

P1: SSK/ASH P2: SSK/ASH QC: SSK

Journal of Combinatorial Optimization KL414-02-Hollerman March 10, 1997 17:28

Journal of Combinatorial Optimization 1, 129–149 (1997)
c© 1997 Kluwer Academic Publishers. Manufactured in The Netherlands.

Scheduling Problems in a Practical Allocation Model∗

LISA HOLLERMANN† hollerla@cda.mrs.umn.edu
IBM Corporation, Rochester, MN, USA

TSAN-SHENG HSU‡ tshsu@iis.sinica.edu.tw
Institute of Information Science, Academia Sinica, Nankang 11529, Taipei, Taiwan, ROC

DIAN RAE LOPEZ§ lopezdr@cda.mrs.umn.edu
Division of Science and Mathematics, University of Minnesota, Morris, Morris, Minnesota 56267, USA

KEITH VERTANEN¶ e96keive@und.ida.liu.se
Linkvping Universitet, Alsg. 15C:22, S-58435 Linkvping, Sweden

Received ; Revised

Abstract. A parallel computational model is defined which addresses I/O contention, latency, and pipe-lined
message passing between tasks allocated to different processors. The model can be used for parallel task-allocation
on either a network of workstations or on a multi-stage inter-connected parallel machine. To study performance
bounds more closely, basic properties are developed for when the precedence constraints form a directed tree. It
is shown that the problem of optimally scheduling a directed one-level precedence tree on an unlimited number
of identical processors in this model is NP-hard. The problem of scheduling a directed two-level precedence tree
is also shown to be NP-hard even when the system latency is zero.

An approximation algorithm is then presented for scheduling directed one-level task trees on an unlimited
number of processors with an approximation ratio of 3. Simulation results show that this algorithm is, in fact,
much faster than its worst-case performance bound. Better simulation results are obtained by improving our
approximation algorithm using heusistics. Restricting the problem to the case of equal task execution times, a
linear-time algorithm is presented to find an optimal schedule.

1. Introduction

Models for scheduling tasks on a parallel MIMD architecture have usually included a
communication cost associated with the sending of data between tasks which are located on

∗An extended abstract of part of this paper appeared in the Proceedings of the Seventh International Symposium
on Algorithms and Computation, Osaka, Japan, 1996.
†Research supported by MAP Undergraduate Research Award from University of Minnesota, Morris. Lisa is
currently an intern at IBM.
‡Research supported in part by NSC Grants 85-2213-E-001-003 and 86-2213-E-001-012.
§Research supported in part by Academia Sinica, Taipei, the University of Minnesota, Morris and the University
of Minnesota China Center, Minneapolis.
¶Research supported by UROP grant from University of Minnesota, Morris. Keith is currently on study abroad at
the University of Linkvping.

P1: SSK/ASH P2: SSK/ASH QC: SSK

Journal of Combinatorial Optimization KL414-02-Hollerman March 10, 1997 17:28

130 HOLLERMANN ET AL.

different processors. Early work on this problem used graph theoretic techniques such as
network flow and/or enumeration techniques (El-Dissouki and Huen, 1980; Ma et al., 1982;
Stone, 1977). Later work concentrated on approximation algorithms (Anger et al., 1990;
Hwang et al., 1989; Lo, 1988; Papadimitriou and Yannakakis, 1990). Research then evolved
to more restricted models which allowed an infinite number of processors in the system.
Polynomial algorithms were found for the cases where the precedence constraints form a
tree under certain constraints (Cheng and Sin, 1990; Chr´etienne, 1989, 1992; Colin and
Chrétienne, 1991, Lopez, 1992). A good review of models and algorithms developed for this
problem can be found in (Cheng and Sin, 1990; Chr´etienne et al., 1995; Lo, 1983; Norman
and Thanisch, 1993). Most of this work was very theoretical in nature, i.e., the models
were too simplistic for practical application to real machines. More recently, Valiant’s BSP
Model (Valiant, 1990a, 1990b) provided a general framework with which to study more
practical algorithms in an asynchronous distributed memory parallel architecture. The LogP
model (Culler et al., 1993) and the QRQW model (Gibbons et al., 1994) attempted to further
bridge the theoretical and practical models.

This paper uses a practical and realistic model based on Valiant’s asynchronous distributed
memory architecture while taking into consideration the read/write contention of the QRQW
model, the latency/overhead time of the LogP model, and the pipe-lined message sending
cost which is proportional to the message size. The model can be used for a loosely-
coupled parallel architecture where communication times are small but still significant. It
is also general enough to represent a communication network of computers or workstations
each with its own memory and microprocessor. The growth of such networks mandate
more study into the efficient use of their parallel computing power. Unlike the LogP
and QRQW models in which specific algorithms are designed to match the model, our
model is general enough to be used for any algorithm which can be represented as a set of
tasks which communicate with each other and whose execution and communication costs
are known or can be estimated. An example where such an algorithm would be helpful
is a network of computers using PVM parallel software (Geist et al., 1993). In today’s
environment, PVM program tasks are either scheduled by the programmer or, more often,
they are arbitrarily allocated to processors(also called processing elements or PE’s). The
work of this paper is designed to allow the compiler and/or operating system to perform such
tasks.

Previously, on a simpler and more theoretical model where message sending time is
the only cost for communication, it has been shown that scheduling a two-level directed
precedence tree (Chr´etienne, 1994) and that scheduling a general directed precedence intree
with task lengths (Lenstra et al., 1996) are both NP-hard. These important results show that
we must either put constraints on the task set or develop approximation algorithms with
good performance bounds. By constraining our model so that the set of tasks form only a
one-level directed precedence tree and by allowing for communication costs for both the
sending and receiving of messages, we prove that task allocation on even this more practical
model is still NP-hard. We then proceed to develop an approximation algorithm for this
case and to look at an even simpler case which does lend itself to a polynomial solution.

The results are summarized in Table 1.

P1: SSK/ASH P2: SSK/ASH QC: SSK

Journal of Combinatorial Optimization KL414-02-Hollerman March 10, 1997 17:28

SCHEDULING PROBLEMS IN A PRACTICAL ALLOCATION MODEL 131

Table 1. Summary of NP-hardness proofs and algorithms presented in this paper.

Arbitrary task Equal task
execution times execution times

Approx. ratio 3 (NP-hard) OptimalDirected one− level
task trees w/n+ 1 tasks Running time O(n) O(n) + sorting

The paper is organized as follows. Section 2 defines the communication model used
and develops some basic properties of the model. Section 3 proves NP-hardness results
by a series of reductions from the knapsack problem. Section 4 considers algorithms for
the case when the precedence constraints form a directed one-level tree. We give a 3-OPT
approximation algorithm and an optimal liner-time algorithm for the special case of equal
execution times of all tasks other than the root task in the system. Section 5 shows that
the algorithms perform very close to optimal most of the time under simulated conditions.
Conclusions follow.

2. The communication model

Let J = {t0, t1, . . . , tn} be a set of tasks whose precedence constraints form a directed graph
PC(J). In a precedence graph for a set of tasks, the weight on a directed edge(u → v)

which points fromu to v represents the communication time needed foru to send data to
v if u andv are allocated on different processors. The weight on each node represents its
execution time. In this model, we consider the case when all processors in the system are
identical. Thus a task has the same execution time on any processor(PE) in the system.

