
Text Entry in Virtual Environments using Speech and a Midair
Keyboard

Jiban Adhikary Keith Vertanen

Fig. 1. We compare typing on a midair auto-correcting keyboard with word predictions (left) versus speaking a sentence and then
correcting any speech recognition errors (right). Users correct errors by selecting word alternatives proposed by the speech recognizer
or by typing on the virtual keyboard.

Abstract— Entering text in virtual environments can be challenging, especially without auxiliary input devices. We investigate text
input in virtual reality using hand-tracking and speech. Our system visualizes users’ hands in the virtual environment, allowing typing
on an auto-correcting midair keyboard. It also supports speaking a sentence and then correcting errors by selecting alternative words
proposed by a speech recognizer. We conducted a user study in which participants wrote sentences with and without speech. Using
only the keyboard, users wrote at 11 words-per-minute at a 1.2% error rate. Speaking and correcting sentences was faster and more
accurate at 28 words-per-minute and a 0.5% error rate. Participants achieved this performance despite half of sentences containing an
uncommon out-of-vocabulary word (e.g. proper name). For sentences with only in-vocabulary words, performance using speech and
midair keyboard corrections was faster at 36 words-per-minute with a low 0.3% error rate.

Index Terms—Text Entry, Speech Recognition, Virtual Reality (VR), Head Mounted Display (HMD), Midair Gestures.

1 INTRODUCTION

People frequently interact with text on desktop computers and mobile
devices. With the rise of virtual reality (VR) and augmented reality
(AR) head mounted displays (HMDs), there is a need to support effi-
cient text interaction in virtual environments. However, text entry in
virtual environments is entirely different from typing on a physical key-
board of a desktop computer or even on a virtual keyboard of a mobile
device. This is due to different fields of view, display size, and lack of
tactile feedback. Humans have a field of view of approximately 180
degrees, whereas the field of view in an HMD is limited and typically
ranges from 90 to 110 degrees. Most importantly virtual environments
lack the perception of touch when interacting with the virtual objects.
HMDs are normally shipped with a hand-held controller as an input
device. While a physical keyboard can be used, in many VR and AR
use scenarios, users may be standing or moving around. Such use sce-
narios make use of auxiliary input devices such as hand-held controllers
or physical keyboards difficult. Ideally input would be possible using
just the built-in sensors common in HMDs such as depth cameras and
microphones. We investigate exploiting these two types of sensors to

• Jiban Adhikary (jiban@mtu.edu) and Keith Vertanen (vertanen@mtu.edu)
are with the Department of Computer Science at Michigan Technological
University.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

support text input in virtual reality.
For modest amounts of input, we argue a familiar input method lever-

aging users’ experience with auto-correcting touchscreen keyboards
may be preferable. As only the VR or AR user can see the keyboard, a
virtual keyboard also provides a reasonable degree of privacy. Further,
with appropriate design, a virtual keyboard can provide entry of even
difficult to predict text (e.g. proper names or passwords). However, typ-
ing in midair may be slower than on a touchscreen due to factors such
as the lack of tactile feedback and hand-tracking inaccuracies. When
privacy is not a concern, speech may be faster; people have been mea-
sured dictating to a computer at over 100 words-per-minute (wpm) [23].
However, speech recognition errors can occur, especially for difficult
text or in noisy environments. Correcting speech recognition errors
with speech is a possibility, but can lead to errors while trying to correct
errors [20]. Switching to another input modality is a common approach
to this problem, e.g. [32, 40]. In this paper, we investigate correcting
errors via midair tapping. Our interface supports error correction by
selecting alternative words proposed by the speech recognizer or via an
auto-correcting keyboard that exploits the surrounding text context.

The main goal of our study is to investigate how we can incorporate
speech recognition into a VR text entry interface. An additional goal
is to support the input of more difficult text, e.g. proper names or
passwords. We argue for an interface to be usable in the real-world, it
needs to support at least occasional entry of such text, even if it requires
slower and more precise input. To support the input of difficult text,
we add word predictions to our keyboard, including the literal letters
typed. Past work has shown such suggestions can enable the input of
challenging text on a smartwatch [42]. Previous work has also reported

faster input when word predictions were added to an AR keyboard [10].
We provide the first study into text input in a VR HMD using speech

and a midair virtual keyboard with hand interaction. We found speech
was over twice as fast as an auto-correcting keyboard with word pre-
dictions (28 wpm versus 11 wpm). Speech also had a lower error rate
(0.5% versus 1.2%). This was achieved on text with uncommon words.
Our study adds to the limited work on hand tracking based keyboard
input in virtual environments. It also adds to our knowledge about how
to support the input of challenging text, including showing speech pro-
vides increased performance even on text often requiring corrections.

2 RELATED WORK

In this section, we overview existing work in text entry in virtual
environments, with a focus on the input modalities employed in the
interface. For a survey of existing work related to text entry in virtual
environments, including a taxonomy of techniques and a discussion of
non-QWERTY keyboard designs, see Dube and Arif [8].

2.1 Physical Keyboards

Various work has investigated VR input using a physical keyboard.
McGill et al. [29] found users could type efficiently on a physical
keyboard if real-world video was injected into VR. Walker et al. [49]
combined a physical keyboard with auto-correction. Providing only
visual feedback after each key press allowed typing at 40 wpm.

Knierim et al. [21] studied hand representation in VR with a physical
keyboard. They found appropriate hand visualization was especially
important for inexperienced typists. Grubert et al. [15] rendered a
user’s fingers in VR. Users typed at 26 wpm on a deterministic physical
keyboard. Grubert et al. [14] also investigated different hand repre-
sentations while typing on a physical keyboard. They found hand
visualization did not affect entry rate but did lower error rate. Similarly,
Otte et al. [31] showed typing on a touch-sensitive physical keyboard
without finger visualization was as effective as with finger visualization.

Pham and Stuerzlinger [33] introduced HawKEY, a physical key-
board worn on a tray suspended in front of the user. They mounted a
color and depth sensing camera on the HMD and users typed on a phys-
ical keyboard with different visualizations. They found a see-through
video condition was superior to four other approaches: no visualization,
visualization of the keyboard frame, a virtual keyboard matching the
dimensions and appearance of the physical keyboard, and a point cloud
representation of a user’s hand and the keyboard.

ReconViguRation [36] investigated several methods to reconfigure
the presentation of the keyboard in the virtual environment. In a user
study, they tested nine VR-relevant applications with the reconfigured
design. Users reported that the applications were usable. For a pass-
word entry application, they found shuffling the keys in a local region
of the keyboard was enough for secure password entry.

2.2 Hand-held Controllers

Other work has investigated input using hand-held controllers and a
virtual keyboard rendered in an HMD. Yu et al. [55] combined head-
tracking with a gamepad controller. A word-gesture keyboard [57]
approach was the fastest at 25 wpm after an hour of practice. Xu et
al. [52] compared text input on an AR keyboard using four pointing
methods: controller, head, hand, and hybrid (head pointing and hand
selection) and two input techniques: word-gesture input and letter-
tap input. They found that using a controller was the best in terms
of text entry performance and user experience. They also found that
word-gesture input is as fast as letter-tap even for users who are new to
word-gesture technique.

Speicher et al. [38] investigated six selection-based methods for VR
text entry. Users typed on a virtual keyboard shown in a head mounted
display. Users performed input by hand-held controllers or by midair
gestures with hand visualization provided by a Leap Motion sensor.
They found hand-held controller pointing outperformed other methods
with an entry rate of 15 wpm at a 1% error rate. The hand visualization
method had an entry rate of 10 wpm with a much higher error rate of
7.6%. We used a similar hand visualization approach.

Boletsis et al. [3] compared four hand-held controller-based VR text-
input techniques: pointing using a controller, hitting keys on a drum-
like virtual keyboard by making downward strikes with the controller,
pointing at a key using head rotation and selecting with the controller,
and a virtual keyboard split between the trackpads on the left and right
controllers. They found controller pointing and striking was the fastest
at 21 wpm but was the least accurate with a total error rate of 12%.

Xu et al. [53] proposed hands-free text entry on a circular keyboard
rendered in an HMD and operated via head motion. With 60–90 min-
utes of training, users wrote at 11–13 wpm. Jiang et al. [19] explored
text entry in VR by leveraging the circular touchpad of a HTC Vive
controller and a circular virtual keyboard. They investigated three dif-
ferent key layouts and found a 6-key layout was best. They optimized
the layout based on touch data and investigated whether to display only
the optimized keyboard layout in the virtual environment or on top of
the touchpad of a virtual representation of the controller. Using one
hand, users entered text at 13.6 wpm with the virtual layout, and 11.6
wpm with the touchpad of the virtual controller.

2.3 Hand Gestures

A number of studies have exploited hand or finger gestures for VR/AR
input. Markussen et al. [27] tested three selection-based approaches
with input sensed via a tracked glove. A deterministic keyboard was
the fastest at 13 wpm after four hours of practice. In Vulture [28], users
also wore a glove and wrote via a word-gesture keyboard [57]. After
five hours of practice, users reached 20 wpm.

