INTERSPEECH
2009 BRIGHTON

mm

Recognition and Correction of Voice Web Search Queries

Keith Vertanen, Per Ola Kristensson

University of Cambridge, Cavendish Laboratory, United Kingdom
{kv227,pok21}@cam.ac.uk

Abstract

In this work we investigate how to recognize and correct
voice web search queries. We describe our corpus of web
search queries and show how it was used to improve recogni-
tion accuracy. We show that using a search-specific vocabu-
lary with automatically generated pronunciations is superior to
using a vocabulary limited to a fixed pronunciation dictionary.
We conducted a formative user study to investigate recognition
and correction aspects of voice search in a mobile context. In
the user study, we found that despite a word error rate of 48%,
users were able to speak and correct search queries in about 18
seconds. Users did this while walking around using a mobile
touch-screen device.

Index Terms: speech recognition, voice search, error correc-
tion, mobile web search

1. Introduction

Recognition of spoken search queries is a challenging problem.
First, search queries tend to be brief, lack context, and lack
strong word order. Second, queries often involve a diverse vo-
cabulary that may be difficult to capture—even using a language
model with a very large vocabulary. Third, a proper language
model for voice search requires appropriate training material.

Here we outline the steps we took to create a voice search
system. We describe a search query corpus that we collected
over a period of four years. We show how we handled the
large and diverse vocabularies indicative of web search queries.
We argue that voice search is made more effective and pleasant
by introducing a correction interface based on a word confu-
sion network. Finally, we test the performance of our mobile
voice search system by letting users enter queries while walk-
ing around indoors.

2. Search Query Corpus

To our knowledge, no publicly available search query corpus
currently exists. Therefore, we resorted to collecting our own.
As a basis, we used past user queries mined from various web
search engine “spy” pages. These spy pages display recent or
popular searches made by users of a particular search engine.
Over a period of four years, we collected about one million
queries. We also used the “related search” feature of the Ya-
hoo! search engine [1] to further expand the collection. The
Yahoo! related search feature returns a list of other possible
queries based on the original query. For example, the origi-
nal query “german steins” returns related queries such as “beer
mugs” and “beer glasses”.

We added the Yahoo! related search variants to our collec-
tion. We also used Yahoo! to filter out any of our original queries
that had no related results. This eliminated garbage in the orig-
inal spy results. After expansion and filtering we ended up with

Copyright © 2009 ISCA

1863

Mean Median Max Std dev
Words 2.9 (2.6) 3(2) 37 (39) 1.4 (1.7)
Chars 189 (16.8) 10(15) 168 (224) 8.5(9.2)

Table 1: Statistics about the queries in our corpus. Numbers in
parentheses are from a Google corpus of searches (see text).

7.1M search queries.

To collect more data, we fed individual “seed”” words to the
Yahoo! related search feature. For some seed words, Yahoo!
would respond with a list of related searches. The following
sources were used for seed words: the CMU dictionary, the ti-
tles of Wikipedia articles, and the top words in the Google n-
gram corpus. From approximately 500K unique words, we ob-
tained an additional 3.1M search queries. This resulted in a total
corpus of 10.2M queries. We reserved 10% of these queries as
test data.

Table 1 summarizes our search query corpus. Our cor-
pus statistics were broadly similar to the published statistics on
search queries submitted to Google from mobile phones and
PDAs [2]. Obviously, our collection procedure may have re-
sulted in a smaller and lower-quality data collection than what
might be available to commercial search engine companies.
However, as we’ll see, even our modest corpus provided ma-
jor gains over merely using readily-available newswire training
text. We’ll also see that models built using our corpus were
successful at recognizing spoken search queries.

3. Handling Large Vocabularies

A challenge when recognizing queries is the large and diverse
vocabulary used in the queries. One way to handle this is to
simply increase the size of the recognizer’s vocabulary. In the
simplest case, words are added from sources that have pronun-
ciations for each word. But such sources are limited in size and
may not match the types of words used in web search queries.
For example, the CMU dictionary has 123K English words but
lacks many common search terms such as “ebay” and “firefox”.