A directed graphG is a directed out-treeif there is a vertexu in G such that there is
exactly one directed path fromu to any other vertex. The vertexu is theroot. Each vertex
in G having no outgoing edge is aleaf. A directed out-tree is ak-level treeif the length
of the path from the root to each leaf isk. By reversing the direction of all edges in a
directed out-tree, we obtain adirected in-tree. A directed treeis either a directed out-tree
or a directed in-tree. An example is illustrated in figure 1.

Let e(ti) = ei andc(ti) = ci be the execution and communication time of the taskti ,
respectively. For convenience, we define thedifferenceof taskti to bedi = ei − ci . We

(1) (2)

Figure 1. In (1), a directed out-tree is illustrated. In (2), a directed in-tree is illustrated.

P1: SSK/ASH P2: SSK/ASH QC: SSK

Journal of Combinatorial Optimization KL414-02-Hollerman March 10, 1997 17:28

132 HOLLERMANN ET AL.

Figure 2. Taskti is allocated to processorPi andt j is allocated toPj . During timex − (x + ei), ti is executed
on Pi . The sending time fromti to t j is ci . L, the system latency, is the units of time from whenPi starts to send
data untilPj starts to receive the data fromPi , and the receiving time isci .

scheduleJ on uniform processorsP0, P1, . . . , Pr with a system I/O latency,L. Note that
r ≤ n. In this model, taskti takesei time to finish its computation and after its completion
(might not be immediately) transmits data to the processor on which taskt j is allocated
if there is a precedence relation fromti to t j . Taskt j cannot start executing unless it has
received all data fromti . We assume that the communication time is zero between two
tasks allocated to the same processor. Ifti andt j are allocated to different processors, then
the sending time forti is cj and the receiving time fort j is alsocj . All data streams are
transmitted in a pipelined fashion, i.e., afterti starts sending, all data arrive att j in cj + L
units of time. If a task needs to send or receive two data elements at the same time, the two
I/O operations must take place in sequence. An example of a timing diagram for executing
tasks in this model is shown in figure 2.

Realization of a scheduling. A scheduling,S, for J is an assignment of tasks to processors.
A legal realizationfor S is the assignment of starting times for all tasks allocated to each
processor such that it satisfies the precedence constraints and the I/O latency requirement.
Given a realization, lets(ti) and f (ti) be, respectively, the start and finish execution times
for ti on the processor to which it is allocated. Lets(ci) and f (ci) be the start and finish
times to send data to the processorti is located on. Themakespanof a processorPi for
a realization is the time at which the processorPi finishes all tasks allocated to it. The
makespan of a legal realization is the largest makespan among all processors. A legal
realization with the smallest makespan is abestrealization. The makespan of a scheduling
S is the makespan of its best realization and is denoted asM(S). An optimal scheduling J
is a scheduling with the smallest possible makespan. For convenience, we assume thatt0
is allocated toP0. We now state a property which can be easily verified.

Lemma 2.1. Let J = {t0, t1, . . . , tn} be a set of tasks whosePC(J) forms a directed
one-level tree with the root t0. When scheduling J on an unlimited number of identical
processors, there is an optimal scheduling where every processor, except the one on which t0

is located, is allocated no more than one task.

We next state a lemma with regard to properties of a best realization.

P1: SSK/ASH P2: SSK/ASH QC: SSK

Journal of Combinatorial Optimization KL414-02-Hollerman March 10, 1997 17:28

SCHEDULING PROBLEMS IN A PRACTICAL ALLOCATION MODEL 133

Lemma 2.2. Let J = {t0, t1, . . . , tn} be a set of n+1 tasks whosePC(J) forms a directed
one-level out-tree with the root t0 and whose execution times of tasks other than t0 satisfy
the condition ei ≥ ei +1, 1 ≤ i < n. Given a scheduling for J, let t0, tv1, . . . , tvn−w

be
tasks allocated to P0 and let tu1, tu2, . . . , tuw

be tasks not allocated to P0. There exists
a best realization for the given scheduling with the following properties: (1) s(t0) = 0;
(2) ui < ui +1, 1 ≤ i < w; (3) s(cui) = e0 + ∑i −1

j =1 cuj , for all 1 ≤ i ≤ w; (4)

s(tvi) = e0 + ∑w
j =1 cuj + ∑i −1

j =w+1 ev j , for all 1 ≤ i ≤ n − w; (5) tui is allocated on Pi
with s(tui) = s(cui) + L + cui , 1 ≤ i ≤ w.

Proof: It is obviously true that any best realization executest0 on P0 as soon as possible.
After finishing the computation oft0, executing other tasks allocated onP0 before doing

communication fort0 does not decrease the makespan. Thus we may assume that all
optimal realization makespans could executetvi on P0 only aftert0 sends all of its data to
other processors. Letfi (R) be the finish time forti in a realizationR. Let R be an optimal
realization with someeui < eui +1. Let R′ be the revised realization by swapping the order
of sending data fortui andtui +1. The finish times for processors other thanPi andPi +1 are
the same inR andR′ and

fui (R) = f (cui −1) + cui + L + eui ;
fui +1(R) = f (cui −1) + cui + cui +1 + L + eui +1;
fui (R′) = f (cui −1) + cui +1 + L + eui +1;

fui +1(R′) = f (cui −1) + cui + cui +1 + L + eui .

Sinceeui < eui +1, thus fui +1(R) > fui +1(R′). It is always true thatfui +1(R) ≥ fui (R′). Thus
the makespan forR′ is no worse than the makespan forR. By using this lemma, we can
find an optimal realization with the property thateui ≥ eui +1, for all 1 ≤ i < w. 2

An example for a best realization of a scheduling as described in Lemma 2.2 is illustrated
in figure 3.

The symmetric property. In the following lemma, letr (G) be the resulting graph obtained
from a directed graphG by reversing the direction of each edge inG. The weights on nodes
and edges remain the same. Note that ifG is a directed tree, thenr (G) is also a directed tree.

Figure 3. The form of a best realization for the precedence graph (shown above) when taskst0, t1, andt3 are
assigned toP0 and the rest of the tasks are each assigned to another processor. Note thatei is the execution time
for taskti . In this given set of task,L = 4, c2 = 3, c4 = 2, c5 = 2, e1 = 3, e2 = 4, e3 = 3, e4 = 4, ande5 = 3.
Sincee4 ≥ e2 ≥ e5, this is a best realizationfor the above task assignmentaccording to Lemma 2.2

.

P1: SSK/ASH P2: SSK/ASH QC: SSK

Journal of Combinatorial Optimization KL414-02-Hollerman March 10, 1997 17:28

134 HOLLERMANN ET AL.

Lemma 2.3. Let J be a set of tasks whosePC(J) is a directed tree. Let J′ be the same
set of tasks except thatPC(J ′) = r (PC(J)). If there is a scheduling for J whose makespan
is M, then there exists a scheduling for J′ whose makespan is also M.

