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Abstract

In the Colonel Blotto game, which was initially introduced by Borel in 1921, two colonels
simultaneously distribute their troops across different battlefields. The winner of each battlefield
is determined independently by a winner-take-all rule. The ultimate payoff of each colonel is the
number of battlefields he wins. The Colonel Blotto game is commonly used for analyzing a wide
range of applications from the U.S presidential election, to innovative technology competitions,
to advertisement, to sports, and to politics. There has been persistent efforts for finding the
optimal strategies for the Colonel Blotto game. After almost a century Ahmadinejad, Dehghani,
Hajiaghayi, Lucier, Mahini, and Seddighin [2] provided an algorithm for finding the optimal
strategies in polynomial time.

Ahmadinejad et al. [2] first model the problem by a Linear Program (LP) with both an expo-
nential number of variables and an exponential number of constraints which makes the problem
intractable. Then they project their solution to another space to obtain another exponential-size
LP, for which they can use Ellipsoid method. However, despite the theoretical importance of
their algorithm, it is highly impractical. In general, even Simplex method (despite its exponen-
tial running time in practice) performs better than Ellipsoid method in practice.

In this paper, we provide the first polynomial-size LP formulation of the optimal strategies
for the Colonel Blotto game. We use linear extension techniques. Roughly speaking, we project
the strategy space polytope to a higher dimensional space, which results in lower number of
facets for the polytope. In other words, we add a few variables to the LP, such that surprisingly
the number of constraints drops down to a polynomial. We use this polynomial-size LP to
provide a novel simpler and significantly faster algorithm for finding optimal strategies for the
Colonel Blotto game.

We further show this representation is asymptotically tight, which means there exists no
other linear representation of the problem with less number of constraints. We also extend our
approach to multi-dimensional Colonel Blotto games, where each player may have different sorts
of budgets, such as money, time, human resources, etc.

By implementing this algorithm we were able to run tests which were previously impossible
to solve in a reasonable time. These informations, allow us to observe some interesting properties
of Colonel Blotto; for example we find out the behaviour of players in the discrete model is very
similar to the continuous model Roberson [34] solved.

∗Supported in part by NSF CAREER award CCF-1053605, NSF BIGDATA grant IIS-1546108, NSF AF:Medium
grant CCF-1161365, DARPA GRAPHS/AFOSR grant FA9550-12-1-0423, and another DARPA SIMPLEX grant.
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1 Introduction

In the U.S. presidential election, the President is elected by the Electoral College system. In
the Electoral College system, each state has a number of electoral votes, and the candidate who
receives the majority of electoral votes is elected as the President of the United States. In most
of the states1, a winner-take-all role determines the electoral votes, and the candidate who gets
the majority of votes in a state will benefit from all the electoral votes of the corresponding state.
Since the President is not elected by national popular vote directly, any investment in the states
which are highly biased toward a party would be wasted. For example, a Democratic candidate
can count on the electoral votes of states like California, Massachusetts, and New York, and a
Republican candidate can count on the electoral votes of states like Texas, Mississippi, and South
Carolina. This highlights the importance of those states that are likely to choose either parties, and
would determine the outcome of the election. These states, known as swing states or battleground
states, are the main targets of a campaign during the election, e.g., the main battleground states of
the 2012 U.S. presidential election were Colorado, Florida, Iowa, New Hampshire, North Carolina,
Ohio, Virginia, and Wisconsin. Now answers to the following questions seem to be essential: how
can a national campaign distribute its resources like time, people, and money across different
battleground states? What is the outcome of the game between two parties?

One might see the same type of competition between two companies which are developing
new technologies. These companies need to distribute their efforts across different markets. The
winner of each market would become the market-leader and takes almost all the benefits of the
corresponding market [24, 25]. For instance, consider the competition between Samsung and Apple,
where they both invest on developing products like cell-phones, tablets, and laptops, and all can
have different specifications. Each product has its own specific market and the most plausible
brand will lead that market. Again, a strategic planner with limited resources would face a similar
question: what would be the best strategy for allocating the resources across different markets?
Colonel Blotto Game. The Colonel Blotto game, which was first introduced by Borel [10],
provides a model to study the aforementioned problems. This paper was later discussed in an issue
of Econometria [11, 17, 18, 42]. Although the Colonel Blotto model was initially proposed to study
a war situation, it has been applied for analyzing the competition in different contexts from sports,
to advertisement, and to politics [30, 27, 29, 12, 24, 25]. In the original Colonel Blotto game two
colonels fight against each other over different battlefields. They should simultaneously divide their
troops among different battlefields without knowing the actions of their opponents. A colonel wins
a battlefield if and only if the number of his troops dominates the number of troops of his opponent.
The final payoff of each colonel, in its classical form, is the number of the battlefields he wins. The
MaxMin strategy of a player maximizes the minimum gain that can be achieved. In two player
zero-sum games a MaxMin strategy is also the optimal strategy, since any other strategy may result
in a lower payoff across a rational player. It is also worth mentioning that in zero-sum games a
pair of strategies is a Nash equilibrium if and only if both players are playing MaxMin strategies.
Therefore finding MaxMin strategies results in finding the optimal strategies for players and also
the Nash equilibria of the game. It is easy to show that solving Colonel Blotto is computationally
harder than finding the optimal strategies of any two player game. Consider a two player game in
which the players have x and y pure strategies, respectively. Now, construct a Blotto game with
two battlefield in which player A has x− 1 troops and player B has y− 1 troops. Note that in this
Blotto game, the number of strategies of the players are x and y respectively, and one can easily
encode the payoff function of the original game in the partial payoffs of the two battlefields. Thus,