To demonstrate the problem, we compared the out-of-
vocabulary (OOV) rates of vocabularies limited to the CMU
dictionary and vocabularies that were free to use any word.
Both vocabularies used the most frequent words in our corpus
of search queries. We measured the OOV rate of the vocabular-
ies using a set of 3K queries collected from a search engine spy
[3]. This search engine spy was not used in the original collec-
tion of our corpus. We proofread the queries to correct obvious
typos. We also removed garbage and expanded abbreviations.
As shown in Table 2, using the vocabularies based on the web
search corpus substantially reduced the OOV rate.

Clearly a search-specific vocabulary is preferable. But to
use such a vocabulary, pronunciations are required for words

6— 10 September, Brighton UK

Vocab 20K 40K 80K 120K 200K 300K
CMU 122% 86% 75% 12% - -
Search 11.7% 73% 47% 3.7% 3.0% 2.6%

Table 2: OOV rates in a test set of queries varying the vocabu-
lary size. CMU was limited to the CMU pronunciation dictio-
nary. Search could use any word.

not in the dictionary. One way to generate these pronunciations
is to use the joint multigram model [4]. The joint multigram
model is a statistical model that uses an existing dictionary to
learn sub-word units called graphones. Graphones consist of
likely pairings of letters and phones in a language. The de-
pendency between graphones is modeled using a standard n-
gram language model (LM). In past work [5], we found accu-
rate letter-to-phone conversion (6.5% phone error rate) could
be obtained using small graphones (0-1 letters/phones per gra-
phone) and a 6-gram LM. Our graphone model can produce the
best phone sequence for a word, or it can produce an n-best list
of phone sequences (and their associated probabilities under the
model). For further details about using graphones for letter-to-
phone conversion, see [6].

4. Recognition Experiments

Our recognition experiments used HTK v3.4, HDecode, and the
acoustic model training recipe from [7]. We trained a speaker-
independent acoustic model using cross-word triphones on WSJ
(211 hours). We used 12 MFCCs plus deltas and delta-deltas,
16 Gaussians/state, and 8K tied-states. Except where noted, we
used a bigram LM for decoding, rescoring lattices with a tri-
gram. We report decoding time as a proportion of the utterance
audio time (XRT) on a 3.3 GHz desktop computer.

4.1. Development Test Set

To provide a development audio test set, one of the authors
recorded 755 queries. Audio was recorded at 16 kHz using a
wired headset microphone. The queries were drawn from a
search engine spy [3] that was not used for the original corpus
collection. The test set had an OOV rate of 7.9% using a 86K
vocabulary that used all CMU dictionary words that occurred
in the search query corpus. The average query length was 3.0
words (19.5 characters). The test set had a per-word perplexity
of 296 using a 86K trigram LM trained on the search corpus.

4.2. Mixture Language Model

When building the language model, there is a question of the
relative importance of using search-specific training text ver-
sus easily-available newswire text. In addition, since our search
query corpus was somewhat small (27M words), we hypothe-
sized it might help to use additional non-search training text.

To investigate these issues, we trained a range of LMs that
mixed a search LM and a newswire LM. For the newswire LM,
we segmented the original training sentences of the CSR-III
newswire corpus (222M words) into short pseudo-sentences of
between 1-5 words. We trained the search and newswire LMs
separately with no count cutoffs. We then created a mixture LM
using SRILM. The final mixture LM was entropy-pruned to re-
duce its size. As a vocabulary, we used the 86K words in the
CMU dictionary that appeared in our search query corpus.

As shown in Table 3, an LM trained on only search data

1864

Al 00 005 01 015 02 0.5 1.0

WER: 283 282 284 28.6 28.6 29.6 410

Table 3: WER varying the mixture weight between LMs built
with search data (A =0.0) and newswire data (A= 1.0).

36

CMU —=—
Search —&—
34 r
32

30

WER (%)

28

26

24

150 200 250 300
Vocabulary size (K)

100
Figure 1: WER using the different vocabulary types and sizes.

(A =0.0) was much better than an LM trained on only newswire
data (A=1.0). Mixing in a small amount of newswire data
(A=0.05) improved the WER slightly. Except where noted, all
remaining experiments used mixture LMs with A=0.05.