Proof: Let Sbe a scheduling forJ with a realization whose makespan isM . SinceJ and
J ′ have the same set of tasks,S is also a scheduling forJ ′. Let R be a realization forSon
J with the makespanM . We construct the realizationR′ for S on J ′ whose makespan is
also M . Let fR(ti) be the finish time for taskti in R and letaR(ti) be the finish time for
taskti to receive its needed data inR if the task sending that data is allocated to a processor
that is different from the processor thatti is on. ThensR′(ti) = M − fR(ti) is the starting
execution time for taskti in R′ andsR′(ci) = M − aR(ti) is the starting time for taskti to
transmit data inR′. The makespan ofR′ is alsoM . 2

Intuitively, in the proof of Lemma 2.3, we “reverse” the time arrow inR to deriveR′.

The positive difference property.Let J = {t0, t1, . . . , tn} be a set of tasks whose PC(J)

is a directed tree rooted att0. We will show that a task whose difference (i.e., the execution
time minus the communication time) is non-positive can be allocated on a processor with
its parent to have an optimal scheduling.

Lemma 2.4. Let S be a scheduling for a set of tasks whosePC(J) is a directed one-level
tree. By re-allocating all tasks with non-positive differences to P0, the resulting scheduling
has equal or better makespan than that of S.

Proof: By Lemma 2.3, we may assume that PC(J) is a one-level directed out-tree. Once
we prove this case, the case when PC(J) is a directed in-tree follows.

Let tw be a task with a non-positive difference which is allocated to a processor other
than P0 in an optimal scheduling. The parent oftw is t0 andt0 is allocated onP0. By re-
allocatingtw on P0, the makespan forP0 is increased bydw. Sincedw ≤ 0, the makespan on
P0 does not increase. On the other hand, the makespan forPi , i > 0, is also not increased.
Thus the new scheduling is also optimal. We can continue this process until all tasks with
non-positive differences satisfy the property specified in the lemma. 2

3. NP-hardness results

A communication model where the sending time and I/O latency are both zero is asimplified
model. A model that does not assume this is aregular model. In this section, we prove
that the optimal scheduling problem for a set of tasksJ is NP-hard in the regular model
even when PC(J) is a directed one-level tree. The proof of the NP-hardness result is done
by reducing the well-known knapsack problem to it. The proof is rather involved. We will
also show that the proof holds when extended to the simplified model where PC(J) is a
two-level directed tree.

P1: SSK/ASH P2: SSK/ASH QC: SSK

Journal of Combinatorial Optimization KL414-02-Hollerman March 10, 1997 17:28

SCHEDULING PROBLEMS IN A PRACTICAL ALLOCATION MODEL 135

3.1. Problem formulation

Definition 3.1. Let J = {t0, t1, . . . , tn} be a set of tasks whose PC(J) is a directed one-level
out-tree rooted att0.

(i) The decision problem OPTS(J, e, c, L , M) is as follows: Given a positive integerM , is
there a scheduling forJ whose makespan is less than or equal toM in a communication
model with I/O latencyL?

(ii) The decision problem K-OPTS(k, J, e, c, L , M) is as follows: Given positive integers
k andM , is there a scheduling forJ whose makespan is less than or equal toM using
exactlyk processors with exactly one task allocated on each of thek − 1 processors in
a communication model with I/O latencyL?

Lemma 3.2. TheOPTS(J, e, c, L , M) problem is equivalent to the following problem:
Does there exist an integer i that is at most n such thatK-OPTS(i, J, e, c, L , M) has a
“yes” answer?

Lemma 3.3. TheK-OPTS(k, J, e, c, L , M) problem can also be formulated as follows:
Is there an assignment of values to the set of binary variables{x1, . . . , xn} such that the
following are satisfied?

n∑
i =1

xi · di ≥
n∑

i =1

ei + e0 − M, (1)

and ∑
j ≤i

x j · cj + (L + ei) · xi ≤ M − e0, for all 1 ≤ i ≤ n (2)

n∑
i =1

xi = k − 1 (3)

Proof: If ti is allocated onP0, then xi = 0. Otherwise,xi = 1. The overall finish
time on P0 is e0 + ∑n

i =1(1 − xi) · ei + ∑n
i =1 xi · ci . This value must be less than or

equal toM . This gives the first equation. The overall finish time onPi , 0 < i ≤ w is
e0 + ∑

j ≤i x j · cj + (L + ei) · xi . This value must be less than or equal toM . This gives
the second equation. The third equation is trivial. 2

3.2. OPTS(J, e, c, L, M) is NP-hard

We will prove that OPTS(J, e, c, L , M) is NP-hard even when PC(J) is a directed one-level
out-tree by a reduction from the knapsack problem.

We first prove that a particular instance of the knapsack problem is NP-hard.

Definition 3.4.

(i) The decision version of the knapsack problem KNP(m, s, v, B, V) is as follows: LetM
be a list ofm elements where thei th element has positive sizesi and positive valuevi ,

P1: SSK/ASH P2: SSK/ASH QC: SSK

Journal of Combinatorial Optimization KL414-02-Hollerman March 10, 1997 17:28

136 HOLLERMANN ET AL.

andsi + vi ≥ si +1 + vi +1, 1 ≤ i < m. Given two positive integers,B andV , is there
a subset of elementsS ⊆ M such that

∑
i ∈S si ≤ B and

∑
i ∈Svi ≥ V?

(ii) The decision version of the knapsack problem with the cardinality constraint K-KNP(k,

m, s, v, B, V) is as follows: LetM be a list ofm elements where thei th element has
positive sizesi and positive valuevi , andsi + vi ≥ si +1 + vi +1, 1 ≤ i < m. Given
three positive integersk, B andV , is there a subset of exactlyk elementsS ⊆ M such
that

∑
i ∈S si ≤ B and

∑
i ∈Svi ≥ V?

It is well-known that KNP(m, s, v, B, V) is NP-hard (Garey and Johnson, 1979). This
problem is easily solvable in polynomial time if the valuesvi are all the same or the sizessi

are all the same. We now give a lemma, which leads to a corollary stating that the knapsack
problem with the cardinality constraint is also NP-hard.

Lemma 3.5. Given positive values s1, . . . , sn, v1, . . . , vn, B, V, and an integer k, let
V = max{V,

∑m
i =1 vi } + 1, s′

i = si + q, v′
i = vi +V, B′ = B + k · q, and V′ = V + k ·V.

Let m be an integer such that m> k + 2. Then there exists a positive value q such that
(i) v′

i + s′
i ≥ v′

i +1 + s′
i +1, 1 ≤ i < m,

(ii) 2 · (v′
m + s′

m) ≥ ∑m
i =1 v′

i − V ′ + 1 + (v′
1 + s′

1) and
(iii)

∑m−1
i =1 (s′

i + v′
i) ≥ B′ + V ′ + 1.

Proof: Let q = max{B+V+1, v′
1 +s1 −2·sm −v′

m +h}, whereh = ∑m−1
i =1 v′

i − V ′ +1.
It is easy to see thatq > 0.