1All states except Maine and Nebraska
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any solution for Colonel Blotto yields a solution for an arbitrary two player game.
Colonel Blotto is a zero-sum game, but the fact that the number of pure strategies of the

agents are exponential in the number of troops and the number of battlefields, makes the problem
of finding optimal strategies quite hard. There were several attempts for solving variants of the
problem since 1921 [41, 7, 8, 5, 40, 43, 34, 26, 22, 20, 25]. Most of the works consider special cases of
the problem. For example many results in the literature relax the integer constraint of the problem,
and study a continuous version of the problem where troops are divisible. For example, Borel and
Ville [9] proposed the first solution for three battlefields. Gross and Wagner [21] generalized this
result for any number of battlefields. However, they assumed colonels have the same number
of troops. Roberson [34] computes the optimal strategies of the Blotto games in the continuous
version of the problem where all the battlefields have the same weight, i.e. the game is symmetric
across the battlefields. Hart [22] considered the discrete version, again when the game is symmetric
across the battlefields, and solved it for some special cases. Very recently Ahmadinejad, Dehghani,
Hajiaghayi, Lucier, Mahini, and Seddighin [2] made a breakthrough in the study of this problem
by finding optimal strategies for the Blotto games after nearly a century, which brought a lot of
attention [33, 23, 39, 16, 1, 38, 37, 15, 31]. They obtain exponential sized LPs, and then provide a
clever use of Ellipsoid method for finding the optimal strategies in polynomial time.

Although theoretically Ellipsoid method is a very powerful tool with deep consequences in
complexity and optimization, it is “too inefficient to be used in practice” [6]. Interior point methods,
and Simplex method (even though it has exponential running-time in the worst case) are ”far more
efficient” [6]. Thus a practical algorithm for finding optimal strategies for the Blotto games remains
an open problem. In fact there has been huge studies in existence of efficient LP reformulations
for different exponential-size LPs. For example Rothvoss [36] proved that the answer of the long-
standing open problem, asking whether a graph’s perfect matching polytope can be represented
by an LP with polynomial number of constraints, is negative. The seminal work of Applegate
and Cohen [3] also provides polynomial-size LPs for finding an optimal oblivious routing. We are
the first to provide a polynomial-size LP for finding the optimal strategies of the Colonel Blotto
games. Although Ahmadinejad et al. [2] use an LP with exponential number of constraints, our LP
formulation has onlyO(N2K) constraints, whereN denotes the number of troops andK denotes the
number of battlefields. Consequently we provide a novel simpler and significantly faster algorithm
using the polynomial-size LP.

Furthermore we show that our LP representation is asymptotically tight. The rough idea behind
obtaining a polynomial-size LP is the following. Given a polytope P with exponentially many facets,
we project P to another polytope Q in a higher dimensional space which has polynomial number
of facets. Thus basically we are adding a few variables to the LP in order to reduce the number
of constraints down to a polynomial. Q is called the linear extension of P . The minimum number
of facets of any linear extension is called the extension complexity. We show that the extension
complexity of the polytope of the optimal strategies of the Colonel Blotto game is Θ(N2K). In
other words, there exists no LP-formulation for the polytope of MaxMin strategies of the Colonel
Blotto game with fewer than Θ(N2K) constraints.

We also extend our approach to the Multi-Resource Colonel Blotto (MRCB) game. In MRCB,
each player has different types of resources. Again the players distribute their budgets in the
battlefields. Thus each player allocates a vector of resources to each battlefield. The outcome in each
battlefield is a function of both players’ resource vectors that they have allocated to that battlefield.
MRCB models a very natural and realistic generalization of the Colonel Blotto game. For example
in U.S. presidential election, the campaigns distribute different resources like people, time, and
money among different states. We provide an LP formulation for finding optimal strategies in
MRCB with Θ(N2cK) constraints and Θ(N2cK) variables, where c is the number of resources. We
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prove this result is also tight up to constant factors, since the extension complexity of MRCB is
Θ(N2cK).

By implementing our LP, we observe the payoff of players in the continuous version considered
by Roberson [34] very well predicts the outcome of the game in the auctionary and symmetric
version of our model.

2 Preliminaries

Throughout this paper we assume the number of battlefields is denoted by K and the number of
troops of players A and B are denoted by A and B respectively. Also in some cases we use N to
denote the number of troops of an unknown player.

Generally mixed strategies are shown by a probability vector over pure strategies. However at
some points in this paper we project this representation to another space that specifies probabilities
to each battlefield and troop count pair. More precisely, we map a mixed strategy x of player A to
GA(x) = x̂ ∈ [0, 1]d(A) where d(A) = K × (A+ 1). We may abuse this notation for convenience and
use x̂i,j to show the probability the mixed strategy x puts j troops in the i-th battlefield. Note that
this mapping is not one-to-one. Similarly, we define GB(x) to map a mixed strategy x of player B
to a point in [0, 1]d(B) where d(B) = K × (B + 1). Let RA and RB denote the set of all possible
mixed strategies of A and B in a Nash equilibrium. We define PA = {x̂ | ∃x ∈ RA,GA(x) = x̂}
and PB = {x̂ | ∃x ∈ RB,GB(x) = x̂} to be the set of all Nash equilibrium strategies in the new
space for A and B respectively.