HoldBoard [1] used a smartwatch for input with results displayed on
smartglasses. A combination of thumb position and tapping allowed de-
terministic character entry. After eight sessions, users wrote at 10 wpm.
In Yu et al. [56], users wrote at 9 wpm using one-dimensional touch
input and auto-correction on a Google Glass HMD. ARKB [24] used a
stereo visible light camera to track colored markers on a user’s fingers
and detected taps on a virtual keyboard. No user trial was reported.
PalmType [50] displayed a keyboard on a user’s palm via a Google
Glass HMD. Users typed at 8 wpm using a Vicon tracking system and
5 wpm using a wrist-worn infrared sensor.

Similar to our work, Sridhar et al. [39] and Feit et al. [11] used finger
input sensed via a Leap Motion. However, both required users to learn
specific multi-finger gestures. Our approach allows users to reuse their
existing experience with auto-correcting touchscreen keyboards.

The ATK system [54] allowed two-handed 10 finger touch typing in
midair with visual feedback on a desktop display. While potentially fast,
ATK currently relies exclusively on probabilistic entry and thus would
not work well for difficult text, e.g. passwords. ATK also placed the
Leap Motion under a user’s hands to minimize occlusion. The sensor
was stationary and required users to register a home hand position.
Compared to ATK, we support the input of difficult text via a literal
prediction slot. Our approach also ensures users can freely move
their hands and head by mounting the hand tracker on the HMD. This
freedom of movement would make ATK challenging to use while
standing or walking.

VISAR [10] is an AR midair auto-correcting keyboard. Similar to
our keyboard, it uses the VelociTap decoder [48]. VISAR was tested
on a Microsoft HoloLens HMD that tracked a user’s wrist location.
Without word predictions, users wrote with one hand at 6 wpm. With
word predictions, users wrote faster at 18 wpm after two hours of
practice. Compared to VISAR, our system tracks a user’s individual
fingers and supports speech input. Dudley et al. [9] explored typing in
VR with index fingers on a surface and in midair, and typing using all
ten fingers on a surface and in midair. They found users typed faster on
a virtual keyboard if it was aligned with a physical surface. They also
found typing on a midair keyboard with ten fingers was actually slower
and less accurate compared to typing with just two index fingers.

2.4 Speech

Only a handful of studies have investigated using speech for text input
in virtual environments. Bowman et al. [6] compared VR text input
using a chorded keyboard, Wizard-of-Oz speech recognition, and a

tablet keyboard. In the speech condition, users spelled each word.
Speech was the fastest at 13 wpm.

In SWIFTER [34], users spoke a sentence and then used a hand-
held controller to click targets in a correction interface. The interface
showed the recognized sentence along with markers between words.
Clicking on a word opened a list of alternatives for that word. Clicking
a marker allowed insertion between words. New words were entered
by speaking the word or by speaking its spelling. In a CAVE virtual
environment, users wrote German phrases at 24 wpm at a low error
rate. Our work differs in the following ways: 1) we use a VR HMD for
display instead of a CAVE, 2) we allow direct hand interaction with
the interface rather than via a controller, 3) we use a virtual keyboard
to correct errors rather than speech, and 4) we immediately display
alternatives for each word rather than requiring explicit selection.

Similar to our system, SpeeG [17] and SpeeG2 [18] relied just on
speech and hand gestures. Both SpeeG and SpeeG2 used a large screen
for display with gestures detected via a Kinect. In SpeeG, users spoke
a sentence and used hand gestures to zoom character-by-character
through the words proposed by the recognizer. Users entered text using
SpeeG at 11 wpm. SpeeG2 used a word-at-a-time correction interface
employing gestures to select word alternatives. Similar to SWIFTER,
words can be inserted between words and new words can be added via
spelling. The best SpeeG2 prototype had an entry rate of 21 wpm.

Our speech correction interface is based on a word confusion net-
work (WCN) [26]. A WCN is a time-ordered set of clusters where each
cluster contains word hypotheses and their probabilities. Our design is
similar to the Parakeet interface [44]. Parakeet allowed users to speak a
sentence and then select word alternatives by tapping or swiping on a
touchscreen mobile device. Users wrote at 18 wpm while seated indoors
and 13 wpm while walking outdoors. Similar WCN speech interfaces
have been used in desktop [30] and large display [22] environments.
Compared to past WCN interfaces, our work differs in a number of
ways. First, we use an auto-correcting virtual keyboard that leverages
the text both to the left and to the right of the correction. Parakeet had
a keyboard without auto-correct and its word prefix predictions used
a unigram language model that ignored surrounding text. Second, we
show a WCN correction interface is effective even with hand tracking
which is substantially noisier than touchscreen or pen input. Further, in
our VR study users could only see a virtual and noisy representation of
their input device (i.e. their hands). Finally, we investigate the input of
difficult to predict text by adding a literal prediction slot.

In recent years, speech recognition accuracy has markedly im-
proved [16]. Limited work has investigated input using modern rec-
ognizers. In Ruan et al. [35], users input text at 153 wpm using the
Baidu recognizer. Error correction was done on a phone using speech
or a virtual keyboard. We also use a modern recognizer, namely IBM
Watson. While our entry rates are slower, we evaluated using more
difficult text that often required some correction. Additionally, even for
perfect recognition results, our entry rate includes the time users spent
reading and confirming results.

Foley et al. [12] investigated speech recognition for both the tran-
scription and composition of text. Using the default keyboard and
speech recognizer of a Google Pixel 3, users composed at 117 wpm
using speech versus 35 wpm using the keyboard. They transcribed text
at 157 wpm using speech versus 48 wpm using the keyboard . Overall,
the entry rate of sentences with corrections were slower and less accu-
rate at 55 wpm and 0.65% uncorrected error rate [37] versus sentences
without corrections at 141 wpm and 0.52% uncorrected error rate.

To summarize, compared with past work, we focus on designing an
input method that does not require training, hand-held devices, gloves,
a physical keyboard, or expensive tracking infrastructure. Further, we
investigate how to allow controller-less correction of speech recognition
results. Finally, most past interfaces were evaluated on fairly easy text,
e.g. the MacKenize [25] or Enron [46] phrase sets. We aim to design
an interface supporting the input of more challenging text.

3 INTERFACE DESIGN

In this section, we detail the features of our midair keyboard and explain
our design choices. Our interface supports input using two techniques:

1) using a virtually rendered QWERTY keyboard in midair, and 2)
using speech with the virtual keyboard as a fallback mechanism.

3.1 Midair Auto-correcting QWERTY Keyboard
At least at present, many VR/AR applications focus on immersive 3D
experiences such as games, training simulations, and data visualiza-
tion. With advances in hand tracking and speech recognition, such
applications can often be controlled without input devices aside from
the HMD itself. This has the potential for more natural, convenient,
and immersive interactive experiences. But even these applications
may benefit from occasional input of text (e.g. short text messaging
or executing a search query). The QWERTY keyboard is the de facto
standard for English text input on desktop and mobile devices. This
makes a midair QWERTY virtual keyboard an obvious choice as it is
familiar to most users. Further, virtual keyboard decoding is quite accu-
rate even without per-user training (though such training can provide
small accuracy gains, e.g. [51]).

We rendered the QWERTY keyboard in front of a user (Figure 1)
and anchored the keyboard in space. The keyboard has the letters A–Z
plus apostrophe. The keyboard size is 21.0× 7.6 cm with each letter
key being 1.8× 1.4 cm. After each key press, the nearest key label is
highlighted in red, a tap sound is played, and the letter is added to the
text above the keyboard. Users can remove previous characters using a
backspace key of size 6.0× 1.4 cm. We made the backspace key bigger
and located it away from other parts of the keyboard to allow easy
and deterministic triggering. Letters from the current word as well as
previous words can be backspaced.

The space key is 8.5× 1.4 cm. Triggering the space key results in
changing the currently typed letter sequence into the most probable
word given a user’s sequence of noisy (x, y) tap locations on the key-
board plane. Similar to backspace, we made the space key bigger and
separated it from the rest of the keyboard to allow deterministic trigger-
ing. For auto-correction, we use the VelociTap decoder [48]. VelociTap
takes a sequence of noisy taps and searches for the most probable word
using a probabilistic keyboard model, a character language model, and
a word language model. The likelihood of a tap is based on a two-
dimensional Gaussian centered at each key. For each tap, the decoder
computes the likelihood for every key under the keyboard model. This
is added with the language model probabilities. The language models
condition on any text to the right and left of the current typing location.
We used a 12-gram character language model and a 4-gram 100K word
language model. Both language models were trained on billions of
words of text. The set of parameters controlling VelociTap’s operation
were optimized on four users not in our user study.

In testing by the authors and two participants not in our user study,
we found it was time consuming to replace a misrecognized word
by repeatedly tapping backspace. We added a delete-word key that
deleted the entire previous word. This key appeared to the right of the
backspace key after a user typed a space. As with space, and backspace,
we made this key bigger (4.0× 1.4 cm) to make it easier to tap.

We chose a midair vertical keyboard for our pilot. We found the dis-
tance worked well, but based on user feedback, we tilted the keyboard
approximately 10 degrees from vertical and lowered the keyboard to
slightly below the user’s chest level. This allowed users to see the
keyboard and input progression with minimal head movement. While a
horizontal keyboard aligned with a surface, such as a table, might more
closely resemble desktop typing, hand tracking inaccuracies, virtual
keyboard rendering inaccuracies, and hunt-and-peck typists may re-
quire visual supervision of motor actions over the keyboard. This would
require frequent changes in head position to shift attention between the
keyboard and any visual content in front of the user. Finally, even if
users could touch type while looking straight ahead, this requires an
HMD supporting visual rendering and hand tracking at quite a wide
angle of view.