(i) Thusv′
i + s′

i = vi + V + si + q ≥ vi +1 + V + si +1 + q = v′
i +1 + s′

i +1.
(ii) Note thatq ≥ v′

1 + s1 − 2 · sm − v′
m + h.

2 · (v′
m + s′

m) − (h + v′
1 + s′

1) = 2 · v′
m + 2 · (sm + q) − h − v′

1 − s1 − q

= 2 · v′
m + 2 · sm + q − h − v′

1 − s1

≥ v′
m + 2 · sm + (v′

1 + s1 − 2 · sm − v′
m + h) − h − v′

1 − s1

= 0

Thus 2· (v′
m + s′

m) ≥ h + v′
1 + s′

1 = ∑m
i =1 v′

i − V ′ + 1 + (v′
1 + s′

1).
(iii) Becausek < m − 2,

∑m−1
i =1 s′

i >
∑m−1

i =1 si + (k + 1) · q. Note thatB′ = B + k · q.
Hence

∑m−1
i =1 s′

i − B′ ≥ ∑m−1
i =1 si + (k+1)q− (B+k ·q) ≥ q− B. Since by definition

q ≥ B + V + 1,
∑m−1

i =1 s′
i ≥ B′ + V + 1. This implies

∑m−1
i =1 (s′

i + v′
i) ≥ B′ + V ′ + 1.

2

Corollary 3.6. The knapsack problem with the cardinality constraint is NP-hard.

Proof: We transform the knapsack problem KNP(m, s, v, B, V) into the following prob-
lem: Given

• V = max{V,
∑m

i =1 vi } + 1;
• V ′ = V + k · V;

P1: SSK/ASH P2: SSK/ASH QC: SSK

Journal of Combinatorial Optimization KL414-02-Hollerman March 10, 1997 17:28

SCHEDULING PROBLEMS IN A PRACTICAL ALLOCATION MODEL 137

• q = max{B + V + 1, v′
1 + s1 − 2 · sm − v′

m + ∑m−1
i =1 v′

i − V ′ + 1},
• B′ = B + k · q;
• s′

i = si + q, 1 ≤ i ≤ m;
• v′

i = vi + V, 1 ≤ i ≤ m,

does there exist an integeri that is at mostm and K-KNP(i, m, s′, v′, B′, V ′) has a “yes”
answer? Lemma 3.5 shows that K-KNP(i, m, s′, v′, B′, V ′) is a valid instance for the
knapsack problem with the cardinality constraint. It is easy to see that these two problems
are equivalent. Thus the knapsack problem with the cardinality constraint is also NP-hard.

2

Given an instance of the knapsack problem KNP(m, s, v, B, V), we know that we can ob-
tain an instance of the knapsack problem with the cardinality constraint K-KNP(i, m, s′, v′,
B′, V ′), i ≤ m, as specified in the proof of Corollary 3.6.

Given an instance of K-KNP(k, m, s′, v′, B′, V ′) as specified in the proof of Corol-
lary 3.6, we then construct the following instance of the optimal scheduling problem
K-OPTS(k + 2, J, e, c, L , M) with taskst0, t1, . . . , tn and whose PC(J) forms a directed
one-level out-tree rooted att0. LetEi = ∑i

j =1 ej , letCi = ∑i
j =1 cj , and letDi = ∑i

j =1 dj .

• n = m + 1;
• L = En−2 − B′ − V ′;
• di = v′

i = vi + V, 1 ≤ i ≤ n − 1;
• ci = s′

i = si + q, 1 ≤ i ≤ n − 1;
• cn = Cn−1 − 1 − L − B′;
• dn = Dn−1 + 1 − V ′;
• en = En−1 − L − B′ − V ′;
• M = Cn + dn + e0 − 1;

Lemma 3.7. K-OPTS(k+2, J, e, c, L , M) is a valid instance of the scheduling problem.

Proof: We need to verify thatdn > 0, en ≥ 0, andL ≥ 0.

(i) Note thatvi ≥ 0, 1≤ i ≤ n − 1, n ≥ k + 2 andV ≥ V .

dn =Dn−1 + 1 − V ′

=
(

n−1∑
i =1

vi

)
+ (n − 1) · V + 1 − V + k · V

> 0

(ii) Note thatei = s′
i + v′

i . Thuse1 ≥ e2 ≥ · · · ≥ en−1. Since

en = En−1 − L − B′ − V ′

= En−1 − (En−2 − B′ − V ′) − B′ − V ′

= en−1,

P1: SSK/ASH P2: SSK/ASH QC: SSK

Journal of Combinatorial Optimization KL414-02-Hollerman March 10, 1997 17:28

138 HOLLERMANN ET AL.

en ≤ en−1. By Lemma 3.5, 2· en−1 ≥ Dn−1 − V ′ + 1 + e1. Starting from this
assumption, we verify thatcn = Cn−1 − 1 − L − B′ ≥ e1 − en.

2 · en−1 ≥ Dn−1 − V ′ + 1 + e1

⇔ Cn−1 + En−1 ≥ 2 · En−1 − V ′ − 2 · en−1 + 1 + e1

⇔ Cn−1 + En−1 ≥ 2 · En−2 − V ′ + 1 + e1

⇔ Cn−1 − 1− 2 · B′ − V ′ + En−1 ≥ 2 · En−2 − 2 · B′ − 2 · V ′ − 1+ 1+ e1

⇔ Cn−1 − 1 − 2 · B′ − V ′ + En−1 ≥ 2 · L + e1

⇔ Cn−1 − 1 − L − B′ ≥ e1 − (En−1 − L − B′ − V ′)
⇔ cn ≥ e1 − en

Thuscn ≥ e1 − en−1 ≥ 0.
(iii) By Lemma 3.5,En−2 ≥ B′ + V ′ + 1. This impliesL ≥ 0. 2

The following two lemmas shows that these two problems are equivalent.

Lemma 3.8. If xn = 0 in the solution vector forK-OPTS(k + 2, J, e, c, L , M) as for-
mulated in Lemma3.3, then we cannot answer“yes” to the above decision problem whose
PC(J) is a directed one-level out-tree.

Proof: Assume that thatxn = 0. Then
∑n

i =1 di · xi = ∑n−1
i =1 di · xi ≤ Dn−1. Equation (1)

in Lemma 3.3 gives
∑n

i =1 di · xi ≥ En + e0 − M . Note thatM = Cn + dn + e0 − 1. Thus∑n
i =1 di · xi ≥ Dn−1 +1. Hence it is impossible to havexn = 0 if we want to have an “yes”

answer. 2

Lemma 3.8 states that in order for K-OPTS(k+2, J, e, c, L , M) to have a “yes” answer,
tn must not be allocated onP0.

A solution for a K-KNP(k, m, s′, v′, B′, V ′) problem can be formulated as finding a
vector〈x1, . . . , xm〉, such thatxi = 1 if the i th item is selected in the knapsack.

Lemma 3.9. A solution vector〈x̄1, . . . , x̄m〉 for K-KNP(k, m, s′, v′, B′, V ′) is equivalent
to a solution vector〈x̄1, . . . , x̄n−1, 1〉 as formulated in Lemma3.3 for K-OPTS(k + 2, J, e,
c, L , M) whosePC(J) is a directed one-level out-tree, if k < m − 2.