Multi-Resource Colonel Blotto is a generalization of Colonel Blotto where each player may have
different types of resources. In MRCB, there are K battlefields and c resource types. Players
simultaneously distribute all their resources of all types over the battlefields. Let Ai and Bi denote
the number of resources of type i player A and B respectively have. A pure strategy of a player
would be a partition of his resources over battlefields. In other words, let xi,j and yi,j denote
the amount of resources of type j, players A and B put in battlefield i respectively. A vector
x = 〈x1,1, . . . , xK,c〉 is a pure strategy of player A if for any 1 ≤ j ≤ c,

∑K
i=1 xi,j = Aj . Similarly

a vector y = 〈y1,1, . . . , yK,c〉 is a pure strategy of player B if for any 1 ≤ j ≤ c,
∑K

i=1 yi,j = Bj .
Let UA(x, y) and UB(x, y) denote the payoff of A and B and let UA

i (x, y) and UB
i (x, y) show their

payoff over the i-th battlefield respectively. Note that

UA(x, y) =
K∑
i=1

UA
i (x, y)

and

UB(x, y) =
K∑
i=1

UB
i (x, y).

On the other hand since MRCB is a zero-sum game UA
i (x, y) = −UB

i (x, y). Similar to Colonel
Blotto we define RA

M and RB
M to denote the set of all possible mixed strategies of A and B in

a Nash equilibrium of MRCB and for any mixed strategy x for player A we define the mapping
GAM(x) = x̂ ∈ [0, 1]d

M(A) where dM(A) = K × (A1 + 1) . . . × (Ac + 1p) and by x̂i,j1,...,jc we mean
the probability that in mixed strategy x, A puts jt amount of resource type t in the i-th battlefield
for any t where 1 ≤ t ≤ c. We also define the same mapping for player B, GBM(x) = x̂ ∈ [0, 1]d

M(B)

where dM(B) = K × (B1 + 1) . . .× (Bc + 1). Lastly we define PMA = {x̂ | ∃x ∈ RA
M,GAM(x) = x̂}

and PMB = {x̂ | ∃x ∈ RB
M,GBM(x) = x̂} to be the set of all Nash equilibrium strategies after the

mapping.
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3 LP Formulation

In this section we explain the LP formulation of Colonel Blotto proposed by Ahmadinejad et al. [2]
and show how it can be reformulated in a more efficient way. Recall that in the Colonel Blotto game,
we have two players A and B, each in charge of a number of troops, namely A and B respectively.
Moreover, the game is played on K battlefields and every player’s pure strategy is an allocation of
his troops to the battlefields. Therefore, the number of pure strategies of the players is

(
A+K−1
K−1

)
for player A and

(
B+K−1
K−1

)
for player B.

The conventional approach to formulate the mixed strategies of a game is to represent every
strategy by a vector of probabilities over the pure strategies. More precisely, a mixed strategy
of a player is denoted by a vector of size equal to the number of his pure strategies, whose every
element indicates the likelihood of taking a specific action in the game. The only constraint that this
vector adheres to, is that the probabilities are non-negative and add up to 1. Such a formulation
for Colonel Blotto requires a huge amount of space and computation, since the number of pure
strategies of each player in this game is exponentially large.

To overcome this hardness, Ahmadinejad et al. [2] propose a more concise representation that
doesn’t suffer from the above problem. This is of course made possible by taking a significant hit
on the simplicity of the description. They suggest, instead of indicating the probability of taking
every action in the representation, we only keep track of the probabilities that a mixed strategy
allocates a certain amount of troops to every battlefield. In other words, in the new representation,
for every number of troops and any battlefield we have a real number, that denotes the probability
of allocating that amount of troops to the battlefield. As a result, the length of the representation
reduces from the number of pure strategies to (A+1)K for player A and (B+1)K for player B. This
is indeed followed by a key observation: given the corresponding representations of the strategies
of both players, one can determine the outcome of the game regardless of the actual strategies. In
other words, the information stored in the representations of the strategies suffices to determine
the outcome of the game.

In contrast to the conventional formulation, Ahmadinejad et al.’s representation is much more
complicated and not well-understood. For example, in order to see if a representation corresponds to
an actual strategy in the conventional formulation, we only need to verify that all of the probabilities
are non-negative and their total sum is equal to 1. Ahmadinejad et al.’s representation, however,
is not trivial to verify. Apart from the trivial constraints such as the probabilities add up to 1 or
the number of allocated troops matches the number of the player’s troops, there are many other
constraints to be met. Moreover, it is not even proven whether such a representation can be verified
with a polynomial number of linear constraints.

Ahmadinejad et al. [2] leverage the new representation to determine the equilibria of Colonel
Blotto in polynomial time. Recall that in zero-sum games such as Colonel Blotto, the minmax
strategies are the same as the maxmin strategies, and the game is in Nash Equilibrium if and only
if both players play a maxmin strategy [32]. Roughly speaking, the high-level idea of Ahmadinejad
et al. is to find a mixed strategy which performs the best against every strategy of the opponent.
By the equivalence of the minmax and maxmin strategies then, one can show such a strategy is
optimal for that player. Therefore, the naive formulation of the equilibria of Blotto is as follows:

max u (1)

s.t. x̂ is a valid strategy for player A

UA(x̂, ŷ) ≥ u ∀ŷ

5



Note that, x̂ is a vector of size (A+1)K that represents a strategy of player A. Similarly, for every
mixed strategy of player B, represented by ŷ, we have a constraint to ensure x̂ achieves a payoff of
at least u against ŷ. Notice that the only variables of the program are the probabilities encoded in
vector x̂. All other parameters are given as input, and hence appear as constant coefficients in the
program. As declared, there are two types of constraints in Program 1. The first set of constraints
ensures the validity of x̂, and the second set of constraints makes sure x̂ performs well against every
strategy of player B. Ahmadinejad et al. [2] call the first set the membership constraints and the
second set the payoff constraints. Throughout the paper Since for every mixed strategy, there exists
a best response of the opponent which is pure, one can narrow dawn the payoff constraints to the
pure strategies of player B.