4.3. Vocabulary Type

We tested two types of vocabularies. Each used the most fre-
quent words seen in the search query corpus. The first (CMU)
was limited to words that occurred in the CMU pronunciation
dictionary. The other (Search) was free to use any word. For
words that were not in the CMU dictionary, the best phone
sequence was found using a letter-to-phone graphone model
(0-1 graphones with a 6-gram LM). As shown in Figure 1,
for smaller vocabulary sizes (20-40K) CMU and Search per-
formed similarly. For vocabularies larger than 40K, the Search
vocabularies were superior. The Search vocabulary continued
to noticeably reduce WER until about 140K words.

We also investigated including multiple pronunciations for
words in the Search vocabularies. This was done by performing
an n-best search using the letter-to-phone model. We found no
significant reduction of WER and the additional pronunciations
substantially increased decoding time.

4.4. Language Model Size

Prior work on web search query recognition has used a unigram
LM [8, 9]. As shown in Table 4, we found that using a bigram
was much more accurate and did not slow down decoding. Fur-
ther, rescoring the bigram lattices with a trigram improved ac-
curacy slightly and required little additional processing time.

4.5. Testing on Realistic Audio

In the user study (to be described shortly) we collected 776
queries from 4 users. The users spoke the queries while walking
around indoors. They used a mobile device to see the recogni-
tion results and perform corrections. We used the collected au-
dio in offline experiments using the recognition techniques and
setup described previously. As shown in Table 5, we observed
gains by using a mixture LM, using a Search vocabulary, and
increasing the vocabulary size to 100K. Using the 100K Search

LM size XRT Memory WER
Unigram 1.4 152MB 41.7
Bigram 1.3 172MB 27.1
Trigram® 13 291MB 26.3

Table 4: Real-time factor, memory use, and WER for different
LM sizes. Results are on our dev. test set using a 100K Search
vocab. TBigram used for recognition, rescored with a trigram.

Vocab type Vocabsize Mixture A XRT WER
CMU 86K 1.00 23 54.5
CMU 86K 0.00 1.7 37.7
CMU 86K 0.05 1.9 37.4
Search 86K 0.05 23 35.7
Search 100K 0.05 2.3 35.1
Search 140K 0.05 2.7 353

Table 5: Performance of different LMs on the audio recorded
during our user study.

vocabulary, the WER was 35% on our users’ audio. This was
higher than the 26% we saw on our development test set. Ar-
tifacts introduced by the wireless microphone as well as breath
noises from our users may have contributed to this increase.

5. Correction Interface

Spoken web search queries are difficult to recognize. Further,
voice search is likely to be used in noisy environments. There-
fore, recognition errors are quite likely. We hypothesize that a
correction interface is required to make voice search practical.
We have previously developed a mobile speech recognition sys-
tem called Parakeet [10]. Parakeet runs on mobile touch-screen
devices like the Nokia N80O (Figure 2).

Parakeet works as follows. First, the user speaks a query
into a wireless microphone. When recognition is complete, the
best hypothesis is displayed. If a word is a recognition error,
the user can change it to one of up to four alternative words by
touching the desired word. Words can be deleted altogether by
touching the “X” box (Figure 2). The interface is based on a
word confusion network [11] built from the recognition lattice.

In addition to selecting alternative words, the user can also
perform corrections using an on-screen keyboard (Figure 3). To
open the keyboard interface, the user double-taps a word. The

Figure 2: Parakeet’s word confusion network interface. The
user has spoken the query “quadrajet vacuum diagram”. Errors
are corrected by selecting alternative words from each column.

1865

‘ | quadrature vacuum diagram | ‘

‘quad| | ‘ OK H Cancel ‘

D<‘ ‘quadra ‘ ‘quadrex ‘ ‘quadriplegic ‘ ‘quadruple ‘ ‘quadrupled |
g wle|r it ylu i|o|lpl&
a s|d/ flg h jlk|I]" e
e | 2| X|C |V b/n|mj|,

Figure 3: Parakeet’s keyboard interface. As the user types, word
predictions appear in the boxes above the keyboard.

user then types letters or selects words directly from a set of
word predictions proposed by the system. In this work, we used
Parakeet to study how users spoke queries and corrected the
recognition results. For further details about Parakeet’s design,
computational experiments, and user studies, see [10].