Proof: Note thatm = n − 1. By Lemma 3.7, K-OPTS(k + 2, J, e, c, L , M) is a valid
instance for a scheduling problem.

We divide our proof into two parts.

Part (i): We first verify a solution vector〈x̄1, . . . , x̄n〉 for the scheduling problem K-OPTS
(k + 2, J, e, c, L , M)gives a solution vector〈x̄1, . . . , x̄m〉 for K-KNP(k, m, s′, v′, B′, V ′).
That is, given〈x̄1, . . . , x̄n〉 as formulated in Lemma 3.3, we need to verify that

∑m
i =1 v′

i ·
x̄i ≥ V ′ and

∑m
i =1 s′

i · x̄i ≤ B′.

P1: SSK/ASH P2: SSK/ASH QC: SSK

Journal of Combinatorial Optimization KL414-02-Hollerman March 10, 1997 17:28

SCHEDULING PROBLEMS IN A PRACTICAL ALLOCATION MODEL 139

By Eq. (1) in Lemma 3.3 and the fact thatx̄n = 1 (Lemma 3.8), we know that

m∑
i =1

v′
i · x̄i =

n−1∑
i =1

di · x̄i

≥ e0 + En − M − dn

= e0 + En − (Cn + dn + e0 − 1) − dn

=Dn − 2 · dn + 1

=Dn−1 − dn + 1

=Dn−1 + V ′ − V ′ − dn + 1

= V ′ + (Dn−1 + 1 − V ′) − dn

= V ′

From Eq. (2) in Lemma 3.3 (by settingi = n) and the fact that̄xn = 1 (Lemma 3.8),

m∑
i =1

s′
i · x̄i =

n−1∑
i =1

ci · x̄i

≤ M − e0 − L − en − cn

= (Cn + (en − cn) + e0 − 1) − e0 − L − en − cn

= Cn−1 − 1 − L − cn

= Cn−1 − 1 − L − (Cn−1 − 1 − L − B′)
= B′

Part (ii): We now verify that a solution vector〈x̄1, . . . , x̄m〉 for K-KNP(k, m, s′, v′, B′, V ′)
gives a solution vector〈x̄1, . . . , x̄n〉 for the scheduling problem K-OPTS(k+2, J, e, c, L ,

M). That is, given the fact that
∑m

i =1 v′
i · x̄i ≥ V ′ and

∑m
i =1 s′

i · x̄i ≤ B′, we must derive
the three equations in Lemma 3.3.

n∑
i =1

di · x̄i =
m∑

i =1

v′
i · x̄i + dn

≥ V ′ + dn

= V ′ +Dn−1 + 1 − V ′

=Dn−1 + 1

=Dn + 1 − dn

= En + e0 + 1 − dn − Cn − e0

= En + e0 − (Cn + dn + e0 − 1)

= En + e0 − M
n∑

i =1

ci · x̄i + (L + en) · x̄n =
m∑

i =1

s′
i · x̄i + cn + L + en

≤ B′ + cn + L + en

P1: SSK/ASH P2: SSK/ASH QC: SSK

Journal of Combinatorial Optimization KL414-02-Hollerman March 10, 1997 17:28

140 HOLLERMANN ET AL.

= B′ + Cn−1 − 1 − L − B′ + L + en

= Cn−1 + en − 1 + cn − cn

= Cn + dn − 1 + e0 − e0

= M − e0

In the following equations,i is any integer less thann. Recall thate1 ≥ ei andcn =
Cn−1 − 1 − L − B′ ≥ e1 − en. Thuscn + en ≥ e1.

∑
j ≤i

cj · x̄ j + (L + ei) · x̄i ≤
n−1∑
j =1

cj · x̄ j + cn + (L + en)

=
n∑

j =1

cj · x̄ j + (L + en) · x̄n

≤ M − e0

Sincex̄n = 1 and
∑m

i =1 x̄i = k, thus
∑n

i =1 = k + 1. 2

Theorem 3.10. The decision version of theOPTS(J, e, c, L , M) problem is NP-hard even
whenPC(J) is a directed one-level out-tree.

Proof: By Corollary 3.6 and Lemma 3.9. 2

Corollary 3.11. The decision version of theOPTS(J, e, c, L , M) problem is NP-hard
even whenPC(J) is a directed one-level in-tree.

Proof: This corollary follows from Lemma 2.3 and Theorem 3.10. 2

3.3. Other NP-hard instances

Definition 3.12. A directed graphG = (V, E) is aHARPOON graphof sizen if the set of
verticesV = {w, A1, . . . , An, B1, . . . , Bn} and the set of edgesE = {(w→ Ai) | 1 ≤ i ≤
n} ∪ {(Ai → Bi) | 1 ≤ i ≤ n}, where(u→v) denotes a directed edge pointed from vertex
u to vertexv. The vertexw is the root ofG. Vertices in{A1, . . . , An} areleading vertices
and vertices in{B1, . . . , Bn} aretailing vertices.

Note thatG is a directed two-level out-tree in the above definition. An example for a
directed two-level out-tree in illustrated in in figure 4.

For discussion here, letJ ′ = {w, A1, . . . , An, B1, . . . , Bn} be a set of tasks whose PC(J ′)
is a HARPOON graph with the rootw, leading vertices{A1, . . . , An}, and tailing vertices
{B1, . . . , Bn}. The root task isw. The communication time fromw to any leading task
is large enough such that for any optimal scheduling all leading tasks are allocated on the
processor where the root taskw is allocated.

We use the following notation for tasks inJ ′:

• g1(w) is the execution time of taskw;
• g1(Ai) is the execution time of taskAi ;

P1: SSK/ASH P2: SSK/ASH QC: SSK

Journal of Combinatorial Optimization KL414-02-Hollerman March 10, 1997 17:28

SCHEDULING PROBLEMS IN A PRACTICAL ALLOCATION MODEL 141

Figure 4. A directed two-level out-tree (called a HARPOON graph in Chr´etienne (1994).

• g1(Bi) is the execution time of taskBi ;
• g2(Ai) is the communication time needed to send data from taskw to taskAi if w and

Ai are allocated on different processors;
• g2(Bi) is the communication time needed to send data from taskAi to taskBi if Ai and

Bi are allocated on different processors.

Lemma 3.13. The decision version of the optimal scheduling problemOPTS(J ′, g1, g2, 0,

M) is NP-hard in the simplified model withPC(J ′)being a two-level directed out-tree,where
g1 is the function to map a task to its execution time and g2 is the function to map a task to
the amount of communication time needed to receive its data.

Proof: Let J = {t0, t1, . . . , tn} be a set of tasks to be scheduled in the regular model and
whose PC(J) is a directed one-level out-tree. We will prove that if OPTS(J ′, g1, g2, 0, M)

is solvable in polynomial time in the simplified model, then OPTS(J, e, c, L , M) is also
solvable in polynomial time.