The last observation of Ahmadinejad et al. [2] is to show both types of the constraints are
convex in the sense that if two strategy profiles x̂1 and x̂2 meet either set of constraints, then x̂1+x̂2

2
is also a feasible solution for that set. This implies that Program 1 is indeed a linear program
that can be solved efficiently via the Ellipsoid method. However, Ahmadinejad et al.’s algorithm
is practically impossible to run, as its computational complexity is O(N12K4).

The reason Ahmadinejad et al.’s algorithm is so slow is that their LP has exponentially many
constraints. Therefore, they need to run the Ellipsoid algorithm run solve the program. In addition
to this, their separation oracle is itself a linear program with exponentially many constraints which
is again very time consuming to run. However, a careful analysis shows that these exponentially
many constraints are all necessary and none of them are redundant. This implies that the space of
the LP as described by Ahmadinejad et al. requires exponentially many constraints to formulate
and hence we cannot hope for a better algorithm. A natural question that emerges, however, is
whether we can change the space of the LP to solve it with a more efficient algorithm?

In this paper we answer the above question in the affirmative. There has been persistent effort
to find efficient formulations for many classic polytopes. As an example, spanning trees of a graph
can be formulated via a linear program that has an exponential number of linear constraints. It is
also not hard to show none of those constraints are redundant [14]. However, Martin [28] showed
that the same polytope can be formulated with O(n3) linear constraints where n is the number of
nodes of the graph. Other examples are the permutahedron [19], the parity polytope [35], and the
matching polytope [36]. In these examples, a substantial decrease in the number of constraints of
the linear formulation of a problem is made possible by adding auxiliary variables to the program.
Our work follows the same guideline to formulate the equilibria of Blotto with a small number of
constraints.

In Section 4, we explain how to formulate the membership and payoff limitations with a small
number of linear constraints. Finally in Section 5, we show that our formulation is near optimal.
In other words, we show that any linear program that formulates the equilibria of Blotto, has to
have as many linear constraints as the number of constraints in our formulation within a constant
factor. We show this via rectangle covering lower bound proposed by Yannakakis [44]

4 Main Results

In this section we give a linear program to find a maxmin strategy for a player in an instance
of Colonel Blotto with polynomially many constraints and variables. To do this, we describe the
same representation described by Ahmadinejad et al.’s [2] LP in another dimension, to reduce the
number of constraints. This gives us a much better running time, since they had to use ellipsoid
method to find a solution for their LP in polynomial time, which makes their algorithm very slow
and impractical. We define a layered graph for each player and show any mixed strategy of a player
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can be mapped to a particular flow in his layered graph. Our LP includes two set of constraints,
membership constraints and payoff constraints. Membership constraints guarantee we find a valid
strategy and payoff constraints guarantee this strategy minimizes the maximum benefit of the other
player.

Definition 4.1 (Layered Graph) For an instance of a Blotto game with K battlefields, we define
a layered graph for a player with N troops as follows: The layered graph has K+1 layers and N+1
vertices in each layer. Let vi,j denote the j’th vertex in the i’th layer ( 0 ≤ i ≤ K and 0 ≤ j ≤ N).
For any 1 ≤ i ≤ K there exists a directed edge from vi−1,j to vi,l iff 0 ≤ j ≤ l ≤ N . We denote the
layered graph of player A and B by LA and LB respectively.

Based on the definition of layered graph we define canonical paths as follows:

Definition 4.2 (Canonical Path) A canonical path is a directed path in a layered graph that
starts from v0,0 and ends at vK,N .

(a) (b) (c)

0.3

0.3

0.4

0.4

0.7

0.3

0.3

0.3

Figure 1: Figure (a) shows a layered graph for a player with 3 troops playing over 3 battlefields. In
Figure (b) a canonical path corresponding to a pure strategy where the player puts no troops on
the first battlefield, 1 troop on the second one and two troops on the 3rd one is shown. Figure (c)
shows a flow of size 1, that is a representation of a mixed strategy consisting of three pure strategies
with probabilities 0.3, 0.4 and 0.3.

Figure 1 shows a layered graph and a canonical path. Now, we give a one-to-one mapping between
canonical paths and pure strategies.

Lemma 4.3 Each pure strategy for a player is equivalent to exactly one canonical path in the
layered graph of him and vice versa.

Proof. Since the edges in the layered graph exist only between two consecutive layers, each
canonical path contains exactly K edges. Let p be an arbitrary canonical path in the layered graph
of a player with N troops. In the equivalent pure strategy put li troops in the battlefield i if p
contains the edge between vi−1,j and vi,j+li for some j. By definition of the layered graph, we have

li ≥ 0. Also since p starts from v0,0 and ends in vK,N we have
∑K

i=0 li = N . Therefore this strategy
is a valid pure strategy.

On the other hand, let s be a valid pure strategy and let si denote the total number of troops in
battlefields 1 to i in strategy s. We claim the set of edges between vi−1,si−1 and vi,si for 1 ≤ i ≤ K
is a canonical path. Note that s0 = 0 and sK = N also the endpoint of any of such edges is the
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starting point of the edge chosen from the next layer, so we have constructed a valid canonical
path. �

So far it is clear how layered graphs are related to pure strategies using canonical paths. Now we
explain the relation between mixed strategies and flows of size 1 where v0,0 is the source and vK,N

is the sink. One approach to formulate the mixed strategies of a game is to represent every strategy
by a vector of probabilities over the pure strategies. Since based on Lemma 4.3 each pure strategy
is equivalent to a canonical path in the layered graph; for any pure strategy s with probability
P (s) in a mixed strategy we assign a flow of size P (s) to the corresponding canonical paths of s
in the layered graph. All these paths begin and end in v0,0 and vK,N respectively. Therefore since∑
P (s) = 1 for all pure strategies of a mixed strategy, the size of the corresponding flow would be

exactly 1.