3.2 Support for Difficult Text
Text entry evaluation studies in virtual environments have mostly used
phrases which are easy to remember [25, 46]. Such phrases have
been shown to exhibit a low rate of out-of-vocabulary words and a

low perplexity under a language model [42]. This allows users to
enter such phrases quite accurately even despite severe inaccuracies
in a user’s tap locations. For example, in a study on a smartwatch
keyboard [41] participants’ character error rate was 19% before auto-
correction, but only 3% after auto-correction. However, auto-correction
may not be as effective for difficult and unpredictable text, e.g. proper
nouns, passwords, or abbreviations. Such words are problematic for
entirely recognition based input approaches such as gesture keyboards
or continuous speech recognition. In our design, we support input of
difficult words by relying on users’ ability to carefully target keys when
necessary combined with an interface option that avoids auto-correction
(to be discussed shortly). At least for noisy input on a smartwatch, it
was shown that users could precisely target every character of difficult
words [42]. We conjectured a similar approach would be effective for
noisy midair keyboard input.

We opted for midair keyboard input of difficult words rather than
spoken spelling of words. When typing words character-by-character
in midair, it is easy to immediately correct any erroneous letters via
backspacing. An equivalent approach using speech would introduce
speech endpointing and recognition delays for each letter in a word. We
anticipated this would be too slow and would instead require spelling
an entire word at one time. This spelling recognition could introduce
further recognition errors into the correction process. An additional
technical challenge was that our chosen recognizer, IBM Watson, does
not support recognition conditioned on surrounding text context like our
keyboard decoder does. This makes correct recognition of uncommon
spelled words even more difficult. For these reasons, we decided
to support difficult word input using just the midair keyboard. The
feasibility of spoken corrections we will explore in offline experiments
on the most difficult to correct words we observed in our user study.

3.3 Avoiding Errors and Accelerating Input
Given the lack of tactile keyboard feedback and inaccuracies introduced
by hand tracking, keyboard visualization, and hand rendering, we
anticipated typing would be more error-prone and slower than on a
touchscreen. To help users avoid auto-correction errors and accelerate
their input for longer words, we added four prediction slots above the
keyboard (Figure 1 left). The predictions slots are 6.5× 1.5 cm. We
limited the keyboard to four slots in order to keep the buttons above the
keyboard reasonably large. In past work [42], increasing the number of
slots to five or six only provided small improvements in the character
rate and keystroke savings achievable in offline experiments.

The leftmost slot displays the literal text (i.e. exactly the characters
typed). Probabilistic input methods can sometimes change a correctly
entered word into something else. Various approaches have explored
how to take control back from auto-correction. Touch force was used
by Weir et al. [51] and Arif and Stuerzlinger [2] to indicate when not
to auto-correct. VISAR [10] had a precise selection mode based on
dwelling on keys. VelociWatch [42] allowed letters to be locked by
long pressing. As is common on phone keyboards, WatchWriter [13]
and VelociWatch [42] provided a literal prediction slot based on the
exact keys typed. We opted for a similar literal slot approach as it
worked well in previous studies [13, 42] and may be familiar to users
as the feature is common on touchscreen phone keyboards.

The next three slots display the most likely word hypotheses. These
hypotheses are either a prefix completion or a recognition alternative.
A prefix completion assumes the user has only typed the start of a word.
Since this prefix input may be noisy, we used VelociTap to search for
the most probable prefixes under its touch model and language models.
Each proposed prefix completion is conditioned on text surrounding
the insertion location. For example, if a user typed “rg” at the start
of a sentence, the most probable prefix completions might be “the”
since “th” is a prefix adjacent to “rg”. If however the previous word
is “mass”, it might propose a word such as “effect” since “mass effect”
was common in the language model training data.

A recognition alternative assumes the current tap sequence consti-
tutes an entire word. While the decoder supports character insertions
and deletions, typically word alternatives are the same length as the tap
sequence. So in the previous example, the decoder might propose a

two-letter word such as “eg”. Similar to [13, 42], our likely slots are
populated with the prefix completion or word alternative hypotheses
that have the highest log probability. These hypotheses appear in the
second, third, and fourth slot in decreasing order. A word is completed
by tapping a slot or hitting the space key. The space key selects the text
in the second slot (i.e. the most likely word). The text in the second slot
is highlighted in yellow. This is similar to how the iOS 12 touchscreen
keyboard highlights the correction that will result from tapping space.

3.4 Text Entry Using Speech

When privacy is not an issue, speech recognition has the potential
to be a very fast input method. But to be fast as well as natural,
speech interfaces typically encourage users to speak a single utterance
with their entire phrase or sentence. Given our goal of supporting
difficult text input, we anticipated some amount of error correction
would be necessary in the recognized block of text. Similar to our
keyboard decoder, we would like the speech recognizer to provide
likely alternatives for different words in a user’s utterance. This led
us to choose the IBM Watson service for use in our system. IBM
Watson can return a word confusion network that provides a compact
and probabilistic representation of the speech recognizer’s search. Each
cluster in the confusion network contains a list of possible words and
their probabilities for each part of the recognition result.

We focused on a design optimized for small amounts of text. We
think this is the most pressing need in many VR/AR applications where
generating and editing text is not the primary activity. While the recog-
nizer could certainly handle larger utterances (e.g. paragraphs), display-
ing and correcting within a large amount of text via only hand gestures
would be challenging given current limitations in HMD field of view
and hand tracking accuracy. While speech-only correction is an option,
doing this well requires fine-grained control of the speech decoder
(e.g. to support inferring a correction’s location [43] and text [45]).

In the case of speech input, the user first presses a record button
visible in the virtual environment. This turns on the microphone and
starts streaming audio to the speech recognition server. We streamed
audio via our university’s high speed network to IBM’s web service.
Streaming audio allowed us to reduce the time users had to wait for
recognition results. Once a user stops speaking and word confusion
results are available, a stop button appears. Pressing this button displays
the recognition result and correction interface.

3.5 Intuitive Speech Error Correction

When a speech recognizer gets a word wrong, often one of its top
competing word hypotheses is actually correct. Recognizers also occa-
sionally insert words due to things such as false starts or filler words.
Past work has shown word error rate can be reduced by nearly 50% by
offering the three best word alternatives plus the ability to delete a given
word [44]. We wanted our design to communicate these options to
users such that they would not need to learn special correction gestures
or take explicit action to see possible correction options. Our design
(Figure 2) displays the confusion network similar to Parakeet [44], but
uses a smaller number of words (4–6) to allow more accurate midair
selection.

Our correction interface consists of a column for each word in the
recognition result. The most probable recognition results appear in the
top row. Below each word in the best result are up to three other likely
alternatives for each word. Each word is a button that can be tapped.
Before and after each word in the top row is a small black space button
with no label. This button allows a new word to be inserted between
existing words. The bottom row contains buttons labeled with an “X”
that deletes the word in that column.

To select a different word in a column, a user taps the desired word.
This swaps the top word with the tapped word. This does not affect
the other alternative words in that column. Our swapping approach
allows our design to conserve virtual screen real estate by removing
the redundant presentation of the top word present in the Parakeet
interface [44] while still preserving the ability to undo erroneous taps
on column targets. A slider below the keyboard allows users to adjust

Fig. 2. Example of correcting a sentence using the speech interface. In step 1, the user has spoken “thank you for your reply”. The interface displays
the most likely recognition result “thanks for our reply hi” in the top row. In step 2, the user selects the word alternative “thank” and it gets swapped
with “thanks”. Next, the user needs to insert between the words “thank” and “for”. In step 3, the user taps on the blank space button appearing
between these two words. The keyboard pops up and the user types the letter “y”. The user then selects the prefix completion “you”. In step 4, the
user taps the word “our” in the top row. This opens the keyboard and after typing the letter “y”, the user selects the prefix completion “your”. In step 5,
the user taps the button labeled X to delete the undesired word “hi”. Step 6 shows the text after all the corrections.

the column centered in the VR display. This slider allows users to scroll
through a longer sentence.

If a column does not contain the desired word, a user taps on the
top word in the column. We shift the correction interface to center on
this column in the virtual space and display the keyboard below the
column. During keyboard input, the buttons in a column become the
word prediction slots. The top button displays the literal slot which is
also the current pending tap sequence. The top button is highlighted
red. As the user types, other likely hypotheses appear in the other
three buttons in that column. During this time, only interaction with
the current column is allowed. A user must tap a slot on the current
column to end entry. The tapped slot then becomes the word in the top
row. If the user taps on the space between columns to insert a word, an
analogous process happens. To preserve consistency with how column
words are always tapped to swap them to the top choice in the column,
we do not provide a space key. Rather the user concludes typing a word
by selecting their desired prediction above the keyboard.

Our design of the keyboard fallback interface is embedded within
the display of the confusion network. We felt this design was more con-
sistent and less visually jarring compared to switching to a completely
different keyboard screen as in Parakeet. A further difference compared
to Parakeet is that our speech correction interface has a probabilistic
keyboard that uses the uncertain keyboard tap locations and leverages
the surrounding text context via long-span language models.