To see how good Parakeet would be at allowing users to cor-
rect errors, we simulated an ideal “oracle” user. First, we per-
formed recognition on each utterance in our development test
set and generated the words that would be displayed in Para-
keet’s word confusion network interface. The oracle user se-
lected the words in this interface that minimized WER. The or-
acle user did not use the keyboard interface. Our computational
experiment showed that the word confusion network interface
allowed correction of over half the recognition errors, reducing
WER from 26% to 12% (using a 100K Search vocabulary).

6. Formative User Study

Having observed theoretical benefits of introducing an error
correction interface to voice search, we set out to investigate
how real users would perform using our system. Our user study
had three goals. First, to collect externally valid speech data
from users walking around and performing web search queries
on a mobile device. Second, to validate the design of our voice
search system in a realistic setting. Third, to get an estimate of
the envelope of voice search performance.

We recruited four participants from the university campus.
All participants were female native speakers of American En-
glish. Participants were asked to speak a set of past queries ob-
tained from a search engine spy [3]. We had participants use our
Parakeet system [10] running on a Nokia N800 mobile device
(Figure 2). Participants only spoke and corrected queries. They
did not execute actual web search queries or browse results.

Audio was recorded at 16 kHz using a Jabra M5390 wire-
less microphone. We used a 100K Search vocabulary, auto-
matically generating a single pronunciation for words not in the
CMU dictionary. We used PocketSphinx [12] for recognition,
using the setup described in [10] and a speaker-independent
acoustic model. While Parakeet can perform recognition on the
mobile device, this was not practical for this difficult recogni-
tion task. Instead, recognition was performed on a nearby lap-
top that was wirelessly connected to the N800. However, to the
user, it appeared just as if the device was doing the recognition.

In our study, users had to wait on average 2.7s =+ 0.8 s for
the recognition result to appear. The average recognition WER
was 48% (Table 6). This WER was higher than in offline experi-
ments using the users’ audio (see Section 4.5). This increase re-

Entry rate (cps)

T T T T T L L L
0 10 20 30 40 50 60 70 80 90 100
Recognition CER (%)

Figure 4: The entry rate and recognition character error rate
(CER) for each query entered during our user study.

Error rate Before correction After correction
Character (CER) 22.9 1.7
Word (WER) 48.0 8.3
Sentence (SER) 61.6 17.4

Table 6: Error rates before and after correction in our user study.

flects the PocketSphinx recognition setup used during the study
as well as compromises made to provide fast recognition.

In total, participants completed 776 queries (2434 words).
The OOV rate was 3.8% using a 100K Search vocabulary. In
43% of the queries, participants reviewed the 1-best result and
went directly to the next query. In only 7% of the queries did
participants respeak a query. Participants spent 47% of their
correction time using the confusion network interface and 53%
of their time using the on-screen keyboard.

Including recording, recognition delay, and correction time,
it took participants on average 18 s+ 15s to enter a query. Par-
ticipants’ mean entry rate was 1.7 cps &= 1.2 cps (characters per
second). As a reference point, Kamvar and Baluja [2] report
that Google’s mobile web search queries (typically typed using
a telephone keypad or a QWERTY thumb keyboard) had a mean
entry rate of 0.42 cps (calculated from Table 2 in [2]).

As expected, participants’ entry rate was heavily influenced
by the recognition error rate (Figure 4). We measured recog-
nition error rate using character error rate (CER) to provide a
finer grain error measure than WER. Given the short nature of
queries, WER can be high due to only minor differences such
as spacing or pluralization. Figure 4 gives us an estimate of the
envelope of voice search performance. It can be used to predict
the performance of voice search at different recognition error
levels. Notably, even at a 40% CER, the text entry rate is still
at an acceptable 1 cps (12 wpm). At low character error rates in
the range 0-10%, we observed a range of entry speeds from 0.4
to 5.9cps (4 to 71 wpm).

There were two limitations to our study. First, the number
of participants was small. Second, participants did not perform
a full search task in which they formulated their own queries and
browsed the results. Nevertheless, our results suggest spoken
web search queries can potentially be very fast.