Given OPTS(J, e, c, L , M) in the regular model, we construct OPTS(J ′, g1, g2, 0, M)

in the simplified model with the properties thatg1(w) = e0, g1(Ai) = ci , g1(Bi) = ei − ci ,
g2(Ai) = ci , and g2(Bi) = ci + L. A scheduling for OPTS(J ′, g1, g2, 0, M) in the
simplified model naturally corresponds to a scheduling for OPTS(J, e, c, L , M) in the
regular model.

By Theorem 3.10, OPTS(J, e, c, L , M) is NP-hard in the regular model. Hence OPTS(J ′,
g1, g2, 0, M) is also NP-hard in the simplified model. 2

Note that a result that is similar to the one stated in Lemma 3.3 on a model without
latency and I/O contention is first described in Chr´etienne (1994) by a transformation from
the knapsack problem that is as complex as the one stated in this paper. By using our result
in Section 3.2, we can easily derive Lemma 3.13 on a model without latency, but enforcing
I/O contention rules.

P1: SSK/ASH P2: SSK/ASH QC: SSK

Journal of Combinatorial Optimization KL414-02-Hollerman March 10, 1997 17:28

142 HOLLERMANN ET AL.

Corollary 3.14. The decision version of the optimal scheduling problemOPTS(J ′, g1, g2,

0, M) is NP-hard in the simplified model withPC(J ′) being a two-level directed in-tree.

Proof: This is a corollary of Lemmas 2.3 and 3.13. 2

4. Algorithms for scheduling directed one-level task trees

Given an NP-hard problem, two approaches present themselves: 1) try to approximate
the solution with a fast polynomial algorithm or 2) try to restrict the problem such that
an optimal polynomial solution can be found. In this section, we take both approaches.
Section 4.1 gives an approximation algorithm and Section 4.2 gives an optimal algorithm
for a restricted case.

Consider the case of scheduling a directed one-level task tree using an unlimited number
of processors. By Lemma 2.3, we need only consider task graphs that are directed one-level
out-trees. LetJ = {t0, t1, . . . , tn} be a set of tasks whose PC(J) is a directed one-level
out-tree rooted att0. Let ei andci be the execution and communication time of taskti ,
respectively. LetL be the system I/O latency. We scheduleJ on h identical processors
which are denoted asP0, P1, . . . , Ph−1.

4.1. Scheduling with arbitrary task execution times

We describe below an approximation algorithm for scheduling directed one-level task out-
trees on an unlimited number of processors. This is an NP-hard scheduling problem by
Theorem 3.10

We use the following notation:E′ = ∑
ti 3ei ≤ci

ei , andC′′ = ∑
ti 3ei >ci

ci . Without loss of
generality, assume thatt0 is allocated on processorP0. We first give a lemma to help bound
from below the value of OPT(J), the optimal makespan forJ on an unlimited number of
identical processors.

Lemma 4.1. (i) An optimal scheduling for J is to schedule all tasks on P0 if and only if
for all tasks ti with i > 0 and ei > ci ,

∑n
i =1 ei ≤ ci + L + ei . (ii) If scheduling all tasks

on P0 is not an optimal scheduling, thenOPT(J) > e0 + L. (iii) OPT(J) ≥ e0 + E′ + C′′.
(iv) OPT(J) ≥ ei , 0 ≤ i ≤ n.

Proof:

(i) The “only if” part of the proof is trivial since putting a task on another processor in
this case only increases the makespan. We now prove the “if” part.

Let S be an optimal scheduling with all tasks allocated toP0. Thus the makespan
of S is e0 + ∑n

i =1 ei . Assume that there is a schedulingS′ with at least one tasktw
with 1 ≤ w ≤ n andew > cw such that

∑n
i =1 ei > cw + L + ew. We know that

e0 + ∑n
i =1 ei − ew + cw < e0 + ∑n

i =1 ei sinceew > cw and thate0 + cw + L +
ew < e0 + ∑n

i =1 ei by our assumption. This implies thatM(S′) < M(S) which is a
contradiction sinceSwas an optimal scheduling. The conclusion follows.

P1: SSK/ASH P2: SSK/ASH QC: SSK

Journal of Combinatorial Optimization KL414-02-Hollerman March 10, 1997 17:28

SCHEDULING PROBLEMS IN A PRACTICAL ALLOCATION MODEL 143

(ii) If scheduling all tasks onP0 is not an optimal scheduling, then we must at least schedule
one taskti , i > 0, on processorPi . The makespan ofPi is at leaste0 + ci + L + ei .
Thus this part of the lemma holds.

(iii) By Lemma 2.4, we know that scheduling tasks withei > ci on a processor other than
P0 does not improve the makespan. Thus all such tasks can be scheduled onP0. The
minimum makespan onP0 for any scheduling is at least equal toe0 + E′ + C′′.

(iv) This part is trivial. 2

Using Lemma 4.1, our simple 3-OPT approximation algorithm to find a scheduling works
as follows.

Algorithm A /∗ a scheduling on at mostn + 1 processors.∗/
1. Check whether scheduling all tasks onP0 is an optimal scheduling

(Lemma 4.1).
2. Otherwise, allocate a taskti , i 6= 0, with ei ≥ ci to Pi by itself, and

the rest of the tasks toP0;

Lemma 4.2. (i) Algorithm A runs in O(n) time. (ii) The makespan of the scheduling
produced by AlgorithmA is less than three times the optimal makespan.

Proof: Part (i) is trivial. We prove part (ii). Note that if the condition in Step 1 holds, then
Algorithm A finds an optimal scheduling by part (i) in Lemma 4.1. Thus we look at the
case where the condition in Step 1 fails. LetS be the scheduling produced in Step 2. The
makespan ofP0 in S is e0 + E′ + C′′ which is at most OPT(J) by part (iii) in Lemma 4.1.
The makespan ofPi , i > 0 andei > ci , is less than or equal toe0 +C′′ + L +ei . Therefore,
we note thate0 + C′′ is no more than OPT(J) by part (iii) in Lemma 4.1,L is less than
OPT(J) by part (ii) in Lemma 4.1, andei is also no more than OPT(J) by part (iv) in
Lemma 4.1. Thus the makespan of any processor is less than 3· OPT(J). 2

4.2. Scheduling with equal task execution times

In this section, we consider the problem of finding an optimal scheduling for directed one-
level task out-trees when the execution times of non-root tasks are restricted to be equal.
We show an algorithm for finding an optimal scheduling using an unlimited number of
processors.

Assume that all execution times are the same, i.e.,ei = ej = e, 1 ≤ i, j ≤ n. In this
section, we assume without loss of generality thatci ≤ ci +1, 1 ≤ i < n. Note that the
differencedi equalsei − ci . We also assume for now thatdi > 0, 1≤ i ≤ n.

Lemma 4.3. There is an integer p such that allocating t0, tp+1, . . . , tn to processor P0
and allocating tasks ti , 1 ≤ i ≤ p, to processors other than P0 is an optimal scheduling
for J .

Proof: Let Sbe an optimal scheduling forJ. By Lemma 2.2, a subset of tasks are allocated
to P0, while each of the remaining tasks is allocated to a processor by itself. Without loss
of generality, assume that taskti is allocated toPi , if ti is not allocated toP0.