In both the speech and keyboard-only interfaces, a done button is
located about 10 cm below and to the right of the keyboard. Tapping
this button marks the completion of a sentence. The done button
allows us to include in our entry rate calculations the time users spent
reviewing even completely correct speech recognition results, or time
spent reviewing the last typed word or correction.

4 USER STUDY

Given a modern speech recognizer, it is obvious that speech input is
faster for text requiring few or no corrections, but it is not obvious
for harder text that often needs some amount of correction. The pri-
mary goal of our user study was to find out if our speech interface
design could improve performance on challenging text compared to a
competitive non-speech auto-correcting keyboard.

A secondary goal was to add to the limited work on controller-less

AR/VR text input using an auto-correcting virtual keyboard with word
predictions. To our knowledge, only VISAR [10], Xu et al. [52], and
Dudley et al. [9] have explored this. VISAR and Xu et al. did so in AR
while we investigate input in VR. VISAR relied on coarse tracking of
a user’s wrist, and Xu et al. required users to perform a gesture such
as opening and closing the palm to select a key. Dudley et al. used a
simulated auto-correction based on knowledge of the stimulus. None
of these approaches handled out-of-vocabulary words like our system.

4.1 Participants and Procedure

We recruited 18 participants (11 male, 7 female) via convenience sam-
pling. No participant had uncorrected vision or motor impairments.
Participants were aged 18–70 (mean 24.4, sd 14.0), and 16 were right-
handed. 14 participants had used VR. All participants were native
English speakers. Participants were paid $15. The study took place
in a quiet office. We used an HTC Vive HMD with a Leap Motion
controller mounted on the front. Audio was recorded from the Vive’s
built-in microphone.

The study was a within-subject design with two conditions: SPEECH
and NOSPEECH. In SPEECH, participants first spoke a sentence, then
used the word confusion network interface and the virtual keyboard to
perform any correction. In NOSPEECH, participants typed the entire
sentence using the keyboard. Before each condition, we explained to
participants how both interfaces worked. Similar to VISAR [10], in
both conditions we instructed participants to use the index finger of
their dominant hand. Participants first completed a questionnaire asking
demographic questions and about their experience with text entry and
VR. We seated participants at a desk and helped them adjust the HMD.

Participants entered phrases from the TwitterIV and TwitterOOV
phrase sets [42]. All words in TwitterIV phrases are in the 100 K
vocabulary used by the keyboard decoder. TwitterOOV phrases have
one word that is out-of-vocabulary (OOV). As shown in [42], phrases
in TwitterIV are easier for a language model to predict. In contrast,
phrases in TwitterOOV are harder to predict. Similar to [42], we used
phrases with six or fewer words that did not contain acronyms. Phrases
were picked at random. No participant saw the same phrase twice.
Participants first practiced on two in-vocabulary and two OOV phrases.
They then wrote six in-vocabulary and six OOV phrases. The order of
in-vocabulary and OOV phrases were randomized and the conditions

Condition Entry rate (wpm) Error rate (CER%) Borg CR10
NOSPEECH 11.1± 2.1 [7.2, 14.5] 1.2± 1.3 [0.0, 4.1] 3.17 ± 1.62 [1.00, 7.00]
SPEECH 27.9 ± 5.8 [18.7, 37.2] 0.5± 1.0 [0.0, 3.4] 2.11 ± 1.02 [1.00, 5.00]

t(17) = -13.79, r = 0.96, p < 0.01 t(17) = 2.13, r = 0.46, p < 0.05 χ2(1) = 9, p < 0.01
Table 1. Results from our study. Results formatted as: mean ± SD[min, max]. The bottom row shows statistical test details.

NoSpeech Speech

0

10

20

30

40

50

All IV OOV All IV OOV
Phrases

E
nt

ry
 r

at
e

(w
pm

)

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

NoSpeech Speech

0

1

2

3

4

5

All IV OOV All IV OOV
Phrases

E
rr

or
 r

at
e

(C
E

R
 %

)

Fig. 3. Entry and error rates in our study. Results over all phrases,
in-vocabulary (IV) phrases, and out-of-vocabulary (OOV) phrases.

were counterbalanced. We did not analyze the practice phrases. The
study took approximately an hour.

4.2 Results

Overall performance. Table 1 provides numeric results and statistical
tests. Figure 3 shows our main entry and error rate results. We calcu-
lated entry rate in words-per-minute (wpm). We considered a word
to be five characters including space. In NOSPEECH, entry time was
from a participant’s first tap until they hit the done button. In SPEECH,
entry time was from a participant’s first phoneme until they hit the
done button. The entry rate in SPEECH was faster at 27.9 wpm versus
NOSPEECH at 11.1 wpm. This difference was significant (Table 1).

The difficulty of the target text did seem to slow participants down
in both conditions. In NOSPEECH, the entry rate was 12.0 wpm for
in-vocabulary phrases versus 10.1 wpm for OOV phrases (Figure 3 left).
This difference was significant (t(17) = 4.90,r = 0.77, p < 0.001). In
SPEECH, the entry rate was 35.7 wpm for in-vocabulary phrases versus
19.8 wpm for OOV phrases (Figure 3 left). This difference was also
significant (t(17) = 7.72,r = 0.88, p < 0.001).

We measured error rate using Character Error Rate (CER). CER is
the number of character insertions, deletions, and substitutions needed
to change a participant’s final text into the reference text divided by the
characters in the reference. We measured the CER of a participant’s
final text after completing any corrections. Participants were less accu-
rate in NOSPEECH with a CER of 1.2% versus 0.5% in SPEECH. This
difference was significant (Table 1). In SPEECH, error rate was 0.3%
for in-vocabulary phrases versus 0.7% for OOV phrases (Figure 3 right).
This difference was significant (t(17) =−2.11,r = 0.46, p < 0.05). In
NOSPEECH, error rate was 1.2% for in-vocabulary phrases versus 1.3%
for OOV phrases. This difference was not significant.

Participants rated their exertion on the Borg CR10 scale [4]. The
mean rating was 3.17 in NOSPEECH and 2.11 in SPEECH. This differ-
ence was significant (χ2(1)=9.0, p < 0.01). Thus it appears the speech
interface did help reduce the “gorilla arm” [5] problem that is common
in midair interactive systems.

Taken together, our entry and error rates show that our speech inter-
face was successful at providing better performance on challenging text
compared to our keyboard-only interface. The speech interface was
2.5 times faster than the keyboard-only interface while maintaining a
similar and low corrected error rate. Further, participants reported less
fatigue using the speech interface.

As might be expected, the in-vocabulary phrases were much faster
to enter than OOV phrases in SPEECH at 1.8 times faster. This speed

Metric All IV OOV
Speaking rate (wpm) 151.5 156.4 146.5
Entry rate (wpm) 84.8 81.7 87.9
Error rate (CER%) 10.2 4.4 16.1
Error rate (WER%) 20.8 9.3 32.6

Table 2. Results prior to any correction in the SPEECH condition. Results
for all phrases, in-vocabulary (IV) phrases, and out-of-vocabulary (OOV)
phrases.

differential was more muted in NOSPEECH at 1.2 times faster. This
suggests participants successfully avoided some of the overheads of
locating or fixing errors in the keyboard-only interface by careful typing
and use of the literal slot. Providing similar ways to preemptively
avoiding recognition errors would likely improve the speech interface’s
performance on OOV phrases. This might be possible by having users
both speak and spell words they think may be a problem when first
speaking their sentence. However such a feature would require changes
to the underlying speech recognition algorithm.

Detailed performance analysis. Using the speech interface, par-
ticipants’ average speaking rate (not including recognition latency or
correction) was 151.5 wpm (Table 2). Our system streamed audio to the
IBM Watson web service. After participants stopped speaking, they had
to wait for the recognizer to detect the silence at the end of their speech,
recognize their speech, and return the word confusion network. This
introduced an average delay of 1.8 s (measured from a participant’s last
phoneme until the result arrived at our system). Assuming participants
did not need to correct or even confirm results, this would result in a
best-case entry rate of 84.8 wpm. Our actual entry rate, including any
corrections and a final confirmation step was 27.9 wpm (Table 1). This
shows both the importance of low latency speech recognition, but also
the substantial time costs associated with error correction.

Table 2 shows that the CER of speech was much higher at 10.2% be-
fore any correction versus 0.5% after correction. The out-of-vocabulary
phrases exhibited speech recognition character error rates of about four
times that of the in-vocabulary phrases. We also computed the Word
Error Rate (WER). WER is analogous to CER but on the word level.
We see that in OOV phrases nearly one in three words required correc-
tion. Overall, we found that OOV phrases were successful at creating
error rates that substantially increased the use of correction features.

Figure 4 visualizes participants’ entry and error rate before and after
correction and confirmation. We see that participants experienced quite
variable speech recognition accuracy with error rates ranging from 4%
to 25%. All participants were able to substantially reduce errors made
by the speech recognizer to below 5%. Half of the participants were
able to achieve a 0% CER.

46% of phrases were recognized with no errors. The average entry
rate of these phrases at the time when the speech recognition result
was first available was 81.3 wpm. However, also including the time it
took participants to hit the done button resulted in a drop to 42.0 wpm.
Thus, participants were spending considerable time either reviewing
the result or executing a tap on the done button.