7. Conclusions

In this paper we described how we built a research system that
enables users to speak and correct web search queries. We

1866

described how we collected a corpus of web search queries.
We showed that a search-specific LM is important for accurate
recognition. We also showed that using a vocabulary with au-
tomatically generated pronunciations was superior to limiting a
vocabulary to a fixed pronunciation dictionary.

We found that our users were on average able to speak and
correct a web search query in about 18 seconds. This was de-
spite a high overall WER of 48%. We gave an estimate of
the performance envelope of voice search. This estimate was
obtained from users walking around and speaking web search
queries to a mobile device. Assuming similar recognition la-
tency and correction interface, we predict that an average entry
rate of 1.9 cps (23 wpm) is possible when CER is in the range
0-10%. This shows that, despite limitations such as latency and
recognition errors, a voice search system with a good correction
interface may be a useful addition to mobile devices.

8. Acknowledgements

We would like to express our gratitude to our study participants.
This research was in part funded by a donation from Nokia.
The following applies to P.O.K. only: The research leading to
these results has received funding from the European Commu-
nity’s Seventh Framework Programme FP7/2007-2013 under
grant agreement number 220793.

9. References

“Yahoo! developer network home,” http://developer.yahoo.com,
accessed December 8, 2008.

M. Kamvar and S. Baluja, “Deciphering trends in mobile search,”
IEEE Computer, vol. 40, no. 8, pp. 58-62, 2007.

“Dogpile SearchSpy,” http://www.dogpile.com/dogpile/ws/
searchspy/rfcid=4101/rfcp=InternalNavigation/_iceUrlFlag=11?
_IceUrl=true, accessed December 8, 2008.

S. Deligne, F. Yvon, and F. Bimbot, “Variable-length sequence
matching for phonetic transcription using joint multigrams,” Pro-
ceedings of European Conference on Speech Communication and
Technology, pp. 2243-2246, 1995.

K. Vertanen, “Combining open vocabulary recognition and word
confusion networks,” in Proceedings of the IEEE Conference on
Acoustics, Speech, and Signal Processing (ICASSP), March 2008,
pp- 4325-4328.

M. Bisani and H. Ney, “Joint-sequence models for grapheme-to-
phoneme conversion,” Speech Communications, vol. 50, no. 5, pp.
434-451, 2008.

K. Vertanen,

(1]
[2]

[3]

[4

=

[5]

[6]

“Baseline WSJ acoustic models for HTK
and Sphinx: Training recipes and recognition exper-
iments,” http://www.inference.phy.cam.ac.uk/is/papers/
baseline_wsj_recipes.pdf, Cavendish Lab., Tech. Rep., 2006.

A. Franz and B. Milch, “Searching the web by voice,” in Pro-
ceedings of the Conference on Computational Linguistics, 2002,
pp- 1213-1217.

J. Sherwani, D. Yu, T. Pack, M. Czerwinski, Y. C. Ju, and
A. Acero, “Voicepedia: Towards speech-based access to unstruc-
tured information,” in Proceedings of European Conference on
Speech Communication and Technology, 2007, pp. 146—149.

K. Vertanen and P. O. Kristensson, “Parakeet: A continuous
speech recognition system for mobile touch-screen devices,” in
IUI ’09: Proceedings of the 14th International Conference on In-
telligent User Interfaces. ACM, 2009, pp. 237-246.

L. Mangu, E. Brill, and A. Stolcke, “Finding consensus in speech
recognition: Word error minimization and other applications of
confusion networks,” Computer Speech and Language, vol. 14,
no. 4, pp. 373400, 2000.

D. Huggins-Daines, M. Kumar, A. Chan, A. W. Black, M. Rav-
ishankar, and A. I. Rudnicky, “PocketSphinx: A free, real-time
continuous speech recognition system for hand-held devices,” in
Proceedings of the IEEE Conference on Acoustics, Speech, and
Signal Processing (ICASSP), May 2006, pp. 185-188.

[7]

[8

—

[9]

(10]

(11]

(12]

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index

	Abstract Book
	Abstract Card for this Manuscript

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Authors