P1: SSK/ASH P2: SSK/ASH QC: SSK

Journal of Combinatorial Optimization KL414-02-Hollerman March 10, 1997 17:28

144 HOLLERMANN ET AL.

If S is not formed by allocating taskst0, tk+1, . . . , tn on processorP0 and allocating tasks
ti , 1 ≤ i ≤ k, to processors other thanP0, then there is a taskti allocated onP0 and another
taskt j , j > i , which is not allocated onP0. Let x be the smallest integer such that tasktx is
allocated onP0. Let y be the smallest integer that is greater thanx andty is allocated onPay ,
whereay 6= 0. We construct another schedulingS′ by takingSand applying the following
task re-allocations: tasktx is re-allocated on processorPay and taskty is re-allocated on
processorP0. LetS′ be this resulting scheduling. By Lemma 2.2, ProcessorP0 first executes
t0. Since the execution times of all non-root tasks are equal,P0 can send out data to tasks not
allocating onP0 in arbitrary order. Thus we may assume that our algorithm uses increasing
order of task number for best realizations ofS and S′. The makespan onP0 in S′ is not
larger than the makespan onP0 for Ssincedx > 0 anddy ≤ dx. The makespan ofPay in S′

is less than the makespan ofPay in S, sincecx + L + ex ≤ cy + L + ey. Thus the makespan
of S′ is no greater than the makespan ofS. We can continue to apply this process until the
resulting schedule is of the form desired. 2

Note that a similar proof for a simpler and more theoretical model where message sending
time is the only cost for communication was given in Chr´etienne (1994). An example for
an optimal scheduling specified in Lemma 4.3 is illustrated in figure 5.

Algorithm E/∗ Scheduling onn + 1 processors withe1 = · · · = en = e. ∗/
1. if there is anr such thatr > 0 andL + e = (n − r) · e,

then k = r ; /∗ The makespan ofPr = Makespan ofP0. ∗/

2. else
(a) if L + e > (n − 1) · e,

then r = 0; /∗ Schedule all tasks onP0. ∗/

(b)elsefind an integerr such thatL +e < (n−r)·eandL +e > (n−r −1)·e;
endif; /∗ Note that(n − r − 1) = (n − (r + 1) ∗/

/∗ e0+∑r
i =1 ci +(n−r) ·e is the schedule makespan of allocatingtr +1, . . . , tn

on P0, which derives LHS of the inequality in 2c.∗/

/∗ e0 + ∑r +1
i =1 ci + L + e is the schedule makespan of allocatingtr +2, . . . , tn

on P0, which derives RHS of the inequality in 2c.∗/

(c) if (n − r) · e ≤ cr +1 + L + e,
then k = r ;

(d) elsek = r + 1;
endif;

endif;
3. Allocate taskst0, tk+1, . . . , tn on P0; Allocate taskti , 1 ≤ i ≤ k, on Pi ;

Theorem 4.4. The optimal solution to the directed one-level precedence tree scheduling
problem can be found in linear time when the execution times of all non-root tasks are equal
and tasks are sorted according to their communication costs.

Proof: The algorithm is shown in Algorithm E. LetSk be the scheduling formed by
allocating taskst0, tk+1, . . . , tn on P0 and allocatingti on Pi , 1 ≤ i ≤ k. Let Ti be the

P1: SSK/ASH P2: SSK/ASH QC: SSK

Journal of Combinatorial Optimization KL414-02-Hollerman March 10, 1997 17:28

SCHEDULING PROBLEMS IN A PRACTICAL ALLOCATION MODEL 145

Figure 5. An optimal scheduling by allocating taskst0, t5, andt6 to processorP0. In this given set of tasks,
c1 = 1, c2 = 2, c3 = c4 = c5 = c6 = 3, ei = e = 4, 1≤ i ≤ 6, andL = 4. Note thatci ≤ ci +1, 1 ≤ i < 6.

makespan of processorP0 for Si . ThenTi is a monotonically decreasing sequence, since
di > 0, 1≤ i ≤ n. Note thatT0 > 0.

By Lemma 2.2 and the fact thatei = ej for all i and j , the makespan of processorPi is
greater than or equal to the makespan ofPj in an optimal scheduling if bothi and j are not
allocated onP0 andi > j . Let Wi be the makespan among processorsP1, . . . , Pn in the
schedulingSi . ThenWi is a monotonically increasing sequence. Note thatW0 = 0.

Mi = max{Ti , Wi }. Let M∗ = minn
i =1 Mi . Thus eitherM∗ = Mk wherek is an integer

andTk = Wk or, if Ti 6= Wi for all i , then eitherM∗ = Mr or M∗ = Mr −1 wherer is an
integer withTr −1 > Wr −1 andTr < Wr . 2

If the input tasks are not previously sorted according to their communication times, then
an optimal algorithm takesO(n · logn) time.

5. Simulation results

We have provided a practical and realistic model with algorithms and worst-case perfor-
mance bounds. We now attempt to provide some answers to questions such as: But how do
these algorithms perform on the average? How often do they actually reach that worst-case
scenario? Are they worthy of consideration for usage with existing computing resources?

Our experiments used randomly generated data for the communication (ci) and execution
(ei) costs as well as the latency time,L. We specified the bounds ofci andei to be uniformly
distributed between 0.1 and 10.0 and the latency to be uniformly distributed between 0.2
and 8.0. We also tried widely varying latency bounds to simulate processors which were
great distances from one another.

We first computed the optimal algorithm for a set of random data by using a brute force
algorithm. Because of time constraints produced by computing the optimal algorithm, we
only worked with sets of tasks less than twenty. After computing the optimal algorithm,
we simulated our algorithm on the set of tasks and then compared the results. For each
size of task set, we computed the optimal and approximation result for 5000 sets of random
data. We then compared our algorithm result against the optimal result. We found that for

P1: SSK/ASH P2: SSK/ASH QC: SSK

Journal of Combinatorial Optimization KL414-02-Hollerman March 10, 1997 17:28

146 HOLLERMANN ET AL.

Figure 6. Worst case found for 5000 random simulations for each number of tasks in Algorithm A.

greater than ten tasks, Algorithm A always performed at less than 1.2 times the optimal
(see figure 6).

Recall that our worst-case performance bound was three times the optimal for the case
of using an unlimited number of processors. In practice, Algorithm A only found one set of
tasks where the worst case was greater than 2.0 in the 17 sets of 5,000 random simulations
each for numbers of tasks between three and nineteen. In fact, 90% of the approximation
schedules were identical to the optimal schedule when using ten or more tasks in a set (see
figure 7).

By varying theL parameter widely, we came up with only slightly larger bounds for
small sets of tasks but they all followed the same pattern as did our specified parameter
range results.

The average case using Algorithm A was even more gratifying, ranging between 1.0 and
1.08 times the optimal (see figure 8).

During our experiments for Algorithm A, we found that small task sets can provide uneven
results. Placing only one task on the ‘wrong’ processor to give a non-optimal solution can
make a large difference in the makespan when we are considering only a few tasks. For
example, in figures 8 and 7, the performance curve for when the number of tasks is less than
five does not seem to conform to the general trend of data that we obtained. In examining
our schedules produced by Algorithm A, we discovered that it was often the case that only
one task was out of place to produce a non-optimal schedule. Using this knowledge, we
modified Algorithm A as follows.