Correction feature usage. We analyzed what correction features
participants made use of. In NOSPEECH, participants selected the 1-
likely slot (either by tapping the second prediction slot or by hitting
space) 46.4% of the time, 2-likely slot 32.9% of the time, 3-likely slot
20.1% of the time, and literal slot only 0.6% of the time. In SPEECH,
participants selected the literal slot 33.3% of the time, 1-likely slot
50.0% of the time, 2-likely slot 14.0% of the time, and 3-likely slot
2.6% of the time. We suspect the literal slot was used more frequently
in SPEECH because the keyboard was mostly used for correcting errors.

0

20

40

60

80

100

0 5 15 20 25

Error rate (CER %)

E
n
tr

y
 r

a
te

 (
w

p
m

)

Fig. 4. Entry rate and error rate of each participant in the SPEECH
condition. The right end of each line is before correction of the result
while the left end is after making corrections and confirming the result.

These errors involved words that were hard for the speech recognizer
and were thus unlikely to be predicted by the keyboard recognizer.

Recall that immediately after recognizing a word, our keyboard dis-
played a delete-word button in NOSPEECH. Across the whole study,
this button was only used six times. Instead, participants often repeat-
edly hit the backspace key to erase an erroneous word. In NOSPEECH,
participants used the backspace key one or more times in 63.2% of OOV
phrases compared to 36.8% for in-vocabulary phrases. In the SPEECH
condition, participants used backspace in 95.6% of OOV phrases com-
pared to 4.4% for in-vocabulary phrases. This shows that for more
difficult text, participants focused on exactly typing their desired letters
rather than relying on auto-correction or word predictions.

We wondered how often participants entered a sentence in the
SPEECH condition using only the word confusion network interface
(i.e. without using the keyboard). 115 out of 214 phrases had one or
more speech recognition errors. Participants corrected 30.4% of these
phrases using only the word confusion network. For the remaining 70%
phrases, either the answer was not in the word confusion network or
users deleted a partially correct answer and retyped. This suggests to
further improve performance, we may need to focus on ways to speed
the entry of words not in the recognizer’s top results.

The speech interface had an “X” button for deleting a cluster and
a blank button for inserting a word. The delete button was used one
or more times in 32.2% of phrases. This is mainly because the speech
recognition results sometimes split a word spoken by a participant into
several phonetically similar words (e.g. your was recognized as you
are). The insert button was only used in 1.9% of phrases.

Recall we have a slider in the speech correction interface. Only
one participant used the slider. This was because our input phrases
were relatively short (4 – 6 words) and thus the WCN almost always
appeared within the participants’ field of view with the leftmost and
rightmost columns reachable by a user’s virtual hands.

Subjective feedback. After each condition, participants rated a
series of statements on a 5-point Likert scale (1 = strongly disagree, 5 =
strongly agree). We tested for significance using Friedman’s test. The
mean rating for the statement “I thought I entered text quickly” was 3.56
in NOSPEECH and 3.83 in SPEECH. This difference was not significant
(χ2(1)=0.0, p=1.0). The mean rating for the statement “I thought I
entered text accurately” was 4.0 in NOSPEECH and 3.89 in SPEECH.

NOSPEECH

+ “The suggested words helped a ton with speed”
+ “Auto-suggestions were very intelligent and helped considerably”
+ “I could type whatever I wanted”
+ “Having a large keyboard with keys large enough for my virtual fingers”
+ “The elevated keyboard made it easy to see my keys and text at the same time”
- “Sometimes my hand would press a key next to the key I want”
- “The system struggled to determine which finger I was using”
- “Arm got tired fairly quickly”
- “Hands were the same color as the keyboard. It was difficult to keep track at times.”
- “I hated the autocorrect changing what I had typed”

SPEECH

+ “Easier and quicker than typing everything”
+ “Speech seemed to be a lot faster”
+ “It was easy to understand and convenient to use”
+ “The very clear visuals and knowing where to press.”
+ “Arm didn’t tire. Also helped me make sure I was talking clearly plus enunciating”
- “Editing did not allow using a partial word”
- “Uncommon words were tough to pronounce, and didn’t came up through speech”
- “I didn’t like how I had to have my finger/hand in a certain way to type.”
- “It felt you needed to put your finger through the key”
- “When I made a mistake, or it did, correcting the text was slow and frustrating”

Table 3. Some positive and negative comments about each interface.

This also was not significant (χ2(1)=0.11, p=0.73). The mean rating for
the statement “The interface provided accurate visual feedback of my
hand(s)” was 3.83 in NOSPEECH and 3.67 in SPEECH. The difference
was not statistically significant (Friedman’s test, χ2(1)= 0.4, p= 0.53).
The mean rating for the statement “The interface detected key press
accurately” was 3.5 in NOSPEECH and 3.78 in SPEECH. The difference
was not statistically significant (Friedman’s test, χ2(1) = 2, p = 0.13).
Taken together, the Likert results show slightly positive sentiment about
the various aspects of both interfaces. But it seems participants saw
definite room for improvement for both interfaces.

After each condition, we asked participants to point out a positive or
negative aspect of the interface. Table 3 shows a representative sample
of these comments. The most common positive comments were about
the utility of the predictions, accuracy of auto-correct, and the speed
of speech input. The most common negative comments were on the
difficulty of accurately tapping midair targets in both conditions, and
the low speech recognition accuracy on uncommon words.

At the end of the study, participants specified their preferred condi-
tion in terms of quickness, accuracy, minimal effort, and overall. In
general, participants preferred SPEECH:

• Quickness — SPEECH 14, NOSPEECH 4

• Accuracy — SPEECH 10, NOSPEECH 8

• Effort — SPEECH 17, NOSPEECH 1

• Overall — SPEECH 15, NOSPEECH 3

5 OFFLINE EXPERIMENT ON SPOKEN CORRECTIONS

In our study, we relied exclusively on a midair virtual keyboard to
correct speech recognition errors. But as previously discussed, a possi-
ble alternative is to have users speak or spell the misrecognized word.
We conducted an exploratory study to investigate the efficacy of using
spoken or spelled words to correct errors. As we will see, speech recog-
nition errors were common on spoken and spelled words. Thus we
further explored if we can re-rank the speech recognition hypotheses
using a neural language model.

We focused on the most difficult cases where our word confusion
network correction interface failed. We identified 57 words from sen-
tences in our user study for which users encountered speech recognition
errors and were forced to resort to keyboard correction because the
reference word was not in the correction interface. These words were
mostly words that were difficult to pronounce and probably also not in
the vocabulary of the IBM Watson recognizer. Some examples include:
eunjung, swaraj’s, auchinleck, bourre, tabinof, and chopt.

5.1 Data Collection
We highlighted the problematic words in an audio collector application
that showed each word in the context of its reference sentence. We
instructed people to speak each of the 57 words in three distinct ways:

• SPEAK: Speak the word normally, e.g. by speaking “tabinof”.
• SPELL-QUICKLY: Spell each letter of the word quickly, e.g. by

speaking “T-A-B-I-N-O-F”.
• SPELL-CAREFULLY: Similar to the previous condition except

users were told to enunciate each letter carefully, as if someone
was listening and trying to write down the letter sequence.

We recorded audio from five users including the two authors of
this paper. Users recorded their audio using their own computer and
headset microphone. We used the IBM Watson speech-to-text service
to transcribe the recordings. We used the same parameters for Watson
as in our main study. We logged the transcription results including the
best and all alternative hypotheses (i.e. the confusion network returned
by Watson). Each hypothesis was a word or character along with its
probability. Note that the IBM Watson service does not provide a
way to specify surrounding text context for a recognition request. It
also does not provide an explicit mode for recognizing spelling. This
makes recognition harder than it might be with a speech engine that
supports conditioning its language model on surrounding text or that
has a spelling-specific model. Nonetheless, these limitations are the
same between all audio conditions and still allows us to measure the
relative accuracy of the three speaking methods.

5.2 Ranking Hypotheses
For the two spelling conditions, we took all the character alternatives
in each position of the word confusion network and generated all
possible words from the character alternatives. We scored each word
by multiplying the probabilities given in the confusion network for its
constituent characters. For the SPEAK condition, we simply considered
all the alternative words suggested by the speech recognizer in the
single cluster of the word confusion network.

We ranked the words by their scores and calculated the word error
rate (WER). Given we are recognizing a single word, WER is simply
the percentage of corrections that were recognized incorrectly. We
computed the WER of the top choice (the 1-best) and the 4-best oracle
WER. The latter represents how often you would get a word wrong in
a user interface providing the best and next three best hypotheses.

5.3 Hypothesis Re-ranking
We were interested if we could improve accuracy by re-ranking all
possible word alternatives by applying a language model to take into
account the surrounding text in the sentence. For this we used the bi-
directional neural language model BERT [7]. BERT has proven useful
in a range of natural language processing tasks where an entire sentence
is available at inference time (e.g. classifying a tweet’s sentiment).