Corollary 4.4 For any mixed strategy of a player with N troops there is exactly one corresponding
flow from vertex v0,0 to vK,N in the layered graph of that player.

Note that although we map any given mixed strategy to a flow of size 1 in the layered graph, this
is not a one-to-one mapping because several mixed strategies could be mapped to the same flow.
However in the following lemma we show that this mapping is surjective.

Lemma 4.5 For any flow of size 1 from v0,0 to vK,N in the layered graph of a player with N troops,
there is at least one mixed strategy of that player with a polynomial size support that is mapped to
this flow.

Proof. First, note that we can decompose any given flow to polynomially many flow paths from
source to sink [13]. A flow path is a flow over only one path from source to sink. One algorithm to
find such decomposition finds a path p from source to sink in each step and subtracts the minimum
passing flow through its edges from every edge in p. The steps are repeated until there is no flow
from source to sink. Since the flow passing through at least one edge becomes 0 at each step, the
total number of these paths will not exceed the total number of edges in the graph. This means
the number of flow paths in the decomposition will be polynomial.

Now, given a flow of size 1 from v0,0 to vK,N , we can basically decompose it to polynomially
many flow paths using the aforementioned algorithm. The paths over which these flow paths are
defined correspond to pure strategies and the amount of flow passing through each, corresponds to
its probability in the mixed strategy. �

Using the flow representation for mixed strategies and the shown properties for it, we give the
first LP with polynomially many constraints and variables to find a maxmin strategy for any player
in an instance of Colonel Blotto. Our LP consists of two set of constraints, the first set (membership
constraints) ensures we have a valid flow of size 1. This means we will be able to map the solution
to a valid mixed strategy. The second set of constraints are needed to ensure the minimum payoff of
the player we are finding the maxmin strategy for, is at least u. Now, by maximizing u we will get
a maxmin strategy. In the following theorem we prove PA could be formulated with polynomially
many constraints and variables. Note that one can swap A and B and use the same LP to formulate
PB.

Theorem 4.6 In an instance of Colonel Blotto, with K battlefields and at most N troops for each
player, PA could be formulated with Θ(N2K) constraints and Θ(N2K) variables.

8



(a) (b)

0 0 1

1 0 0

0 1 0

0

0

0

0.3 0.7 0

0.3 0 0.4

0.7 0 0.3

0

0.3

0

Figure 2: Figure (a) shows PA
k,i for the pure strategy specified in Figure 1-b and Figure (b) shows

PA
k,i for the mixed strategy specified in Figure 1-c. The rows correspond to battlefields and the

columns correspond to the number of troops.

Proof. The high-level representation of our LP is as follows:

max u (2)

s.t. x̂ is a valid strategy for player A

UB(x̂, ŷ) ≤ −u ∀ŷ.

The strategies x̂ and ŷ are represented using a flow of size 1 in the layered graph of player A and
B respectively. In Lemma 4.5 we proved any valid flow representation could be mapped to a mixed
strategy.

To ensure we a have a valid flow of size 1 from v0,0 to vK,A in LA (recall that LA denotes the
layered graph of player A), we use the classic LP representation of flow [4]. That is, not having any
negative flow and the total incoming flow of each vertex must be equal to its total outgoing flow
except for the source and the sink. We denote the amount of flow passing through the edge from vk,i
to vk+1,j by variable Fk,i,j . The exact membership constraints are shown in Linear Program 1-a.

On the other hand, we maximize the guaranteed payoff of player A, by bounding the maximum
possible payoff of player B. To do this, first note that for any given strategy of player A, there
exists a pure strategy for player B, that maximizes his payoff. Let PA

k,j denote the probability that

player A puts j troops in the k-th battlefield. Figure 2 shows the value of PA
k,j for the illustrated

examples in Figure 1. We can compute these probabilities using the variables defined in the previous
constraints, as follows:

PA
k,i =

A−j∑
i=0

Fk,i,i+j (3)

By having these probabilities we can compute the expected payoff that player B gets over battlefield
k, if he puts i troops in it. Moreover consider a given canonical path p in LB and let sp be the
pure strategy of player B, equivalent to p. We use WB

k,i to denote the expected payoff of player B
over battlefield k by putting i troops in it. This means the expected payoff of playing strategy sp
would be

∑
WB

k,j−i for any k, i and j such that there exists an edge from vk,i to vk+1,j in p. It is

possible to compute WB
k,i using the following equation:

WB
k,i =

A∑
l=0

PA
k,l × UB

k (i, l) ∀k : 1 ≤ t ≤ K (4)

Note that both equations to compute PA
k,i and WB

k,i are linear and could be computed in our LP.
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max u

(a)



Σl
i=0Fk,i,l = ΣA

j=lFk+1,l,j ∀k, l : 1 ≤ k ≤ K − 1, 0 ≤ l ≤ A
Fk,i,j ≥ 0 ∀k, i, j : 1 ≤ k ≤ K, 0 ≤ i ≤ j ≤ A
ΣA
j=lF1,l,j = 0 ∀l : 0 < l ≤ A

ΣA
j=0F1,0,j = 1

ΣA
j=0FK,j,A = 1

(b)



PA
k,i = ΣA−j

i=0 Fk,i,i+j ∀k, j : 1 ≤ k ≤ K, 0 ≤ j ≤ A
WB

k,i = ΣA
l=0P

A
k,l × UB

k (i, l) ∀k, i : 1 ≤ k ≤ K, 0 ≤ i ≤ B
DB

0,i = 0 ∀i : 0 ≤ i ≤ B
DB

k,i ≥ DB
k−1,j +WB

k−1,i−j ∀i, j : 0 ≤ j ≤ i ≤ B
DB

K,B ≤ −u

Linear Program 1: The detailed linear program to find a maxmin strategy for player A. The first
set of constraints denoted by (a) ensure we get a valid flow of size 1 from v0,0 to vK,A in the layered
graph of player A (a mixed strategy of him) and the second set of constraints denoted by (b) ensure
the guaranteed payoff of player A is at least u. The value of variable Fk,i,j is the amount of flow
passing through the edge from vk,i to vk+1,j for any valid k, i and j. Variable DB

i,j is the size of the

maximum weighted path from v0,0 to vi,j in the layered graph of player B, therefore DB
K,B denotes

the maximum payoff of B and u is the guaranteed payoff of player A. For an informal explanation
of the LP see the text.

