHS of the inequality in 2&/
/% &+ Y.I71 6 + L + eis the schedule makespan of allocatipg, . . . , t,
on Py, which derives RHS of the inequality in 2¢/
c)if(n—r)-e<cgi1+L+e

thenk =r;
(d)elsek =r +1;
endif;
endif;
3. Allocate taskdo, txi1, - - ., th On Pp; Allocate tasktj, 1 <i <k, onPR;

Theorem 4.4. The optimal solution to the directed one-level precedence tree scheduling
problem can be found in linear time when the execution times of all non-root tasks are equa
and tasks are sorted according to their communication costs.

Proof: The algorithm is shown in Algorithm E. Le% be the scheduling formed by
allocating taskgo, tk.1,...,t, on Py and allocating; on B, 1 < i < k. LetT be the
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Figure 5 An optimal scheduling by allocating tasks ts, andts to processoPy. In this given set of tasks,
ca=1c=2c=c=CcG=Cc=3,g=e=4,1<i <6,andL =4. Note thatt; <c+1,1<i <6.

makespan of process®, for §. ThenT; is a monotonically decreasing sequence, since
di > 0,1<i <n. Note thatTy > O.

By Lemma 2.2 and the fact thaet = e; for all i and j, the makespan of process@ris
greater than or equal to the makespaiPpin an optimal scheduling if bothandj are not
allocated onPy andi > j. Let W, be the makespan among process®ys.. ., P, in the
schedulingS. ThenW is a monotonically increasing sequence. Note Wat= 0.

M = maX{T;, W}. Let M* = min_; M;. Thus eitheM* = My wherek is an integer
andTy = W or, if T, # W for all i, then eithetM* = M, or M* = M,_; wherer is an
integer withT,_; > W,_; andT, < W,. O

If the input tasks are not previously sorted according to their communication times, then
an optimal algorithm take®(n - logn) time.

5. Simulation results

We have provided a practical and realistic model with algorithms and worst-case perfor-
mance bounds. We now attempt to provide some answers to questions such as: But how ¢
these algorithms perform on the average? How often do they actually reach that worst-cas
scenario? Are they worthy of consideration for usage with existing computing resources?

Our experiments used randomly generated data for the communiog)iand execution
(e) costs as well as the latency time, We specified the bounds gfande; to be uniformly
distributed between 0.1 and 10.0 and the latency to be uniformly distributed between 0.z
and 8.0. We also tried widely varying latency bounds to simulate processors which were
great distances from one another.

We first computed the optimal algorithm for a set of random data by using a brute force
algorithm. Because of time constraints produced by computing the optimal algorithm, we
only worked with sets of tasks less than twenty. After computing the optimal algorithm,
we simulated our algorithm on the set of tasks and then compared the results. For eac
size of task set, we computed the optimal and approximation result for 5000 sets of randon
data. We then compared our algorithm result against the optimal result. We found that for
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Figure 6  Worst case found for 5000 random simulations for each number of tasks in Algorithm A.

greater than ten tasks, Algorithm A always performed at less than 1.2 times the optima
(see figure 6).

Recall that our worst-case performance bound was three times the optimal for the cas
of using an unlimited number of processors. In practice, Algorithm A only found one set of
tasks where the worst case was greater than 2.0 in the 17 sets of 5,000 random simulatiol
each for numbers of tasks between three and nineteen. In fact, 90% of the approximatio
schedules were identical to the optimal schedule when using ten or more tasks in a set (s¢
figure 7).

By varying theL parameter widely, we came up with only slightly larger bounds for
small sets of tasks but they all followed the same pattern as did our specified paramete
range results.

The average case using Algorithm A was even more gratifying, ranging between 1.0 anc
1.08 times the optimal (see figure 8).

During our experiments for Algorithm A, we found that small task sets can provide uneven
results. Placing only one task on the ‘wrong’ processor to give a non-optimal solution can
make a large difference in the makespan when we are considering only a few tasks. Fc
example, in figures 8 and 7, the performance curve for when the number of tasks is less tha
five does not seem to conform to the general trend of data that we obtained. In examining
our schedules produced by Algorithm A, we discovered that it was often the case that only
one task was out of place to produce a non-optimal schedule. Using this knowledge, we
modified Algorithm A as follows.
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Algorithm A’ /x Modification of Algorithm A.x/
Add the following after Step 2 of Algorithm A:

3. Let the scheduling we have so far Bg

4. For eachtask, 1 <i < n, placed onP, in Rdo:
Modify R by placingt; on Py;
Let the makespan of the resulting schedulingvhe

5. Compare makespaig, 1 < i < n, with the makespan dR and use the
schedule with the smallest makespan.

Algorithm A" always gives a better solution than Algorithm A (see figure 6). Algorithm
A’ also gives ‘almost optimal’ results even for small task sets (see figure 8). Note that
adding this improvement to the algorithm does not change its linear time complexity. The
percentage of identical schedules is, of course, also much better when using Algofithm A
(see figure 7).

In summation, the average case simulation results are extremely close to optimal an
even looking at worst cases and varying parameters, we obtain excellent results.

6. Concluding remarks

A practical and realistic model is presented for allocating tasks in a parallel distributed
memory architecture. The model is designed to handle any algorithm for which task
execution and communication costs can be known or estimated in advance. Our proo
of NP-hardness when the precedence constraints form a directed one-level tree and tt
fundamental properties developed for this model together open the door for the design o
good approximation algorithms both for scheduling an unbounded number of available
processors and for scheduling a lesser fixed number of available processors in the systel
We have demonstrated the design of an approximation algorithm and a polynomial time
algorithm for one-level precedence trees. We have also demonstrated that the approximatic
algorithm performs very close to optimal under simulated conditions. This is a starting
point for finding more tractable algorithms under less stringent conditions. Such work can
eventually be used by a compiler to allocate the tasks of a general algorithm to execute i
parallel efficiently.
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