BERT is trained in part by taking sentences and masking individual
words. We make use of this to generate a BERT probability for any
given sentence. This was done by masking each word in a sentence one-
at-a-time and finding the log probability of the masked word under the
BERT model. Adding the log probabilities of all the words yields a sen-
tence’s log probability. We used the pre-trained bert-base-uncased1

model with 12 transformers for our purposes.
To re-rank a list of hypotheses for a spoken correction, we took

the reference text and replaced the reference word at the correction
location with each possible correction hypothesis. We then added each
hypothesis’ BERT sentence log probability to its original log probability
based on IBM Watson’s confusion network. Note that the contribution
of BERT to the speech recognition probability could be varied by
introducing a scale factor (i.e. multiplying the BERT probability by a
configurable parameter). We did not investigate that here and instead
simply used a scale factor of one. By adding BERT’s log probability to
Watson’s log probability we obtain a new ordering of the hypotheses
that takes into account how the correction fits within the entire sentence.

1https://github.com/google-research/bert

Word Error Rate (WER%)
1-best 1-best 4-best 4-best

Condition + BERT + BERT
SPELL-CAREFULLY 62.5 51.9 48.4 43.5
SPELL-QUICKLY 77.2 72.3 69.5 68.8
SPEAK 74.4 70.5 65.3 62.1

Table 4. 1-best and 4-best word error rates calculated from a list of all
possible words constructed from Watson’s hypothesis space for spoken
corrections. We also re-ranked the words using BERT.

5.4 Results
Table 4 shows the main results. The SPELL-CAREFULLY condition
was the most accurate. When users spelled carefully, the 1-best WER
was 62.5% and the 4-best WER was 48.4%. Re-ranking the word alter-
natives with BERT reduced the 1-best WER to 51.9% and the 4-best
WER to 43.5%. This shows the advantage of leveraging surrounding
text context via a powerful bidirectional neural language model.

In SPELL-QUICKLY, the 1-best WER was 77.2% and the 4-best
WER was 69.5%. Similar to the previous condition, re-ranking with
BERT reduced the 1-best WER to 72.3 and the 4-best WER to 68.8%.
The error rate substantially increased for quick spellings. This suggests
if spelling correction is to be added to the interface, users need to be
encouraged to clearly pronounce each letter.

In SPEAK, the 1-best WER was 74.4% and 4-best WER was 65.3%.
Similar to the other conditions, using BERT reduced the 1-best WER to
70.5% and the 4-best WER to 62.1%. Just speaking the word performed
similar to spelling it quickly, but not as well as spelling it carefully.

We calculated how fast users spoke correction by using the time
of the first and last phoneme provided by IBM Watson. It took users
about 4.0 s to speak a correction in SPELL-CAREFULLY, 1.8 s in SPELL-
QUICKLY, and 0.7 s in SPEAK. We measured the recognition latency
on the correction by measuring the time between sending the request to
receiving the word confusion network result. The latency was 3.9 s in
SPELL-CAREFULLY, 2.6 s in SPELL-QUICKLY, and 2.0 s in SPEAK.

Overall, even after re-ranking the carefully spelled hypotheses with
BERT and assuming the interface provided the top four options, 43.5%
of correction attempts would still have failed. While spelling carefully
was the slowest spoken correction technique, it would still be much
quicker than typing most words on a midair keyboard. However, this
speed advantage could disappear if repeated spellings are required.
This result suggests caution in solely relying on spelling as a correction
method for difficult words. Perhaps having the user provide additional
acoustic information could help the recognizer (e.g. military phonetic
spelling). It may also help if the speech recognizer made use of the
surrounding text context or supported a dedicated spelling model.

6 DISCUSSION

Given the limited research on text entry using speech in virtual environ-
ments, we think our findings provide useful insights in how to design
text entry for virtual environments. In particular, we explored how to
enable efficient text entry in virtual environments without the use of
auxiliary input devices. Our system relied only on midair gestures and
speech input. Further, we aimed to design a system that could be used
with little or no training.

Overall we found that speaking a sentence and then correcting er-
rors using a midair interface was much faster at 28 wpm compared
to 11 wpm for typing the whole sentence. Even better, we were able
to support this speed on text that often contained out-of-vocabulary
(OOV) words. For the subset of phrases without OOVs, the entry rate
was faster at 36 wpm. This is competitive with other speech systems
such as SWIFTER [34] (23.6 wpm) and SpeeG2 [18] (21 wpm).

However, even on in-vocabulary phrases, our entry rate was substan-
tially slower than the 153 wpm reported by Ruan et al. on a touchscreen
phone [35]. There are a number of possible reasons for this. First, we
relied on midair tapping which is less accurate and higher latency than
tapping on a touchscreen. Second, in our study, only 46% of sentences

were perfectly recognized. While Ruan et al. does not report how
many sentences were perfectly recognized, they do report the entry rate
was 179 wpm prior to any correction. Since this rate only reduced to
153 wpm overall, this suggests most sentences required no correction.
It is also not clear whether they included the time participants spent
confirming completely correct recognitions (something we included in
our entry rate). Third, we incurred several seconds of latency waiting
for IBM Watson to endpoint a users speech and return the confusion
network. This delay could be reduced by introducing an explicit “push
to talk” action, e.g. using a gesture such as lifting and lowering your
hand to turn the mic on and off.

Our speech interface was particularly slow for uncommon words
where the correct word did not appear in the likely word alternatives.
In these cases, users had to fallback to midair keyboard correction. In
our offline experiment, we explored the possibility of using spoken
corrections instead for fixing these uncommon words. Our initial offline
results show that even employing a powerful neural language model
to re-rank IBM Watson’s spoken correction hypotheses resulted in a
correction method that would often need correction itself. However,
this finding needs further validation with more users, ideally tested
inside a user interface with a speech engine specifically designed to
handle spoken or spelled corrections.

In our study, while we considered input of uncommon OOV words,
our phrases only contained 26 letters of the alphabet and apostrophe.
Performance may be slower for other types of text containing, for ex-
ample, passwords, special symbols, or numbers. The input of numbers,
and special characters might be important for some tasks, e.g. entering
mathematical or chemical formulas. It remains to be seen how well our
system would support input of such text.

We had participants enter relatively short phrases (four to six words).
While our speech correction interface can handle the input of longer
phrases, the entire WCN might not fit in a user’s field of view. Our
slider can be used to scroll to the left and rightmost elements in the
WCN, but it might also be possible to automate scrolling through the
WCN at a speed that can be adjusted according to a user’s needs.

We think our speech interface will be useful for scenarios such as
short messaging and search queries. In particular, search queries may
often contain difficult to recognize words. However, we suspect our
interface may be too tiring for long-term use. It is also not suited for
creating large passages of text. This would require design of appropriate
features to allow users to move around, select, and correct text. It might
also require continuous recognition and result display rather than the
utterance-at-a-time approach we employed.

Lastly, we conducted a single hour session and participants com-
pleted only 12 text entry tasks in each condition. While the shorter
session and a smaller number of input tasks were sufficient to prove
the efficiency of our system for walk-up-and-use scenarios, our study
did not reveal how users adapted to the system. One might expect
performance to increase in both conditions with practice, showing this
would require a longitudinal evaluation.

6.1 Design Implications
We found our correction interface was quite successful at allowing users
to correct errors. In particular, 30% of sentences could be corrected
without resorting to the keyboard. This is a marked improvement to the
10% reported in [44]. Based on our study, we think our design could be
improved in a number of ways:

1. Reduce column size. We found the third most likely slot in the
speech and keyboard interface was rarely used. In the study partic-
ipants sometimes accidentally hit an adjacent button. Particularly
for the speech interface, it may be better to have bigger or more
separated buttons in each column to avoid such errors.

2. Different hand and keyboard color. The color of our virtual
keyboard and the virtual representation of the users’ hands were
similar. In particular, one participant in our study had problems
with separation. While none of the other participants complained
about this issue, we think it would be better to color the virtual
representation of hands and the keyboard differently.

3. Allow modification of words. We observed that sometimes the
speech recognizer returned words that were close to, but not
identical to the target word (e.g. “closed” when the user wanted
“closing”). In such cases, users had to retype the entire word. One
possible design change would be to let users partially backspace
a recognized word and type the remaining letters. But whether
this approach ends up saving time needs further investigation.
Providing a richer set of correction options could in fact slow
users down if it creates indecision about the best course of action.

4. Spoken word corrections. Another interesting extension would
allow users to speak or spell words similar to SWIFTER [34]
and SpeeG2 [18]. Even further, the system could support both
speaking and spelling a word (e.g. “dog D-O-G”). This has been
shown to be more accurate than just speaking or just spelling
a word [47]. Speaking or spelling words could be used instead
of our current keyboard based insertion or substitution of words.
Prediction slots would be filled with the most likely recognized
words based on a spoken correction. Our offline experiments
suggest for difficult words, asking users to spell the word carefully
may be the most accurate option, especially when coupled with a
powerful bidirectional neural language model.

5. Improved speech recognizer. We could train and host our own
speech recognizer rather than relying on a commercial recognizer.
This could reduce network latency. However, using a commercial
recognizer has the advantage that the recognizer may be trained
on substantially more data than is available to researchers. Thus a
commercial recognizer may be more accurate. But an advantage
of an in-house research recognizer is that we could add support
for features like speaking and spelling words that may not be
available in commercial APIs. It may also allow exploration of
avoiding errors in the first place by allowing users to provide
spelling of difficult words in their initial utterance.