Assume WB
k,i is the weight of the edge from vk,j to vk+1,i+j in LB. Given the probability

distribution of player A (which we denoted by PA
k,i), the problem of finding the pure strategy of

B with the maximum possible expected payoff, would be equivalent to finding a path from v0,0 to
vK,B with the maximum weight.

To find the path with the maximum weight from v0,0 to vK,B, we define an LP variable DB
k,i

where its value is equal to the weight of the maximum weighted path from v0,0 to vk,i and we
update it using a simple dynamic programming like constraint:

DB
k,i ≥ DB

k−1,j +WB
k−1,i−j ∀i, j : 0 ≤ j ≤ i ≤ B

The maximum weighted path from v0,0 to vK,B would be equal to the value of DB
K,B. The detailed

constraints are shown in Linear Program 1-b.
Note that the number of variables we use in Linear Program 1 is as follows:

• Variables of type Fk,i,l: Θ(A2K).

• Variables of type PA
k,i : Θ(AK).

• Variables of type WB
k,i : Θ(BK).

• Variables of type DB
k,i : Θ(BK).

10



Therefore the total number of variables is Θ(N2K). Also note that the number of non-negativity
constraints (Fk,i,j ≥ 0) is more than any other constraints and is Θ(N2K), therefore the total
number of constraints is also Θ(N2K). �

To obtain a mixed strategy for player A, it suffices to run Linear Program 1 and find a mixed
strategy of A that is mapped to the flow it finds. Note that based on Lemma 4.5 such mixed
strategy always exists. Afterwards we do the same for player B by simply substituting A and B in
the LP.

5 Lower Bound

A classic approach to reduce the number of LP constraints needed to describe a polytope is to do
it in a higher dimension. More precisely, adding extra variables might reduce the number of facets
of a polytope. This means a complex polytope may be much simpler in a higher dimension. This
is exactly what we did in Section 4 to improve Ahmadinejad et al.’s algorithm. In this section we
prove that any LP formulation that describes solutions of a Blotto game requires at least Θ(N2K)
constraints, no matter what the dimension is. This proves the given LP in Section 4 is tight up to
constant factors.

The minimum needed number of constraints in any formulation of a polytope P is called ex-
tension complexity of P , denoted by xc(P ). It is not usually easy to prove a lower bound directly
on the extension complexity, because all possible formulations of the polytope must be considered.
A very useful technique given by Yannakakis [44] is to prove a lower bound on the positive rank of
the slack matrix of P which is proven to be equal to xc(P ). Note that you could define the slack
matrix over any formulation of P and its positive rank would be equal to xc(P ), which means you
do not have to worry about all possible formulations. To prove this lower bound we use a method
called rectangle covering lower bound, already given in Yannakakis’s paper. We will now formally
define some of the concepts we used:

Definition 5.1 (Extension Complexity) Extension complexity of a polytope P , denoted by
xc(P ) is the smallest number of facets of any other higher dimensional polytope Q that has a
linear projection function π with π(Q) = P .

The next concept we need is slack matrix, which is a matrix of non-negative real values where its
columns correspond to vertices of P and its rows correspond to its facets. The value of each element
of slack matrix is basically the distance of the vertex corresponding to its column from the facet
corresponding to its row. More formally:

Definition 5.2 (Slack Matrix) Let {v1, . . . , vv} be the set of vertices of P and let {x ∈ Rn|Ax ≤
b} be the description of it. The slack matrix of P denoted by SP , is defined by SP

ij = bi −Aivj.

Also, the non-negative rank of a matrix S is the minimum number m such that S could be factored
into two non-negative matrices F and V with dimensions f ×m and m× v.

Definition 5.3 (Non-negative Rank) We define the non-negative rank of a matrix S with f
rows and v columns, denoted by rk+(S) to be:

rk+(S) = min{m|∃F ∈ Rf×m
≥0 , V ∈ Rm×v

≥0 : S = FV } (5)
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Yannakakis [44] proved that xc(P ) = rk+(SP ). Therefore instead of proving a lower bound on
the extension complexity of P , it only suffices to prove a lower bound on the positive rank of the
corresponding slack matrix. As mentioned before, to do so, we will use the rectangle covering
lower bound. A rectangle covering for a given non-negative matrix S is the minimum number of
rectangles needed, to cover all the positive elements of S and none of its zeros (Figure 3), formally
defined as follows:

Definition 5.4 (Rectangle Covering) Suppose r = rk+(S) and let S = UV be a factorization
of S by non-negative matrices U and V . Let supp(S) denote the set of all the positive values of S.
Then

supp(S) =
r⋃

l=1

({i|Uil > 0} × {j|Vlj > 0})

is a rectangle covering of S with r rectangles.