P1: SSK/ASH P2: SSK/ASH QC: SSK

Journal of Combinatorial Optimization KL414-02-Hollerman March 10, 1997 17:28

SCHEDULING PROBLEMS IN A PRACTICAL ALLOCATION MODEL 147

Figure 7. Percentage of Algorithm A and Algorithm A′ schedules identical to the optimal.

Figure 8. Average case for each 5000 trials for Algorithm A and Algorithm A′.

P1: SSK/ASH P2: SSK/ASH QC: SSK

Journal of Combinatorial Optimization KL414-02-Hollerman March 10, 1997 17:28

148 HOLLERMANN ET AL.

Algorithm A′ /∗ Modification of Algorithm A.∗/
Add the following after Step 2 of Algorithm A:

3. Let the scheduling we have so far beR;
4. For each taskti , 1 ≤ i ≤ n, placed onPi in R do:

Modify R by placingti on P0;
Let the makespan of the resulting scheduling beMi ;

5. Compare makespansMi , 1 ≤ i ≤ n, with the makespan ofR and use the
schedule with the smallest makespan.

Algorithm A′ always gives a better solution than Algorithm A (see figure 6). Algorithm
A′ also gives ‘almost optimal’ results even for small task sets (see figure 8). Note that
adding this improvement to the algorithm does not change its linear time complexity. The
percentage of identical schedules is, of course, also much better when using Algorithm A′

(see figure 7).
In summation, the average case simulation results are extremely close to optimal and

even looking at worst cases and varying parameters, we obtain excellent results.

6. Concluding remarks

A practical and realistic model is presented for allocating tasks in a parallel distributed
memory architecture. The model is designed to handle any algorithm for which task
execution and communication costs can be known or estimated in advance. Our proof
of NP-hardness when the precedence constraints form a directed one-level tree and the
fundamental properties developed for this model together open the door for the design of
good approximation algorithms both for scheduling an unbounded number of available
processors and for scheduling a lesser fixed number of available processors in the system.
We have demonstrated the design of an approximation algorithm and a polynomial time
algorithm for one-level precedence trees. We have also demonstrated that the approximation
algorithm performs very close to optimal under simulated conditions. This is a starting
point for finding more tractable algorithms under less stringent conditions. Such work can
eventually be used by a compiler to allocate the tasks of a general algorithm to execute in
parallel efficiently.

References

F.D. Anger, J.J. Hwang, and Y.C. Chow, “Scheduling with sufficient loosely coupled processors,”Journal of
Parallel and Distributed Comput., vol. 9, pp. 87–92, 1990.

T.C.E. Cheng and C.C.S. Sin, “A state-of-the-art review of parallel-machine scheduling research,”European J.
Operational Research, vol. 47, pp. 271–292, 1990.

P. Chrétienne, “A polynomial algorithm to optimally schedule tasks on a virtual distributed system under tree-like
precedence constraints,”European J. Operational Research, vol. 43, pp. 225–230, 1989.

P. Chrétienne, “Task scheduling with interprocessor communication delays,”European J. Operational Research,
vol. 57, pp. 348–354, 1992.

P. Chrétienne, “Tree scheduling with communication delays,”Discrete Applied Math., vol. 49, pp. 129–141, 1994.
P. Chrétienne, Jr., E.G. Coffman, J.K. Lenstra, and Z. Liu (Eds.),Scheduling Theory and its Applications, John

Wiley & Sons Ltd., 1995.

P1: SSK/ASH P2: SSK/ASH QC: SSK

Journal of Combinatorial Optimization KL414-02-Hollerman March 10, 1997 17:28

SCHEDULING PROBLEMS IN A PRACTICAL ALLOCATION MODEL 149

J.Y. Colin and P. Chr´etienne, “C.P.M. scheduling with small communication delays and task duplication,”Oper.
Res., vol. 39, no. 3, pp. 680–684, 1991.

D. Culler, R. Karp, D. Patterson, A. Sahay, K.E. Schauser, E. Santos, R. Subramonian, and T. von Eicken, “LogP:
Towards a realistic model of parallel computation,” inProc. 4th ACM SIGPLAN Symp. on Principles and
Practices of Parallel Programming, 1993, pp. 1–12.

O. El-Dissouki and W. Huen, “Distributed enumeration on network computers,”IEEE Trans. on Computers, vol.
C-29, no. 9, pp. 818–825, 1980.

M.R. Garey and D.S. Johnson,COMPUTERS AND INTRACTABILITY A Guide to the Theory ofNP-Completeness,
W.H. Freeman and Company: New York, 1979.

A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam, PVM 3 User’s Guide and Reference
Manual, Oak Ridge National Laboratory: Oak Ridge, Tennessee 37831, USA, May 1993.

P.B. Gibbons, Y. Matias, and V. Ramachandran, “The QRQW PRAM: Accounting for contention in parallel
algorithms, inProc. 5th ACM-SIAM Symp. on Discrete Algorithms, 1994, pp. 638–648.SIAM J. Comput., to
appear.

J.J. Hwang, Y.C. Chow, F.D. Anger, and C.Y. Lee, “Scheduling precedence graphs in systems with interprocessor
communication times,”SIAM Journal on Computing, vol. 18, no. 2, pp. 244–257, 1989.

J.K. Lenstra, M. Veldhorst, and B. Veltman, “The complexity of scheduling trees with communication delays,”J.
of Algorithms, vol. 20, pp. 157–173, 1996.

V.M. Lo, Task Assignment in Distributed Systems, Ph.D. thesis, Univ. of Illinois at Urbana-Champaign, USA,
Oct. 1983.

V.M. Lo, “Heuristic algorithms for task assignment in distributed systems,”IEEE Trans. on Computers, vol. 37,
no. 11, pp. 1284–1397, 1988.

D.R. Lopez, Models and Algorithms for Task Allocation in a Parallel Environment, Ph.D. thesis, Texas A&M
University, Texas, USA, Dec. 1992.

P.R. Ma, E.Y. Lee, and M. Tsuchiya, “A task allocation model for distributed computing systems,”IEEE Trans.
on Computers, vol. C-31, no. 1, pp. 41–47, 1982.

M.G. Norman and P. Thanisch, “Models of machines and computation for mapping in multicomputers,”ACM
Computing Surveys, vol. 25, no. 3, pp. 263–302, 1993.

C. Papadimitriou and M. Yannakakis, “Towards on an architecture-independent analysis of parallel algorithms,”
SIAM Journal on Computing, vol. 19, pp. 322–328, 1990.

H.S. Stone, “Multiprocessor scheduling with the aid of network flow algorithms,”IEEE Trans. on Software Eng.,
vol. SE-3, no. 1, pp. 85–93, 1977.

L.G. Valiant, “A bridging model for parallel computation,”Communications of the ACM, pp. 103–111, 1990a.
L.G. Valiant, “General purpose parallel architectures,” inHandbook of Theoretical Computer Science, J. van

Leeuwen (Ed.), North Holland, pp. 944–971, 1990b.