6. Speech-aware keyboard decoder. When correcting speech er-
rors with the keyboard, our keyboard only made use of the noisy
tap sequence plus the text to the left and to the right of the location
being edited. It does not leverage the probabilistic information in
the speech recognition result for the sentence being corrected. For
example, while the user’s desired word may appear somewhere in
the word confusion network result, it may not have a high enough
probability to appear in our correction interface. It is possible this
information could improve the keyboard’s predictions.

7 CONCLUSION

To date, speech-assisted text input in virtual environments has seen little
investigation. While there are many speech-based text input studies on
desktop and mobile devices, studies of speech input in VR HMDs are
lacking. We presented a text entry system for virtual environments that
allows users to type in midair on a familiar QWERTY virtual keyboard.
We investigated the speed, accuracy, ergonomics, and user satisfaction
of our speech-assisted text entry method. Our work informs the design
of text entry interfaces that support the input of even challenging text,
including uncommon words such as proper names. Moreover, by
augmenting our interface with speech, we created a significantly faster
and less exerting input method for virtual reality.

We found even on text with difficult words (which has not previously
been investigated in any speech-based VR/AR interfaces), users could
combine spoken input and tapping on midair virtual buttons to write
at 28 wpm at a low error rate of 0.5%. To our knowledge, we are
the first to investigate speech-based text entry in a VR head-mounted
display without the use of auxiliary input devices. We believe with the
burgeoning consumer demand of head-mounted display devices, our
design and study findings will inform future VR and AR interfaces that
require efficient text input.

ACKNOWLEDGMENTS

This material is based upon work supported by the NSF under Grant
No. IIS-1750193.

REFERENCES

[1] S. Ahn, S. Heo, and G. Lee. Typing on a smartwatch for smart glasses.
In Proceedings of the 2017 ACM International Conference on Interactive
Surfaces and Spaces, ISS ’17, pp. 201–209. ACM, New York, NY, USA,
2017. doi: 10.1145/3132272.3134136

[2] A. S. Arif and W. Stuerzlinger. Pseudo-pressure detection and its use in
predictive text entry on touchscreens. In Proceedings of the 25th Australian
Computer-Human Interaction Conference: Augmentation, Application,
Innovation, Collaboration, OzCHI ’13, pp. 383–392. ACM, New York,
NY, USA, 2013. doi: 10.1145/2541016.2541024

[3] C. Boletsis and S. Kongsvik. Controller-based text-input techniques for
virtual reality: An empirical comparison. International Journal of Virtual
Reality, 19(3):2–15, Oct. 2019. doi: 10.20870/IJVR.2019.19.3.2917

[4] G. Borg. Borg’s Perceived Exertion and Pain Scales. Human Kinetics,
1998.

[5] S. Boring, M. Jurmu, and A. Butz. Scroll, tilt or move it: Using mobile
phones to continuously control pointers on large public displays. In
Proceedings of the 21st Annual Conference of the Australian Computer-
Human Interaction Special Interest Group: Design: Open 24/7, pp. 161–
168, 2009.

[6] D. A. Bowman, C. J. Rhoton, and M. S. Pinho. Text input techniques for
immersive virtual environments: An empirical comparison. Proceedings of
the Human Factors and Ergonomics Society Annual Meeting, 46(26):2154–
2158, 2002. doi: 10.1177/154193120204602611

[7] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training
of deep bidirectional transformers for language understanding. In Pro-
ceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for
Computational Linguistics, Minneapolis, Minnesota, June 2019. doi: 10.
18653/v1/N19-1423

[8] T. J. Dube and A. S. Arif. Text entry in virtual reality: A comprehensive
review of the literature. In International Conference on Human-Computer
Interaction, pp. 419–437. Springer, 2019.

[9] J. Dudley, H. Benko, D. Wigdor, and P. O. Kristensson. Performance
envelopes of virtual keyboard text input strategies in virtual reality. In
2019 IEEE International Symposium on Mixed and Augmented Reality
(ISMAR), pp. 289–300, 2019. doi: 10.1109/ISMAR.2019.00027

[10] J. J. Dudley, K. Vertanen, and P. O. Kristensson. Fast and precise touch-
based text entry for head-mounted augmented reality with variable occlu-
sion. ACM Transactions on Computer-Human Interaction (TOCHI), 25(6),
12 2018. doi: 10.1145/3232163

[11] A. M. Feit, S. Sridhar, C. Theobalt, and A. Oulasvirta. Investigating
multi-finger gestures for mid-air text entry. In ACM womENcourage,
2015.

[12] M. Foley, G. Casiez, and D. Vogel. Comparing smartphone speech recogni-
tion and touchscreen typing for composition and transcription. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems,
pp. 1––11. ACM, New York, NY, USA, 2020. doi: 10.1145/3313831.
3376861

[13] M. Gordon, T. Ouyang, and S. Zhai. WatchWriter: Tap and gesture
typing on a smartwatch miniature keyboard with statistical decoding. In
Proceedings of the SIGCHI Conference on Human factors in Computing
Systems, CHI ’16, pp. 3817–3821. ACM, New York, NY, USA, 2016. doi:
10.1145/2858036.2858242

[14] J. Grubert, L. Witzani, E. Ofek, M. Pahud, M. Kranz, and P. O. Kristensson.
Effects of hand representations for typing in virtual reality. In 2018 IEEE
Conference on Virtual Reality and 3D User Interfaces (VR), pp. 151–158.
IEEE, 2018. doi: 10.1109/VR.2018.8446250

[15] J. Grubert, L. Witzani, E. Ofek, M. Pahud, M. Kranz, and P. O. Kristensson.
Text entry in immersive head-mounted display-based virtual reality using
standard keyboards. 2018 IEEE Conference on Virtual Reality and 3D
User Interfaces (VR), pp. 159–166, 2018. doi: 10.1109/VR.2018.8446059

[16] G. Hinton, L. Deng, D. Yu, G. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kingsbury. Deep neural
networks for acoustic modeling in speech recognition: The shared views
of four research groups. IEEE Signal Processing Magazine, 29(6):82–97,
2012. doi: 10.1109/MSP.2012.2205597

[17] L. Hoste, B. Dumas, and B. Signer. SpeeG: A multimodal speech- and
gesture-based text input solution. In Proceedings of the International
Working Conference on Advanced Visual Interfaces, AVI ’12, pp. 156–
–163. ACM, New York, NY, USA, 2012. doi: 10.1145/2254556.2254585

[18] L. Hoste and B. Signer. SpeeG2: A speech- and gesture-based interface
for efficient controller-free text input. In Proceedings of the 15th ACM
on International Conference on Multimodal Interaction, ICMI ’13, pp.
213––220. ACM, New York, NY, USA, 2013. doi: 10.1145/2522848.
2522861

[19] H. Jiang and D. Weng. HiPad: Text entry for head-mounted displays using
circular touchpad. In 2020 IEEE Conference on Virtual Reality and 3D
User Interfaces (VR), pp. 692–703, 03 2020. doi: 10.1109/VR46266.2020
.00092

[20] C.-M. Karat, C. Halverson, D. Horn, and J. Karat. Patterns of entry and
correction in large vocabulary continuous speech recognition systems. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’99, pp. 568–575. ACM, New York, NY, USA, 1999. doi:
10.1145/302979.303160

[21] P. Knierim, V. Schwind, A. M. Feit, F. Nieuwenhuizen, and N. Henze.
Physical keyboards in virtual reality: Analysis of typing performance and
effects of avatar hands. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems, CHI ’18, pp. 1––9. ACM, New
York, NY, USA, 2018. doi: 10.1145/3173574.3173919

[22] K. Kurihara, M. Goto, J. Ogata, and T. Igarashi. Speech pen: Predictive
handwriting based on ambient multimodal recognition. In Proceedings of
the SIGCHI Conference on Human factors in Computing Systems, CHI ’06,
pp. 851–860. ACM, New York, NY, USA, 2006. doi: 10.1145/1124772.
1124897

[23] K. Larson and D. Mowatt. Speech error correction: The story of the
alternates list. International Journal of Speech Technology, 6:183–194, 01
2003. doi: 10.1023/A:1022342732234

[24] M. Lee and W. Woo. ARKB: 3D vision-based augmented reality keyboard.
In Proceedings of the 13th International Conference on Artificial Reality
and Telexistence, ICAT’03, 2003.

[25] I. S. MacKenzie and R. W. Soukoreff. Phrase sets for evaluating text
entry techniques. In Extended Abstracts on Human Factors in Computing
Systems, CHI EA ’03, pp. 754–755. ACM, New York, NY, USA, 2003.
doi: 10.1145/765891.765971

[26] L. Mangu, E. Brill, and A. Stolcke. Finding consensus in speech recog-
nition: Word error minimization and other applications of confusion net-
works. Computer Speech and Language, 14(4):373–400, 2000.

[27] A. Markussen, M. R. Jakobsen, and K. Hornbæk. Selection-based mid-air
text entry on large displays. In IFIP Conference on Human-Computer
Interaction – INTERACT 2013, pp. 401–418. Springer, Berlin, Heidelberg,
2013.