4 0 1 7
2 5 2 9

0 1 0 3
0 5 4 1

0 + 0 +
0 + + +
+ 0 + +
+ + + +

0 + 0 +
0 + + +
+ 0 + +
+ + + +

(a) (b) (c)

Figure 3: Figure (a) shows a sample matrix, in Figure (b) we change any non-negative value in the
matrix of Figure (a) to “+” and in Figure (c) all these non-negative elements are covered by the
minimum possible number of rectangles. Note that the non-negative rank of the matrix in Figure
(a) could not be less than 5 (the number of rectangles).

Yannakakis showed that the number of rectangles in a minimum rectangle covering could never be
greater than rk+(S), using a very simple proof. This means any lower bound of it, is also a lower
bound of the actual rk+(S). This is the technique we use in the proof of the following lemma,
which is used later to prove the main theorem:

Lemma 5.5 The extension complexity of the membership polytope of a player in an instance of
Blotto with K battlefields and N troops for each player is at least Θ(N2K).

Proof. Assume w.l.g. that we are trying to describe the polytope of all valid strategies of player
A, denoted by P . One way of describing this polytope was explained in the LP described in Section
4. Now from its membership constraints, only consider the ones that ensure the non-negativity of
the flow passing through the edges of the layered graph of player A:

Fi,j,t ≥ 0 ∀i, j, t : 0 ≤ i ≤ K − 1, 0 ≤ j ≤ j + t ≤ A (6)

From now on, only consider the part of the slack matrix corresponding to these constraints (we
may occasionally call it the slack matrix), its columns as mentioned before, correspond to the
vertices of the polytope, which in this case are all possible pure strategies of player A. Also its
rows correspond to the mentioned constraints. Recall that any pure strategy is a canonical path in
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the layered graph of player A. Note that the slack matrix element corresponding to any arbitrarily
chosen non-negativity constraint e ≥ 0 and any arbitrary vertex vj corresponding to a pure strategy
S is 0 iff the equivalent canonical path of S does not contain e and is 1 if it does; since the elements
of the slack matrix are calculated using the formula SP

ij = b−Aivj and in this case b is always zero
and Aivj is −1 iff S contains the edge in the constraint and is zero otherwise. This implies it is
only consisted of zero and one values.

We call any edge Fb,i,j with j − i > N
2 a long edge. A canonical path may only contain at most

one such edge. On the other hand, any rectangle in the rectangle covering is basically a set of
vertices and a set of constraints. Note that all the equivalent pure strategies of those vertices must
contain the edges over which the constraints are defined. Therefore no rectangle could contain more
than one constraint over long edges. The number of long edges in the layered graph is exactly

K(N − dN+1
2 e)(N − d

N+1
2 e+ 1)

2
. (7)

Therefore the minimum number of rectangles to cover all non-negative elements of the slack matrix
is at least of the same size and therefore Θ(N2K). �

Theorem 5.6 In an instance of Blotto with K battlefields and N troops for each player the exten-
sion complexity of PA is Θ(N2K).

Proof. Assume the utility function is defined as follows:

UA(x̂, ŷ) = 0 ∀x̂, ŷ. (8)

This means any possible strategy is a maxmin strategy for both players. In particular, the polytope
of all possible maxmin strategies of any arbitrarily chosen player of this game, denoted by P contains
all possible valid strategies. Now using Lemma 5.5 we know xc(P ) is at least Θ(N2K). On the other
hand, in Section 4 we gave an LP with Θ(N2K) constraints to formulate the maxmin polytope,
therefore the extension complexity of it is exactly Θ(N2K). �

6 Multi-Resource Colonel Blotto

In this section we explain how our results could be generalized to solve Multi-Resource Colonel
Blotto, or MRCB. We define MRCB to be exactly the same game as Colonel Blotto, except instead
of having only one type of resource (troops), players may have any constant number of resource
types. Examples of resource types would be time, money, energy, etc.

To solve MRCB we generalize some of the concepts we defined for Colonel Blotto. We first
define generalized layered graphs and generalized canonical paths as follows:

Definition 6.1 (Generalized Layered Graph) Let Nm denote the total number of available re-
sources of m-th resource type for player X. The generalized layered graph of X has K×N1×. . .×N c

vertices denoted by v(i, r1, . . . , rc), with a directed edge from v(i, r1, . . . , rm−1, x, rm+1, . . . , rc) to
v(i+ 1, r1, . . . , rm−1, y, rm+1, . . . , rc) for any possible i, r and 0 ≤ x ≤ y ≤ Nm.

Definition 6.2 (Generalized Canonical Path) A generalized canonical path is defined over a
generalized layered graph and is a directed path from v0,0,...,0 to vK,N1,...,Nc.
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By these generalization we can simply prove that pure strategies of a player are equivalent to
canonical paths in his generalized layered graph and there could be a surjective mapping from his
mixed strategies to flows of size 1 from v(0, . . . , 0) to v(K,N1, . . . , Nc) using similar techniques we
used in Section 4.

Lemma 6.3 Each pure strategy for a player in an instance of MRCB is equivalent to exactly one
generalized canonical path in the generalized layered graph of him and vice versa.

Lemma 6.4 For any flow f of size 1 from v(0, . . . , 0) to v(K,N1, . . . , Nc) in the generalized layered
graph of a player with N i troops of type i, there is at least one mixed strategy with a polynomial
size support that is mapped to f .

Using these properties, we can prove the following theorem:

Theorem 6.5 In an instance of MRCB, PMA could be formulated with O(N2cK) constraints and
Θ(N2cK) variables.

Proof. The linear program would again look like this:

max u (9)

s.t. x̂ is a valid strategy for player A

UB(x̂, ŷ) ≤ −u ∀ŷ

For the first set of constraints (membership constraints) we can use the flow constraints over the
generalized layered graph of player A to make sure we have a valid flow of size 1 from v(0, . . . , 0)
to v(K,N1, . . . , Nc). And for the second constraint (payoff constraint) we can find the maximum
payoff of player B using a very similar set of constraints to the described one in Section 4, but over
the generalized layered graph of player B. �

We can also prove the following lowerbound for MRCB.