[28] A. Markussen, M. R. Jakobsen, and K. Hornbæk. Vulture: A mid-air
word-gesture keyboard. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’14, pp. 1073––1082. ACM,
New York, NY, USA, 2014. doi: 10.1145/2556288.2556964

[29] M. McGill, D. Boland, R. Murray-Smith, and S. Brewster. A dose of
reality: Overcoming usability challenges in VR head-mounted displays.
In Proceedings of the 33rd Annual ACM Conference on Human Factors
in Computing Systems, CHI ’15, pp. 2143–2152. ACM, New York, NY,
USA, 2015. doi: 10.1145/2702123.2702382

[30] J. Ogata and M. Goto. Speech repair: Quick error correction just by using
selection operation for speech input interfaces. In Proceedings of the
International Conference on Spoken Language Processing, pp. 133–136,
September 2005.

[31] A. Otte, T. Menzner, T. Gesslein, P. Gagel, D. Schneider, and J. Grubert.
Towards utilizing touch-sensitive physical keyboards for text entry in
virtual reality. In 2019 IEEE Conference on Virtual Reality and 3D User
Interfaces (VR), pp. 1729–1732, 2019. doi: 10.1109/VR.2019.8797740

[32] S. Oviatt. Taming recognition errors with a multimodal interface. Com-
munications of the ACM, 43(9):45–51, 2000.

[33] D.-M. Pham and W. Stuerzlinger. HawKEY: Efficient and versatile text
entry for virtual reality. In 25th ACM Symposium on Virtual Reality
Software and Technology, VRST ’19. ACM, New York, NY, USA, 2019.
doi: 10.1145/3359996.3364265

[34] S. Pick, A. S. Puika, and T. W. Kuhlen. SWIFTER: Design and evaluation
of a speech-based text input metaphor for immersive virtual environments.
In 2016 IEEE Symposium on 3D User Interfaces (3DUI), pp. 109–112.
IEEE, 2016.

[35] S. Ruan, J. O. Wobbrock, K. Liou, A. Ng, and J. A. Landay. Comparing
speech and keyboard text entry for short messages in two languages on
touchscreen phones. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, 1(4):159:1–159:23, Jan. 2018. doi:
10.1145/3161187

[36] D. Schneider, A. Otte, T. Gesslein, P. Gagel, B. Kuth, M. S. Damlakhi,
O. Dietz, E. Ofek, M. Pahud, P. O. Kristensson, J. Müller, and J. Grubert.
ReconViguRation: Reconfiguring physical keyboards in virtual reality.
IEEE Transactions on Visualization and Computer Graphics, 25(11):3190–
3201, 2019. doi: 10.1109/TVCG.2019.2932239

[37] R. W. Soukoreff and I. S. MacKenzie. Measuring errors in text entry tasks:
An application of the Levenshtein string distance statistic. In CHI ’01
Extended Abstracts on Human Factors in Computing Systems, CHI EA ’01,
pp. 319––320. ACM, New York, NY, USA, 2001. doi: 10.1145/634067.
634256

[38] M. Speicher, A. M. Feit, P. Ziegler, and A. Krüger. Selection-based text
entry in virtual reality. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems, CHI ’18, pp. 1—-13. ACM, New
York, NY, USA, 2018. doi: 10.1145/3173574.3174221

[39] S. Sridhar, A. M. Feit, C. Theobalt, and A. Oulasvirta. Investigating the
dexterity of multi-finger input for mid-air text entry. In Proceedings of the
33rd Annual ACM Conference on Human Factors in Computing Systems,
CHI ’15, pp. 3643––3652. ACM, New York, NY, USA, 2015. doi: 10.
1145/2702123.2702136

[40] B. Suhm, B. Myers, and A. Waibel. Multimodal error correction for speech
user interfaces. ACM Transactions on Computer-Human Interaction,
8(1):60–98, Mar. 2001. doi: 10.1145/371127.371166

[41] K. Vertanen, C. Fletcher, D. Gaines, J. Gould, and P. O. Kristensson. The
impact of word, multiple word, and sentence input on virtual keyboard
decoding performance. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’18, pp. 626:1–626:12. ACM,
New York, NY, USA, 2018. doi: 10.1145/3173574.3174200

[42] K. Vertanen, D. Gaines, C. Fletcher, A. M. Stanage, R. Watling, and P. O.
Kristensson. VelociWatch: Designing and evaluating a virtual keyboard for
the input of challenging text. In Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems, CHI ’19, pp. 591:1–591:14.
ACM, New York, NY, USA, 2019. doi: 10.1145/3290605.3300821

[43] K. Vertanen and P. O. Kristensson. Automatic selection of recognition
errors by respeaking the intended text. In ASRU ’09: IEEE Workshop on
Automatic Speech Recognition and Understanding, pp. 130–135, Decem-
ber 2009. doi: 10.1109/ASRU.2009.5373347

[44] K. Vertanen and P. O. Kristensson. Parakeet: A continuous speech recog-
nition system for mobile touch-screen devices. In Proceedings of the
14th International Conference on Intelligent User Interfaces, IUI ’09,
pp. 237–246. ACM, New York, NY, USA, 2009. doi: 10.1145/1502650.
1502685

[45] K. Vertanen and P. O. Kristensson. Getting it right the second time: Recog-
nition of spoken corrections. In Proceedings of the 3rd IEEE Workshop
on Spoken Language Technology, SLT’10, pp. 277–282, December 2010.

[46] K. Vertanen and P. O. Kristensson. A versatile dataset for text entry
evaluations based on genuine mobile emails. In Proceedings of the 13th
International Conference on Human Computer Interaction with Mobile
Devices & Services, MobileHCI ’11, pp. 295–298. ACM, New York, NY,
USA, 2011. doi: 10.1145/2037373.2037418

[47] K. Vertanen and P. O. Kristensson. Spelling as a complementary strategy
for speech recognition. In Proceedings of the International Conference on
Spoken Language Processing, INTERSPEECH ’12, September 2012.

[48] K. Vertanen, H. Memmi, J. Emge, S. Reyal, and P. O. Kristensson. Veloci-
Tap: Investigating fast mobile text entry using sentence-based decoding of
touchscreen keyboard input. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’15, pp. 659–668. ACM, New
York, NY, USA, 2015. doi: 10.1145/2702123.2702135

[49] J. Walker, B. Li, K. Vertanen, and S. Kuhl. Efficient typing on a visually
occluded physical keyboard. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’17, pp. 5457–5461. ACM,
New York, NY, USA, 2017. doi: 10.1145/3025453.3025783

[50] C.-Y. Wang, W.-C. Chu, P.-T. Chiu, M.-C. Hsiu, Y.-H. Chiang, and M. Y.
Chen. PalmType: Using palms as keyboards for smart glasses. In Proceed-
ings of the 17th International Conference on Human-Computer Interaction
with Mobile Devices and Services, MobileHCI ’15, pp. 153–160. ACM,
New York, NY, USA, 2015. doi: 10.1145/2785830.2785886

[51] D. Weir, H. Pohl, S. Rogers, K. Vertanen, and P. O. Kristensson. Uncertain
text entry on mobile devices. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’14, pp. 2307–2316. ACM,
New York, NY, USA, 2014. doi: 10.1145/2556288.2557412

[52] W. Xu, H. Liang, A. He, and Z. Wang. Pointing and selection methods
for text entry in augmented reality head mounted displays. In 2019 IEEE
International Symposium on Mixed and Augmented Reality (ISMAR), pp.

279–288, 2019. doi: 10.1109/ISMAR.2019.00026
[53] W. Xu, H.-N. Liang, Y. Zhao, T. Zhang, D. Yu, and D. Monteiro. RingText:

Dwell-free and hands-free text entry for mobile head-mounted displays
using head motions. IEEE transactions on visualization and computer
graphics, 25(5):1991–2001, 2019.

[54] X. Yi, C. Yu, M. Zhang, S. Gao, K. Sun, and Y. Shi. ATK: Enabling
ten-finger freehand typing in air based on 3d hand tracking data. In Pro-
ceedings of the 28th Annual ACM Symposium on User Interface Software
and Technology, UIST ’15, pp. 539–548. ACM, New York, NY, USA,
2015. doi: 10.1145/2807442.2807504

[55] C. Yu, Y. Gu, Z. Yang, X. Yi, H. Luo, and Y. Shi. Tap, dwell or gesture?:
Exploring head-based text entry techniques for hmds. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’17, pp. 4479–4488. ACM, New York, NY, USA, 2017. doi: 10.
1145/3025453.3025964

[56] C. Yu, K. Sun, M. Zhong, X. Li, P. Zhao, and Y. Shi. One-dimensional
handwriting: Inputting letters and words on smart glasses. In Proceedings
of the 2016 CHI Conference on Human Factors in Computing Systems,
CHI ’16, pp. 71––82. ACM, New York, NY, USA, 2016. doi: 10.1145/
2858036.2858542

[57] S. Zhai and P. O. Kristensson. The word-gesture keyboard: Reimagin-
ing keyboard interaction. Communications of the ACM, 55(9):91–101,
September 2012. doi: 10.1145/2330667.2330689

	Introduction
	Related work
	Physical Keyboards
	Hand-held Controllers
	Hand Gestures
	Speech

	Interface Design
	Midair Auto-correcting QWERTY Keyboard
	Support for Difficult Text
	Avoiding Errors and Accelerating Input
	Text Entry Using Speech
	Intuitive Speech Error Correction

	User Study
	Participants and Procedure
	Results

	Offline Experiment on Spoken Corrections
	Data Collection
	Ranking Hypotheses
	Hypothesis Re-ranking
	Results

	Discussion
	Design Implications

	Conclusion