Theorem 6.6 In an instance of MRCB, the extension complexity of PMA is Θ(N2cK).

Proof. The proof is very similar to the proof of Theorem 5.6. We only consider the rectangle
covering lower bound over the part of the slack matrix corresponding to the non-negativity of
flow through edges in the maxmin. We call an edge from v(i, r1, . . . , rm−1, x, rm+1, . . . , rc) to v(i+
1, r1, . . . , rm−1, y, rm+1, . . . , rc) long if y−x > nm

2 . No generalzied canonical path could contain more
than c long edges therefore no rectangle could cover more than c constraints. On the other hand
there are Θ(N2cK) long edges in the layered graph. Since c is a constant number the extension
complexity is Ω(N2cK). Moreover since we already gave a possible formulation with O(N2cK)
constraints in Theorem 6 the extension complexity is also O(N2cK) and therefore Θ(N2cK). �

7 Experimental Results

We implemented the algorithm described in Section 4 using Simplex method to solve the LP. We
ran the code on a machine with a dual-core processor and an 8GB memory. The running time
and the number of constraints of the LP for each input is shown in Table 1. Using this fast
implementation we were able to run the code for different cases. In this section we will mention
some of our observations that mostly confirm the theoretical predications.

14



K A B Constraints Running Time

10 20 20 3595 0m3.575s
10 20 25 4855 0m3.993s
10 20 30 6365 0m6.695s
10 25 25 5295 0m8.245s
10 25 30 6805 0m7.502s
10 30 30 7320 0m30.955s
15 20 20 5065 0m14.965s
15 20 25 6950 0m11.842s
15 20 30 9210 0m24.196s
15 25 25 7440 0m46.165s
15 25 30 9700 0m31.714s
15 30 30 10265 2m20.776s
20 20 20 6535 0m46.282s
20 20 25 9045 0m35.758s
20 20 30 12055 0m38.507s
20 25 25 9585 1m38.367s
20 25 30 12595 0m51.795s
20 30 30 13210 9m13.288s

Table 1: The number of constraints and the running time of the implemented Colonel Blotto
based on different inputs. The first column shows the number of battlefields, the second and third
columns show the number of troops of player A and B respectively. The number of constraints
does not include the non-negativity constraints since by default every variable was assumed to be
non-negative in the library we used.
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Figure 4: The y-axis is the payoff of A in the Nash equilibrium and the x-axis shows the value of
A−B. In Figure (a), K = 6 and B = 10. In Figure (b), K = 6 and for different values of B in the
range of 1 to 10 the same diagram as Figure (a-) is drawn. Figure (c) is the same plot as Figure
(b) but for different values of K. For instance for the blue lines K = 4, for the red lines K = 6, for
the green lines K = 8 and for the purple lines K = 10. In all examples payoff function of player
A over a battlefield i, is sgn(xi − yi) where xi and yi denote the number of troops A and B put in
the i-th battlefield respectively.

An instance of Colonel Blotto is symmetric if the payoff function is the same for all battlefields,
or in other words for any pure strategies x and y for player A and B and for any two battlefields
i and j, UA

i (x, y) = UA
j (x, y). Also, an instance of blotto is auctionary if the player allocating

more troops in a battlefield wins it (gets more payoff over that battlefield). More formally in an
auctionary instance of Colonel Blotto, if x and y are some pure strategies for player A and B
respectively, then

UA
i (x, y) =


+w(i), if xi > yi

0, if xi = yi

−w(i), otherwise

Recall that xi and yi denote the amount of troops A and B put in the i-th battlefield respectively.
Note that in an auctionary Colonel Blotto if A ≥ (B + 1)K, then by putting B + 1 troops in

each battlefield, player A wins all the battlefields and gets the maximum possible overall payoff.
On the other hand if A = B, the payoff of player A in any Nash equilibrium is exactly 0 because
there is no difference between player A and player B by definition of an auctionary Colonel Blotto
if A = B, and any strategy for A could also be used for B and vice versa. W.l.g. we can ignore
the case where A < B. However, it is not easy to guess the payoff of A in a Nash equilibrium if
B ≤ A < (B+ 1)K. After running the code for different inputs, we noticed the growth of UA with
respect to A (when B is fixed) has a common shape for all inputs. Figure 4 shows the chart for
different values of A, B and N .

There has been several attempts to mathematically find the optimum payoff of players under
different conditions. For example Roberson [34] considered the continuous version of Colonel Blotto
and solved it. Hart [22] solved the symmetric and auctionary model and solved it for some special
cases. Little is known about whether it is possible to completely solve the discrete version when
the game is symmetric and auctionary or not.

Surprisingly, we observed the payoff of players in the symmetric and auctionary discrete version,
is very close to the continuous version Roberson considered. The payoffs are specially very close
when the number of troops are large compared to the number of battlefields, making the strategies
more flexible and more similar to the continuous version. Figure 5 compares the payoffs in the
aforementioned models. In Roberson’s model in case of a tie, the player with more resources wins
while in the normal case there is no such assumption; however a tie rarely happens since by adding
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Figure 5: The y-axis is the payoff of A in the Nash equilibrium and the x-axis shows the value
of A − B. The black and red line show the payoff in the continuous model and discrete model
respectively. In figure (a), K = 6 and B = 10, in figure (b), K = 4 and B = 12 and in figure (c),
K = 2 and B = 30.

any small amount of resources the player losing the battlefield would win it.
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